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On determination of cointegration ranks∗

Qiaoling Li, Jiazhu Pan
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and Qiwei Yao

We propose a new method to determine the cointegration
rank in the error correction model (ECM). The cointegration
rank, together with the lag order, is determined by a penal-
ized goodness-of-fit measure. We show that the estimated
cointegration vectors are consistent with a convergence rate
T , where T is the sample size, and our estimation for the
cointegration rank is consistent. Our approach is more ro-
bust than the conventional likelihood based methods, as we
do not impose any assumption on the form of the error distri-
bution in the model. Furthermore we allow the serial depen-
dence in the error sequence. The proposed methodology is
illustrated with both simulated and real data examples. The
advantage of the new method is particularly pronounced in
the simulation with non-Gaussian and/or serially dependent
errors.
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1. INTRODUCTION

The concept of cointegration dates back to Granger
(1981), Granger and Weiss (1983), Engle and Granger
(1987). It was introduced to reflect the long-run equilib-
rium among several economic variables while each of them
might exhibit a distinct nonstationary trend. The cointegra-
tion research has made enormous progress since the semi-
nal Granger representation theorem was presented in Engle
and Granger (1987). It has a significant impact in economic
and financial applications. While the large body of litera-
ture on cointegration contains splendid and also divergent
ideas, the most frequently used representations for cointe-
grated systems include, among others, the error correction
model (ECM) of Engle and Granger (1987), the common
trends form of Stock and Watson (1988), and the triangular
model of Phillips (1991).

From the view point of the economic equilibrium, the
term “error correction” reflects the correction on the long-
run relationship by short-run dynamics. The ECM has been
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successfully applied to solve various practical problems in-
cluding the determination of exchange rates, capturing the
relationship between consumer’s expenditure and income,
modeling and forecasting of inflation to establish monetary
policy, etc. One of the critical questions in applying ECM
is to determine the cointegration rank, which is often done
by using some test-based procedures such as the likelihood
ratio test (LRT) advocated by Johansen (1988, 1991). The
key assumption for Johansen’s approach is that the errors in
the model are independent and normally distributed. It has
been documented that the LRT may lead to either under-
or over-estimates for cointegration ranks; see Gonzalo and
Lee (1998), Gonzalo and Pitarakis (1998). Moreover, for
the models with dependent and/or non-Gaussian errors, the
LRT tends to reject the null hypothesis of no cointegra-
tion even when it actually presents; see Huang and Yang
(1996). Other methods based on tests to determine the rank
include Lagrange multiplier and Wald type tests, lag aug-
mentation tests, tests based on canonical correlations, the
Stock-Watson tests and Bierens’ nonparametric tests; see
Hubrich Lutkepohl and Saikkonen (2001) for a survey on
the relevant methods. More recently, Aznar and Salvador
(2002) proposed to determine the cointegration ranks by
minimizing appropriate information criteria for the models
with i.i.d. Gaussion errors, and Kapetanios (2004) estab-
lished the asymptotic distribution of the estimate for the
cointegration rank obtained by AIC.

In this paper we propose a new method for determin-
ing the cointegration ranks in the ECM with uncorrelated
errors. We do not impose any further assumptions on the er-
ror distribution. In fact the errors may be serially dependent
with each other. This makes our setting more general than
those in the papers cited above. We first estimate the coin-
tegration vectors using a method which may be viewed as a
version of the reduced rank regression technique introduced
by Anderson (1951); see also Johansen (1988, 1991), Ahn
and Reinsel (1988, 1990), Bai (2003). We then determine the
cointegration rank by minimizing an appropriate penalized
goodness-of-fit measure which is a trade-off between good-
ness of fit and parsimony. We consider both the cases when
the lag order is known or unknown. For the latter, we de-
termine the cointegration rank and the lag order simultane-
ously. The simulation results reported in Wang and Bessler
(2005) support such a simultaneous approach. The numer-
ical results in Section 4 indicate that the new method per-
forms better than the conventional LRT-based procedures
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when the errors in the models are serially dependent and/or
non-Gaussian.

At the theoretical front, we have shown that the esti-
mated cointegration vectors are consistent with a conver-
gence rate T which is the same as that of the ML estimator
proposed by Johansen (1988, 1991). Furthermore, our esti-
mation for the cointegration rank is consistent regardless if
the lag order is known or not.

The rest of the paper is organized as follows. The esti-
mation for cointegrating vectors and its asymptotic proper-
ties are presented in Section 2. Section 3 presents a crite-
rion for determining cointegration ranks and its consistency.
Section 4 contains a numerical comparison of the proposed
method with the likelihood-based procedures for two simu-
lated examples. An illustration with a real data set is also
reported.

2. ESTIMATION OF COINTEGRATING
VECTORS

2.1 Vector error correction models

Suppose that {Yt} is a p × 1 time series. The error cor-
rection model is of the form

(1) ΔYt = μ+Γ1ΔYt−1+· · ·+Γk−1ΔYt−k+1+Γ0Yt−1+et,

where ΔYt = Yt−Yt−1, μ is a p×1 vector of parameters, Γi is
a p×p matrix of parameters, and et is covariance stationary
with mean 0 and

E(etet−τ ) =
{

Ω, τ = 0,
0, otherwise.

In the above expression, Ω is a positive definite matrix. The
rank of Γ0, denoted by r, is called the cointegration rank.
Note that we assume et to be merely weakly stationary and
uncorrelated. In fact, et, for different t, may be dependent
with each other.

Denote the transpose of a matrix A by A′. Let ‖A‖ =
[tr(A′A)]1/2 denote the norm of matrix A. A p × (p − r)
matrix B⊥ is called the orthogonal complement of a p × r
matrix B if (B⊥, B) forms a p × p matrix and B′

⊥B = 0.
Some regularity conditions are in order.

Assumption A. The process Yt satisfies the basic assump-
tions of the Granger representation theorem (Engle and
Granger (1987)):

1. For the characteristic polynomial of (1) given by Π(z) =
(1−z)I−(1−z)

∑k−1
i=1 Γiz

i−Γ0z, it holds that |Π(z)| = 0
implies that either |z| > 1 or z = 1.

2. It holds that Γ0 = γα′, where γ and α are p×r matrices
with rank r(< p).

3. γ′
⊥(I−

∑k−1
i=1 Γi)α⊥ has full rank, where γ⊥ and α⊥ are

the orthogonal complements of γ and α respectively.

Assumption B. The covariance stationary sequence {et}
with mean 0 is strongly mixing and the mixing coefficients
βm satisfy

∑∞
1 β

1/2
m < ∞. Furthermore there exists a finite

positive constant 0 < M < ∞ such that E‖et‖4 ≤ M and
E‖α′Yt−1‖4 ≤ M for all t.

By the Granger representation theorem, if there are ex-
actly r cointegrating relations among the components of Yt,
and Γ0 admits the decomposition Γ0 = γα′, then α is a p×r
matrix with linearly independent columns and α′Yt is sta-
tionary. In this sense, α consists of r cointegrating vectors.
Note that α and γ are not separately identifiable. The goal
is to determine the rank of α and the space spanned by the
columns of α.

2.2 Estimating cointegrating vectors

We assume that the cointegration rank r is known in this
section. The determination of r will be discussed in Section 3
below.

Model (1) can be rewritten as

(2) ΔYt = ΘXt + γα′Yt−1 + et,

where

Θ = (μ,Γ1, . . . ,Γk−1),
Xt = (1, ΔY ′

t−1, . . . ,ΔY ′
t−k+1)

′.

Denote

Θ̂0 =
T∑

t=1

ΔYtX
′
t(

T∑
t=1

XtX
′
t)

−1,

Θ̂1 =
T∑

t=1

Yt−1X
′
t(

T∑
t=1

XtX
′
t)

−1,

Θ̂2 =
T∑

t=1

etX
′
t(

T∑
t=1

XtX
′
t)

−1.

Then it is easy to see from (2) that

(3) Θ ≡ Θ̂0 − γα′Θ̂1 − Θ̂2.

Now replacing Θ in (2) by (3), (2) reduces to

(4) R0t = γα′R1t + e∗t ,

where R0t = ΔYt − Θ̂0Xt, R1t = Yt−1 − Θ̂1Xt and e∗t =
et − Θ̂2Xt.

We may estimate the cointegration parameters γ and α
by solving the optimization problem

(5) min
γ,α

1
T

T∑
t=1

(R0t − γα′R1t)′(R0t − γα′R1t).

Although this can be considered as a standard least squares
problem, we are unable to derive an explicit solution for α
even with the regularity condition to make it identifiable.
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Note that for any given α, the sum in (5) is minimized at
γ = γ(α) ≡ S01α(α′S11α)−1, where Sij = T−1

∑T
t=1 RitR

′
jt.

Replacing γ with this γ(α), (5) leads to

(6) min
α

tr(S00 − S01α(α′S11α)−1α′S10).

It can be found that if α is a solution of (6), so is αA for any
invertible matrix A. To choose one solution, we may apply
the normalization α′S11α = Ir. Now (6) is further reduced
to

(7) max
α′S11α=Ir

tr(α′S10S01α).

Obviously, the solution of (7) is α̂ ≡ (α̂1, . . . , α̂r), where
α̂1, . . . , α̂r are the r generalized eigenvectors of S10S01 with
respect to S11 corresponding to the r largest generalized
eigenvalues.1 Note that γ̂ = S01α̂ is the cointegration load-
ing matrix.

Gonzalo (1994) compared numerically five different meth-
ods for estimating the cointegrating vectors: ordinary least
squares (Engle and Granger (1987)), nonlinear least squares
(Stock (1987)), maximum likelihood in an error correc-
tion model (Johansen (1988)), principal components (Stock
and Watson (1988)), and canonical correlations (Bossaerts
(1988)). The numerical results indicate that the maximum
likelihood method outperformed the other methods for fully
and correctly specified models as far as the estimation for
cointegration vectors was concerned. However, the likelihood
based methods are sensitive to the assumption that the er-
rors are independent and normally distributed. The estima-
tor proposed in this paper tends to overcome these short-
comings.

2.3 Asymptotic properties

Note that, by the Granger representation theorem, the
ECM (1) may be equivalently represented as

(8) ΔYt = δ + Ψ(L)et

where δ = Ψ(1)μ and

Ψ(1) ≡ Ψ0 + Ψ1 + Ψ2 + · · ·(9)

= α⊥(γ′
⊥(I −

k−1∑
i=1

Γi)α⊥)−1γ′
⊥.

Consequently, α′Ψ(1) = 0 and (8) implies that

(10) Yt = Y0 + δt + Ψ(L)(et + et−1 + · · · + e1).

Now we present the asymptotic distribution of α̂ in the
theorem below.
1If Ax = λBx, λ is called a generalized eigenvalue of A w.r.t. B, and
x is the corresponding generalized eigenvector.

Theorem 2.1. Let τ be a p × (p − r − 1) matrix which is
orthogonal to α and δ such that (α, δ, τ) spans Rp. There
exists a r × r invertible matrix HT for which

T (α̂H−1
T − α)

=
[

δ√
T

τ
] [

δ′S11δ
T 2

δ′S11τ√
T 3

τ ′S11δ√
T 3

τ ′S11τ
T

]−1 [
1√
T 3

∑T
t=1 δ′R1te

′
t

1
T

∑T
t=1 τ ′R1te

′
t

]

× S01α(α′S10S01α)−1α′S11α + op(1)

as T → ∞.

Remark 1. The asymptotic distribution of each cointegrat-
ing vector α̂i is determined by the first term on the right-
hand side of the equality above. The limit of each compo-
nent in the matrix and vectors can be found in Lemma A.2
respectively.

Theorem 2.1 implies that α̂ is a T -consistent estimator
of αHT for an invertible matrix HT . In the theorem below,
we show that γ̂ ≡ S01α̂ is a

√
T -consistent estimator of

γ(H ′
T )−1 and Γ̂0 ≡ γ̂α̂′ is a

√
T -consistent estimator of Γ0 =

γα′.

Theorem 2.2.
√

T (γ̂−γ(H ′
T )−1) = Op(1),

√
T (Γ̂0−Γ0) =

Op(1)

3. ESTIMATION OF THE COINTEGRATION
RANK

Let r0 be the true value of the cointegration rank of model
(1). In this section, we discuss how to estimate r0 based on
the estimated cointegration vector α̂ derived in Section 2.
The basic idea is to treat the rank as part of the “order”
of model (1) and to determine the order in terms of an ap-
propriate information criterion. In this section we always
assume that Assumptions A and B hold. First we deal with
the case when the lag order k is known.

3.1 Determining the cointegration rank r
with the lag order k given

Let A(l) denote a matrix with rank l. In particular, α(r0)

and α̂(r) (1 ≤ r ≤ p) denote the matrices α and α̂ with
ranks r0 and r respectively.

Consider the sum of squared residuals

R(r, α̂(r))(11)

= min
γ

1
T

T∑
t=1

(R0t − γα̂(r)′R1t)′(R0t − γα̂(r)′R1t)

= tr(S00 − S01α̂
(r)(α̂(r)′S11α̂

(r))
−1

α̂(r)′S10).

To avoid possible overfitting, we add a penalty term. Our
penalized goodness-of-fit criterion is defined as

(12) M(r) = R(r, α̂(r)) + nrg(T ),
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where g(T ) is the penalty for “overfitting” and nr is the
number of freely estimated parameters. Note that nr = p +
p2(k − 1) + 2pr − r2 for model (1). We may estimate r0 by
minimizing

r̂ = arg min
0≤r≤p

M(r).

The following theorem shows that r̂ is a consistent estimator
of r0 provided that the penalty function g(T ) satisfies some
mild conditions.

Theorem 3.1. As T → ∞, r̂
P→ r0 provided that g(T ) → 0

and Tg(T ) → ∞.

Remark 2. Note that both the BIC criterion with g(T ) =
ln(T )/T (Schwarz (1978)) and the HQ criterion with g(T ) =
2 ln(ln(T ))/T (Hannan and Quinn (1979)) lead to consis-
tent estimators for the cointegration order. To prove Theo-
rem 3.1, we need a slightly generalized form of Theorem 2.1.

3.2 Determining the cointegration rank r
and the lag order k jointly

One of the important issues in applying ECM is to de-
termine the lag order k. Johansen (1991) adopted a two-
step procedure as follows: first the lag order k is deter-
mined by either an appropriate information criterion or a
sequence of likelihood ratio test, and then the cointegra-
tion rank r is determined by an LRT. We proceed differ-
ently below and determine both r and k simultaneously by
minimizing an appropriate penalized goodness-of-fit crite-
rion.

Put

(13) M(r, k) = R(r, k, α̂
(r)
k ) + nr,kg(T ),

where R(r, k, α̂
(r)
k ) and nr,k are the same, respectively, as

R(r, α̂(r)
k ) and nr in (12) in which k is suppressed. We de-

termine both the cointegration rank and the lag order as
follows:

(r̂, k̂) = arg min
0≤r≤p,1≤k≤K

M(r, k),

where K is a prescribed positive integer. Let k0 be the true
lag order of model (1). The theorem below ensures that (r̂, k̂)
is a consistent estimator for (r0, k0).

Theorem 3.2. As T → ∞, (r̂, k̂) P→ (r0, k0) provided that
g(T ) → 0 and Tg(T ) → ∞.

4. NUMERICAL PROPERTIES

4.1 Simulated examples

Two experiments are conducted to examine the finite
sample performance of the proposed criteria (12) and (13).
The comparisons with the LRT approach of Johansen (1991)

and the information criterion of Aznar and Salvador (2002)
are also made. It is easy to see from Theorems 3.1 and 3.2
that the choice of the penalty function g(·) is flexible. It may
take a general form

(14) g(T ) = ξ ln(T )/T + 2η ln(ln(T ))/T, ξ ≥ 0, η ≥ 0,

which reduces to the BIC of Schwarz (1978) with ξ = 1
and η = 0, to the HQIC of Hannan and Quinn (1979) with
ξ = 0 and η = 1, and to the LCIC of Gonzalo and Pitarakis
(1998) with ξ = η = 1

2 . The motivation for introducing this
criterion is to overcome excessive parsimony or overranking
in finite samples. For exposition, we use the three concrete
forms in the first experiment:

M1(r, k) = R(r, k, α̂
(r)
k ) + nr,k ln(T )/T,

M2(r, k) = R(r, k, α̂
(r)
k ) + 2nr,k ln{ln(T )}/T,

M3(r, k) = R(r, k, α̂
(r)
k ) + nr,k[ln(T )/6 + 4 ln{ln(T )}/3]/T.

In practice, however, best ξ and η are chosen via replicated
simulations and then used to fit real data. We set sample
size at T = 30, 50, 100, 200, 300 or 400. For each setting, we
replicate the simulation 2,000 times. The data are generated
from the ECM (1) with either independent errors following
one of the four distributions below

et ∼ N(0, Ip),(14a)
et = εt + 10θεt, εt ∼ N(0, Ip), θ ∼ Poisson(τ),(14b)
eit ∼ t(q),(14c)
eit ∼ Cauchy ,(14d)

or uncorrelated but dependent errors

(15) eit = hitεit, h2
it = ϕ0 + ϕ1e

2
it−1 + ψ1h

2
it−1,

where εit ∼ N(0, 1), ϕ0 > 0, ϕ1 ≥ 0, ψ1 ≥ 0, and εit

are independent for all i and t. Distributions in (14b)–
(14d) are heavy-tailed. In particular, (14b) is often used in
GARCH-Jump models for modeling asset prices. Note that
for eit ∼ t(q), E|eit|q = ∞. Furthermore, (14d) represents
an extreme situation with E|eit| = ∞, and therefore it does
not fulfill Assumption B. We include it to examine the ro-
bustness of the methods against the assumption of the finite
fourth moment.

Experiment I

First we generate data from model

(16) y1t = μ + 0.6y2t + e1t, Δyit = μ + eit for i = 2, 3.

Here, r = 1 and k = 1.
Assuming (r, k) = (1, 1) is known, we estimate the coin-

tegration vector α̂ by using the new approach suggested in
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Figure 1. Ers for model (16) with μ = 0.5 and sample size
T = 30.

Section 2 and Johansen’s MLE respectively. For comparison
of the precision in estimation, a measuring rule is given as

(17) Er = ‖α̂ − α̃‖

where α̃ = α(α′S11α)−
1
2 , and the true cointegration vector

α is normalized to satisfy α̃′S11α̃ = Ip. Hence, a better
estimator is supposed to lead smaller Er in (17).

For each of different settings (14a)–(14d), we conduct
n = 2,000 replications from (16), the Ers are calculated
and portrayed in Fig. 1. Each point in one subplot has co-
ordinates

(Erj cos(
π

2n
j), Erj sin(

π

2n
j)) j = 1, . . . , n.

Figure 1 contains five couples of Ers for model (16) with
et ∼ N(0, I3), et|θ ∼ N(0, (1 + 100θ2)I3) and θ ∼
Poisson(1), et ∼ t(3), et ∼ Cauchy from the top down.
The left-hand (a)–(d) are obtained by using our method de-
scribed in Section 2. The right-hand (a′)–(d′) are obtained
by MLE. The sample size T = 30 and μ = 0.5. This figure
shows that only when the errors are Gaussian ((a), (a′)),
MLE outperforms our method in estimating the cointegra-
tion vectors α. But for errors with Poisson jumps ((b), (b′)
or heavy tails ((c), (c′) and (d), (d′)), our method performs

Table 1. Percentages of the correct estimates for r for model
(16) with et ∼ N(0, I3)

μ = 0
T = 30 T = 50 T = 100 T = 200

M1 16.95 34.70 88.05 100
M2 42.05 72.20 99.70 100
M3 85.70 97.45 99.55 99.85
LRT 81.00 94.90 95.55 95.75

μ = 0.5
T = 30 T = 50 T = 100 T = 200

M1 14.05 32.70 86.90 100
M2 32.45 67.60 99.65 100
M3 83.35 95.55 99.00 99.40
LRT 74.20 94.10 95.55 95.70

Table 2. Percentages of the correct estimates for r for model
(16) with μ = 0.5 and et defined as in (14b)–(14c)

(14b) with τ = 1
T = 30 T = 50 T = 100 T = 200

M1 27.55 43.05 84.95 99.85
M2 52.45 71.35 97.85 100
M3 77.30 89.70 96.95 99.00
LRT 71.65 87.70 90.05 89.30

(14c) with q = 3
T = 30 T = 50 T = 100 T = 200

M1 28.80 43.15 79.45 92.55
M2 50.60 72.80 94.15 95.70
M3 77.25 89.35 93.65 94.15
LRT 71.00 88.90 91.65 92.45

better. Similar conclusions can be drawn from figures2 with
sample size T = 50, T = 100 and T = 200, which supports
the robustness of our method.

Only assuming k = 1 is known, we estimate r by min-
imizing Mi(r, 1) for i = 1, 2, 3 and also by the Johansen’s
LRT approach. We conduct 2,000 replications from (16),
the percentages of the replications resulting the correct es-
timate (i.e. r̂ = 1) are listed in Tables 1–3. Table 1 shows
that even with Gaussian errors, our method based on the
criterion M3 outperforms the LRT based method. When
the sample size is small (i.e. T = 30 or 50), the meth-
ods using M1 and M2 perform poorly. However the per-
formance improves when T increases. Also noticeable is the
fact that the presence of a linear trend (i.e. μ �= 0) dete-
riorates slightly the performance of all the four methods.
Tables 2–3 show that the method based on M3 remains
to perform better than the others when error distribution
is changed to (14b), (14c) and (14d), although the heavy
tails of the error distribution impact negatively to the per-
formance of all the methods. Especially with Cauchy er-
rors, the percentages of the correct estimates are low for
all the four method with sample size T smaller than 100.

2In consideration of paper length, we do not show them all.
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Table 3. Percentages of the correct estimates for r for model
(16) with μ = 0.5 and Cauchy errors

T = 30 T = 50 T = 100 T = 200 T = 300 T = 400

M1 7.15 3.95 2.30 4.45 10.20 25.40
M2 17.75 15.45 14.70 34.30 62.60 86.65
M3 43.00 40.70 46.55 71.65 82.25 84.75
LRT 35.35 40.25 43.75 66.40 67.90 67.95

Table 4. Percentages of the correct estimates for r for model
(16) with μ = 0.5, et defined as in (15), ϕ0 = 0.1 and

ϕ1 = 0.6
ψ1 = 0 T = 30 T = 50 T = 100 T = 200 T = 300 T = 400

M1 29.20 41.75 75.55 80.20 85.00 91.15
M2 49.50 68.55 85.15 91.65 93.95 95.70
M3 75.00 86.90 95.75 96.35 95.20 96.95
LRT 68.30 82.30 84.05 85.40 85.50 86.25

ψ1 = 0.2 T = 30 T = 50 T = 100 T = 200 T = 300 T = 400

M1 29.80 41.35 71.40 75.25 83.05 89.75
M2 49.70 64.40 83.75 90.20 91.85 93.70
M3 74.45 83.65 93.35 94.25 94.80 95.75
LRT 66.50 79.55 82.40 84.90 85.15 85.95

But still the method based on M3 always performs better
than the other three. Table 4 indicates that the method
based on M3 also outperforms the others even with depen-
dent ARCH(1) (i.e. ψ1 = 0) or GARCH(1,1) errors (i.e.
ψ1 �= 0).

Experiment II

Our second example concerns the model(
Δy1t

Δy2t

)
=

(
0.5
0.5

)
+

(
0.3 0
0 0.5

) (
Δy1t−1

Δy2t−1

)
(18)

+
(

0.4
0.6

) (
1, −2

) (
y1t−1

y2t−1

)
+

(
e1t

e2t

)
.

We assume that all the coefficients in the models are un-
known. We now estimate the cointegration rank r(=1)
and the lag order k(=2) by minimizing M3(r, k) with
the five different error distributions specified in (14a)–
(14d) and (15). For the comparison purpose, we also
compute Aznar and Salvador’s estimates (Aznar and Sal-
vador (2002)) obtained by minimizing the information cri-
terion (IC)

IC(r, k) = T{ln |S00| +
r∑

i=1

ln(1 − λi) + nr,kg(T )},

where g(T ) = [ln(T )/6 + 4 ln{ln(T )}/3]/T and λi is the
i-th largest generalized eigenvalue of S10S

−1
00 S01 with re-

spect to S11. The percentages of the correct estimates (i.e.
(r̂, k̂) = (1, 2)) in a simulation with 2,000 replications
are listed in Table 5. Note that the above IC-criterion is

Table 5. Percentages of the correct estimates for (r, k) for
model (18)

T 30 50 100 200 300 400

Independent N(0, I2) errors

M3 10.20 31.75 67.65 82.35 89.20 93.65
IC 24.35 38.90 71.40 90.75 92.05 94.10

Independent errors (14b) with τ = 1

M3 10.05 30.10 64.30 81.45 89.55 92.80
IC 9.25 19.80 52.15 74.55 79.80 84.15

Independent t-distributed errors (14c) with q = 3

M3 9.15 28.70 58.95 77.40 86.05 90.00
IC 8.30 21.65 49.60 75.20 81.70 82.10

Independent Cauchy errors

M3 6.45 20.80 44.70 70.65 82.30 85.80
IC 5.25 19.75 31.85 59.15 67.50 70.35

ARCH(1) errors (15) with ψ1 = 0, ϕ0 = 0.1 and ϕ1 = 0.6

M3 12.75 30.45 60.85 81.75 87.90 91.25
IC 8.15 19.20 48.65 71.50 72.30 80.25

GARCH(1,1) errors (15) with ψ1 = 0.2, ϕ0 = 0.1 and ϕ1 = 0.6

M3 11.35 28.95 57.90 80.15 86.00 90.05
IC 7.00 14.40 42.55 69.10 71.60 78.35

based on a Gaussian likelihood function. It is not surpris-
ing that it outperforms our method based on M3 when
the errors are Gaussian. However Table 5 also indicates
that this IC-criterion is sensitive to the normality assump-
tion. In fact for all the four other error distributions, our
method based on M3 performed better. When the heav-
iness of the distribution tails increases, the performance
of both methods decreases. We also note that both meth-
ods perform poorly when the sample size is as small as
T = 30.

4.2 A real data example

We consider the annual records of the GDP per capita, la-
bor productivity per person and labor productivity per hour
of the Netherlands from 1950 to 2005.3 The time plots of the
logarithmic GDP (solid lines), the labor productivity per
person (dash-dotted lines) and the labor productivity per
hour (dotted lines) are presented in Fig. 2. It indicates that
there may exist a linear cointegrating relationship among
the three variables.

We determine the cointegration rank by minimising
M3(r, k). The surface of M3(r, k) is plotted against r and
k in Fig. 3. The minimal point of the surface is attained at
(r, k) = (1, 2), leading to a fitted ECM model (1) for this
data set with the lag order 2 and the cointegrating rank 1.
The estimate of the cointegrating vector with the first com-
ponent normalized to one is α̂ = (1.00, 3.82,−3.28)′. The

3Data source: The Conference Board and Groningen Growth and
Development Center, Total Economy Database, January 2006,
http://www.ggdc.net.
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Figure 2. Time plot of logarithmic GDP per capita, labor
productivity per person and labor productivity per hour of the

Netherlands.

other estimated coefficients in model (1) are as follows

μ̂ = (9.09, 10.09, 2.41)′, γ̂ = −(0.23, 0.25, 0.06)′,

Γ̂1 =

⎛
⎝ 0.20 −0.32 0.60
−0.36 0.19 0.55
−0.48 0.32 0.46

⎞
⎠ .

APPENDIX A. PROOFS FOR SECTION 2

We introduce two technical lemmas first. The proof
of Lemma A.1 may be found in Phillips and Durlauf
(1986), Park and Phillips (1988). The notation “⇒”
denotes weak convergence, and “ P−→” denotes conver-
gence in probability. We always assume that Assump-
tions A & B hold and Yt satisfies (10) in the sequel of
this subsection. Note that (10) is implied by Assump-
tion A.

Lemma A.1. Let ut ≡ Ψ(L)et and vt ≡ Ψ(L)(et + et−1 +
· · · + e1). As T → ∞, it holds that

(a)

T−3/2
∑

T
t=1vt−1 ⇒ Ψ(1)

∫ 1

0

W (s)ds,

T−1/2
∑

T
t=1ut ⇒ Ψ(1)W (1),

(b)

T−2
∑

T
t=1vt−1v′

t−1 ⇒ Ψ(1)
∫ 1

0

W (s)W (s)′dsΨ(1)′,

Figure 3. Plot M3(r, k) against the cointegration rank r and
the lag order k.

(c)
T−1

∑
T
t=1vt−1e

′
t ⇒ Ψ(1)

∫ 1

0

W (s)dW (s)′,

T−1
∑

T
t=1vt−1e

′
t−j ⇒ Ψ(1)

∫ 1

0

W (s)dW (s)′

+ (Ψj−1 + · · · + Ψ1 + Ψ0)Ω.

(d)
T−5/2

∑
T
t=1tv

′
t−1 ⇒

∫ 1

0

sW (s)′dsΨ(1)′,

(e)
T−3/2

∑
T
t=1te

′
t−j ⇒

∫ 1

0

sdW (s)′,

where W (s) is a vector Wiener process on C[0, 1]p with co-
variance matrix Ω = E(ete

′
t).

Under Assumptions A & B, the lemma below can be de-
rived by the results listed in Lemma A.1. The details of the
proof are omitted since there are too much repetitive algebra
operations to display.4

Lemma A.2. Let τ be a p × (p − r − 1) matrix which is
orthogonal to α and δ such that (α, δ, τ) spans Rp. As T →
∞,

(a)

δ′S11δ

T 2

P→ 1
12

(δ′δ)2,

τ ′S11τ

T
⇒ τ ′Ψ(1)[

∫ 1

0

W (s)W (s)′ds

−
∫ 1

0

W (s)ds

∫ 1

0

W (s)′ds]Ψ(1)′τ,

δ′S11τ√
T 3

⇒ δ′δ(
∫ 1

0

sW (s)′ds − 1
2

∫ 1

0

W (s)′ds)Ψ(1)′τ ;

4Readers can ask the authors for the whole proof.
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(b)

α′S10
P→ α′Σ10,

τ ′S10 ⇒ τ ′[Σ10 + Ψ(1)(
∫ 1

0

W (s)dW (s)′

−
∫ 1

0

W (s)dsW (1)′)Ψ(1)′C],

δ′S10√
T

⇒ δ′δ(
∫ 1

0

sdW (s)′ − 1
2
W (1)′)Ψ(1)′C,

where C = Ip − (ι′k−1 ⊗ Ip)X−1B0, and Σ10 =∑∞
l=1

∑l−1
i=0 ΨiΩΨ′

l − B1
′X−1B0. Here, ιk−1 is a (k − 1)

dimensional vector of ones, B0 = (D′
1, . . . , D

′
k−1)′, B1 =

(F ′
1, . . . , F

′
k−1)

′, where

Di =
∞∑

l=0

Ψl+iΩΨ′
l, Fi =

∞∑
l=0

i+l−1∑
j=0

ΨjΩΨ′
l,

and X is a p(k − 1)× p(k − 1) symmetric block matrix with
the ij-th (j ≥ i = 1, . . . , k − 1) block Dj−i;

(c)

δ′S11α√
T

⇒ δ′δ[(
∫ 1

0

sdW (s)′

− 1
2
W (1)′)(Ψ(1)′C − Ip)]γ(γ′γ)−1,

τ ′S11α ⇒ τ ′[Σ10 + Ψ(1)(
∫ 1

0

W (s)dW (s)′

−
∫ 1

0

W (s)dsW (1)′)(Ψ(1)′C − Ip)]γ(γ′γ)−1,

α′S11α
P→ α′Σ11α,

where Σ11 = −
∑∞

i=−∞ |i|
∑∞

l=0 Ψl+iΩΨ′
l − B1

′X−1B1;

(d)

1√
T 3

T∑
t=1

δ′R1te
′
t ⇒ δ′δ(

∫ 1

0

sdW (s)′ − 1
2
W (1)′),

1
T

T∑
t=1

τ ′R1te
′
t ⇒ τ ′Ψ(1)(

∫ 1

0

W (s)dW (s)′

−
∫ 1

0

W (s)dsW (1)′),

1√
T

T∑
t=1

α′R1te
′
t = Op(1);

(e) VT
P→ V , where VT = diag(λ̂1, λ̂2, . . . , λ̂r) and V =

diag(λ1, λ2, . . . , λr), λ̂1 ≥ · · · ≥ λ̂r be the r largest gener-
alized eigenvalues of S10S01 with respect to S11, and λ1 ≥
· · · ≥ λr > 0 are constants.

Proof of Theorem 2.1. According to the definition of eigen-
vectors α̂ ≡ (α̂1, . . . , α̂r), we decompose them as follows

(19) α̂i = αHiT + α⊥LiT , i = 1, . . . , r

where HiT = (α′α)−1α′α̂i, LiT = (α′
⊥α⊥)−1α′

⊥α̂i and
α⊥ is the orthogonal complement of α. Thus, HT ≡
(H1T , . . . , HrT ) = (α′α)−1α′α̂ is an invertible matrix with
rank r.

Let S(λ) = λS11−S10S01. The eigenvectors α̂i and eigen-
values λ̂i satisfy α′

⊥S(λ̂i)α̂i = 0, or equivalently

(20) α′
⊥S(λ̂i)αHiT + α′

⊥S(λ̂i)α⊥LiT = 0.

We have from the decomposition (19) and the equality above

α̂i−αHiT = α⊥LiT = −α⊥(α′
⊥S(λ̂i)α⊥)−1(α′

⊥S(λ̂i)α)HiT .

Since α′δ = 0, if an p × (p − r − 1) matrix τ is chosen
orthogonal to α and δ, then (α, δ, τ) spans the whole Rp.
For α⊥ = (T−1/2δ, τ), we get

α′
⊥S(λ̂i)α⊥

T
=

⎡
⎣ δ′S(λ̂i)δ

T 2
δ′S(λ̂i)τ√

T 3

τ ′S(λ̂i)δ√
T 3

τ ′S(λ̂i)τ
T

⎤
⎦

=

⎡
⎣ δ′S11δ

T 2
δ′S11τ√

T 3

τ ′S11δ√
T 3

τ ′S11τ
T

⎤
⎦ λ̂i + op(1) = Op(1),

α′
⊥S(λ̂i)α =

[
λ̂i

δ′S11α√
T

− δ′S10√
T

S01α

λ̂iτ
′S11α − τ ′S10S01α

]
= Op(1)

because it follows from Lemma A.2(b) that δ′S10 = Op(
√

T ),
τ ′S10 = Op(1) and α′S10 = Op(1).

Moreover, the eigenvectors α̂i and eigenvalues λ̂i satisfy
α′S(λ̂i)α̂i = 0, or

(21) α′S(λ̂i)αHiT + α′S(λ̂i)α⊥LiT = 0.

Therefore, it follow from (20), (21) and HiT = Op(1) that

α′S(λ̂i)αHiT(22)

= α′S(λ̂i)α⊥(α′
⊥S(λ̂i)α⊥)−1(α′

⊥S(λ̂i)α)HiT

= Op(
1
T

).

Recall that S10 = S11αγ′ + 1
T

∑T
t=1 R1te

′
t by (4)5 and

1
T

∑T
t=1 α′R1te

′
t = op(1) by Lemma A.2(d), we can obtain

5Here and in the sequel of this paper we use the fact that∑T

t=1
R1te∗

′
t =

∑T

t=1
R1te′t.
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that

α′
⊥S(λ̂i)αHiT = α′

⊥S11α(α′S11α)−1α′S(λ̂i)αHiT

− α′
⊥

1
T

T∑
t=1

R1te
′
tS01αHiT + op(1)

= − α′
⊥

1
T

T∑
t=1

R1te
′
tS01αHiT + op(1).

The second equality holds from (22). Thus,

T (α̂i − αHiT )

=
[

δ√
T

τ
] [

δ′S11δ
T 2

δ′S11τ√
T 3

τ ′S11δ√
T 3

τ ′S11τ
T

]−1

×
[

1√
T 3

∑T
t=1 δ′R1te

′
tS01α

1
T

∑T
t=1 τ ′R1te

′
tS01α

]
HiT λ̂−1

i + op(1).

Furthermore, (22) implies that

α′S11αHT VT = α′S10S01αHT + op(1),

or equivalently

HT V −1
T H−1

T = (α′S10S01α)−1α′S11α + op(1).

Thus,

T (α̂H−1
T − α)

=
[

δ√
T

τ
] [

δ′S11δ
T 2

δ′S11τ√
T 3

τ ′S11δ√
T 3

τ ′S11τ
T

]−1 [
1√
T 3

∑T
t=1 δ′R1te

′
t

1
T

∑T
t=1 τ ′R1te

′
t

]

× S01α(α′S10S01α)−1α′S11α + op(1).

Proof of Theorem 2.2. Note γ̂ = S01α̂ = (γα′S11 +
1
T

∑T
t=1 etR

′
1t)α̂ and α̂′S11α̂ = Ir. It holds that

γ̂ − γ(H ′
T )−1 = γ(α − α̂H−1

T )′S11α̂ +
1
T

T∑
t=1

etR
′
1tα̂.(23)

Let MT = 1
T

∑T
t=1 α′

⊥R1te
′
tS01α(α′S10S01α)−1α′S11α.

Then MT = Op(1) by Lemma A.2 (b)–(d), and

(24) α̂H−1
T − α = α⊥(α′

⊥S11α⊥)−1MT .

The first term on the right side of (23) can be rewritten
as γ(α−α̂H−1

T )′S11(α̂−αHT )+γ(α−α̂H−1
T )′S11αHT . From

(24), we have

(α − α̂H−1
T )′S11(α̂ − αHT )(25)

= −M ′
T (α′

⊥S11α⊥)−1MT HT = Op(
1
T

),

(α − α̂H−1
T )′S11αHT(26)

= M ′
T (α′

⊥S11α⊥)−1α′
⊥S11αHT = Op(

1
T

).

But, for the second term on the right side of (23),

1
T

T∑
t=1

etR
′
1tα̂(27)

=
1
T

T∑
t=1

etR
′
1t(α̂ − αHT ) +

1
T

T∑
t=1

etR
′
1tαHT

=
1
T

T∑
t=1

etR
′
1tα⊥(α′

⊥S11α⊥)−1MT HT

+
1
T

T∑
t=1

etR
′
1tαHT

= Op(
1
T

) +
1
T

T∑
t=1

etR
′
1tαHT .

Therefore,

√
T (γ̂ − γ(H ′

T )−1) =
1√
T

T∑
t=1

etR
′
1tαHT + op(1) = Op(1).

The second equality holds by Lemma A.2(d).
Consider the second relation now. It holds that

Γ̂0 − Γ0 = γ̂α̂′ − γα′

= (γ̂ − γ(H ′
T )−1)(α̂ − αHT )′

+ (γ̂ − γ(H ′
T )−1)H ′

T α′ + γ(H ′
T )−1(α̂ − αHT )′

= Op(
1√
T 3

) + Op(
1√
T

) + Op(
1
T

) = Op(
1√
T

).

This completes the proof of Theorem 2.2.

APPENDIX B. PROOFS FOR SECTION 3

Lemma B.1. For any 1 ≤ r ≤ p, there exists a r0×r matrix
H

(r)
T with full rank such that, as T → ∞, T (α̂ − αH

(r)
T ) =

Op(1).

Proof. The proof is the same as that of Theorem 2.1 with-
out any modification, except that HT = (α′α)−1α′α̂ is not
necessarily invertible matrix anymore if r �= r0. The reason
is that r0 denotes the true rank of γ and α now.

Lemma B.2. For any r0 ≤ r ≤ p, R(r, α̂(r)) −
R(r0, α̂

(r0)) = Op( 1
T ).

Proof. Since

|R(r, α̂(r)) − R(r0, α̂
(r0))|

≤ |R(r, α̂(r)) − R(r0, α
(r0))| + |R(r0, α

(r0)) − R(r0, α̂
(r0))|

≤ 2 max
r0≤r≤p

|R(r, α̂(r)) − R(r0, α
(r0))|,

then, it is sufficient to prove for any r0 ≤ r ≤ p,

R(r, α̂(r)) − R(r0, α
(r0)) = Op(T−1).
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Notice that S01 = γα(r0)
′
S11 + 1

T

∑T
t=1 etR

′
1t and

R(r, α̂(r)) = tr(S00 − S01α̂
(r)(α̂(r)′S11α̂

(r))−1α̂(r)′S10),

R(r0, α
(r0)) = tr(S00 − S01α

(r0)(α(r0)
′
S11α

(r0))−1α(r0)
′
S10).

We have

R(r, α̂(r)) − R(r0, α
(r0))

= tr[γα(r0)
′
S11α

(r0)γ′ − γα(r0)
′
S11α̂

rα̂(r)′S11α
(r0)γ′]

+ 2tr[
1
T

T∑
t=1

γα(r0)
′
R1te

′
t

− γα(r0)
′
S11α̂

(r) 1
T

T∑
t=1

α̂(r)′R1te
′
t]

+ tr[
1
T

T∑
t=1

etR
′
1tα

(r0)(α(r0)
′
S11α

(r0))−1

× 1
T

T∑
t=1

α(r0)
′
R1te

′
t −

1
T 2

T∑
t=1

etR
′
1tα̂

(r)
T∑

t=1

α̂(r)′R1te
′
t]

≡ I + II + III.

It follows straightly from Lemma A.2(b) and (c) that III =
Op( 1

T ).

Now, for r ≥ r0, H
(r)
T = (α(r0)

′
α(r0))−1α(r0)

′)α̂(r) has
rank r0. Let H

(r+)
T denote the generalized inverse of H

(r)
T

such that H
(r)
T H

(r+)
T = Ir0 , then it can be written as

H
(r+)
T = (α̂(r)′α(r0))(r+)α(r0)

′
α(r0). It follows that,

I = tr[γH
(r+)′

T (α̂(r) − α(r0)H
(r)
T )′S1/2

11 (Ip − S
1/2
11 α̂(r)α̂(r)′S

1/2
11 )

× S
1/2
11 (α̂(r) − α(r0)H

(r)
T )H(r+)

T γ′]

where Ip is an identity matrix with rank p. Furthermore, it
is easy to see that Ip − S

1/2
11 α̂(r)α̂(r)′S

1/2
11 is an idempotent

matrix with eigenvalues 0 or 1. Because of the inequality
x(Ip − S

1/2
11 α̂(r)α̂(r)′S

1/2
11 )x′ ≤ xx′ for any vector x,

I ≤
p∑

i=1

γ′
iH

(r+)′

T (α̂r − α(r0)H
(r)
T )′S11(α̂r − αr0Hr

T )H(r+)
T γi

=
p∑

i=1

γ′
iα

(r0)
′
α(r0)(α̂(r)′α(r0))(r+)′(α̂(r) − αr0H

(r)
T )′

× S11(α̂(r) − α(r0)H
(r)
T )(α̂(r)′α(r0))(r+)α(r0)

′
α(r0)γi

where γ′
i is the ith column of γ. From (25), it follows that

(α̂(r) − α(r0)H
(r)
T )′S11(α̂(r) − α(r0)H

(r)
T ) = Op( 1

T ). Addi-
tionally, (α̂(r)′α(r0))(r+) = Op(1) has full rank r0. Hence,
I = Op( 1

T ). For II, we have

II = 2tr
[
γH

(r+)′

T {(α̂(r) − α(r0)H
(r)
T )′S11α̂

(r)

× 1
T

T∑
t=1

α̂(r)′R1te
′
t − (α̂(r) − α(r0)H

(r)
T )′

1
T

T∑
t=1

R1te
′
t}

]
= 2tr

[
γα(r0)

′
α(r0)(α̂(r)′α(r0))(r+)′{(α̂(r) − αr0H

(r)
T )′S11α̂

(r)

× 1
T

T∑
t=1

α̂(r)′R1te
′
t − (α̂(r) − α(r0)H

(r)
T )′

1
T

T∑
t=1

R1te
′
t}

]

= Op(
1
T

).

The detail proofs for (α̂(r) − α(r0)H
(r)
T )′S11α̂

(r) =
Op( 1

T ), (α̂(r) − α(r0)H
(r)
T )′ 1

T

∑T
t=1 R1te

′
t = Op( 1

T ) and
1
T

∑T
t=1 α̂(r)′R1te

′
t = Op( 1√

T
) can be found in (25)–(27).

The proof of Lemma B.2 completes.

Proof of Theorem 3.1. The objective is to verify that
limT→∞ P (M(r)−M(r0) < 0) = 0 for all r ≤ p and r �= r0,
where

M(r)−M(r0) = R(r, α̂(r))−R(r0, α̂
(r0))− (nr0 − nr)g(T ).

For r < r0, from (11), we have R(r, α̂(r)) − R(r0, α̂
(r0)) =∑(r0)

i=r+1 λ̂i, where λ̂i is the ith generalized eigenvalue of
S10S01 respect to S11 in decreasing order. Therefore, if
g(T ) → 0 as T → ∞,

P (M(r) − M(r0) < 0)

= P (
(r0)∑

i=r+1

λ̂i < (r0 − r)(2p − (r0 + r))g(T ))

→ P (
(r0)∑

i=r+1

λi < 0) = 0

by Lemma A.2(e) that λ̂i
P→ λi > 0.

For r > r0, Lemma B.2 implies that R(r0, α̂
(r0)) −

R(r, α̂(r)) = Op( 1
T ). Thus, if Tg(T ) → ∞ as T → ∞, we

have

P (M(r) − M(r0) < 0)

= P (R(r0, α̂
(r0)) − R(r, α̂(r))

> (r − r0)(2p − (r + r0))g(T ))

= P (T [R(r0, α̂
(r0)) − R(r, α̂(r))]

> (r − r0)(2p − (r + r0))Tg(T ))
→ 0.

The proof of Theorem 3.1 is completed.

We denote ECM with different lag orders (k1 < k2) as

Modelk1 : ΔYt = γα′Yt−1 + ΘXt + et;(28)
Modelk2 : ΔYt = γα′Yt−1 + ΘXt + Θ∗Zt + et
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with Θ = (μ,Γ1, . . . ,Γk1−1), Θ∗ = (Γk1 , . . . ,Γk2−1), Xt =
(1, ΔY ′

t−1, . . . ,ΔY ′
t−k1+1)

′, Zt = (ΔY ′
t−k1

, . . . ,ΔY ′
t−k2+1)

′.

Lemma B.3. For any 1 ≤ k1 < k2,
if Modelk1 is true, R(r0, k1, α

(r0)
k1

) − R(r0, k2, α
(r0)
k2

) =
Op( 1

T );
if Modelk2 is true, p limT→∞[R(r0, k1, α

(r0)
k1

) −
R(r0, k2, α

(r0)
k2

)] > 0, where p lim denotes the limit in
probability.

Proof. From the expression of R(r, α̂) in (11) and the fol-
lowing matrix identity

(
X ′

1 X ′
2

) (
A B
B′ D

)−1 (
Y1

Y2

)
(29)

= X ′
1A

−1Y1 + (X ′
2 − X ′

1A
−1B)

× (D − B′A−1B)−1(Y2 − B′A−1Y1),

it can be seen that

R(r0, k1, α
(r0)
k1

)

= tr(S00 − S01α
(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1α
(r0)
k1

′
S10),

R(r0, k2, α
(r0)
k2

)

= tr(S00 −
(
S01α

(r0)
k1

S02

)

×
(

α
(r0)
k1

′
S−1

11 α
(r0)
k1

α
(r0)
k1

′
S12

S21α
(r0)
k1

S22

)−1 (
α

(r0)
k1

′
S10

S20

)
)

where Sij = 1
T

∑T
t=1 RitR

′
jt for i, j = 0, 1, 2, R2t = Zt −∑T

t=1 ZtX
′
t(

∑T
t=1 XtX

′
t)

−1Xt, R1t = Yt−1 −
∑T

t=1 Yt−1X
′
t ×

(
∑T

t=1 XtX
′
t)

−1Xt, and R0t = ΔYt −
∑T

t=1 ΔYtX
′
t ×

(
∑T

t=1 XtX
′
t)−1Xt. Therefore,

R(r0, k1, α
(r0)
k1

) − R(r0, k2, α
r0
k2

)(30)

= tr[(S02 − S01α
(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1α
(r0)
k1

′
S12)

× (S22 − S21α
(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1α
(r0)
k1

′
S12)−1

× (S20 − S21α
(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1α
(r0)
k1

′
S10)].

If the model with lag order k1 is true, replacing Θ in
Modelk1 by (3), we obtain that R0t = γα

(r0)
k1

′
R1t + e∗t , and

S02 = γα
(r0)
k1

′
S12 +

1
T

T∑
t=1

etR
′
2t = γα

(r0)
k1

′
S12 + Op(

1√
T

),

S02 − S01α
(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1α
(r0)
k1

′
S12

= (γ − γ̂(α(r0)
k1

))α(r0)
k1

′
S12 + Op(

1√
T

) = Op(
1√
T

).

Since et, ΔYt and α
(r0)
k1

′
Yt−1 are stationary sequences, it

follows that 1
T

∑T
t=1 etR

′
2t = Op( 1√

T
) and α

(r0)
k1

′
S12 = Op(1)

by the similar way to that of Lemma A.2. For the term
(γ − γ̂(α(r0)

k1
)), we have

γ − γ̂(α(r0)
k1

)

= γ − S01α
(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1

= γ − (γα
(r0)
k1

′
S11 + T−1

T∑
t=1

etR
′
1t)α

(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1

= − T−1
T∑

t=1

etR
′
1tα

(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1 = Op(1/
√

T ).

The last equality holds by Lemma A.2 (c) and (d). It is easy
to find that S22 = Op(1), and then

S22 − S21α
(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1α
(r0)
k1

′
S12 = Op(1).

Then, it follows that R(r0, k1, α
(r0)
k1

) − R(r0, k2, α
(r0)
k2

) =
Op( 1

T ).
If the model with lag order k2 is true, denoting the limits

of

S02 − S01α
(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1α
(r0)
k1

′
S12,

S22 − S21α
(r0)
k1

(α(r0)
k1

′
S11α

(r0)
k1

)−1α
(r0)
k1

′
S12

by E and G respectively, we argue that tr(EG−1E′) >
0 by the similar way to that given by Aznar and Sal-
vador (2002). Hence, by (30), p limT→∞[R(r0, k1, α

(r0)
k1

) −
R(r0, k2, α

(r0)
k2

)] > 0.

Proof of Theorem 3.2. The goal is to verify that P (r̂ =
r0, k̂ = k0) → 1 as T → ∞, or equivalently, for all 0 ≤ r ≤ p,
1 ≤ k ≤ K, r �= r0 and k �= k0,

lim
T→∞

P (M(r, k) − M(r0, k0) < 0) = 0.

Note that

P (M(r, k) − M(r0, k0) < 0)
≤ P (M(r, k) − M(r0, k) < 0)

+ P (M(r0, k) − M(r0, k0) < 0),

and we have already proved

lim
T→∞

P (M(r, k) − M(r0, k) < 0) = 0

for any fixed lag order k in Theorem 3.1. Thus, it remains
to prove that for all 1 ≤ k ≤ K and k �= k0,

lim
T→∞

P (M(r0, k) − M(r0, k0) < 0) = 0.

From the proof of Lemma B.2, we have R(r0, k, α̂
(r0)
k ) −

R(r0, k, α
(r0)
k ) = Op( 1

T ) for any k ≥ 1. Therefore,
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M(r0, k) − M(r0, k0)

= R(r0, k, α̂
(r0)
k ) − R(r0, k0, α̂

r0
k0

) + p2(k − k0)g(T )

= R(r0, k, α
(r0)
k ) − R(r0, k0, α

(r0)
k0

)

+ p2(k − k0)g(T ) + Op(
1
T

).

For k < k0, it holds that if g(T ) → 0 as T → ∞,

P (M(r0, k) − M(r0, k0) < 0)

= P (R(r0, k, α
(r0)
k ) − R(r0, k0, α

(r0)
k0

) + Op(
1
T

)

< p2(k0 − k)g(T )) → 0,

because R(r0, k, αr0
k ) − R(r0, k0, α

(r0)
k0

) has a positive limit
by Lemma B.3.

For k > k0, Lemma B.3 implies that R(r0, k0, α
(r0)
k0

) −
R(r0, k, α

(r0)
k ) = Op( 1

T ). Thus, if Tg(T ) → ∞ as T → ∞,
we have

P (M(r0, k) − M(r0, k0) < 0)

= P (T [R(r0, k0, α
(r0)
k0

) − R(r0, k, α
(r0)
k )]

+ Op(1) > p2(k − k0)Tg(T ))
→ 0.

The proof is completed.
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