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This paper considers statistical inference for additive par-
tial linear models when the linear covariate is measured with
error. To improve the accuracy of the normal approximation
based confidence intervals, we develop an empirical likeli-
hood based statistic, which is shown to be asymptotically
chi-square distributed. We emphasize the finite-sample per-
formance of the proposed method by conducting simulation
experiments. The method is used to analyze the relation-
ship between semen quality and phthalate exposure from
an environment study.
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1. INTRODUCTION

Linear models and nonparametric models are often used
to explore the relationship between a response variable and
its covariates. In practice, however, these models may not
be valid, either because of model misspecification or because
the small sample size does not allow one to use nonpara-
metric models. Partial linear models [1] allow the response
variable to depend nonlinearly on one covariate and linearly
on the remaining variables. Although the partially linear
models play an important role in data analysis, they may
not be sufficient when more than one covariate is nonlin-
early related to the response. Additive partial linear mod-
els (APLM) generalize partial linear models to allow more
than one covariate to have a nonlinear relationship to the
response. APLM have proved to be very useful as they com-
bine the flexibility of additive models [2, 3] and the inter-
pretation of linear models. One of the attractive features
of the APLM is that one can derive estimators of the lin-
ear parameters, which are root-n consistent and asymptoti-
cally normal. Furthermore, in APLM the estimators of the
nonparametric components have the same desirable optimal
convergence rates as in the traditional nonparametric regres-
sion. Recently a variety of algorithms such as the backfitting
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algorithm [4, 5] and marginal integration [6] have been pro-
posed for the APLM and developed in the commonly used
software packages, Splus/R and Matlab. This convenience
makes the APLM more and more appealing in practice. See
Stone [2] for a more detailed discussion on APLM.

Liang et al. [7] studied estimation of the parameters in
an additive partial linear model when the linear covariate is
measured with the additive error; i.e.,

(1) Y = XTβ +
D∑

d=1

fd(Zd) + ε and W = X + U,

where X = (x1, . . . , xp)T and Z = (Z1, . . . , ZD)T are the
linear and nonparametric components, f1, . . . , fD are un-
known smooth functions, U is the measurement error, in-
dependent of (X, Z, Y ), and has covariance matrix Σuu,
β = (β1, . . . , βp) is a vector of unknown parameters, and
the model error ε has mean zero given (X, Z). The authors
proposed attenuation-to-correction and SIMEX estimators
of the parameter β, showed that the first resulting estima-
tor is asymptotically normal, and pointed out that no un-
dersmoothing is necessary as was the case for the previ-
ously published approaches for the APLM. The motivation,
as pointed out by these authors, was to study the relation-
ship between chemical exposures and semen quality, from an
environmental study conducted at Massachusetts General
Hospital (MGH) because nonlinear relationships between se-
men quality and several covariates are expected, especially
for abstinence time [8], and age. Based on the asymptotic
results developed, Liang et al. [7] calculated the estimated
values of the parameters and the corresponding standard
errors, from which confidence intervals can be derived eas-
ily. However, we actually encountered several challenges. For
instance, (i) the finite-sample performance of the proposed
method may be underestimated because of the complexity
of the covariance matrix and the need to plug in several
estimated terms (see Theorems 1 and 2 of [7]); (ii) the con-
fidence region derived by this procedure is based on a nor-
mal approximation, which may not be realistic; (iii) there is
a very large computation burden for the proposed SIMEX
approach. The contribution of this paper is to develop a
new approach to address this concern by using the empirical
likelihood principle [9], where the focus is on constructing
a nonparametric likelihood for parameters of interest in a
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parametric or semiparametric setting, with nice properties
typical for the parametric likelihood such as Wilk’s Theo-
rem.

This paper is organized as follows. In Section 2, we briefly
mention the correction-for-attenuation estimation proce-
dure proposed in [7]. In Section 3, we propose the empirical
likelihood based statistic and show that it has an asymptotic
chi-squared distribution. Section 4 reports the results of a
simulation experiment, and Section 5 presents the results
applied to the same MGH semen study that was analyzed
in [7]. All technical derivations are given in the Appendix.

2. CORRECTION-FOR-ATTENUATION
ESTIMATION

For notational simplicity, we first consider D = 2 in (1).
To ensure identifiability of the nonparametric functions, we
assume that E{f1(Z1)} = E{f2(Z2)} = 0. Without loss of
generality, we also assume that X and Y are centered.

Let (X1, Z11, Z12, W1, Y1), . . . , (Xn, Zn1, Zn2, Wn, Yn) be
an iid sample of size n from model (1). Let X =
(XT

1 , . . . , XT
n)T, W = (WT

1 , . . . , WT
n )T, Y = (Y1, . . . , Yn)T

and similarly for Z1 and Z2. Also let ZZZi = (Zi1, Zi2).
We write the vectors of additive functions at the ob-
servations as f1 = {f1(Z11), . . . , f1(Zn1)}T and f2 =
{f1(Z12), . . . , f1(Zn2)}T. In matrix notation, (1) can be ex-
pressed as

(2) Y = Xβ + f1 + f2 + ε.

We first briefly review the estimators proposed by [7]. Using
their notation we denote A⊗2 = AAT and A�2 = ATA,
X̃i = Xi −E(Xi|Zi1)−E(Xi|Zi2), W̃i = Wi −E(Wi|Zi1)−
E(Wi|Zi2), Ỹi = Yi − E(Yi|Zi1) − E(Yi|Zi2), and ΓX|Z =
cov(X̃).

For j = 1, 2, let sT
j,zj

be the equivalent kernels for the local
linear regression at zj ; sT

j,zj
= eT

1 (ZT
j ΩjZj)−1ZT

j Ωj , where
e1 = (1, 0)T, Ωj = diag

{
Khj (Z1j − zj), . . . , Khj (Znj − zj)

}
for a kernel function K(·) with bandwidth hj , where Kh(t) =
K(t/h)/h, and Zj is a n × 2 design matrix, whose ith row
is (1, Zij − zj). Let S1 and S2 be the smoother matrices
whose rows are the equivalent kernels at the observations
(Z11, . . . , Zn1)T and (Z12, . . . , Zn2)T; i.e.,

S1 = [sT
1Z11

, . . . , sT
1Zn1

]T, S2 = [sT
2Z12

, . . . , sT
2Zn2

]T.

Sc
1 = (I − J/n)S1 is the centered smoother matrix corre-

sponding to S1, and similarly for Sc
2, where J is an n × n

matrix of 1’s. Let S12 = {I− (I− Sc
1S

c
2)

−1(I− Sc
1)} + {I−

(I − Sc
2S

c
1)

−1(I − Sc
2)}.

Applying the least-squares principle, Liang et al. [7] pro-
posed the profile-based estimator of β as follows:

(3) β̂n,ac = {WT(I−S12)�2W−nΣuu}−1WT(I−S12)�2Y.

Under a set of assumptions similar to A1–A6 given in the
Appendix A.1, the authors derived the asymptotic distri-
bution of the proposed estimators. For Σu,u unknown, the
asymptotic variance of β̂n,ac is Γ−1

X|ZΣacΓ−1
X|Z with Σac =

E[{(ε − UTβ)X̃}⊗2] + E{(UUT − Σuu)β}⊗2 + E(UUTε2).
These quantities can further be estimated by Γ̂X|Z = WT(I−
S12)�2W/n − Σuu and

Σ̂ac =
1
n

n∑
i=1

(
Ŵiε̂i + Σuuβ̂n,ac

)⊗2

,

where Ŵi is the ith row of (I−S12)W, Ŷi is the ith element
of (I − S12)Y, and ε̂i is the ith element of (I − S12)(Y −
Wβ̂n,ac). Also Σuu can be estimated using external data
or internal replicates [7, 10]. It is easily seen that Σ̂β,ac =
Γ̂−1

X|ZΣ̂acΓ−1
X|Z is a consistent estimator of Σβ,ac.

3. INFERENCE BASED ON EMPIRICAL
LIKELIHOOD

Based on the estimators of the covariance matrix or its
bootstrap version, one can obtain a confidence region for
β. However, its finite-sample behavior may be affected by
the need to plug in several estimated terms, and the rea-
sons we described earlier. An alternative method is to use
the empirical likelihood principle, which uses the likelihood
function incorporating auxiliary information such as known
constraints on the parameters, adjustments for biased sam-
pling schemes, and does not involve specifying the shape of
the confidence region [11]. The most appealing features of
the empirical likelihood method include avoiding estimation
of the covariance of the estimators, increasing coverage ac-
curacy because it includes auxiliary information, and conve-
nience of implementation. See Owen [9] for a comprehensive
survey on empirical likelihood, and [9, 12, 13] for a more de-
tailed discussion on advantages of the empirical likelihood
methods over the conventional methods. The methods have
been applied in a variety of topics, for example, linear mod-
els [11, 14, 15], general estimating equations [13], and par-
tially linear models [16–20].

In the remainder of this section, we assume that the εi

are independent and identically distributed and indepen-
dent of (Wi, Zi). We will study the empirical-likelihood-
based confidence interval for β. Let F be the distribution
function which assigns probability pi at points (Wi, Yi,ZZZi).
Then

∑n
i=1 pi = 1 and pi ≥ 0 for each i. We now motivate

and define our semiparametric empirical likelihood ratio es-
timator.

Recalling the estimator given in (3) and the definition
of Ŷi, we notice that β̂n,ac is actually the solution of the
equation:

WT(I − S12)�2Y − {WT(I − S12)�2W − nΣuu}β = 0,
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which is equivalent to

n∑
i=1

{
ŴiŶi − (ŴiŴ

T
i − Σuu)β

}
= 0.

Consequently, our empirical likelihood ratio function for β
is defined as

Rn(β) = max

{
n∏

i=1

npi :
n∑

i=1

pi

{
Ŵi(Ŷi − ŴT

i β)(4)

+ Σuuβ
}

= 0, pi ≥ 0,
n∑

i=1

pi = 1

}
.

Theorem 1. Under Assumptions A1–A6 given in the Ap-
pendix, −2 log{Rn(β)} converges in distribution to a chi-
squared distribution with p degrees of freedom.

Based on this result, a confidence region for β can be
given by {β : −2 log{Rn(β)} ≤ cα}, where cα denotes the
α quantile of the chi-squared distribution. When Σuu is un-
known, we need replicate data in the usual way. In the spe-
cial case of mi ≡ 2, we can then replace Wi by W i and
Σuuβ by Σ̂uuβ/2. The resulting statistic still has the prop-
erty given in Theorem 1. A justification of this last assertion
can be easily obtained by using the fact that

E[{W ir(Ỹi − W
T

irβ) + Σ̂uuβ/2}] = 0,

where W ir is analogous to Ŵi except replacing W in (I −
S12)W by W.

Remark 1. Comparing to the attenuation correction
method, which requires estimation of Σac and ΓX|Z for infer-
ence, the EL method only requires Ŵ , Ŷ , and an unbiased
estimator Σ̂uu if Σuu is unknown. The implementation of the
new method is a simple optimization, which can be achieved
in well-developed software packages such as R/Splus or Mat-
lab.

Remark 2. The bandwidth h1 and h2 are of order n−1/5.
Thus, any bandwidths with this order give the same lim-
iting distribution of β̂n,ac, and the same limiting distri-
bution of −2 log{Rn(β)}. In our implementation, we used
an equal-spaced sequence of length 20 in the interval
[.75n−1/5, 1.25n−1/5]. The optimal bandwidth is selected as
the minimizer of the criterion:

∑n
i=1{Yi − Ŷ

(−i)
i }2, where

Ŷ
(−i)
i stands for the fitted value based on the data with the

ith observation excluded.

4. A SIMULATION STUDY

To evaluate the performance of the proposed methods, we
conducted a small scale simulation experiment. We gener-
ated n = 200 and n = 400 observations from model (1) with
D = 2 and X, Z1, and Z2 independently generated from
uniform(0, 1). In our simulations, β = 4, f1(z1) = exp(2z1)−

3.75 and f2(z2) = 0.2z11
2 {10∗(1−z2)}6+104z3

2(1−z2)10−1.4.
We also assume that the measurement error follows W =
X + U , where U ∼ normal(0, 0.22).

We considered two different error structures for ε,
(a) ε follows normal{0, σ2

ε(x, z, σ2
0)}, where σ2

ε(x, z, σ2
0) =

{σ0 sin(2πx3) + 0.5z1 + 0.5z2 + 0.3}2, and (b) ε follows
σ2

0(X 2
2 − 2), where X 2

2 is a chi-squared variable with 2 de-
grees of freedom. We consider this case to see the effect
of asymmetric error on the confidence intervals. For each
error structure we used one of 4 possible values of σ2

0 :
σ2

0 = 0.12, .252, .52, 1.
In our nonparametric estimation procedure, we used the

kernel function K(u) = (3/4)(1 − u)2I(|u|≤1). We selected
bandwidth as the minimizer of the criterion:

∑n
i=1{Yi −

Ŷ
(−i)
i }2, where Ŷ

(−i)
i stands for the fitted value based on

the data with the ith observation excluded. We generated
500 data sets for each case. To estimate the variance of U ,
we generated duplicate samples of W . The results are pre-
sented in Table 1. The lengths of the confidence intervals
for the EL method were always as small or smaller than
the AC method. Although the coverage probabilities for the
AC method were generally somewhat larger than the EL
method, the coverage probabilities for both methods were
close to 95%. Overall, our simulation results suggest the EL
method generally performs better than the AC method.

5. MGH SEMEN STUDY

We now present the results of the empirical likelihood
based confidence interval as applied to the same MGH semen
study that was examined in [7]. An earlier version of this
dataset was also examined in [8, 21]. Our analysis uses com-
plete data on 455 subjects, and our interest focuses on the
covariate-adjusted and bias-corrected relationship between
sperm concentration and monobutyl phthalate (MBP), the
metabolite of di-n-butyl phthalate. In order to account for
differences in urinary dilution, MBP was specific gravity-
adjusted, consistent with [7, 8, 21]. Both sperm concentra-
tion (millions of sperm per ml), and MBP (ng monoester per
ml urine) were log-transformed to better satisfy regression
assumptions.

MBP is subject to substantial measurement error, not
because of the measurement process itself, but because of
the very short half-life of MBP. The short half-life of MBP,
which is less than a day long, means that short-term changes
in di-n-butyl phthalate exposure can give rise to large tem-
poral variations in MBP concentration. Thus a single mea-
surement of MBP is not an accurate representation of the
average exposure over a 3-month time window, which is the
time interval thought to be important for sperm develop-
ment. Replicate measurements on 78 subjects [22] allow us
to estimate the measurement error variance. On the loga-
rithmic scale, the sample correlation between replicate MBP
measurements was only 0.101 [7], indicating an extremely
large measurement error.
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Table 1. The 95% confidence intervals based on the empirical likelihood (EL) and attenuation correction (AC) methods, the
length of CI, and the associated coverage probability (CP) for the simulated data

case n σ2 Est CI length CP

AC EL AC EL AC EL

1 200 0.1 4.02 (3.75, 4.30) (3.76, 4.30) 0.55 0.54 95.8 94.5
0.25 4.03 (3.74, 4.31) (3.78, 4.28) 0.57 0.50 97.0 94.0
0.5 4.02 (3.73, 4.31) (3.73, 4.31) 0.58 0.58 95.6 94.5
1 4.02 (3.69, 4.35) (3.71, 4.34) 0.66 0.63 96.2 96.0

400 0.1 4.01 (3.82, 4.20) (3.84, 4.19) 0.38 0.35 95.8 96.0
0.25 4.02 (3.82, 4.21) (3.83, 4.20) 0.39 0.37 96.0 94.8
0.5 4.01 (3.81, 4.21) (3.82, 4.19) 0.40 0.37 96.4 93.5
1 4.01 (3.78, 4.24) (3.80, 4.22) 0.46 0.42 95.8 93.5

2 200 0.1 4.02 (3.79, 4.24) (3.81, 4.26) 0.45 0.45 97.2 94.5
0.25 4.03 (3.80, 4.25) (3.80, 4.25) 0.45 0.45 97.8 96.0
0.5 4.01 (3.79, 4.24) (3.83, 4.20) 0.45 0.37 98.6 94.8
1 4.02 (3.79, 4.24) (3.80, 4.25) 0.45 0.45 97.8 98.5

400 0.1 4.01 (3.86, 4.17) (3.88, 4.15) 0.31 0.27 96.2 93.5
0.25 4.02 (3.86, 4.17) (3.88, 4.15) 0.31 0.27 96.8 93.0
0.5 4.01 (3.86, 4.16) (3.88, 4.15) 0.30 0.27 97.4 93.5
1 4.01 (3.86, 4.17) (3.87, 4.15) 0.31 0.28 97.4 94.4

Table 2. The 95% confidence intervals of the parameters
from the MGH semen study from two methods: AC

(attenuation correction) and EL (empirical likelihood)

EL AC

Abstinence time (0.0238, 0.1244) (0.0133, 0.1387)
Race (white) (−0.0970, 0.6468) (−0.1056, 0.6156)
Log(MBP) (−0.2980, 0.0437) (−0.3300, 0.0660)

Liang et al. [7] argued that log(sperm concentration) may
nonlinearly depend on age and BMI, but linearly depend
on log(MBP) and abstinence time. Age, race, and absti-
nence time have been justified to be important predictors
by [8, 21]. We now apply the model and method described
in Section 3 to explore this data set and address the concerns
mentioned in Section 1. We present results using empirical
likelihood (EL), and compare them to results using attenu-
ation correction (AC): see Table 2. The confidence intervals
for the bias-corrected log(MBP) for the EL method were
noticeable shorter than for the AC. The length of the confi-
dence intervals for the other covariates were similar for the
two methods.

6. DISCUSSION

To simplify statistical inference for the additive partial
linear model with an error-prone linear component, we de-
veloped an empirical likelihood-based approach to construct
a confidence interval for the linear parameter of this model.
The proposed approach is simpler than its competitor nor-
mal approximation, can easily be implemented in standard
software, and computation of the estimators is efficient. The
finite-sample performance of the proposed statistics shows
promise.

In this article, we only studied continuous response vari-
ables. A natural extension is the generalized additive partial
linear measurement error models (GAPLMeM) which takes
the form

E(Yi|Xi,ZZZi) = μ

{
XT

i β +
K∑

k=1

fk(Zk,i)

}
, Wi = Xi + Ui

where μ(·) is a link function, and ZZZi = (Z1,i, . . . , ZK,i)T is
a K-dimensional vector. Making statistical inference on the
parameters for these GAPLMeM is extremely difficult, if
not impossible, using the asymptotic properties established
in the literature. However, defining an empirical likelihood
ratio and developing an empirical likelihood based method
for statistical inference are also not trivial and in fact may
be very challenging. There are several reasons why infer-
ence for the GAPLMeM model is much more difficult than
for the APLMeM model. First, the backfitting algorithm is
needed in order to estimate the model parameters, and this
involves iterative computations. Second, the involvement of
measurement error increases the difficulties because correc-
tion for the effect of an error-prone covariates is never triv-
ial. Lastly, implementation of the procedure into standard
software may be difficult. Development of an appropriate
procedure to solve these problems is an important area of
future research.
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APPENDIX

A.1 Assumptions

Assumption A1. The matrix ΓX|Z is positive-definite,
E(ε|X, Z) = 0, and E(|ε|3|X, Z) < ∞.

Assumption A2. The bandwidths hd for d = 1, 2 are of
order n−1/5.

Assumption A3. E|Y |3 < ∞ and supz1,z2
E(|Y |3|Z1 =

z1, Z2 = z2) < ∞;

Assumption A4. The kernel function K(·) satisfies the
following conditions:

(i) K(u) = 0 for u /∈ (0, 1) and bounded by a constant Ck

in (0, 1);
(ii)

∫
|u|K(u)du < ∞.

(iii) K(u) is differentiable. For some constants L and C1,
|K ′(u)| ≤ C1 for |u| < L, and |K ′(u)| ≤ C1|u|−γ for
|u| ≥ L and some γ > 1.

Assumption A5. The density functions of Z1 and Z2 are
bounded away from zero and have bounded continuous sec-
ond partial derivatives.

Assumption A6. The random variable U satisfies
E(‖U‖3) < ∞.

A.2 Uniform rate of convergence of local
regression

To finish the proof of the main result, we first derive
the uniform rate of convergence of local linear regression
under the mild assumptions. This result is independently
interesting.

Suppose that we model data by Y = m(Z) + ε and that
we have an iid sample (Z1, Y1), . . . , (Zn, Yn) from the model.
Let m̂(z, 1, h) and m̂(z, 0, h) be the local linear and local
constant regression estimators of m(z) based on samples. A
direct calculation gives the expression of m̂(z, 1, h) as fol-
lows.

m̂(z, 1, h)

=
1
n

n∑
i=1

{ŝ2(z, h) − ŝ1(z, h)(Zi − z)}Kh(Zi − z)Yi

ŝ2(z, h)ŝ0(z, h) − ŝ 2
1(z, h)

,

where

ŝr(z, h) =
1
n

n∑
i=1

(Zi − z)rKh(Zi − z), for r = 0, 1, 2.

Bernstein’s Inequality [23]: Let V1, . . . , Vn be indepen-
dent random variables with zero means and bounded ranges:
|Vi| ≤ M . Then for each η > 0,

P

(∣∣∣∣∣
n∑

i=1

Vi

∣∣∣∣∣ > η

)
≤ 2 exp

[
− η2

2 {
∑n

i=1 var(Vi) + Mη}

]
.

Set ν =
∫

u2K(u)du, an = n−1/3 log n, a∗
n = h2 + an,

τn = a
−1/2
n .

Lemma 1. Suppose that supz E(|Y |3|Z = z) < ∞,
E(|Y |3) < ∞, and Assumption A4 holds. Let h = n−1/5,
then

(A.1) sup
z∈[0,1]

|m̂(z, 1, h) − m(z)| = O(n−2/5 log n).

Proof. We first derive a uniform convergence rate for the lo-
cal linear constant estimators, and then express the local lin-
ear regression as a function of the local constant estimators
and complete the proof. This idea was used by Hansen [24].

Write

ĝ(z) =
1
n

n∑
i=1

Kh(Zi − z)Yi,

f̂(z) =
1
n

n∑
i=1

Kh(Zi − z),

Qn(z) =
1
n

n∑
i=1

Kh(Zi − z)YiI(|Yi|>τn).

Then the local constant kernel estimators m̂(z, 0, h) equals
ĝ(z)/f̂(z). It follows that

|E{Qn(z)}| ≤
∫

|Kh(z − u)|E{Y I(|Y |>τn)|Z = u}f(u)du

≤
∫

|K(u)|E{|Y |3τ−2
n I(|Y |>τn)|Z = z − hu}f(z − hu)du

≤ τ−2
n

∫
|K(u)|E(|Y |3|Z = z − hu)f(z − hu)du

≤ τ−2
n C = Can.

Then we have |Qn(z) − EQn(z)| = Op(an) by Markov’s
inequality. It is readily seen that |ĝ(z)−E{ĝ(z)}| = Op(an).
In the remainder of the proof of Lemma 1, we simply assume
that |Yi| < τn.

Cover the interval [0, 1] by N equal-length sub-intervals,
Aj , centered at zj such that N ≤ a−1

n h−1. Let K∗(u) =
C1{I(|u|≤2L) + |u−L|−γI(|u|≥L)}. Then if |u1 −u2| ≤ δ ≤ L,
|K(u1)−K(u2)| ≤ δK∗(u1) for some δ > 0, and K∗(u) still
satisfies Assumption A4(i) and (ii).

Write ĝ ∗(z) =
∑n

i=1 K∗
h(Zi − z)Yi/n. For any z ∈ Aj ,
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then |z − zj | ≤ anh and, for large enough M ,

sup
z∈Aj

|ĝ(z) − Eĝ(z)|

≤ |ĝ(zj) − Eĝ(zj)| + an{|ĝ∗(zj) + Eĝ∗(zj)|}
≤ |ĝ(zj) − Eĝ(zj)| + an{|ĝ∗(zj) − Eĝ∗(zj)|}

+ 2anE|ĝ∗(zj)|
≤ |ĝ(zj) − Eĝ(zj)| + {|ĝ∗(zj) − Eĝ∗(zj)|} + 2anM.

It follows that

P{sup
z

|ĝ(z) − Eĝ(z)| > 3Man}

≤ N max
j

P{ sup
z∈Aj

|ĝ(z) − Eĝ(z)| > 3Man}

≤ N max
1≤j≤N

P{|ĝ(zj) − Eĝ(zj)| > M}

+ N max
1≤j≤N

P{|ĝ∗(zj) − Eĝ∗(zj)| > M}.

Denote

ζni(z) = K

(
Zi − z

h

)
Yi − E

{
K

(
Zi − z

h

)
Yi

}
.

Note that |Yi| ≤ τn and
∣∣K (

Zi−z
h

)∣∣ < Ck It follows that
|ζni(z)| ≤ 2Ckτn.

By using the Bernstein’s inequality, we obtain that, for
any given z,

P{|ĝ(z) − Eĝ(z)| > Man}

= P

{∣∣∣∣∣
n∑

i=1

ζni(z)

∣∣∣∣∣ > Mannh

}

≤ 2 exp
{
− M2a2

nn2h2

2(nh + 2CkτnMannh)

}
.

For a large enough n, this term is less than Cn−2. By
the Borel–Cantelli inequality, we know that supz |ĝ(z) −
Eĝ(z)| = Op(an). On the other hand, it is easy to see
Eĝ(z) = g(z) + O(h2). Summarizing these arguments, we
conclude that

(A.2) P{sup
z

|ĝ(z) − Eĝ(z)| > 3Man} = o(1),

and (A.1) follows. In the same way as for (A.1), we obtain
that

(A.3) sup
z

|f̂(z) − f(z)| = o(a∗
n).

A direct manipulation yields that

(A.4) sup
z

|m̂(z, 0, h) − m(z)| = o(a∗
n).

We now consider m̂(z, 1, h), which can be rewritten as

ĝ(z) − ŝ1(z, h)ŝ−1
2 (z, h)N̂(z, h)

f̂(z) − ŝ2
1(z, h)ŝ−1

2 (z, h)
,

where

N̂(z, h) =
1
n

n∑
i=1

Zi − z

h
Kh(Zi − z)Yi.

Using the arguments similar to the proof for (A.2), we can
show that, uniformly on z,

ŝ1(z, h) = hνf (1)(z) + op(a∗
n),

ŝ2(z, h) = νf(z) + op(a∗
n),

N̂(z, h) = hνg(1)(z) + op(a∗
n).

Because f (1)(z) and g(1)(z) are bounded, we know, uni-
formly on z,

f (−1)(z)ŝ1(z, h) = op(h + a∗
n),

f (−1)(z)ŝ2(z, h) = ν + op(a∗
n),

f (−1)(z)N̂(z, h) = Op(h + a∗
n).

It follows that f (−1)(z)ŝ1(z, h)ŝ2(z, h) = Op(a∗
n),

f (−1)(z)ŝ 2
1(z, h)ŝ−1

2 (z, h) = Op(a∗
n). As a result,

m̂(z, 1, h) = m̂(z, 0, h) + Op(a∗
n) uniformly on z, while

m̂(z, 0, h) = m(z)+Op(a∗
n) by (A.4). We therefore complete

the proof of Lemma 1.
We will use the following lemma, whose proof can be

found in [25].

Lemma 2. Assume that random variables ai and bi satisfy
Eai = 0 and ‖bi‖ = op(n−1/4). Then

n∑
i=1

aibiξi = op(n1/2),

where ξi are independent variables with zero conditional
mean and finite variance.

A.3 Proof of Theorem 1

Let

Ω̂i = Ŵi(Ŷi − ŴT
i β) + Σuuβ.

A standard simplification as in [9] (pp61) yields that

(A.5) pi =
1

n(1 + aTΩ̂i)
for i = 1, . . . , n,

where a = (a1, . . . , ap)T is the solution of the equation

(A.6) n−1
n∑

i=1

Ω̂i

1 + aTΩ̂i

= 0.

Mimicking the proof of Theorem 3.2 in [9], we have

(A.7) ‖a‖ = Op(n−1/2).
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On the other hand, based on the assumptions, Theorem 1
of [7] and the strong law of large numbers, we have

(A.8) max
1≤i≤n

‖Ω̂i‖ = op(n1/2).

Note that

n−1
n∑

i=1

Ω̂i

1 + aTΩ̂i

= n−1
n∑

i=1

Ω̂i(1 − aTΩ̂i)

+ n−1
n∑

i=1

(aTΩ̂i)2Ω̂i

1 + aTΩ̂i

.

The second term is op(n−1/2) since |aTΩ̂i| = op(1) and

n∑
i=1

(aTΩ̂i)2Ω̂i ≤ ‖a‖ max
1≤i≤n

|aTΩ̂i|
n∑

i=1

‖Ω̂i‖2

= Op(n−1/2)op(1)Op(n) = op(1).

It then follows from (A.6) that

(A.9) a =

(
n∑

i=1

Ω̂iΩ̂T
i

)−1 n∑
i=1

Ω̂i + op(n−1/2).

Noting
∑n

i=1 pi = 1 and using an argument similar to that
for (A.9), we have that

0 = n−1
n∑

i=1

aTΩ̂i

1 + aTΩ̂i

= n−1
n∑

i=1

aTΩ̂i − n−1
n∑

i=1

(aTΩ̂i)2 + op(n−1).

Therefore, we have

(A.10)
n∑

i=1

aTΩ̂i =
n∑

i=1

(aTΩ̂i)2 + op(1).

Consider Rn(β). Using a Taylor expansion of log(1 + x) on
x, we have

− log{Rn(β)} =
n∑

i=1

log(1 + aTΩ̂i)

=
n∑

i=1

{
aTΩ̂i − (1/2)(aTΩ̂i)2

}
+ Qn.

The remainder term Qn is bounded by
‖a‖2 max1≤i≤n |aTΩ̂i|

∑n
i=1 ‖Ω̂i‖2 = Op(n−1)op(1)Op(n) =

op(1). Using (A.9) and (A.10), we have

−2 log{Rn(β)} =

(
n−1/2

n∑
i=1

Ω̂T
i

) (
n−1

n∑
i=1

Ω̂iΩ̂T
i

)−1

×
(

n−1/2
n∑

i=1

Ω̂i

)
+ op(1).

Recall Ŵi = ei(I−S12)W, where ei is a n×1 vector of zero
except the ith entry being 1, and S12 = {I−(I−Sc

1S
c
2)

−1(I−
Sc

1)} +{I−(I−Sc
2S

c
1)

−1(I−Sc
2)}. Using an argument similar

to the proof of Theorem 1 of [7], and recalling the definition
of W̃i given in Section 2, we obtain that

Ŵi−W̃i = ei(Sc
1+Sc

2)W−E(Wi|Zi1)−E(Wi|Zi2)+op(1/n).

Lemma 1 implies that

(A.11) maxi |Ŵi − W̃i| = o(n−1/4),
maxi |Ŷi − Ỹi| = o(n−1/4).

}

Write Ω̃i = W̃i(Ỹi − W̃T
i β) + Σuuβ. Then Ω̃i − Ωi can be

expressed as

(Ŵi − W̃i){(Ŷi − ŴT
i β) − (Ỹi − W̃T

i β)}
+ (Ŵi − W̃i)(Ỹi − W̃T

i β)

− W̃i{(Ŷi − ŴT
i β) − (Ỹi − W̃T

i β)}.

It follows from (A.11) that

1√
n

n∑
i=1

(Ŵi − W̃i){(Ŷi − ŴT
i β) − (Ỹi − W̃T

i β)} = op(1).

On the other hand, Lemma 2 implies that

1√
n

n∑
i=1

(Ŵi − W̃i)(Ỹi − W̃T
i β) = op(1)

because E(Ỹi − W̃T
i β) = 0, and

1√
n

n∑
i=1

W̃i{(Ŷi − ŴT
i β) − (Ỹi − W̃T

i β)} = op(1)

because E(W̃i) = 0. These arguments imply that
n−1/2

∑n
i=1 Ω̂i and n−1/2

∑n
i=1 Ω̃i asymptotically have

the same normal distribution, and n−1
∑n

i=1 Ω̂iΩ̂T
i and

n−1
∑n

i=1 Ω̃iΩ̃T
i have the same limiting value. The proof is

thus complete.

Received 25 August 2008

REFERENCES
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