STATISTICS AND ITS INTERFACE Volume 2 (2009) 91-99

A minimum contrast estimation procedure for
estimating the second-order parameters of
inhomogeneous spatial point processes

YONGTAO GUAN*

In this paper we propose a new model fitting procedure to
estimate the second-order parameters for a class of inhomo-
geneous spatial point processes called second-order intensity
reweighted stationary processes. The proposed approach is
essentially a ‘minimum contrast estimation’ procedure but
is based on the pair correlation function instead of the com-
monly used K-function of the process. We show through
simulations that the new procedure gives more stable esti-
mates than the approach based on the K-function. We apply
the proposed method to a tropical forest data example to
illustrate its practical use.
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1. INTRODUCTION

Since the early 1980, the Center for Tropical Forest Sci-
ence has established 20 long-term, large-scale (50 ha) for-
est plots worldwide. Currently over 3 millions trees repre-
senting 8,200 species are being monitored. In all plots, all
woody tree stems > 1 cm dbh have been mapped to the
nearest 0.1 m and identified to species. In addition, abiotic
covariates such as topographical and soil nutrient content
have been collected. Given this wealth of new data, ecolo-
gists would like to gain insight on the biological processes
that shape species spatial patterning and to ultimately un-
derstand how tropical forests maintain their extremely high
biodiversity (Condit et al. 2000). To that end, a multitude
of theories have been proposed, the majority of which can
be broken down into two categories: niche assembly and
dispersal assembly. Niche-assembly theories post that envi-
ronmental heterogeneity and biological interactions are re-
sponsible for species coexistence and community structure
(Hubbell and Foster 1986). In contrast, dispersal-assembly
theories hypothesize that chance, history and dispersal ex-
plain species coexistence and community structure (Hubbell
2001). An ongoing debate exists in the ecological commu-
nity concerning the relative importance of niche- versus
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dispersal-assembly theories of diversity (Bell et al. 2005).
However, it is likely that in reality neither theory alone can
fully explain the maintenance of high tropical tree species
diversity (Gravel et al. 2006).

Recent advances in spatial point pattern analysis have
provided promising new tools to more effectively separate
the niche- and dispersal-assembly effects, so that their re-
spective contributions in shaping the spatial patterning of
trees can be assessed (Mgller and Waagepetersen 2007). To
apply these tools, we view the spatial locations of each tree
species as a realization from a stochastic process called spa-
tial point process. The intensity function of the process,
which can be roughly understood as the mean or the first-
order structure of the process, is typically assumed to be a
parametric function of the abiotic covariates so as to incopo-
rate potential niche-assembly effects (Waagepetersen 2007).
In addition, a parametric model independent of these co-
variates is then used for the second-order structure (i.e., the
dependence structure) of the process in order to gain insight
on potential dispersal-assembly effects (Waagepetersen and
Guan 2008). This kind of model fitting scheme is particularly
useful for the so-called second-order intensity reweighted
stationary processes (see Section 2 for its definition) and
we will thus restrict our attention to such processes in what
follows.

The main purpose of this paper is to develop a new model
fitting procedure to estimate the second-order parameters
in a second-order intensity reweighted stationary process, a
subject that has not been well studied in literature. The esti-
mation of such parameters is important for at least two rea-
sons: 1) they carry extremely useful information regarding
the degree of dispersal-assembly effects as discussed above,
and 2) they are critical for inference on the intensity function
of the process, i.e., inference on niche-assembly effects, be-
cause the variance of the estimated regression parameters in
an intensity model typically depends on these second-order
parameters. Our proposed method is based on the simple
yet extremely useful idea of ‘minimum contrast estimation’.
However, unlike most existing related procedures, it is based
on the pair correlation function but not the more commonly
used K-function (Diggle 2003; Mgller and Waagepetersen
2004). Alternatively, maximum likelihood estimation is pos-
sible for inhibitive types of spatial point patterns but is of-
ten too computationally intensive for it to be feasible for
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clustered spatial point patterns (Mgller and Waagepetersen
2004). For many tropical forestry data, the latter are much
more common than the former.

Most minimum contrast estimation procedures involve
some unknown tuning parameters to be determined and the
value of these parameters may greatly affect the accuracy of
the resulting estimators. This is no exception for our pro-
posed method. We will develop data-driven procedures to
select these parameters. In light of the simulation results
in Section 4, we will also provide guidelines on selecting
the tuning parameters when the estimation is based on the
K-function. However, the choice in this case is somewhat
more arbitrary than the proposed procedure. Moreover, our
simulation results indicate that the proposed procedure is
often more stable across the different choices of the tuning
parameter involved.

The remainder of this article is organized as follows. We
give some background on second-order intensity reweighted
stationary processes in Section 2 and develop the proposed
estimation procedure in Section 3. We then assess its nu-
merical performance through simulations in Section 4 and
apply it to a tropical forestry data example in Section 5.
Some technical details are given in the Appendix.

2. BACKGROUND

2.1 Second-order intensity reweighted
stationary processes

Consider a spatial point process N that is observed on a
spatial domain of interest D. Let ds be a small region con-
taining s and let |ds| denote the area of ds. Write N(ds)
for the number of events of N falling in ds. Following Dig-
gle (2003), we define the first- and second-order intensity
functions of the process

_ i, EIN(ds)]
Als) = |dlsl|n—l>0 o ds|
Ao (s1,82) = E[N(ds1)N(ds2)]
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Intuitively, A(s)|ds| and Aa(s1,s2)|ds1]||dsz2| are the approx-
imate probabilities for ds and for ds; and ds, to each
contain an event of N. By convention, we refer to the
first-order intensity function as the intensity function. We
say that a spatial point process is second-order intensity
reweighted stationary (SOIRS; Baddeley et al. 2000) if
A(s1,82) = A(s1)A(s2)g(s1—s2) for some function g(-), where
g(+) is called the pair correlation function (PCF; Mgller and
Waagepetersen 2004). If the PCF is isotropic, then the re-
duced second moment measure, or the K-function can be
expressed as K(t) = 27 fot ug(u)du.

The class of SOIRS process models contains many com-
monly used spatial point process models as special exam-
ples (Mgller and Waagepetersen 2007). Among these, a very
popular choice is the inhomogeneous Neyman-Scott process
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model (Waagepetersen 2007). To simulate realizations from
such a process, a spatial Poisson process with some constant
intensity p needs be first generated. Each event of the pro-
cess is called a parent which in turn will generate a Poisson
number of offspring with an expected value u. Conditional
on the location of each parent, the offspring are dispersed
independently following some common probability density
function. For any location s, let X(s) be a p x 1 vector of
covariates recorded at this location. An offspring at s is re-
tained with a probability f[X(s)?3]/M for some function
f(-), where M = max{ f[X(s)" 3]} and B is a p x 1 vector of
unknown parameters. The resulting offspring process then
forms an inhomogeneous Neyman-Scott process.

A nice property about the inhomogeneous Neyman-Scott
process is that its summary functions are often available in
closed forms. Assume that the first elements of X(s) and
are equal to one and pu/M, respectively. Then the first- and
second-order intensity functions of the process are
(1) A(s; 8) = f[X(s) ],

As1,82; 3,0) = A(s1; B)A(s2; B)g(s1 — s2;0),

respectively, where g(s; — s2;6) depends on some unknown
parameter vector . For example, if the probability density
function used to generate the offspring locations is a bivari-
ate radially symmetric normal distribution (Diggle 2003),
then

(2) g(s1 —s2;0) = 1+ exp[—||s1 — s2||*/(40%)]/(4mpo?),

where o2 is the variance of the normal variables and || - || is
the Euclidean norm. Note that here 6 = (p,?). In terms of
the tropical forestry data examples discussed in Section 1,
potential niche-assembly effects can be easily incorporated
into the intensity function model. In particular, note from
the definition of the model that the covariates control the
survival rate of offspring (i.e., trees in this setting) at a given
location. On the other hand, the dispersal parameter 6 con-
tains important information about the dispersal pattern of
the species. For instance, Seidler and Plotkin (2006) illus-
trated that the parameter o2 in (2) can be used to distin-
guish among species with different modes of seed disper-
sal.

2.2 Estimation of 3

The first-order parameter (§ is often estimated by an
estimating equation approach based on the Poisson maxi-
mum likelihood (Schoenberg 2005). Assume that the inten-
sity function admits the general form (1) and that f() =
exp(-). Waagepetersen (2007) proposed to estimate § by
solving

) we) = 3 X6~ [ X explX(s)7lds =0,
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Write B and [y for the resulting estimator obtained by solv-
ing (3) and the target parameter, respectively. Statistical
properties of 3 can be found in Schoenberg (2005), Guan
and Loh (2007) and Waagepetersen (2007). In particular,
Guan and Loh (2007) showed that the variance of 3 can be
written as

(4)

where

> = cov(f) ~ A?

A= / X (s)X(s)" \(s; Bo)ds

B- [ / X ()X (v)TA(u1; Ao)A(V; o)

[g(u—v;0) — 1]dudv.
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Note that although the calculation of B does not depend on
0, the variance of 3 involves 6.

2.3 Estimation of 6

Assume that the PCF is isotropic from now on. Based on
an estimated intensity function, we can obtain the empirical
K-function (Mgller and Waagepetersen 2004)
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where " 37 signifies summation over distinct pairs, ()
is an indicator function and e(s1,s2) is an edge correction
term. For examples of e(s1, s2), see Diggle (2003) and Stoyan
and Stoyan (1994). In the simulation, we set e(sy,s2) =
1/|D N (D — s1 + s2)|, where | DN (D —s1+s3)| is a common
area between D and its copy shifted by s; — ss.

To estimate 6, the empirical K-function is often con-
trasted against the theoretical K-function through the dis-
crepancy measure

o= R @0F - (K

An estimate for 6 is then defined as the minimizer of Uk (6).
This is an example of the ‘minimum contrast estimation’
(MCE) (Mgller and Waagepetersen 2004). The parameters
cand r in (5) are two tuning parameters that need be pres-
elected. Diggle (2003) suggested using r < .25 for data on a
unit square and using ¢ = .25 or smaller for clustered point
patterns, both in the homogeneous case. Note that the use
of ¢ is mainly to make the variance of [K ()] more stable
than that of K(t). Our experience is that different choices
of r and ¢ can lead to very different estimates, which often
makes it difficult to interpret the obtained results. We will
give some specific recommendations on the choice of these
parameters based on our simulation results in Section 4.

(5) 0)]°}2dt.

3. THE PROPOSED PROCEDURE
3.1 The empirical PCF

Let k(-) denote a kernel function defined over R and let
h be a bandwidth. The PCF can then be estimated by

(6)
g 27rh Z Z
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In our simulation in Section 4, we set k(-) to be the
Epaneénikov kernel, i.e., k(z) = .75(1 — 22) when —1 <z <
1 and 0 otherwise, and e(sy,s2) = 1/|D N (D — s; + s2)| as
in the K-function case. An analogous estimate for the PCF
based on the conditional intensity can also be developed in
the spatial-temporal point process setting, following the re-
sults in Adelfio and Schoenberg (2009). Here we focus on
only the spatial point process case.

Write {D,,} and {h,} for a sequence of domains and
bandwidths satisfying condition (14) in the Appendix. Let
8, be (3 defined on D,,. Under some suitable regularity con-
ditions, 3, is consistent for 3 and 3— f is typically of order
| Dy |~ 1 2. We will therefore conveniently ignore the effect of
3, on §(t; hy,) in the subsequent development. If we further
ignore the edge effect, then

/k g(t — hpu)du.

Thus, §(t; hy,) is asymptotically unbiased for g(t) given that
g(t) is continuous and h,, — 0. Furthermore, we derive in
the Appendix that

(7) Var(gts ho)
_ cng(t;0)
Dt

//% NCED s+u( 60) 6]

where {c,} is a sequence of real values independent of ¢
and u(t, ) = [tcos(¢), tsin(t))]. Assume that ¢ is relatively
small compared to the size of D,, and that A(s; ) is suffi-
ciently smooth such that A(s; 8y) =~ Als + u(t, ¢); o). Then
the variance of §(¢; hy,) may be simplified as

(8)

The above result will play a key role in developing our model
fitting procedure below.

Var[g(t; hy)] o g(t;0)/t.

3.2 Bandwidth selection

To calculate (6), it is also important to select the band-
width h, preferably by some data-driven methods. In the ho-
mogeneous case, Guan (2007) introduced a cross-validation
approach based on the so-called composite likelihood. We
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will show that a similar approach can be developed in the
inhomogeneous case. To begin, we first note that at 8 = 6y,

)\(517 S2; 607 9)
Il p A2(u, v; Bo, 0)dudv

f(slst;e) =

is the probability density function for two arbitrary events
in DN N to be at s; and sy, where Ay(s1,S2;50,0) =
A(s1;80)A(s2; Bo)g(s1 — s2;0). Now sum up all the result-
ing pairwise log-likelihoods. We then obtain the following
composite likelihood (Lindsay 1988) criterion

5>

s1,82€ DNN
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In practice, By is unknown but can be replaced by its con-
sistent estimator 4. Estimation of 6 can then be obtained
by maximizing L(6). For purpose of bandwidth selection, we
can treat the bandwidth h as the unknown parameter that
needs to be estimated. To be specific, we may choose h as
the maximizer of

>y

s1,82€ DNN

—log[/D/D)\u

In the above, g(||s1 —s2]; k) is the cross-validated version of
J(||s1 —sz2||; h) obtained by deleting the pair (s, s3). The re-
moval of the observed pairs is important because otherwise
(9) will always take its maximum at h = 0. This type of like-
lihood based cross-validation idea is not new and has been
extensively used in density estimations (Silverman 1998).
The main difference is that in the latter setting, the maxi-
mum likelihood is often used instead of the composite like-
lihood being used here. Furthermore, note that we delete
a pair of events but not a single observation as in density
estimations.

The calculation of the double integral in (9) can be quite
computationally intensive. For a computationally faster al-
ternative, we first note that a weighted version of L() can
be obtained as

£
ZZ W(sl,SQ){10g[>\2(51752;ﬂ0,9)]

s1,s2€ DNN

—log[/D/DW(u,v))\g(u,v;ﬂoﬁ)dUdV]},

where W (sy,s2) are some preselected weights. Inspired by
this fact, a weighted version of (9) can be obtained as

{log A2 SlysQaﬁ(ﬁ )]

(©) {log Is1 — ol )]

A8l = vl )udv| |
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(10)
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Let r;, be some preselected constant. Define

A Do = vt duay] .

I(||s1 —Sz|| <rp)
A(s1; ) A(s2; B)[DN D — 51 + 52|

(11) W(Sl,Sg) =

The double integral in (10) then reduces to 2 [ tg(t; h)dt,
which is much easier to calculate. We then obtain the com-
posite likelihood cross-validation criterion

=22 W

s1,82€ DNN

~log [ /O " h)dt} }

where W (sy,s2) is as defined in (11). For the tuning param-
eter rp, we generally set r, to be around the dependence
range. A rough estimate for the dependence range can be
easily obtained by examining an empirical PCF plot based
on a pilot bandwidth. Our experience is that the choice of rp,
only has very limited effect on the choice of the bandwidth.

3.3 An MCE procedure for 6

The MCE procedure discussed in Section 2.3 can be ex-
tended to the case of using the PCF. Specifically, we may
define the discrepancy measure

=/OT{[9<th

where §(t; h) is the kernel estimator defined in (6). However,
such a procedure is often difficult to apply because of the
need to select the tuning parameters r and c. In general, the
tuning parameter c is used to control the sampling fluctua-
tion in the empirical summary function (i.e., §(¢; k) in this
case) involved in the MCE procedure. In light of (8), the
same goal can be achieved by introducing a weight function
w(t) =t/g(t; h) in the MCE discrepancy measure as follows:

{1og[§<||sl sl )]

(12) — [9(t;0)]°)” dt,

1) O = [ wEn - oo d.

0
An advantage of using (13) is that now there is only one
tuning parameter r to be selected. We will provide guidelines
for the selection of r based on our simulation results in the
next section.

4. A SIMULATION STUDY

To assess the performance of the proposed method, we
apply it to realizations from inhomogeneous Neyman-Scott



Table 1. Mean squared errors of p and & for MCE procedures based on (5) (denoted by MCEK) and (12) (denoted by
MCEP), and the proposed procedure (MCEW). Each mean squared error is divided by the squared target parameter. x denotes
extremely unstable estimates

p =25 p=12.5
MCEK MCEP MCEW MCEK MCEP MCEW

o T 125 .25 .5 .25 .5 125 .25 .5 .25 .5
p .01 3o * .087 .060 .057 .058 .054 194 .108 .092 .090 .091 .088
40 .096 .054 .050 .055 .055 .053 107 .088 .085 .087 .087 .086
50 .060 .051 .051 .057 .055 .055 .091 .086 .085 .088 .087 .086
6o .055 .052 .052 .058 .056 .055 .089 .087 .086 .088 .087 .085
.02 3o * .097 077 077 .075 .074 .205 114 101 .096 .096 .095
40 113 .076 .078 .082 .078 .081 118 102 .099 .096 .094 .095
S50 .086 .083 .089 .085 .080 .084 107 104 104 .098 .095 .094
6o .084 .090 .097 .086 .081 .085 .109 11 113 .099 .095 .094
.04 3o * .250 .264 187 183 .201 241 .204 197 .148 147 .166
4o .254 284 334 .229 .223 .255 207 225 235 170 .165 192
50 .267 371 .455 .246 .238 271 .246 278 .302 178 173 201
6o .331 468 612 .251 .243 276 .296 .339 .390 .180 174 .202
o .01 3o * .047 018 .022 .025 .017 .327 .027 .013 .015 .017 .012
40 105 .017 .010 .015 .017 .013 .038 .012 .008 011 .012 .010
S50 .046 .012 .009 .015 .016 .014 .021 .009 .008 .012 .011 .012
6o .034 .011 .009 .016 .016 .015 .017 .009 .008 .013 .011 .012
.02 3o * .047 .020 .038 .040 .026 .392 .027 .015 .022 .024 .016
4o 131 .020 .015 .031 .032 .025 .045 .014 .012 .018 .018 .016
50 .059 .018 .017 .031 .031 .026 .026 .014 .014 .019 .018 .019
6o .046 .020 .021 .031 .031 .027 .023 .016 .018 .019 .018 .019
.04 3o * .099 .049 144 145 .062 .388 .028 .021 .045 .047 .024
4o .653 .048 .045 128 129 .054 .047 .024 .026 .037 .039 .026
50 125 .047 .058 115 17 .058 .032 .029 .037 .036 .037 .028
6o .087 .053 073 113 114 .064 .032 .037 .050 .036 .037 .029

processes simulated on a unit square. The offspring dis-
persion of the processes follows a bivariate radially sym-
metric normal distribution. We introduce inhomogeneity
to the model by assigning A(s) = exp(By + [18z), where
s = (Sz,8y) and (1 = 1. Thus, the likelihood for an off-
spring to survive increases as s, increases. The expected
number of events per simulation is 100, and the expected
number of parents p = 12.5,25. The dispersal parameter
o = .01,.02,.04, representing relatively tight, moderate and
loose clusters, respectively. For the tuning parameters, we
set ¢ = .125,.25,.5,1 and r = 30,40, 50,60 for the MCE
procedures based on (5) and (12). We set rp, = 50 for our
proposed method and use the same r values as in the other
two procedures. Note that 4o is often regarded as the depen-
dence range for this type of process (e.g., Diggle 2003). So
we simply try to link the tuning parameter r to the depen-
dence range of the process. A guideline on the choice of r in
terms of the dependence range of the process is practically
appealing since a rough estimate of the dependence range
can often be obtained with relative ease, e.g., by examining
an empirical PCF plot. For ease of presentation, we will use
MCEK, MCEP, MCEW to denote the three estimation pro-
cedures, respectively, where MCEK and MCEP are the two
MCE procedures based on (5) and (12), and MCEW is the
proposed procedure.

Table 1 lists the mean squared errors for the three meth-
ods. For MCEK, the results for ¢ = 1 are either similar
to or slightly worse than those for ¢ = .5. For MCEP, the
results for ¢ = .125 are similar to those for ¢ = .25. We
thus omit these results. From the results in Table 1 we see
that the choice of tuning parameters greatly affects the per-
formance of MCEK. Note that the combination of r = 3¢
and ¢ = .125 often leads to unstable estimates. In contrast,
MCEP and MCEW are relatively insensitive to the choice
of the tuning parameter r. Moreover, MCEW appears to be
generally better than MCEP in terms of estimating o, which
will be our main interest in the next section. For MCEW,
r = 30,40 yield overall the best results. From a practical
point of view, this means that we should choose r to be
around or slightly smaller than the dependence range of the
process. Compared to the best results from MCEK, the re-
sults from MCEP are still quite competitive across all levels
of r, especially when estimating p. It’s worth noting that
for MCEK, a small mean squared error for p is often accom-
panied by a large mean squared error for 6 and vice versa.
This is especially true when o = .04.

We also comment on how to select r and ¢ for MCEK
given that this is a very popular approach in practice. As
noted earlier, a combination of a small r value relative to
the dependence range and a small ¢ value should be avoided.
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Figure 1. Locations of Acalypha diversifolia (526 trees), Lonchocarpus hepta-phyllus (837 trees) and Brosimum alicastrum
(909 trees) in the BCI plot.

For a process with a short dependence range (i.e., with tight
clusters as is the case for o = .01 in the simulation), ¢ = .5
consistently yields the best results across all r values. Note
that this contradicts the general perception that ¢ .25
or less gives better results for clustered point patterns. To
select r in this case, we recommend using r = 40,50, i.e.,
around or slightly larger than the dependence range. For a
process with a medium dependence range that is compara-
ble to the case of 0 = .02, ¢ = .25 and .5 both work well.
Although ¢ = .125 sometime yields better results when es-
timating p, this is often achieved at the price of a highly
variable estimate for o. To select r in this case, we recom-
mend using r = 4o, i.e., around the dependence range of
the process. For a process with a relatively long dependence
range (e.g., ¢ = .04 in our simulation), ¢ = .125 gener-
ally performs better than ¢ = .25 and .5 when estimating
p except for r = 30. However, it often yields an unstable
estimate for o. We thus do not recommend using ¢ = .125
in this case. To select r, we recommend using r = 40 for
¢ = .25 or r = 30 for ¢ = .5. For a more general process,
this means that r should be around or slightly smaller than
the dependence range for ¢ = .25 and .5, respectively.

The performance of all procedures is affected by the
model parameters p, p and o. In particular, o can be es-
timated more accurately when p is smaller. Note that a
smaller p means a larger cluster size so that more informa-
tion in each cluster can be used to estimate o. For p, more
accurate estimates can be obtained if the cluster is tighter
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(i.e., if o is smaller). This is because tighter clusters can
be more easily distinguished from each other. We have also
conducted simulations for a bigger sample size with A = 200
and our main conclusions regarding the performance of these
procedures and our general recommendations still remain
valid. Due to space constraint, we thus omit the detailed
presentation of these results.

5. AN APPLICATION

We apply the proposed method to analyze spatial distri-
bution of three tree species in a 1000 meters by 500 meters
plot in the Barro Colorado Island (BCI). The BCI plot is
one of the 20 permanent plots established by the Center
for Tropical Forest Science, see Condit et al. (1996), Condit
(1998), and Hubbell & Foster (1983) for more information.
The three tree species being considered are Acalypha diversi-
folia (526 trees), Lonchocarpus hepta-phyllus (837 trees) and
Brosimum alicastrum (909 trees). Figure 1 plots the spatial
locations of these trees.

The seed dispersal modes for the three species vary
greatly, with exploding capsules for Acalypha, wind for Lon-
chocarpus, and birds and mammals for Brosimum. It is hy-
pothesized that the different seed dispersal modes will lead
to different spatial patterns of tree locations, with tight clus-
ters for exploding capsules, loose clusters for bird and mam-
mal dispersal, and somewhere in between for wind dispersal
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Figure 2. Plots of the parametric (dashed lines) and nonparametric estimates (solid lines) of the pair correlation functions and
the associated confidence envelopes (dotted lines) obtained by simulations for Acalypha diversifolia, Lonchocarpus
hepta-phyllus and Brosimum alicastrum in the BCI plot.

(Seidler and Plotkin 2006). We will assess the dispersal pat-
terns of these three tree species by fitting inhomogeneous
Neyman-Scott process models to these data. To be specific,
we use a bivariate radially symmetric normal distribution
for the offspring dispersal and define the intensity function
model as

A(s) = exp [X(s)" ] ,

where the covariates X(s) include elevation, slope, soil con-
tents of potassium, phosphorous, mineralized nitrogen and
and soil pH level. The same set of covariates were used in
Waagepetersen and Guan (2008). Note that the fitted inten-
sity function models will allow a direct assessment of poten-
tial niche-assembly effects in terms of these covariates.
Figure 2 shows the empirical PCF plots for the three
species. Clearly Acalypha is much more clustered than the
other two species and also has a much shorter dependence
range. It also appears that Lonchocarpus is slightly more
clustered and has a slightly longer dependence range than
Brosimum. Table 2 shows the estimates and their associ-
ated standard errors and 95% confidence intervals for the
dispersal parameter o from both MCEK and MCEW. The
standard errors are obtained from 100 Monte Carlo sim-
ulations based on the estimated regression parameters B
and the estimated second-order parameters from each pro-
cedure. Following Waagepetersen and Guan (2008), we as-

sume that the distribution of & is asymptotically normal,
based on which we construct the confidence intervals. We
do not consider MCEP here due to its poor performance
in estimating o, as can be seen from the simulation results
in Section 4. For MCEK, we use two different choices for
the tuning parameters for each species. The first is an arbi-
trary choice with ¢ = .25 and r = 100 meters for all species
as in Waagepetersen and Guan (2008), whereas the second
is based on our general recommendation given in Section
4 with » = 12,40,55 meters in conjunction with ¢ = .5
bing used for Acalypha, Lonchocarpus and Brosimum, re-
spectively. Note that the selected r values are around the
dependence range for Acalypha but slightly smaller than the
dependence range for both Lonchocarpus and Brosimum (see
Figure 2). For ease of presentation, we refer to the result-
ing estimates as MCEK; and MCEKS5, respectively. Note
that all three procedures give similar estimated values for o
for Lonchocarpus and Brosimum. However, MCEK; yields
a much larger estimate than MCEKs and MCEW for Aca-
lypha. In all cases, MCEK; also has much larger standard
deviations than MCEKy and MCEW. This provides further
supports for the need to carefully select these tuning pa-
rameters. As discussed in the previous paragraph, we expect
the smallest o for Acalypha, the largest for Brosimum, and
somewhere in between for Lonchocarpus. The estimated o
values are indeed in this order. Based on the obtained 95%
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Table 2. Estimation results for the dispersal parameter o for the tropical forestry data. MCEK; is the MCE approach using
the K-function with ¢ = .25 and r = 100 meters; MCEK; is the MCE approach using the K-function with ¢ = .5 and
r = 12,40, 55 meters for Acalypha, Lonchocarpus and Brosimum, respectively; MCEW is the proposed estimation procedure
with the same r values as MCEKsy. EST, STD and Cl stand for estimate, standard deviation and confidence interval,

respectively.
MCEK; MCEK: MCEW
Species EST STD 95% CI EST STD 95% CI EST STD 95% CI
Acalypha 3.35 18 (2.99,3.70) 1.93 10 (1.73,2.13) 211 11 (1.89,2.34)
Lonchocarpus 10.30 1.52 (7.33,13.28) 9.46 1.10 (7.30,11.62) 11.70 1.12 (9.49,13.90)
Brosimum 13.72 3.04 (7.67,19.67) 13.76 2.44 (8.99,18.54) 15.82 2.44 (11.02,20.61)

Table 3. Estimation results for the first-order parameters for the tropical forestry data. EST, STD and Cl stand for estimate,

standard deviation and confidence interval, respectively.

Acalypha Lonchocarpus Brosimum

Covariates EST STD 95% CI EST STD 95% CI EST STD 95% CI

Elevation 207 .084 (.042,.371) .193 .100 (-.003,.388) .015 .076 (-.135,.165)
Slope 129 .070 (-.008,.266) .072 .087 (-.099, 243) -.022 .065 (-.149,.106)
Potassium 215 .109 (.001,.430) 113 124 (-.130,.356) -.017 .098 (-.208,.175)
Phosphorous .002 .078 (-.150,.154) -.272 .098 (-.464,-.080) .068 .069 (-.067,.202)
Nitrogen .054 .091 (-.125,.233) -.315 .105 (-.520,-.110) .062 .081 (-.097,.221)
pH .041 .089 (-.133,.216) -.236 .104 (-.440,-.033) .035 .079 (-.121,.190)

confidence intervals, we can further conclude that Acalypha
has a much smaller ¢ value than the other two species. How-
ever, we do not detect a significant difference between the o
values for Lonchocarpus and Brosimum.

Figure 2 also plots the resulting parametric estimates of
the PCF based on the estimated parameters from MCEW
and the associated simulation envelopes from 99 simulations.
The fits appear to be reasonable for all three species, except
that the empirical PCF for Acalypha slightly exceeds the up-
per simulation envelope from the fitted model. Table 3 shows
the estimates and their associated standard errors and 95%
confidence intervals for the regression parameters 3. The
standard errors are estimated by a plug-in estimator for (4)
based on the estimated regression parameters B and the es-
timated second-order parameters from MCEW. Following
Guan and Loh (2007), we assume that the distribution of 3
is asymptotically normal, based on which we construct the
confidence intervals. For Acalypha, both elevation and potas-
sium are significant. The positive signs suggest that this
particular species prefers both higher elevation and higher
potassium. For Lonchocarpus, phosphorous, nitrogen and
soil pH level are all significant. The negative signs for phos-
phorous and nitrogen suggest that this is a ‘a frugal species
adapted to soils with low nutrition contents’ (Waagepetersen
and Guan 2008). The negative sign for pH indicates that
Lonchocarpus prefers more acidic soil conditions. For Brosi-
mum, it is quite interesting to see that neither coefficient
is significant. Thus, it appears that dispersal effects alone
determine the spatial distribution of Brosimum. This is not
the case for either Acalypha nor Lonchocarpus.
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APPENDIX: DERIVATION OF (6)

Assume that A(s) is bounded below from zero. Consider a
sequence of regions D,, and bandwidths h,,. Let 0D,, denote
the boundary of D,, and |0D,,| denote the length of dD,,.
We assume the following condition on D,, and h,,:

|Dn| = O(n?), |0D,| =
" = O(n_ﬁ

O(n), and
) for some 3 € (0, 2).

(14)

For ease of presentation, let e(s1,s2) = 1/|D,|, that is, we do
not consider any edge correction term. Assume also that [A?n
can be replaced safely with §y without altering the asymp-
totic results. This is generally true given that (3, is consistent
for ﬂo.

Let Ag(s1,...,sk) denote the kth-order intensity function
of the process, defined analogously as the first- and second-
order intensity functions. Assume that Ag(si,...,si) has
the general form of A(s1)...A(sk)gr(s2 — s1,...,8, — S1)
for £k = 2,3,4. This condition is not restrictive and holds
for commonly used spatial point process models such as the
inhomogeneous Neyman-Scott process and the log-Gaussian
Cox process (Mgller et al. 1998) models. Given these condi-
tions, then

472 (| Dy ))? Var[gn (t; h)]
:2/ {K[(t — |Is1 — s2|])/hn]}?g(lIs1 — s2l])

dsid
As1)A(s2)[s1 — s2[12(hn)? S

44 k[t — lIs1 — s2|[)/hnlk[(t — |Is1 — s3]])/hnlgs(s2 — s1,83 — s1)
A(s1)lls1 — szlllls1 — ss|[(hn)?

X dsy1dssdss




" k[(t — [Is1 = s2|[)/Ralk[(t — [Iss = sal)/hn]
[[s1 = s2|lllss — sal|(hn)?

X [ga(s2 —s1,83 — 81,84 —s1) — g(|[s1 — s2||)g(|[s3 — sal])]ds1ds2dszdsa,

where all the integrations are over D,,. Given condition (14)
and the so-called Brillinger mixing (Heinrich 1988), it fol-
lows from lengthy yet elementary algebra that the first term
on the right-hand side of the equality dominates over the
other two terms. Moreover, the first term is approximately
equal to

g(t;0) 2 1 ,
hnt /D/o Mo+ u(, oy Vs / [k(w)) du.

This thus completes the proof.
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