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The role of asymmetry: Evidence from Chinese
Treasury bond market∗
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Volatility asymmetry widely exists in the stock and ex-
change market, but little evidence has been provided in the
bond market, especially the Treasury bond market with
fewer impacts related to private information. This paper
provides an empirical study on the volatility asymmetry in
the Chinese Treasury bond market (CTBM). The question
what we are mostly interested is the role of asymmetry in
volatility modeling in the Treasury bond market, including
econometric testing of asymmetry and analyzing of its ef-
fect on volatility forecasting. Quite different from previous
results in the stock or exchange market, by estimating var-
ied volatility models, empirical results in this paper show
that volatility asymmetry is insignificant in CTBM, but it
also provides important and indispensable information for
volatility forecasting. Due to the special pricing way of Trea-
sury bonds as well as low liquidity in CTBM as a result of
non-actively trading, the fact that information-based im-
pacts in CTBM are not as common as that in the stock or
exchange market may contribute to these results.
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1. INTRODUCTION

Does volatility asymmetry that positive and negative in-
novations have different effect on future volatility exist in
every market? In the stock market, firm-specific, industry-
specific information come to the market or assets frequently,
so the answer may be yes. In the exchange market, infor-
mation from their own currency countries, or other related
countries, or the dominant currency countries (such as US)
may also come to the market or currencies frequently, so the
answer may be yes too. However, in the bond market, espe-
cially the Treasury bond market, the situation is different.
For nearly no default risk, the future cash flow for the Trea-
sury bonds is fixed, so their valuation is only varied with
the discount rate, which is mostly affected by the change
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of monetary policies or other related macro-variables, such
as CPI (Consumer Price Index), the supply of currency and
so on. However, these variables or policies are rather stable
and not varied sharply or frequently, particular in the daily
time level. So, comparing with the stock or exchange market,
there is much less private information or fewer information-
based impacts that would affect the valuation of Treasury
bonds in a short time interval. With these special facts,
whether volatility asymmetry also exists or not in the Trea-
sury bond market need to be tested.

Actually, volatility asymmetry has been found existing
widely and playing important role for risk management in
stock and exchange market. Typically, Engle (2004) shows
that volatility asymmetry is important for the estimation of
Value at Risk (VaR). For a portfolio of S&P500 stocks, ig-
noring the asymmetry in volatility may lead to a significant
underestimation of VaR. Andersen et al. (2003), Theorem 2,
find that if return-volatility asymmetry is important and the
forecast horizon is relatively long, say monthly or quarterly,
then one may expect the empirical return distribution to
display asymmetries that are incompatible with symmet-
ric return distributions. By using of realized volatility, their
empirical results show asymmetric response of major ex-
change rates to economic announcements in the U.S. With
high-frequency data and realized volatility, Wang and Yang
(2006) also examine the volatility asymmetry in bilateral
foreign exchange rates and trade weighted indices (TWI),
and find evidence of asymmetry in daily realized volatility
of AUD, GBP, and JPY against USD. Moreover, their re-
sults show that asymmetry may persist over periods of sev-
eral years, and the asymmetry is in different directions for
different currencies: volatility of AUD and GBP increases
when they depreciate against USD, but volatility of JPY
increases following JPY appreciation against USD.

In this paper, we test the volatility asymmetry in the
Chinese Treasury bond market (CTBM hereafter) with high
frequency data and realized volatility of the Treasury index
in the Shanghai Security Exchange market. It is interesting
to study the volatility asymmetry in this market for many
reasons. First of all, most of the previous studies related
to volatility asymmetry only focus on stock or exchange
market, but little attention has been paid to the Treasury
market. For the special way of price discovering of Treasury
bonds, previous results in the stock or exchange market need
to be further tested in the Treasury bond market.
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Secondly, China has the largest fast growing economy in
the world. The size of its economy stands at $2.7 trillion
in 2006, ranked after US, Japan and Germany. CTBM that
is closely related to Chinese economy and gradually viewed
as a good place for international investment is valuable to
be studied. This is helpful for the risk management of these
investors who are now in, or plan to come to, this market.

Thirdly, comparing with the Chinese stock market or
Treasury market in US or Euro-area countries, CTBM devel-
ops more slowly and has smaller size and number of bonds.
Moreover, in China, there is no fixed time and specified term
for the issuing of Treasury bond, which is usually serviced
only for the irregularly demand of macroeconomic control,
such as increasing the government payment, the adjustment
of the currency demand or supply, and so on. The price dis-
covering and the stylized facts of volatility for this market
have rarely been tested, especially with the high-frequency
data and realized volatility.

Compared with previous studies related to volatility
asymmetry, this paper also employs diversified volatility
models. Four types of volatility models are applied in this
paper. The first type refers to the ARCH-family models.
Since the seminal paper of Engle (1982), the advance of
ARCH-family models such as GARCH (Bollerslev (1986)),
GARCH-M (Engle (1987)) etc. give us more capability to
model volatility in the financial markets. Moreover, to cap-
ture the popular dynamics of volatility asymmetry, mod-
els such as TARCH (Zakoian (1994)), EGARCH (Nelson
(1991)) are also applied widely in practice.

The second type of model applied in this paper is
the ARMA model based on realized volatility. In recent
years, a new way of volatility modeling based on high fre-
quency data was proposed by Andersen, Bollerslev, Diebold,
Labys (ABDL hereafter, Andersen and Bollerslev (1997),
Andersen et al. (1999)) named realized volatility (RV).
ABDL have shown that by sampling intra-day returns suf-
ficiently frequently, the realized volatility can be arbitrar-
ily close to the underlying integrated volatility, which is a
natural volatility measure. Based on high frequency data,
realized volatility provides a benchmark to evaluate other
volatility models (Andersen et al. (2003)). What’s more,
traditional time series models, ARMA for example, can be
estimated on realized volatility series directly to explore the
volatility stylized facts, such as the volatility asymmetry.
The analysis related to the Chinese capital market with
high frequency data is just the matter of recent years with
the availability of data. The Treasury bond index in Shang-
hai Security Exchange (SHSE) market was created since
Feb.2003, and from then on the intra-day data of the in-
dex are available. This paper examines the role of volatility
asymmetry with realized volatility and ARMA model struc-
ture, in which realized volatility is computed firstly, and then
the ARMA type models are estimated on realized volatility
series.

The third model refers to the heterogeneous autoregres-
sive (HAR) volatility model proposed by Corsi (2003). The

basic idea of HAR model is that there are many types of in-
vestors in the market, for which each has its regular trading
time interval. It is usually assumed that there are three types
of investors with daily (short term), weekly (medium term)
and monthly (long term) trading interval. Corsi (2003) finds
that HAR model provides superior performance in volatil-
ity forecasting. To include asymmetry in HAR, this paper
proposes a modified HAR to capture the different effect of
positive and negative innovations on future volatility.

The fourth type of model, proposed this paper, is a
volatility model that combines with both the realized volatil-
ity and GARCH structure. GARCH volatility and realized
volatility are two different ways of volatility modeling, and
can not be replaced each other.1 Then, intuitionally, the
question is that whether the two models or methods can
work together to use both the good structure of ARCH
model and the affluent information of inter-day data, or
whether realized volatility is helpful to modeling and fore-
casting conditional volatility. This paper introduces realized
volatility to conditional volatility model, and a RV-GARCH
model is constructed. Our work is also built on the for-
mer work of Blair et al. (2001), Hol and Koopman (2002). A
RV-EGARCH model that combines with RV and EGARCH
model is also introduced in this paper to capture asymmetric
dynamics.

With these models, this paper focuses on two issues re-
lated to the volatility asymmetry in CTBM. The first is-
sue is to test the volatility asymmetry with these econo-
metric models and compare the results with other markets,
and the second one is to discuss the role of asymmetry in
volatility forecasting. In addition, to enforce our empirical
results, Monte Carlo simulations are provided. The empiri-
cal results and simulations show that the asymmetric rela-
tion between return and volatility in CTBM is insignificant.
However, asymmetric specifications provide important and
indispensable information to volatility forecasting. As a re-
sult of the special pricing way of Treasury bonds, as well
as of the special background of the Chinese capital mar-
ket, the information-based impacts in the Chinese Treasury

1Some reasons are responsible for the individuality of the two types
of models. First of all, GARCH model is employed for time series
with regularly sampled data and it is rarely used to un-regularly
sampled data directly. Secondly, the market open and close system
will affect the volatility modeling for intra-day data with GARCH
structure. Thirdly, the inter-day periodicity of volatility will affect
volatility modeling with GARCH structure. Moreover, it is uncertain
whether realized volatility can be used to measure the conditional
heteroskedasticity. According to the work of Andersen et al. (2000),
and Forsberg and Bollerslev (2002), return standardized by realized
volatility is nearly normal, f(rt|RVt) ∼ N(0, RVt), but the distribu-
tion of f(rt|RVt−1) is not certain. So, the ex-post realized volatility
RVt should be modeled further to get the ante-realized volatility or
conditional volatility f(rt|RVt−1, . . . , RV1) as the estimator of the con-
ditional heteroskedasticity. Here, another question arises. Can a model
be better than ARCH to capture the volatility clustering or other styl-
ized facts in financial market? The answer is uncertain. At least, it is
difficult now.
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bond market are not as common as that in the stock, or ex-
change market. Some hypotheses about the source of volatil-
ity asymmetry, leverage effect or feedback effect, that em-
phasize the role of private information in pricing discovering
may not come to existence in the Treasury bond market. Re-
sults in this paper indicate that it’s different for the role of
volatility asymmetry between (Treasury) bond and stock or
exchange market. However, the asymmetry effect of impacts
related to the discount rate may be also important and help-
ful to volatility forecasting. In fact, the accuracy of volatility
forecasting around big news is the key factor for a successful
volatility model though these events are not so common in
the market. So, when considering the volatility symmetry,
the models generally capture more dynamics, though subtle,
and behave better in volatility forecasting.

The rest of the paper is organized as follows. Section 2
introduces the theory of realized volatility. Then, the best
sampling frequency is selected to estimate realized volatil-
ity of the Chinese Treasury bond market in section 3. In
section 4, empirical models based on RV are applied to test
the volatility asymmetry in CGTM. In section 5, various
volatility models are introduced and their asymmetric coun-
terparts are constructed to test the role of asymmetry in
volatility forecasting. Some Monte Carlo simulation results
are provided in section 6. Last section concludes.

2. INTRODUCTION OF REALIZED
VOLATILITY

2.1 Integrated volatility

Though the ARCH volatility or implied volatility models
are applied widely in practice, the most natural approach is
integrated volatility (Andersen et al. (2000)). Letting W be
a standard Wiener process and pk denote the arbitrage-free
logarithmic price process (Andersen et al. (2001)), then pk

can be written as,

dpk = ukdt + σdW

or,

pk(t) − pk(t − 1) ≡ rk(t) =
∫ t

t−1

uk(s)ds +
∫ t

t−1

σk(s)dW (s)

Now, the standard calculations of quadratic variation,
which is unbiased estimator of variance in theory, yield,

Qvark(t) = [pk, pk]t − [pk, pk]t−1 =
∫ t

t−1

σ2(s)ds

Here, the right part of the above equation,
∫ t

t−1
σ2(s)ds,

is the so-called integrated volatility.

2.2 Realized volatility

Let Pt,i denote the ith intra-day price of the security at
day t. With sampling frequency Δt, we can get the intraday
returns,

Rt,Δt,i = lnPt,iΔt−ln Pt,(i−1)Δt, t = 1, . . . , T, i = 1, . . . , NΔt

So the daily return is,

Rt = lnPt,NΔt − lnPt−1,NΔt , t = 1, . . . , T

Now the realized volatility v(ti) at time ti is defined as
(Dacorogna et al. (2001)),

v(ti) =

[
1

NΔt

NΔt∑
i=1

|Rt,Δt,i|p
] 1

p

The exponent p is often set to 2 so that v(ti)2 is the
unbiased estimator of the return variance. When p = 1, the
volatility v(ti) is just the fine volatility (Muler et al. (1997)).
v(ti) is the volatility for time interval Δt, but the popular
used one is the scaled form (Dacorogna et al. (2001)), such
as the one-day-volatility or one-year-volatility, which can be
transformed as,

vscaled =

√
Δtscale

Δt
.v(ti)

Here, Δtscale is the scaled term (time), one month or one
year etc.

2.3 Sampling frequency of realized volatility
modeling

The fact that realized volatility is the consistent esti-
mator of integrated volatility is appealing, but, unfortu-
nately, the assumption that log asset prices evolve as a
diffusion process becomes less realistic when the time in-
terval reduces (Corsi et al. (2001)). To compute the real-
ized volatility, the sampling frequency Δt should be se-
lected firstly. On one hand, higher frequency can reduce
the statistical errors. On the other hand, the microstruc-
ture effect rising from bid-ask bounce will make the volatil-
ity estimator be biased (Andersen and Bollerslev (1997),
Andersen et al. (2000)). To select the best sampling fre-
quency, Andersen and Bollerslev (1997) proposed a statistic
as,

V R =
NΔt.V ar(Rt,Δt,i)

V ar(
∑NΔt

i=1 Rt,Δt,i)
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If Δt is the best sampling frequency, the volatility with
frequency Δt should yield the scaling law. So, the optimal
Δt will produce a V R close to one.2

3. REALIZED VOLATILITY OF CTBM

3.1 The daily realized volatility of CTBM

The bond index in Shanghai Security Exchange (SHSE)
market is used in this paper to examine the role of asym-
metry in the Chinese Treasury bond market (CTBM). Trea-
sury bonds in China were issued first time in 1981. There
was no primary and secondary market, or little liquidity,
before 1987. From 1987 to 1996, Over-the-counter (OTC)
trading was allowed. After 1997, the inter-bank bond mar-
ket is created; from then on the market size and trading
volume increases greatly. Now, both short and long term
bonds, invertible and un-invertible bonds, fixed and flexible
yield bonds exist in CTBM. Moreover, the Treasury bond
index of Shanghai stock exchange market has been created
after Feb. 24, 2003, which is helpful to examine the market
volatility.

Tick-by-tick data of Chinese Treasury bond index from
Jun.1 2004 to Dec.31 2005 is employed in this paper. The
data is supported by CSMAR Corporation, one of the
chief data supporters in China. There are 391 transaction
days with total observations of 634489 ticks, about average
1622 ticks per day.3 Because there is no short-sell system
in CTBM, no trade may means bad news (Diamond and
Verrecchia, 1987), so the linear interpolation scheme (Da-
conogna et al, 2001) is selected, and the 1-minute logarithm
returns are shown in figure 1.

It has been found that the V R statistic is almost close
to one (0.9974) with sampling frequency of 15 minutes, so
15-min is selected as the optimal Δt to calculate the realized
volatility. The daily realized volatility of CTBM computed
with equal to 15 minutes is shown in figure 2. The maximal
daily volatility4 is 0.0061 about 0.0061, and the minimum
one 2.135 × 10−4.
2There are two general ways of realized volatility modeling. The first
one is to choose the best sampling frequency on the tick-by-tick data,
typical works including ABDL (1997, 1999, 2003) etc. The second one is
to get the realized volatility directly from the tick-by-tick data but take
some adjustment of noise, typical works including Corsi et al. (2001),
Zhang et al. (2005) etc. For the microstructure effect rising from bid-
ask bounce may make the volatility estimator be biased, both of the
two methods use some skills to reduce this effect, but with different
ideas. The first one, as what we have done in this paper, the best
sampling frequency is selected at which the bias is marginal, and for
the second one, the autocorrelations rising from the microstructure
effect is adjusted with some special algorithms. In this paper, we adopt
the first one and believe that it may not qualitatively affect the results
on the role of asymmetry, because the results in this paper, as shown
later, is so robust that the results stands out in every case of the four
types of models.
3As the developing of electronic trading system of Shanghai stock
market, more than 16000 ticks of trading can be processed each sec-
ond, with which the tick-by-tick index data is produced. More infor-
mation is included in the official website of Shanghai stock market:

One-minute intra-day returns for the Chinese Treasury bond in-
dex are shown here, including 391 days from Jun.1 2004 to Dec.31
2005. The returns are the logarithms of the one-minute bond in-
dices, which come from the linear interpolation (Daconogna et
al., 2001) on the 634489 ticks of the intra-day high-frequency
index data in the sample period.

Figure 1. One-minute returns on the Chinese Treasury
bond index.

The daily realized volatility is shown here, for which 15-min is
selected as the optimal according to the statistics of Andersen
et al. (1997). The daily realized volatility of CTBM is computed
with equal to 15 minutes.

Figure 2. Daily volatility of CTBM index with 15-min sample.

http://www.sse.com.cn/sseportal/ps/zhs/sjs/jysjs.shtml
4In the following sections of this paper, without special explanation,
“daily volatility” denotes the daily realized volatility computed at sam-
pling frequency of 15 minutes.
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3.2 The unconditional and conditional
distribution of the return

As mentioned above, if the return series are decomposed
as Rt = σtεt, where, εt ∼ iid N(0, 1), and σt is the condi-
tional standard deviation at time t, then the σ-standardized
return is,

εt =
Rt

σt

Here, εt is so-called conditional or standardized return
series. σt is unknown and can be estimated by various of
volatility models.

A relative consistent result, in empirical studies, about
the unconditional distribution of return series is that daily
return is not normally distributed, and increasing the length
of the sampling frequency, to weekly, fortnightly, or monthly,
will reduce the variance persistence and kurtosis of the re-
turns (Baillie and Bollerslev (1989)). For intraday returns,
Andersen et al. (2000) find that the unconditional distribu-
tions of exchange rate returns are symmetric but highly lep-
tokurtic, and realized volatility can capture the chief facts of
exchange rate volatility better than GARCH models. With
respect to CTBM, the distribution of unconditional returns
and standardized returns is shown in Table 1.

It can be found that the unconditional distribution of
CTBM return series is absolutely different from normal dis-
tribution. The conditional distributions of returns standard-
ized by GARCH, EGARCH and TGARCH also have kurto-
sis higher than three. The Jaque-Bera statistics and the p-
values demonstrate that these conditional distributions are
not normal distributions either. However, the conditional
distribution of returns standardized by realized volatility is
nearly normal, as shown in the last column of Table 1. The
p-value of the hypothesis that the conditional distribution of
CTBM return standardized by realized volatility is normal
can not be rejected even at 10% significance levels. This in-
dicates that realized volatility is much better to describe the

Q-Q plots for the four standardized return series are shown here.
The red dotted line connects the 25th and 75th percentiles of
the data. The blue dotted lines describe the percentiles of the
sample. If the series conform to normal distribution, the blue
line will appear linear, superposed over the red one; otherwise, it
may follow a curve.

Figure 3. QQ-graph of conditional distribution of returns.

variation of the return than other volatility models. These
results are reinforced by the Q-Q plots of the standardized
return series shown in Figure 3.

In figure 3, the red dotted line connects the 25th and
75th percentiles of the data. The blue dotted lines describe
the percentiles of the sample. If the series conform to nor-
mal distribution, the blue line will appear linear, superposed
over the red line; otherwise, it may follow a curve. The condi-
tional distribution of return standardized by realized volatil-
ity is more linear than other ones. That is, realized volatility
capture the volatility dynamics of CTBM better than the

Table 1. The unconditional and conditional distribution statistics of daily return

Statistics Unconditional Rt/GARCH (σt) Rt/EGARCH (σt) Rt/TGARCH (σt) Rt/RVt

Mean 0.0003 0.2362 0.2453 0.2427 0.2653
Median 0.0003 0.2191 0.2114 0.2185 0.4005
Maximum 0.0057 3.6982 4.3167 3.8498 3.1987
Minimum −0.0051 −3.1662 −3.3289 −3.1583 −3.1104
Std.Dev 0.0013 1.0013 1.0027 1.0025 1.1448
Skewness −0.1764 −0.0385 0.0547 0.0120 −0.2101
Kurtosis 4.8332 3.9269 4.0985 3.9105 2.6967
Jaque-Bera 56.7800 14.0953 19.8525 13.5161 4.3739
Probability 0.0000 0.0009 0.0000 0.0012 0.1123

The descriptive statistics for the distribution of unconditional returns and standardized returns are shown
in Table 1. If hypotheses that return series are decomposed as Rt = σtεt, where, εt ∼ iid N(0, 1), and
σt is the conditional standard deviation at time t, then εt = Rt/σt is standardized return series and may
conform to normal distribution; Here, GARCH (σt), EGARCH (σt) and TGARCH (σt) are respectively
the conditional volatility of GARCH, EGARCH and TGARCH model, and RVt is the realized volatility.
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GARCH, TGARCH or EGARCH model. These results are
consistent with that of Andersen et al. (2000) who discuss
the foreign exchange market.

4. ECONOMETRIC TEST OF VOLATILITY
ASYMMETRY

Asymmetry refers to that negative returns have stronger
effect on future volatility than positive ones. With realized
volatility, the relationship between return and volatility (RV
and logarithm RV) of CGBM is shown in figure 4.

The upper two graphs of figure 4 describe the relation
between return and volatility or logarithm volatility for two

The relationship between return and realized volatility or loga-
rithm of realized volatility is shown here. The upper two graphs
in the figure describe the relationship in two successive days, and
the lower two graphs describe the relationship at the same day.

Figure 4. “V”-shape relationship between return and
volatility.

successive days, and the lower two graphs describe the re-
lationship at the same day. It can be found that volatility
and return exhibit a “V”-shape pattern for all the four situ-
ations. If volatility asymmetry exists, the slope of each side
of the “V” shape should be different. With this idea, to
test the asymmetry, an econometric model is constructed as
Model (1).

Model(1): RVt = ω+β0RVt−1+
p∑

i=1

αiR
−
t−i+

q∑
j=1

λiR
+
t−j+εt

Here, ω, β0, αi and λi are parameters to be estimated. Rt,
RVt are respectively the daily return and daily RVt; p and
q are the orders of lags. R−

t and R+
t are respectively defined

as,

R+
t =

{
Rt if Rt > 0
0 otherwise R−

t =
{

Rt if Rt < 0
0 otherwise

In addition, another model combing with the idea of
EGARCH (Nelson (1991)) model and realized volatility is
constructed as Model(2),

Model(2): lnRV 2
t = ω + β0RV 2

t−1 + α1

R−
t−1√

RV 2
t−1

+ λ1

R+
t−1√

RV 2
t−1

+ εt

The definition of variables in Model(2) is the same as
that in Model(1). The estimation results of Model(1) and
Model(2) are shown in Table 2.

In Table 2, negative αi and positive λj indicate that both
too-high and too-low of return will lead to higher volatil-
ity, which is consistent with the “V” shape relationship be-
tween return and volatility, as shown in figure 4. However,
the Wald tests (Greene (2003)) of coefficients equality, as
shown in Table 3, indicate there is no significant difference
between the two slopes. This means the leverage effect or

Table 2. Estimation results for testing of asymmetry with econometric models

Coefficient ω β0 α1 λ1 α2 λ2

Model(1)a 0.0008 0.1267 −0.2268 0.1627
(0.0000) (0.0343) (0.0004) (0.0036)

Model(1)b 0.0007 −.0976 −0.2224 0.1518 −0.0900 0.1180
(0.0000) (0.1080) (0.0067) (0.0008) (0.1291) (0.0161)

Model(1)c 0.0007 0.01109 −0.2454 0.1523 0.0914
(0.0000) (0.0655) (0.0002) (0.0066) (0.0460)

Model(2) −9.4032 −.3502 −0.3091 0.2843
(0.0000) (0.0000) (0.0063) (0.0032)

Here, estimation results of model (1) and model (2) are shown. Model (1)a, model (1)b and
model (1)c are respectively one of the special specifications of model (1) with different lag num-
bers of p and q. New-west adjustment is applied in the model estimation, and the values in the
parentheses are the p-values of the coefficients.
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Table 3. P-values for Wald test on coefficients equality

P-value Model(1)a Model(1)b Model(1)c Model(2)

H0 α1 = −λ1 0.27 0.25 0.12 0.81
H0 α2 = −λ2 0.65

Here the results for Wald tests of coefficients in model (1) and
model (2) are shown. Model (1)a, model (1)b and model (1)c are
respectively one of the special specification of model (1) with
different lag numbers of p and q. The values in the table are the
p-values of related Wald tests.

volatility asymmetry is insignificant in CTBM.5 Moreover,
it’s interesting that the effect of positive return on volatility
will persist for two days, but the influence of negative return
may persist only one day.

Here, the most important conclusion about the econo-
metric testing of volatility asymmetry is that negative and
positive innovations have no different impact on future
volatility, which is different from the results found in other
markets, such as Engle (2004)’s tests on S&P 500 stocks,
Andersen et al. (2003) and Wang and Yang (2006)’s tests
on foreign exchange market. The chief reason responsible
for these special results would be the special background of
the market. It should be noted that there is no fixed time
and specified term for the Treasury bond issuing in China,
which is usually only serviced for the irregularly demand of
macroeconomic control, such as increasing the government
payment, and the adjustment of the currency demand or
supply. The total number of Treasury bonds outstanding is
usually less than 100. For these special facts, compared with
other markets, there could be not so many investors trading
actively in the Treasury bond market , and the information
come to this market slowly. That is, price discovering in the
Chinese Treasury bond market is not as efficient as other
markets.

With respect to the volatility asymmetry, though econo-
metrical insignificant, does it provide useful information to
volatility forecasting? The tests in the following sections will
bring interesting answers.

5. VOLATILITY FORECASTING: TO TEST
THE ASYMMETRY FURTHER

Volatility forecasting is helpful for risk management as
well asset pricing. In this chapter, analysis on volatility
forecasting is provided to further test the volatility asym-
metry in CTBM. A various of volatility models are pre-
sented firstly, and then their asymmetric counterparts are
proposed. After that, the empirical results of CTBM will
show that models with asymmetric specifications have bet-
ter forecasting ability even the asymmetry is rejected in tra-
ditional tests.
5The asymmetry testing results with EGARCH model are not pre-
sented here and will be presented in detail in the next section in this
paper.

5.1 Some classical volatility model

5.1.1. Model introduction

ARCH-family models To model the time-varying volatility,
or the autocorrelation of the second moment of returns, En-
gle (1982) proposes ARCH model. Typically, an ARCH (p)
model is defined as,

rt =a + brt−1 + εt, V ar(εt|Ωt−1) = ht,

ht =ω +
p∑

i=1

αiε
2
t−i

Here, Ωt−1 represents the information set at time t − 1.
Compared with the former models, ARCH model can cap-
ture the volatility clustering dynamics in the financial mar-
kets. Based on the ARCH model, Bollerslev (1986) proposes
the generalized ARCH model (GARCH). The variance equa-
tion of a GARCH (p, q) model is,

ht = ω +
p∑

i=1

αiε
2
t−i +

q∑
j=1

βiht−j

In the GARCH model, the error squares of return expec-
tation, ε2

t−i, reflect the effects of new-arrival information on
future volatility, and the delayed conditional variance, ht−j ,
reflects the long-term movement of volatility. The variance
equation of a GARCH (1, 1) model is,

ht = ω + α1ε
2
t−1 + β1ht−1

To describe the volatility asymmetry, Nelson (1991) pro-
posed the EGARCH mode. The variance equation of an
EGARCH (1, 1) model is,

ln ht = ω + α

∣∣∣∣ εt−1

h
1/2
t−1

∣∣∣∣ + γ
εt−1

h
1/2
t−1

+ β ln ht−1

In addition to the EGARCH, there are also some other
asymmetric ARCH-family models such as TARCH (Zakoian
(1994)), or GJR (Glosten et al. (1993)). In this paper,
EGARCH model is selected as the representative of these
asymmetric models.

ARMA model Omen (2001) has shown that modeling
intra-day returns as an ARMA process is a natural and suc-
cessful choice because ARMA model is well suited to ac-
count for the serial dependence of returns at various sam-
pling frequencies. For an ARMA model, the AR part will
arguably be able to capture any autocorrelation induced by
non-synchronous trading while the MA part will account
for potential negative first order autocorrelation induced by
the bid-ask bounce. Moreover, at higher sampling frequen-
cies the ARMA model can account for the observed serial
dependence while at lower sampling frequencies these de-
pendencies die off as a consequence of temporal aggregation
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of the return process. Similarly, to describe the autocorrela-
tion dependence of the volatility, the ARMA type models are
applied directly to the realized volatility. An ARMA model
can be described as,

φ(L)yt = θ(L)εt

Here, yt is the observed series, realized volatility RVt in
this paper. φ(L), θ(L) are respectively the p-order and q-
order lag operator.

Heterogeneous model Autoregressive model assuming the
heterogeneity of the market investors is proposed by Corsi
(2003). The basic idea of the heterogeneous autoregressive
(HAR) volatility model is that there are many types of in-
vestors in the market, and each has its regular trading time
interval. For example, it is usually hypothesized that there
are three types of investors with daily (short term), weekly
(medium term) and monthly (long term) trading interval,
and a HAR model is constructed as,

RVt = a + bRVt−1 + cRVt−5,t + dRVt−22,t + εt

Here, (d,w,m) means the HAR model has included the
effects of the three types of investors with daily, weekly (5
trading days a week) and monthly (22 trading days a month)
trading interval; bRVt−1, RVt−5,t and RVt−22,t respectively
represent daily realized volatility at day t − 1, the weekly
and monthly realized volatility previous time t to capture
the contributions for different types of investors; If only two
types of investors are assumed, daily and monthly for exam-
ple, the model can be constructed as,

RVt = a + bRVt−1 + dRVt−22,t + εt

With the heterogeneous models, empirical studies on
CTBM here will bring us more learning on the market
volatility and heterogeneity.

Volatility models combining with GARCH model and real-
ized volatility GARCH model and realized volatility are
two different ways of volatility modeling. Then, the direct
question is that whether the two models or methods can
work together to use both the structure of ARCH model
and the information of inter-day data, or whether the real-
ized volatility is helpful for modeling and forecasting con-
ditional volatility. This paper introduces realized volatility
into GARCH model, and a new volatility model named RV-
GARCH is constructed. Our work is also built on the former
work of Blair et al. (2001), and Hol and Koopman (2002),
in which the lagged realized volatility is introduced into the
variance equation of GARCH model. The variance equation
of RV-GARCH model can be transformed to,

ht = ω + αε2
t−1 + ξ(RV 2

t−1 − ht−1) + (ξ + β)ht−1

The term M = ξ(RV 2
t−1−ht−1)+(ξ+β)ht−1 is an ARMA

process of ht with the hypothesis that realized volatility

is the volatility benchmark (truly one). The autoregressive
part (ξ+β)ht−1 represents the long-term trend of the volatil-
ity, and the moving average part ξ(RV 2

t−1 − ht−1) is viewed
as the short-term movement of volatility. Then, the vari-
ance equation of RV-GARCH model includes three factors
that contribute to the future volatility, one long-term factor
and two short-term factors. The long-term factor is the au-
toregressive term ht−1 and the short-term factors includes
(square) forecasting error of conditional mean ε2

t−1 and fore-
casting error of conditional variance (RV 2

t−1 − ht−1).
The same as RV-GARCH, introducing realized volatil-

ity into EGARCH model to capture the volatility asymme-
try, variance equation of RV-EGARCH model can be con-
structed as follows,

lnht = ω + α

∣∣∣∣ εt−1

h
1/2
t−1

∣∣∣∣ + γ
εt−1

h
1/2
t−1

+ β ln ht−1 + ξRV 2
t−1

The process from RV-GARCH to RV-EGARCH is so sim-
ilar, and it is not discussed in detail here.

5.2 Empirical models with or without
asymmetry

5.2.1. Empirical models without asymmetry

Four types of volatility models are mentioned above, the
ARCH-family models, the ARMA type models, the hetero-
geneous models HRV, and models combining with ARCH-
family model and realized volatility. Without considering
the asymmetry, these models are sorted as follows.

ARCH-family model without asymmetry

GARCH(1,1): rt = a + brt−1 + εt, V ar(εt|Ωt−1) = ht,

ht = ω + α1ε
2
t−1 + β1ht−1

Here, GARCH (1,1) is selected as the representative
model of ARCH-family models without asymmetry be-
cause it is the most popular model, also generally the
best one, applied in practice (Bollerslev et al. (1992);
Hansen and Lunde (2005)).

ARMA type models without asymmetry

MA(1): RVt = a + εt + bεt−1

AR(1,5,8): RVt = a + bRVt−1 + cRVt−5 + cRVt−8

+ λ|rt−1| + εt

The MA (1) model is selected because only the first lag
of the moving averages is significant. Even the coefficient
of AR part is insignificant in the ARMA (1, 1) model. In
AR (1,5,8) model, the lag orders are selected according to
the autocorrelation and partial autocorrelation of RVt, and
other lags less than 8 is insignificant. Adding |rt−1| into the
model is just for comparing with the asymmetric counter-
part shown in section 4.
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Heterogeneous models without asymmetry

HAR(d,w,m): RVt = a + bRVt−1 + cRVt−5 + cRVt−22

+ λ|rt−1| + εt

HAR(d,w): RVt = a + bRVt−1 + cRVt−5 + λ|rt−1| + εt

HAR(w,m): RVt = a + cRVt−5 + cRVt−22 + λ|rt−1| + εt

HAR(d,m): RVt = a + bRVt−1 + cRVt−22 + λ|rt−1| + εt

Because it is not known whether all of the three types
of investors exist in CTBM, three additional HAR models
are considered to reflect the situation that there are only
two types of investors. Here, the definition of each model is
similar to that of Eq. (16) and Eq. (17).

RV-GARCH model without asymmetry

RV-GARCH(1,1): rt = a + brt−1 + εt, V ar(εt|Ωt−1) = ht,

ht = ω + αε2
t−1 + βht−1 + ξRV 2

t−1

Here, GARCH (1,1) model is selected to be in pairs with
RV .

5.2.2. Empirical models with asymmetry

Now, additional asymmetric models are constructed that
are counterparts of the models (without asymmetry) men-
tioned above. These asymmetric models include,

Asymmetric ARCH-family models (EGARCH)

EGARCH(1,1): rt = a + brt−1 + εt, V ar(εt|Ωt−1) = ht,

lnht = ω + α

∣∣∣∣ εt−1

h
1/2
t−1

∣∣∣∣ + γ
εt−1

h
1/2
t−1

+ β ln ht−1

Here, EGARCH model is selected as the representative
of asymmetric ARCH-family models.

Asymmetric ARMA type models

N-MA(1): RVt = a + εt + bεt−1 + λrt−1Dt−1

+ γrt−1Ut−1

N-AR(1,5,8): RVt = a + bRVt−1 + cRVt−5 + cRVt−8

+ λrt−1Dt−1 + γrt−1Ut−1 + εt

Hereafter, if εt−1 < 0, Dt−1 = 1, otherwise Dt−1 = 0;
Ut−1 = 1 − Dt−1

Asymmetric Heterogeneous models

N-HAR(d,w,m): RVt = a + bRVt−1 + cRVt−5 + cRVt−22

+ λrt−1Dt−1 + γrt−1Ut−1 + εt

N-HAR(d,m): RVt = a + bRVt−1 + cRVt−22

+ λrt−1Dt−1 + γrt−1Ut−1 + εt

Models combining asymmetric GARCH with RV

EGARCH(1,1): rt = a + brt−1 + εt, V ar(εt|Ωt−1) = ht,

ln ht = ω + α

∣∣∣∣ εt−1

h
1/2
t−1

∣∣∣∣ + γ
εt−1

h
1/2
t−1

+ β lnht−1

+ ξRV 2
t−1

All the models mentioned above could be classified into
two groups, models with asymmetry and models without
asymmetry. In each class, there are four types of models,
ARCH-family models based on return series, ARMA and
HAR models based on realized volatility, and RV-GARCH
type models based on both return and realized volatility.

5.3 Model estimation and forecasting
comparison

5.3.1. Model estimation

The estimation output of all the models mentioned above
is shown in Table 4.

The model estimation output shown in Table 4 indi-
cates, once more, that the asymmetry is insignificant in
CTBM. For example, the coefficient representing asymme-
try in EGARCH model, γ, is insignificant, and the hypothe-
ses that the influence of positive and negative innovations
on future volatility is equivalent can not be rejected with
high p-value in the Wald tests. Moreover, according to the
results of HAR models, there are evidences to support the
conclusion that the medium-term investor who trade with
weekly interval regularly is not clear, but short-term (daily)
and long-term (monthly) investors are rather important.

5.3.2. Volatility forecasting comparison

This section focuses on the forecasting ability between
symmetric and asymmetric models. Here, the data of the
former 351 days (from Jun.1 2004 through Oct.31 2005) is
used to estimate models and the last 40 days (the last two
months) is left as the forecasting evaluation period. RMSE,
MAE, MAPE and Theil coefficients for each model are listed
in Table 5 with benchmark of ex-post realized volatility RVt.
The forecasting method employed here is the one-step static
forecast.

Different from section 3 and 5.3.1, the main conclusion
drawn from Table 5 is that all asymmetric models are bet-
ter in volatility forecasting than their symmetric counter-
parts. The forecasting errors are reduced when the different
effects of positive and negative returns on future volatility
are considered. That is, asymmetry specifications provide
important and indispensable information for volatility fore-
casting though it is marginal in the econometric tests shown
in section 3. For forecasting ability of all the models, the RV-
EGARCH(1, 1), N-AR(1, 5, 8) and N-MA(1) model behave
better.
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Table 4. Estimation results for the volatility models

ARCH-family models and RV-ARCH models

Model a b ω α β ζ γ

GARCH(1,1) 0.0003 0.3179 1.26 × 10−7 0.1441 0.7815
(0.0008) (0.0000) (0.0102) (0.0001) (0.0000)

EGARCH(1,1) 0.0003 0.3367 −1.5834 0.2499 0.8964 −0.1077
(0.0025) (0.0000) (0.0029) (0.0000) (0.0000) (0.6265)

RV-GARCH(1,1) 0.0003 0.3371 1.01 × 10−7 0.1664 0.5859 0.1954
(0.0002) (0.0000) (0.0412) (0.0116) (0.0000) (0.0006)

RV-EGARCH(1,1) 0.0003 0.3321 −6.3.68 0.3236 0.5607 76525 −0.1222
(0.0013) (0.0000) (0.0000) (0.0018) (0.0000) (0.0003) 0.0574

ARMA type models

Model a b c d λ γ Test:λ = −γ

MA(1) 0.0011 0.2209 –
(0.0000) (0.0000)

N-MA(1) 0.0009 0.0195 −0.2430 0.1800 0.2426
(0.0000) (0.1813) (0.0001) (0.0010)

AR(1,5,8) 0.0005 0.1346 0.1080 0.1026 0.1462 –
(0.0000) (0.0119) (0.0579) (0.0721) (0.0119)

N-AR(1,5,8) 0.0009 0.1335 0.1068 0.1006 −0.1904 0.1310 0.2077
(0.0000) (0.0287) (0.0359) (0.0491) (0.0051) (0.0287)

Heterogeneous model HAR

Model a b c d λ γ Test:λ = −γ

HAR(d,w,m) 0.0005 0.1147 −0.0015 0.2865 0.1154
(0.0054) (0.1127) (0.9909) (0.1646) (0.0123)

N-HAR(d,w,m) 0.0005 0.1083 −0.0039 0.3096 −0.2097 0.1450 0.2936
(0.0033) (0.1127) (0.9909) (0.1646) (0.0123) (0.0144)

HAR(d,m) 0.0005 0.11297 0.2999 0.1509
(0.0061) (0.0995) (0.0814) (0.0135)

N-HAR(d,m) 0.0005 0.1083 0.3095 −0.2095 0.1449 0.2932
(0.0033) (0.1127) (0.0412) (0.0021) (0.0142)

The estimation results for all volatility models are shown here, including four types of models, ARCH-family
models based on return series, ARMA and HAR models based on realized volatility, and RV-GARCH type
models based on both return and realized volatility. The empirical tests find that only the daily and monthly
components are significant in the HAR model, and other models such as HAR(w,m) and HAR(d,w) will produce
one or more coefficient insignificant, so only results of HAR(d,m) model are shown here. More introductions of
the models are shown in section 5.2. The values in the parentheses are the p-values of the coefficient estimators.

Two reasons may contribute to the fact that volatility
asymmetry is insignificant in the econometric tests specifi-
cations while it also provides important and indispensable
information for volatility forecasting.

Firstly, factors affecting valuation of Treasury bonds are
much different from that of stocks or currencies, and price
discovering in the Treasury bond market is also special.
Comparing with the stock market, less private information
exists in the Treasury bond market, and comparing with the
exchange market, fewer international impact or news may
affect the Treasury bond market. For nearly no default risk,
the cash flow of the Treasury bonds are almost fixed. The
valuation of Treasury bonds mainly depends on the discount
rate or the interest rate risk, which is mostly related to the
monetary policies or other related macro-variables, such as
CPI, the supply of the currency and so on. However, these
variables or policies are rather stable and not varied sharply

or frequently in a short time interval. So, comparing with
the volatility in stock or exchange market, there are not so
many information-based impacts in the Treasury bond mar-
ket.

Secondly, for the special background of the Chinese Trea-
sury bond market and the structure of investors in the stock
market, information in other markets, such as the stock mar-
ket, can not be transferred to the Treasury market either.
Two factors may be responsible for it.

On the one hand, the trading in CTBM is not very ac-
tive and the market is not so liquid as the stock market
or as the US Treasury bond market. For example, number
of trades for all the Treasury bonds in Shanghai Security
Exchange (SHSE) market is less than 500,000 over 2004 to
2006, but one stock in SHSE may have more than 1,000,000
trades during the same period. In the meanwhile, many re-
cent works find that liquidity cost is included in the bond

66 D. Tan and Y. Tian



Table 5. Comparison of forecasting ability

Model RMSE MAE MAPE Theil

GARCH(1,1) 0.000651 0.000449 43.92 0.229542

EGARCH(1,1) 0.000634 0.000441 42.22 0.229532

MA(1) 0.000675 0.000479 38.88 0.261948

N-MA(1) 0.000642 0.000444 35.44 0.247508

AR(1,5,8) 0.000631 0.000432 36.67 0.237013

N-AR(1,5,8) 0.000612 0.000413 35.47 0.228165

HAR(d,w,m) 0.000623 0.000452 29.64 0.231835

N-HAR(d,w,m) 0.000616 0.000443 39.45 0.227563

HAR(d,m) 0.000622 0.000452 39.93 0.231232

N-HAR(d,m) 0.000616 0.000443 39.40 0.227766

RV-GARCH(1,1) 0.000642 0.000433 43.17 0.222072

RV-EGARCH(1,1) 0.000606 0.000422 39.87 0.217963

Here, the forecasting errors for all the volatility models are
shown. The data of the former 351 days (from Jun.1 2004 through
Oct.31 2005) are used to estimate the models and the last 40 days
(the last two months) is left as the forecasting section. RMSE,
MAE, MAPE and Theil coefficients for each model are listed in
the table with benchmark of ex-post realized volatility RVt. More
introductions of the models are shown in section 5.2.

price. So, as shown in Lesmond et al. (1999), if the value of a
information signal is not enough to compensate the costs of
trading, then the marginal investor will either reduce trading
or don’t trade. The illiquid Chinese Treasury bond market
induce higher trading cost, so only the big news may have
significant impact on the price, but in other times, the price
change is mostly due to the liquidity cost, just as the round-
trip trading cost of Schultz (2001), or the concession cost of
Harris and Piwowar (2006), Edwards et al. (2007).

On the other hand, in the Chinese stock market, most
of the investors are individual ones. More than 90% indi-
vidual investors hold 51.29% of the total market share at
the end of 2007. Their ability to take cross-market asset al-
location and risk hedging may be much weaker than that
of the institutional investors, and most of them take lit-
tle cross-market asset allocation between stock and bond
market, but between stock market and bank accounts. For
these reasons, compared with the stock or foreign exchange
market, not only fewer information-based impacts affect the
market volatility, the information in stock market also can
not be transferred to Treasury market for the special back-
ground of the capital market in China.

As a result of special pricing discovering in the Treasury
bond market, as well as of the Chinese stock and Trea-
sury market background, the information-based impacts in
CTBM are not as common as that in the stock or for-
eign exchange market. Some hypotheses about the source
of volatility asymmetry, such as leverage effect or feedback
effect, emphasize the role of information in pricing discov-
ering. The results shown in this paper indicate that there
is something different for the role of volatility asymmetry
in (Treasury) bond and stock market. The insignificance of

volatility asymmetry in the Treasury bond market may come
from the special way of bond pricing and total capital mar-
ket background in China. However, the asymmetry effect
of impacts related to the discount rate may be also impor-
tant and helpful to the volatility forecasting. The accuracy
of volatility forecasting for the big news is the key factor
and most important for a successful volatility model though
these events are not taking place often. So, when considering
volatility symmetry, the models always behave better.

In an attempt to explain why asymmetry property is in-
dispensable for volatility forecasting though it is marginal
significant, Monte Carlo simulations are provided in the next
section.

6. SIMULATIONS: THE ROLE OF
ASYMMETRY IN VOLATILITY

MODELLING

To reinforce the empirical results concerning about the
role of asymmetry in volatility modelling, Monte Carlo sim-
ulations are provided here. The steps of simulation are as
follows.

(1) High-frequency return series rt,i are simulated with
a GARCH process, including total 48,000 returns for
1,000 days, 48 five-minute returns each day.

(2) Compute the daily realized volatility RVt and daily re-
turns Rt, T = 1, 2, . . . , 1000, with the simulated series
rt,i. When computing the realized volatility, the MA
(1) filters of Andersen et al. (2001) is used to remove
the first-order autocorrelation of the original series.

(3) Model the daily return series Rt with GARCH,
EGARCH, RV-GARCH, RV-EGARCH, AR, N-AR,
HAR and N-HAR model, and then to compute
the conditional volatility σk

t (σGARCH
t , σEGARCH

t ,
σRV −GARCH

t , σRV −EGARCH
t , σAR

t , σN−AR
t , σHAR

t and
σN−HAR

t ) as well as the standardized return series
εk
t = Rt/σk

t .
(4) Compare the normality of εk

t by using the statistics of
mean, median, min, max, standard error, skew, kurtosis
and J-B value. Under the hypothesis that return series
conforms to process Rt = εtσt(εt ∼ N(0, 1)), εk

t will
be close to normal if σk

t is a good measure of volatil-
ity. Here, the kurtosis that describes the probability of
extreme value is the chief statistic to compare, because
high kurtosis usually means high probability of extreme
events and “fat tail” of the return.

(5) Repeat step (1) to step (4) N times (10,000 times this
paper) to get the average value of the above statistics.

The simulation results are shown in Table 6. The most
important thing that should be concentrated on is the differ-
ence between each model and its asymmetric counterpart,
with which to discover the role of asymmetry in volatility
modelling.

Simulation result of Table 6, once again, show that
though the original simulated series have no asymmetry, all
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Table 6. Statistics of simulated series

Model to produce original high frequency series:
rt = εt, E(ε2

t |Ωt−1) = 0.005 + 0.1ε2
t−1 + 0.89ht−1

Model Mean Median Min Max Std Skew Kurtosis J-B
Original −0.0023 −0.0004 −26.5503 26.3783 3.9958 −0.0077 9.1528 12713
GARCH −0.0005 −0.0001 −5.2407 5.2407 1.0006 −0.0023 5.1962 580.34
EGARCH −0.0005 −0.0001 −5.2373 5.2232 1.0003 −0.0024 5.1752 548.07
RV-GARCH −0.0004 −0.0002 −4.3387 4.3130 1.0004 −0.0034 3.8398 72.71
RV-EGARCH −0.0004 −0.0002 −4.2445 4.2177 1.0004 −0.0025 3.7570 59.11
AR −0.0004 −0.0002 −4.4624 4.4249 1.0454 −0.0029 3.7669 60.59
N-AR −0.0004 −0.0002 −4.4664 4.4266 1.0456 −0.0029 3.7675 60.67
HAR −0.0003 −0.0002 −4.6423 4.6236 1.0808 −0.0023 3.8145 68.30
N-HAR −0.0004 −0.0002 −4.4495 4.4183 1.0449 −0.0028 3.7555 59.11

Model to produce original high frequency series:
rt = 0.3rt−1 + εt, E(ε2

t |Ωt−1) = 0.005 + 0.14ε2
t−1 + 0.78ht−1

Original 0.0000 0.0000 −0.3122 0.3081 0.0642 −0.0042 4.4208 244.91
GARCH −0.0004 0.0001 −4.7457 4.6984 1.0008 −0.0036 4.2823 19.8483
EGARCH −0.0004 0.0001 −4.7216 4.6781 1.0006 −0.0038 4.2622 173.70
RV-GARCH −0.0004 0.0001 −4.4924 4.4411 0.9972 −0.0048 4.0338 363.13
RV-EGARCH −0.0004 0.0001 −4.4704 4.4284 1.0010 −0.0025 3.9520 95.11
AR −0.0006 0.0001 −7.0288 6.9977 1.4665 −0.0018 4.3617 262.96
N-AR −0.0006 0.0001 −6.4841 6.4209 1.4359 −0.0032 4.0075 109.80
HAR −0.0006 0.0001 −6.5109 6.4359 1.4369 −0.0059 4.0736 859.83
N-HAR −0.0006 0.0001 −6.4442 6.3737 1.4296 −0.0030 3.9848 104.340

Here, the Monte Carlo simulation results for the role of volatility asymmetry are shown. The steps
of simulation are as follows. Firstly, High frequency return series rt,i are produced by GARCH process,
including total 48,000 returns of 1,000 days, 48 five-minute returns each day; secondly, with these simulated
series, the daily realized volatility RVt and the daily return series Rt are computed; Thirdly, model the
daily return series Rt with GARCH, EGARCH, RV-GARCH, RV-EGARCH, AR, N-AR, HAR and N-
HAR model, and then to compute conditional volatility σi

t as well as the standardized return series
εk

t = Rt/σk
t for each model; Repeat these steps 10,000 times to get the average value of the statistics

mean, median, min, max, standard error, skew, kurtosis and J-B value for εk
t of each model.

models with asymmetry are better to capture the volatility
dynamics than the symmetric counterpart. The asymmetric
models have lower kurtosis or extreme value than their sym-
metric ones. That is, asymmetric volatility model can cap-
ture the market high-movement event (crash) better, and
the residual term has less information than that of sym-
metric models. So, there are evidences that better forecast
ability comes from the asymmetric models themselves, but
not only the case of CTBM. The asymmetric specification
itself may capture more subtle volatility dynamics and lead
to better forecasting.

7. CONCLUSIONS

This paper takes an empirical study on volatility of the
Chinese Treasury bond market. The key point is the role
of asymmetry in volatility modeling, including econometric
testing of asymmetry property and analyzing its influence
on volatility forecasting. The chief conclusions of this paper
include,

1) Asymmetric relationship between return and volatil-
ity is insignificant in CTBM. This is quite different from the
results in the stock or exchange market. However, asymme-
try may provide important and indispensable information to

volatility forecasting, which, with the results of Monte Carlo
simulations, may come from the asymmetric specifications
that capture more subtle volatility dynamics;

2) When comparing the forecasting ability of the popu-
lar volatility models, the asymmetric ones, RV-EGARCH
(1,1), N-AR (1,5,8) and N-MA (1) model, behave best.
In addition, with HAR models, it can be found that the
medium-term investors who trade with weekly interval reg-
ularly are marginal, but short-term (daily) and long-term
(monthly) investors are rather clear in CTBM. Historical
realized volatility (RVt−1) is helpful to volatility forecasting
by introducing it into the variance equation of GARCH and
EARCH model.

The volatility of the capital market is complicatedly to
understand. High frequency data help us to describe it bet-
ter. This paper provides a comprehensive study on volatil-
ity asymmetry in the Chinese Treasury bond market, and
the empirical results are interesting and different from that
come from the stock or foreign exchange market. This im-
plies that price discovering in the Treasury bond market
may be different and the information-based impacts in the
Chinese Treasury bond market are not as common as that
in other markets. Moreover, some other hypotheses, in ad-
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dition to leverage effect or feedback effect, are expected to
explain the volatility asymmetry in financial markets.
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