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Bayesian adaptive nonparametric M-regression

Colin Chen
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Nonparametric regression has been popularly used in
curve fitting, signal denosing, and image processing. In
such applications, the underlying functions (or signals) may
vary irregularly, and it is very common that data are
contaminated with outliers. Adaptive and robust techniques
are needed to extract clean and accurate information. In
this paper, we develop adaptive nonparametric M-regression
with a Bayesian approach. This general approach fits
M-regression using piecewise polynomial functions with
an unknown number of knots at unknown locations, all
treated as parameters to be inferred through Reversible
Jump Markov Chain Monte Carlo (RJMCMC) of Green
(1995, [9]). The Bayesian solution presented in this
paper with computational details can be considered as
an approximation to the general optimal solution for
M-regression with free knots as described in Stone (2005,
[22]). Numerical results show that the Bayesian approach
performs well in various cases, especially with discontinuous
underlying functions.
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1. INTRODUCTION

In robust regression, M-regression is the regression
method based on M-estimates. It has been popularly used
to provide resistant results in the presence of outliers in lin-
ear regression (Huber 1981, [15]; Maronna et al. 2005, [18]).
Very often, the linear relationship between the response vari-
able and covariates is not enough and a nonparametric rela-
tionship is assumed to allow more flexibility. Classical non-
parametric regression methods are usually not immune to
outlier contamination. Nonparametric regression based on
M-estimates has been developed by using either kernel func-
tions (Härdle and Gasser 1984, [12]; Hall and Jones 1990,
[10]) or spline functions (He and Shi 1994, [13]; Shi and Li
1995, [20]; Gao and Shi 2001, [8]). However, as in the classi-
cal least squares based nonparametric regression, bandwidth
selection with the kernel method and smoothing parameter
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(or knot) choice with the spline method are usually difficult
to achieve certain optimality in practice.

For the spline method, Stone (2005, [22]) studied the op-
timal knot selection problem with M-regression. Under some
regularity conditions, Stone (2005, [22]) proved that a set of
optimal knots exist and the corresponding spline estimate
converges to the underlying function. Although this result is
purely theoretical and does not provide how to find the op-
timal knots, the existence of optimal knots does encourage
using adaptive knots to approximate the optimal knots.

In this paper, we develop adaptive nonparametric M-
regression with a Bayesian method. The Bayesian method
applies the reversible jump Markov chain Monte Carlo ap-
proach of Green (1995, [9]), which has the ability to travel
across function spaces with different dimensions. This flex-
ibility in addition to the free choice of a prior empowers
the RJMCMC to fit various smoothing or non-smoothing
functions with high accuracy as shown in the least squares
case by Denison et al. (1998, [4]), DiMatteo et al. (2001,
[6]), Hansen and Kooperberg (2002, [11]), and others. The
method is adaptive in the sense that knots are adaptively
selected according to some properly designed moving strate-
gies in the fitting procedure based on data.

To fit Bayesian M-regression models, we use a well-
defined likelihood function in robust statistics – the least
informative distribution with both location (μ) and scale
(σ) parameters

(1) h(y|μ, σ) =
1

σCH
e−ρH( y−μ

σ ),

where

(2) ρH(r) =
{

r2/2 if |r| ≤ H
H|r| − H2/2 if |r| > H

is the well-known Huber function with the tuning constant
H and CH =

∫ +∞
−∞ e−ρH(r)dr. The least informative distribu-

tion was derived by minimizing the fisher information in the
ε-contaminated neighborhood of the Gaussian distribution
(Huber, 1981, Section 4.5, [16]). With this likelihood, we
show that the Bayes factor is equivalent to a robust version
of the Schwarz information criterion (RSIC) (Section 3).

Bayesian model averaging has been used for robust non-
parametric regression. Peña and Redondas (2006, [19]) de-
veloped Bayesian local polynomial regression with ran-
dom orders. By using mixtures of normal distributions, the
Bayesian local polynomial regression method achieves cer-
tain robustness against outliers. The use of random order
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might relieve the burden of selecting an optimal length of
the local widow. However, as with classical local polynomial
regression, the Bayesian local polynomial regression method
might miss the global trend of the underlying functions by
picking up too much suspicious local features. It also per-
forms poorly when edge-preserving fitting is required for dis-
continuous underlying functions (Chu et al. 1998, [3]).

RJMCMC has been implemented on least squares based
nonparametric regression by Denison et al. (1998, [4]) and
others.

The current work extends the RJMCMC implementation
to general M-regression, which more focuses on robustness.
We also implement the data dependent tuning constant (H)
selection technique of Wang et al. (2007, [23]) to make our
Bayesian robust nonparametric regression a more automatic
procedure.

In Section 2 we introduce Bayesian nonparametric M-
regression with the least informative likelihood and piece-
wise polynomial functions. In Section 3 we discuss the choice
of priors and Bayesian factor approximation, which de-
cide the knot-selection rule. Section 4 describes the mov-
ing strategies for RJMCMC. The complete algorithm is de-
scribed in Section 5. Extensions to other ρ functions in M-
regression and data dependent tuning constant selection are
discussed in Section 6. Section 7 illustrates our approach
with some examples. We also provide performance compar-
ison and robustness analysis with numerical results in Sec-
tion 7. Some discussions are given in Section 8.

2. BAYESIAN M-REGRESSION

Assume that (yi, xi), i = 1, . . . , n, are independent bi-
variate observations from the pair of response-explanatory
variables (Y, X). To describe the relationship between Y and
X, a typical parametric model is

(3) yi = m(xi, β) + εi,

where β is a vector of unknown parameters, and εi, i =
1, . . . , n, are i.i.d. zero-mean errors. The least squares esti-
mator of β (β̂LS) minimizes the objective function

(4)
n∑

i=1

(yi − m(xi, β))2.

This estimator can be heavily affected even if a single ob-
served yi is contaminated with an extreme value. To obtain
a resistant estimator (M-estimator β̂M ), M-regression min-
imizes

(5)
n∑

i=1

ρσH(yi − m(xi, β)),

where ρσH(·) is the Huber function in (2) with H replaced
by σH. The Huber function replaces the square function
with a less rapidly increasing function – the absolute value

function when absolute standardized residuals |yi−m(xi,β)
σ |

exceed the tuning constant H. The robustness is obtained
due to less contribution to (5) from outliers with large ab-
solute standardized residuals.

It is well-known that the least squares estimator β̂LS is
also the maximum likelihood estimator if εi, i = 1, . . . , n, fol-

low the normal distribution with density 1√
2πσ

e−
r2

2σ2 . Like-

wise, the M-estimator β̂M is also the maximum likelihood
estimator if εi, i = 1, . . . , n, follow the least informative
distribution with density in (1) and μ = 0. Based on this
distribution, the Bayesian M-regression assumes that the pa-
rameters β and σ are random with some priors and provides
posterior inference on these parameters or functions of these
parameters.

As in typical nonparametric regression, the format of the
function m(x, β) is not known and assumed to be a non-
parametric function m(x), which belongs to the closure of a
linear function space – here the piecewise polynomials

Pk,l(x) =
l∑

v=0

βv,0(x − t0)v
+ +

k∑
m=1

l∑
v=l0

βv,m(x − tm)v
+,(6)

where (·)+ and (·)− represent the positive and negative part
of the quantity, respectively. ti, i = 0, . . . , k + 1, indexed
in ascending order, are the knot points with the boundary
knots t0 = min{xi, i = 1, . . . , n} and tk+1 = max{xi, i =
1, . . . , n}. Without loss of generality, we assume that xi, i =
1, . . . , n, are in ascending order. So, t0 = x1 and tk+1 = xn.
l(≥ 0) is the order of the piecewise polynomials, and l0(≥
0) controls the degree of continuity at the knots. Piecewise
polynomials include splines. The special case with l = l0 = 3
corresponds to the cubic splines.

Piecewise polynomials Pk,l have been used by Denison
et al. (1998, [4]) for least squares based curve fitting. In
this paper, we assume that m(x) is such a piecewise poly-
nomial with l and l0 pre-decided, while the coefficients
β = {βv,m, 0 ≤ v ≤ l, 1 ≤ m ≤ k}, the number of knots k,
and their locations ti are estimated with the data (yi, xi) by
RJMCMC. Let t = {tm, 1 ≤ m ≤ k}. (k, t, β, σ) represents
the full vector of parameters in the model. The following
section describes the prior specification with (k, t, β, σ).

3. PRIOR SPECIFICATION AND BAYESIAN
FACTOR APPROXIMATION

We specify a prior for parameters (k, t, β, σ) hierarchi-
cally,

(7) πk,t,β,σ(k, t, β, σ) = πk,t(k, t)πβ(β|k, t, σ)πσ(σ).

First, we specify a prior for the model space, which is char-
acterized by the first two parameters k and t. Then, we
specify a prior for β. For the scale parameter σ, we use the
noninformative prior πσ(σ) = 1.
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For the model space, a prior πk,t(k, t) can be further de-
composed as

(8) πk,t(k, t) = πk(k)πt(t|k).

So, we first need to specify a prior πk(k) for the number
of knots k. We explore several proposals in the literature.
The first one is a simple Poisson distribution with mean γ
suggested by Green (1995, [9]), and also used by Denison et
al. (1998, [4]) and DiMatteo et al. (2001, [6]). The second
one is the uniform prior on the set kmin, . . . , kmax, which
has been used by Smith and Kohn (1996, [21]) and Hansen
and Kooperberg (2002, [11]). The third one is the geometric
prior πk(k) ∝ exp(−ck) proposed by Hansen and Kooper-
berg (2002, [11]) based on the model selection criterion SIC.

With the number of knots k specified, the sequence of
knots ti, i = 1, . . . , k, are considered order statistics from the
uniform distribution with candidate knot sites {x1, . . . , xn}
as the state space. We also consider the candidate knots
from the continuous state space (x1, xn).

When the model space has been specified, the M-
regression function

m(x) =
l∑

v=0

βv,0(x − t0)v
+ +

k∑
m=1

l∑
v=l0

βv,m(x − tm)v
+(9)

is specified through the coefficients β. Let z be the vector of
the basis of piecewise polynomials evaluated at x, then

(10) m(x) = z′β.

We use the noninformative prior πβ(β|k, t, σ) = 1 on Rd for
β, where d = l+1+k(l− l0 +1). Although without a closed
form, the posterior of β derived from this noninformative
prior is proper (Lemma 1 in the Appendix).

A key step in RJMCMC is to decide the accept/reject
probability for moves from one model (k, t) to another model
(k′, t′). As shown by Green (1995, [9]) and Denison et al.
(1998, [4]), the acceptance probability for our problem is

(11) α = min
{

1,
p(y|k′, t′)
p(y|k, t)

πk,t(k′, t′)
πk,t(k, t)

q(k, t|k′, t′)
q(k′, t′|k, t)

}
,

where

p(y|k, t)(12)

=
∫ ∫ n∏

i=1

h(yi|m(xi), σ)πβ(β|k, t, σ)πσ(σ)dβdσ

is the marginal likelihood of (k, t) and q(k, t|k′, t′) is the
proposal probability of the equilibrium distribution.

The prior ratio πk,t(k
′,t′)

πk,t(k,t) can be computed once the priors

are specified. The proposal ratio q(k,t|k′,t′)
q(k′,t′|k,t) can be computed

according to the moving strategy, which will be discussed in

the next section. What left is to compute the marginal likeli-
hood ratio p(y|k′,t′)

p(y|k,t) , which is also called the Bayesian factor.
In the literature of mean curve fitting, Denison et al. (1998,
[4]) used the conditional likelihood ratio evaluated at the
maximum likelihood estimate of β. DiMatteo et al. (2001,
[6]) pointed out that the conditional likelihood ratio incurs
overfitting and penalty due to the uncertainty of the coeffi-
cient β should be considered. They showed the closed form
of the marginal likelihood ratio in the Gaussian case and the
SIC approximation in other cases of an exponential family.
Hansen and Kooperberg (2002, [11]) also used the condi-
tional likelihood ratio. However, they evaluated this ratio at
a penalized smoothing estimator of β, which is a Bayesian
solution with a partially improper prior. Kass and Wall-
strom (2002, [17]) pointed out that the Hansen–Kooperberg
method can be approximately Bayesian and won’t overfit, if
a proper smoothing parameter is chosen.

In our case, using a noninformative prior of β, we are able
to get the approximation

(13)
p(y|k′, t′)
p(y|k, t)

≈ n
d−d′

2

(
D(k, t)
D(k′, t′)

)n/2

,

where D(k, t) =
∑n

i=1 ρσ̂H(yi − z′iβ̂M (k, t)), d′ = l + 1 +
k′(l − l0 + 1), σ̂ is a scale estimate, and β̂M (k, t) is the M-
estimate for the model (k, t). A simple derivation of this
approximation is given in the Appendix (Lemma 2).

Once this likelihood ratio is computed, the remain-
ing work to compute the Metropolis-Hastings accept/reject
probability α in RJMCMC is to compute the proposal ratio
q(k,t|k′,t′)
q(k′,t′|k,t) . This ratio acts as a symmetric correction for var-
ious moves. The following section describes a scheme that
involves these moves and their corresponding proposal ra-
tios.

4. MOVING STRATEGIES IN RJMCMC

Following the scheme of Green (1995, [9]) and Denison et
al. (1998, [4]), we describe moves that involve knot addition,
deletion, and relocation. For each move (k, t) −→ (k′, t′), the
potential destination models (k′, t′) form a subspace, which
is called allowable space by Hansen and Kooperberg (2002,
[11]). For the same type of moves, for example knot addition
(k′ = k + 1, t′ = (t, tk+1)), the subspace is defined by all
possible choices of the (k + 1)st knot. Denote Mk = (k, t)
and Mk+1 = (k + 1, (t, tk+1)).

Different ways to restrict the subspace provide different
moving strategies in RJMCMC. Denison et al. (1998) and
Hansen and Kooperberg (2002, [11]) chose the candidate
knot uniformly from data points and require that it is at
least nsep data points away from current knots to avoid nu-
merical instability. We call it the discrete proposal. On the
contrary, DiMatteo et al. (2001, [6]) used continuous pro-
posal distributions. This continuous strategy, which follows
a locality heuristic observation by Zhou and Shen (2001,
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[25]), attempts to place knots close to existing knots in or-
der to catch sharp changes.

Denison et al. (1998, [4]) required nsep ≥ l to avoid nu-
merical instability. Using a different set of basis functions for
piecewise polynomials, such as the Boor basis, rather than
the explosive truncated power basis as in (4) significantly
reduces the condition number of the design matrix, thus the
numerical instability.

Our experiences suggest that, in M-regression, the dis-
crete proposal works as well as or better than the continuous
proposal, especially with middle or large data sets (n ≥ 200).
One explanation is that placing too many knots near a point,
where data may form some suspicious patterns, would result
in a chance of overfitting locally, inflating the design matrix
and impairing the computational efficiency.

Following Denison et al. (1998, [4]), the probabilities of
addition, deletion, and relocation steps of the RJMCMC
sampler are

bk = c min{1, πk(k + 1)/πk(k)},
dk = c min{1, πk(k − 1)/πk(k)},
ηk = 1 − bk − dk,

where c is a constant in (0, 1
2 ), which controls the rate of the

dimension change among these moves. These probabilities
ensure that bkπk(k) = dk+1πk(k + 1), which will be used to
maintain detailed balance as requested by RJMCMC. With
these probabilities, RJMCMC cycles among proposals of ad-
dition, deletion, and relocation.

Knot Addition. A candidate knot is uniformly selected
from the allowable space. Assume that currently there
are k knots from the n data points. Then, the allowable
space has n − Z(k) data points, where

(14) Z(k) = 2(nsep + 1) + k(2nsep + 1).

In this case the jump probability is

(15) q(Mk+1|Mk) = bk
n − Z(k)

n
.

Knot Deletion. A knot is uniformly chosen from the ex-
isting set of knots and deleted. The jump probability
from Mk to Mk−1 is

(16) q(Mk−1|Mk) = dk
1
k

.

Knot Relocation. A knot ti∗ is uniformly chosen from the
existing set of knots and relocated within the allowable
intervals between its two neighbors. Relocation does not
change the order of the knots. Let MC be the current
model and MR be the model after relocation. The jump
probability from MR to MC is

(17) q(MR|MC) = ηk
1
k

n(ti∗) − 2nsep

n(ti∗)
,

where n(ti∗) is the number of data points between the
two neighboring knots of ti∗ . Due to the symmetry,
q(MR|MC) = q(MC |MR).

5. THE RJMCMC ALGORITHM WITH
M-REGRESSION

In this section we describe details of the RJMCMC algo-
rithm for M-regression, especially the initialization of RJM-
CMC. Our experience shows that the initialization has im-
pact on the performance of RJMCMC.

To set up an initial model configuration, we choose λ
locations between x1 and xn, where λ could be the pre-
specified mean of the distribution of the number of knots.
The λ locations take the values of [hJ ]th observations of
xi, i = 1, . . . , n, where h = [ n

λ+1 ] and J = 1, . . . , λ. In this
way, we evenly assign h−1 observations between two neigh-
boring knots. Compared with other initial knot assignment
methods, this even observation assignment (EOA) is more
nature for the implementation of our strategy to add a knot,
which prefers certain symmetric distribution of observations
between neighboring knots. Our experience shows that EOA
performs better than other initial knot assignment methods,
for example, evenly spacing on (x1, xn).

To implement a full Bayesian version of RJMCMC for
M-regression, we need to draw β from its posterior distri-
bution, which does not have a closed form in our case. In-
stead, we use the posterior mode β̂, which is the M-estimate
for the given model (k, t) and scale parameter σ. This im-
proves computation efficiency, since the posterior mode β̂
has already been computed when we compute the accep-
tance probability of (k, t) with the given σ.

With these details clarified, the algorithm of RJMCMC
for M-regression is described as the following steps:

1. Sort the data by the independent variable. Then, nor-
malize the independent variable to interval [0, 1].

2. Assign initial knots according to the method described
early in this section.

3. Run RJMCMC Nb iterations for the burn-in process
from step (a) to (e).

(a) Take knot steps: addition, deletion, relocation.
This recommends a new model (k, t).

(b) Compute the M-estimate β̂M (k, t) for model (k, t).

(c) Compute the acceptance probability α based on
β̂M (k, t).

(d) Update the model according to the accept/reject
scheme.

(e) Draw σ with the Gibbs sampling method.

4. Run RJMCMC Ns iterations for the sampling process
after the Nb iterations of burn-in. Within each iteration,
in addition to the steps (a) to (e) in 3, sequentially run
the following step (f):
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Table 1. The Huber family for M estimation

Name ρ(r) ψ(r) Range

A

{
A2[1 − cos(r/A)]
2A2

A sin(r/A)
0

|r| ≤ πA
|r| > πA

B

{
(B2/2)[1 − [1 − (r/B)2]3]
(B2/2)

3r[1 − (r/B)2]2

0
|r| ≤ B
|r| > B

T

{
r2/2
T 2/2

r
0

|r| ≤ T
|r| > T

C (C2/2) log[1 + (r/C)2] r[1 + (r/C)2]−1

W (W 2/2)[1 − exp[−(r/W )2]] r exp[−(r/W )2]

H

{
r2/2
H|r| − H2/2

r
Hsign(r)

|r| ≤ H
|r| > H

L L2 log[cosh(r/L)] L tanh(r/L)

F [|r| − F log(1 + |r|/F )] r(1 + |r|/F )−1

(f) Using β̂M (k, t), obtain the M-regression fit m̂(x),
objective function value D, number of modes of
m̂(x), and other interested summary statistics.

5. From the sampling process, obtain mean estimates of
the M-regression function values m(x) and means of the
objective function value D and the number of modes of
m(x), respectively.

In the algorithm, several parameters need to be speci-
fied. Most of them should be specified problem-wise. For
the number of iterations in the burn-in process, we require
it large enough so that the mean of objective function values
becomes stable. We recommend Nb = 2000 in practice. The
number of iterations in the sampling process depends more
on the requirement of accuracy of the summary statistics.
We recommend Ns = 5000 in practice.

With the least informative likelihood in (1), the posterior
of σ given (k, t) and β follows an inverse gamma distribu-
tion. The Gibbs sampler draws σ from this inverse gamma
distribution.

The most computationally intensive part of the algorithm
is computing the M-estimate β̂M (k, t). We use the iterative
reweighted least squares algorithm.

The final evaluation of the fitted M-regression function
can be taken on all observed values or a grid of the inde-
pendent variable. We measure the goodness-of-fit of the es-
timated Bayesian M-regression function based on the mean
squared error on the observed values

(18) mse =
1
n

n∑
i=1

(m̂(xi) − m(xi))2.

6. EXTENSION OF THE ρ FUNCTION AND
SELECTION OF THE TUNING

CONSTANT

We have developed Bayesian M-regression based on the
least informative distribution derived from the Huber func-
tion ρH in (2). In practice, other ρ functions have been
used with M-regression. Table 1 presents the most com-
monly used ones, which constitute the Huber family. The
first derivative of ρ, ψ, is the score function. The Huber
family for M-estimation can be divided into three classes
according to the score functions:

The hard redescenders: Scores A (Andrews et al. 1972, [1]),
B (Tukey’s bisquare), and T (Hinich and Talwar 1975,
[14]) with ψ(r) = 0 for sufficiently large |r|.

The soft redescenders: Scores C (Cauchy or t-likelihood)
and W (Dennis and Welsch 1976, [5]) with ψ(r) → 0 as
r → ±∞.

The monotone scores: Scores H (Huber 1964, [15]), L (Lo-
gistic), and F (Fair 1974, [7]) with monotone ψ func-
tions.

Some of the ρ functions are negative log-likelihood func-
tions of well-known distributions, for example, the Cauchy
and logistic distributions. It can be easily verified that
all ρ functions with monotone or soft redescending scores
are negative log-likelihood functions of proper distributions.
Bayesian M-regression can be exercised similarly as what we
have done with the least informative distribution.

However, ρ functions with hard redescending scores can
not be negative log-likelihood functions of any distribution
(Maronna et al. 2005, P. 29, [18]). This is due to the fact that
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these ρ functions have flat constant tails. To overcome this
difficulty, instead of using proper likelihood functions, we
introduce the pseudo-likelihood function. Corresponding to
(1), with the location parameter μ and the scale parameter
σ, we call

(19)
1
σ

e−ρ( y−μ
σ )

a pseudo-likelihood function.
With the noninformative priors for β and σ as used in

Section 3, the M-estimate of β,

(20) β̂M = arg min
β

n∑
i−1

ρ(yi − m(xi, β)),

where ρ = ρσA (or ρσB , ρσT ), is taken as a posterior mode
of β, while the posterior of σ has an inverse gamma distri-
bution.

Although the marginal likelihood for (k, t) does not exist,
we use

n
d−d′

2

(
D(k, t)
D(k′, t′)

)n
2

,

where D(k, t) =
∑n

i=1 ρσ̂A(yi − z′iβ̂M ), as an approxima-
tion to the Bayesian factor. When ρ is not convex, the so-
lution β̂M in (20) might not be unique and a good start
value is needed to obtain a local solution. When ρ is con-
vex, especially with a monotone score function, the solution
for the M-estimate is usually unique and can be obtained
with less computational complexity in practice. Although
M-estimates from hard redescenders are more resistant to
large outliers (Maronna et al. 2005, P. 39, [18]), experiences
from our implementation with RJMCMC recommend M-
estimates with monotone scores.

To compute M-estimates in (5) and (20), we need to spec-
ify the tuning constant. In M-regression, the tuning constant
is usually chosen such that the M-estimate has a specified
asymptotic efficiency (e.g., 0.85). Wang et al. (2007, [23])

recently proposed a data-driven method. Let ri = yi−z′
iβ̂L1

σ̂ ,
where β̂L1 is the L1 (median) regression estimator and σ̂
is the corresponding MAD (median absolute deviation) es-
timator of σ. Choose the tuning constant H such that the
empirical efficiency

τ̂(H)(21)

=
{
∑n

i=1 I(|ri| ≤ H)}2

n
∑n

i=1{I(|ri| ≤ H)ψ2(ri) + H2I(|ri| > H)}

is maximized, where I(·) is the indicator function. Since
τ̂(H) is not a continuous function, a searching algorithm
within an interval (e.g., (0, 3) by 0.1) was used to find the
optimal H. Wang et al. (2007, [23]) show that H chosen
in this way outperforms a fixed one chosen according to the
asymptotic efficiency. Using the data-driven tuning constant
makes our Bayesian M-regression a more automatic proce-
dure.

7. NUMERICAL RESULTS

In this section, we present numerical results with the
Bayesian M-regression method we developed with both fixed
and data-driven tuning constants. We call the fixed tun-
ing constant method Bayesian M-regression (BMR) and the
data-driven tuning constant method automatic Bayesian M-
regression (ABMR).

First, we use simulations to show how our method
works on fitting various kinds of curves. Then, We com-
pare our method with the Bayesian adaptive regression
spline (BARS) method of DiMatteo et al. (2001, [6]) with
or without outliers. Numeric results show that Bayesian M-
regression performs competitively without outliers, but sig-
nificantly better with outliers. Finally, as an application, we
present how our method can be used on denoising image
data with outliers.

7.1 Simulations

We simulate data from three underlying functions on
(0, 1):

Wave:
f(x) = 4(x − .5) + 2 exp(−256(x − .5)2),
Doppler:
f(x) = 4(.2x(1 − .2x))

1
2 sin(π(1 + ε)/(.2x + ε)), ε = .05,

Block:
f(x) =

∑
hjK(xj − x), K(x) = (1 + sgn(x))/2,

where xj = {0.1, 0.4, 0.5, 0.75, 0.8}, hj = {2,−2, 4,−1, 1}.
The first two curves are continuous. Wave has a single mode,
while Doppler has multiple modes. Block is piecewise con-
stant. Similar functions have been used by Denison et al.
(1998) and others to check their curve fitting techniques.

First, we generate the data uniformly on (0, 1) from these
curves and the additive Gaussian noise.

Wave: y = f(x) + N(0, 0.4), n = 200,

Doppler: y = f(x) + N(0, 0.1), n = 512,

Block: y = f(x) + N(0, 0.4), n = 200,

where n is the sample size. Seven outliers with value 10 are
randomly added to each curve.

Figures 1, 2, and 3 show the true and fitted curves of
a single run using ABMR and BARS with linear piecewise
polynomials (l = l0 = 1) for the two continuous curves and
piecewise constants (l = l0 = 0) for the Block function.
We used 2000 iterations in the burn-in process and 5000
iterations in the sampling process. We also ran BMR with
a fixed tuning constant 1.25. Fitted curves (not shown) are
very close to those of ABMR with a slightly larger mse.

Figure 1 shows that BARS largely mis-fits the Wave
curve. The fitted curve is driven flat by the seven randomly
distributed outliers. However, ABMR demonstrates an al-
most perfect fit. Figure 2 shows fits for Doppler. ABMR
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Figure 1. ABMR and BARS fits for Wave with outliers.

Figure 2. ABMR and BARS fits for Doppler with outliers.

Figure 3. ABMR and BARS fits for Block with outliers.

ignores the distraction from outliers and fits the multi-
mode curve well, except near the origin, where signal is
relatively weak compared to the noise. The fit by BARS
presents jumps towards the outliers and misses the target
between these jumps. However, BARS fits well at the outlier-
free tail. Figures 3 shows fits for the discontinuous block
function, which is usually more difficult for classical curve
fit techniques. Bayesian methods based on RJMCMC has
demonstrated advantages (Denison et al. 1998, [4]). With
outliers, our AMBR method fits those blocks well. Again,
BARS presents sharp jumps towards outliers and misfits
some blocks. It fits well on outlier-free ranges.

For a systematic numerical comparison, the mean squared
error mse defined in (18) is used for the measure. We run
simulations with 10 repeats for both the case without out-
liers and the case with 3% outliers (with value 10). For BMR,
we use a common tuning constant 1.25 for all cases. Further
more, to show how the signal to noise ratio affects the per-
formance, we run simulations with different standard errors.
For Wave and Block, we use standard errors 0.2, 0.4, and
0.8 for the Gaussian noise. For Doppler, we use 0.1, 0.2, and
0.4.

Table 2 shows the average mean squared errors followed
by the standard errors of 10 repeats for the three curves.
Without outliers, for all different curves, ABMR, BMR, and
BARS are competitive. The standard error of the noise σ,
which decides the signal to noise ratio, plays the dominate
factor for the changes of mse.
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Table 2. MSE of fitted curves without outliers

Function Method σ

Wave 0.2 0.4 0.8
BARS .0024(.0011) .0095(.0033) .0407(.0079)
BMR .0027(.0011) .0116(.0037) .0410(.0093)

ABMR .0028(.0012) .0116(.0036) .0414(.0096)

Doppler 0.1 0.2 0.4
BARS .0017(.0002) .0051(.0005) .0169(.0032)
BMR .0018(.0002) .0056(.0005) .0181(.0025)

ABMR .0018(.0002). .0053(.0005) .0182(.0024)

Block 0.2 0.4 0.8
BARS .0241(.0452) .0404(.0424) .0615(.0236)
BMR .0211(.0350) .0464(.0502) .0677(.0320)

ABMR .0182(.0253) .0390(.0399) .0628(.0248)

Table 3. MSE of fitted curves with outliers

Function Method σ

Wave 0.2 0.4 0.8
BARS .2923(.1298) .3184(.0694) .5048(.3859)
BMR .0059(.0024) .0094(.0036) .0349(.0153)

ABMR .0028(.0009) .0084(.0223) .0334(.0168)

Doppler 0.1 0.2 0.4
BARS .2510(.0725) .2975(.0755) .3935(.1491)
BMR .0226(.0050) .0222(.0031) .0353(.0047)

ABMR .0121(.0031) .0149(.0032) .0322(.0052)

Block 0.2 0.4 0.8
BARS 1.046(.4514) 1.1739(.5094) 1.1449(.4619)
BMR .0478(.0531) .0646(.0620) .0917(.0596)

ABMR .0270(.0586) .0756(.0703) .0863(.0774)

Table 3 shows the average mean squared errors followed
by the standard errors of 10 repeats for the three curves with
3% outliers with value 10. One can see that the averages of
mse of BARS are at least 10 times larger than that of BMR
or ABMR across all simulations. For Wave with σ = 0.2,
the averaged mse of BARS is more than 100 times of that
of ABMR. Between BMR and ABMR, ABMR has smaller
averages of mse for almost all cases, except for Block with
σ = 0.4. Although σ (or the signal to noise ratio) plays a role
in the changes of mse, it is not as significant as in the case
without outliers. Outliers plays a larger role in the changes
of mse, especially for BARS.

7.2 Applications with image data

In image processing, denoising is an important step. We
use a simulated image data set similar to the one used by
Chu et al. (1998) to illustrate that our automatic Bayesian
M-regression method could be a better performer in denois-
ing with outliers.

As pointed out by Chu et al. (1998, [3]), jumps or edges
between regions happen frequently in images. We take a
similar underlying function used by Chu et al. (1998, [3]),
which is a step (block) function with a sharp jump near
0.65. Figure 4 displays the simulated one-dimensional image

Figure 4. ABMR and BARS fits for image data.

data together with the fitted curves. On the left, the curve
fitted with our automatic Bayesian M-regression method is
indicated by the dashed line. The fitted curve catches all
of the jumps accurately. On the right, the curve fitted with
BARS also catches almost all of the jumps, except for the
smallest one near 0.88.

To demonstrate robustness of Bayesian M-regression
curve fit, we contaminate the data with one outlier near 0.4
with a value 4.25 and another outlier near 0.6 with a value
4.5. Figure 5 shows that the two outliers do not change the
curve fitted by ABMR too much. The only noticeable change
is the jump near 0.88, which now becomes less clear. How-
ever, the two outliers change the BARS fit significantly. Not
only appear two large false jumps towards the outliers, the
BARS fit also misses the target with the highest jump near
0.65.

To further test the strength of resistance to outliers, we
enlarge the second outlier with a value of 20.5. Figure 6
(upper) shows the fitted curve by ABMR. The jump near
0.56 becomes less clear and the jump near 0.88 is gone. We
also show the fitted curve (lower) by using the ρ function B
(Table 1) with the bisquare score function. The bisquare fit
presents a little clearer jump near 0.56 and some variation
near 0.88. However, it took about twice the computing time
used by the Huber function.

In summary, we can conclude that Bayesian M-regression
is less affected by individual outliers (not clouded together).
The Huber score function is fast and good enough for such
outliers in practice.
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Figure 5. ABMR and BARS fits for image data with outliers.

8. DISCUSSIONS

We present a Bayesian approach to fit nonparametric M-
regression models. The approach is automatic in the sense
that the number of knots and their locations for the non-
parametric piecewise polynomial model, as well as the tun-
ing constants, are selected automatically in the fitting pro-
cedure based on data. Our approach can be considered as a
natural extension of Bayesian least squares based curve fit
with free knots to M-regression models. Numerical results
show that our approach is competitive in accuracy and ro-
bustness for fitting nonparametric models.

The M-regression models discussed in the current pa-
per have symmetric error distributions. For models with
asymmetric error distributions or heterogeneous error dis-
tributions, M-regression may not be suitable. Some alterna-
tives, for examples, the Bayesian adaptive quantile regres-
sion models proposed in Chen and Yu (2008, [2]), should be
considered.

It is well-known that Bayesian modeling based on MCMC
with large data sets has the drawback of slow comput-
ing speed. Our automatic Bayesian M-regression approach
needs to compute M-estimates for each selected model. The
computation involved could be extensive if a long chain is
requested for MCMC. However our implementation of the
iteratively reweighted least squares algorithm for comput-
ing M-estimates achieves reasonable computing efficiency.
For data sets with several thousands of observations, we
are able to get a stable chain of length 5,000 within several

Figure 6. ABMR fits for image data with enlarged outliers
(upper: Huber, lower: Bisquare).

minutes with a Dell GX620 Desktop, which runs a 3.2 GHz
Pentium(R) 4 processor with 2 GB RAM.

In this paper, we focus on one-dimensional fitting. For
multi-dimensional fitting, additive models can be used. Ap-
plications of our approach on multi-dimensional fitting for
M-regression models are under investigation.

APPENDIX A. PROOFS

Lemma 1. For the least informative distribution in (1),
given a sample {(yi, xi), i = 1, . . . , n} and a piecewise poly-
nomial fit μ = m(x) = z′β, the posterior of β with the
noninformative prior πβ(β|k, t, σ) = 1 is proper.

Proof. The joint likelihood of β and σ is

l(β, σ) = C−n
H σ−ne−

∑n

i=1
ρH(

yi−z′
i
β

σ )

= C−n
H σ−ne−

1
σ2

∑n

i=1
ρσH(yi−z′

iβ).

Let vi = yi − z′iβ, ri = vi

σ ,

si(β) =

⎧⎨
⎩
−1 if ri ≤ −H
0 if − H < ri < H
1 if ri ≥ H,

and wi(β) = 1−s2
i (β), then ρσH(yi−z′iβ) = 1

2wiv
2
i +Hsivi−

Bayesian M-regression 79



H2

2 s2
i and

(22) D(β) =
n∑

i=1

ρσH(yi − z′iβ) =
1
2
v′Wv + g′(s)v + c(s),

where s = (s1, . . . , sn)′, v = (v1, . . . , vn)′, g(s) = Hs, c(s) =
−H2

2

∑n
i=1 s2

i , and W is the n × n diagonal matrix with
diagonal elements wi.

D(β) is continuous and piecewise quadratic on Rd. Its
gradient is given by

D(1)(β) = −Z ′[Wv + g(s)]

and for β /∈ Ω = Un
i=1{β : |ri(β)| = H}, the Hessian exists

and is given by

D(2)(β) = Z ′WZ,

where Z = (z1, . . . , zn)′ is the design matrix for the piece-
wise polynomial fit.

Assume that one component of β, |βv,m| → ∞ and the
corresponding coefficients in zi, i = 1, . . . , n, are not zero
while other components of β are fixed, then |ri| → ∞,
|si| = 1, and wi = 0, i = 1, . . . , n. From (22), D(β) is
an L1 function of βv,m when βv,m exceeds a threshold. The
above argument applies to all components of β. Let Δ(β)
= min{|βv,m|, 0 ≤ v ≤ l, 1 ≤ m ≤ k}. D(β) is convex and
there exists Δ0 > 0 such that D(β) is an L1 function of β
when Δ(β) > Δ0 and piecewise quadratic when Δ(β) ≤ Δ0.
So, given σ,

(23)∫
Rd

e−
D(β)

σ2 dβ =
∫

Δ(β)>Δ0

e−
D(β)

σ2 dβ +
∫

Δ(β)≤Δ0

e−
D(β)

σ2 dβ.

As a special case of Yu and Moyeed (2001, [24]) (Theorem 1,
the median case), the first part of the right-hand side of (23)
is finite. Since D(β) is continuous on Rd, the second part of
the right-hand side of (23) is also finite. So, the posterior of
β has a density.

The following result for Bayesian factor approximation
is under special conditions. However, we found that these
conditions are commonly true in practice.

Lemma 2. Define Δ(β) and Δ0 as in Lemma 1. Assume
D(2)(β) be full rank in {β : Δ(β) < Δ0} as Δ0 → ∞. For
k′ < k,

p(y|k′, t′)
p(y|k, t)

=

[
n

d−d′
2

(
D(k, t)
D(k′, t′)

)n/2
]

(1 + o(1)),

where D(k, t) =
∑n

i=1 ρσ̂H(yi − z′iβ̂M (k, t)), d′ = l + 1 +
k′(l − l0 + 1) < d = l + 1 + k(l − l0 + 1), σ̂ is a consistent
scale estimate, and β̂M (k, t) is the M-estimate for the model
(k, t).

Proof. For simple notations, denote β̂M (k, t) as β̂M . Because
β̂M is the M-estimate, so D(1)(β̂M ) = 0. From Lemma 1,

D(β) =
1
2
(β − β̂M )′D(2)(β)(β − β̂M ) + D(β̂M ) a.s.,

then

p(y|k, t) =
∫
R+

∫
Rd

(σCH)−ne−
D(β)

σ2 dβdσ = C−n
H

×
∫
R+

[
σ−ne−

D(β̂M )
σ2

∫
Rd

e−
1

2σ2 (β−β̂M )′D(2)(β)(β−β̂M )dβ

]
dσ.

D(β̂M ) depends on σ only through the sign vector s. Let
σ̂ be a consistent estimate of σ, i.e., σ̂ → σ as n → ∞. So,
D(k, t) = D(β̂M )(σ̂) = D(β̂M ) as σ̂ → σ.

Since σ−ne−
D(k,t)

σ2 is bounded (for fixed n), so

C−n
H

∫
R+

[
σ−ne−

D(k,t)
σ2

∫
Rd

e−
1

2σ2 (β−β̂M )′D(2)(β)(β−β̂M )dβ

]
dσ

= p(y|k, t)

as σ̂ → σ and we have

C−n
H

∫
R+

[
σ−ne−

D(k,t)
σ2

∫
Rd

e−
1

2σ2 (β−β̂M )′D(2)(β)(β−β̂M )dβ

]
dσ

= p(y|k, t)(1 + o(1)).

∫
Rd e−

1
2σ2 (β−β̂M )′D(2)(β)(β−β̂M )dβ is approximated by its in-

tegration on the finite range {β : Δ(β) < Δ0}. Under
the full rank condition of D(2)(β) in {β : Δ(β) < Δ0}
and by integration of an inverse gamma distribution of σ
with the left-hand side in the above equation, we prove the
lemma.
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