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Nonparametric methods for employment
termination times with competing causes

MARA TABLEMAN* AND WERNER A. STAHEL

A dataset of termination times of a company is analyzed
by fitting a competing risk model, taking left truncation and
right censoring into account. The analysis intends to pro-
vide evidence for a claim of age discrimination. The model
imposes no functional form on the parameters of interest,
namely the survivor, cause-specific hazard, and cumulative
incidence functions. The empirical estimators are modified
to account for delayed entry. Inference is primarily based
on smoothed empirical hazard functions. The approach pro-
vides a frequentist alternative to the Bayesian analysis ad-
vocated by Kadane and Woodworth (2004) and is easy to
implement using existing software.
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1. INTRODUCTION

Models for failure times describe either the survivor func-
tion or the hazard rate and their dependence on explana-
tory variables. In the example presented here, the question
of whether older employees are fired by a certain company
more often than their younger colleagues is investigated for
providing evidence in a legal claim. Such cases fall under
the USA’s Age Discrimination in Employment Act of 1967,
which federally protects individuals 40 years or older against
age discrimination in employment decisions concerning hir-
ing, firing, and promotion.

Employees may leave the company voluntarily for other
reasons, such as to join a different company, relocation to a
new geographical region for family reasons, retiring, or early
death. These other reasons compete with involuntary termi-
nation (firing). Voluntary and involuntary terminations are
thus “competing risks.”

In such legal cases flow data are collected to examine a
specified observation period. The data observed, consisting
of the day of termination, counted from the study begin
date, are subject to right censoring as subjects may still be
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employed with the firm at the end of the study period. Some
data will also be subject to left truncation as some subjects
are hired after the study start date. These subjects are said
to have delayed entry into the study. Some modifications of
nonparametric methods are needed for this situation.

Kadane and Woodworth (2004) advocate a Bayesian
analysis of employment decisions. They use a hierarchical
proportional hazards modeling approach to investigate a
claim of age biased firing practices within a company. One
of their examples is referred to as the Case K employment
data. They conclude the data do support the claim. Here,
we present a frequentist analysis of this dataset, which, in
contrast to their Bayesian model, is distribution free, mean-
ing that it imposes no functional form on the survival time
distribution, and avoids the choice of a prior for the param-
eters of interest. The purpose of this case study is to apply
nonparametric methods, which have been primarily used in
medical clinical trials and epidemiology, in such a legal set-
ting.

The dataset is presented in Section 2. In Section 3
the competing risks model with left-truncated and right-
censored (LTRC) data is discussed. The population quanti-
ties of interest, namely the survivor, hazard, and cumulative
incidence functions for the competing risks, are presented,
and the modified empirical estimators are introduced. Ker-
nel estimates of the empirical cause-specific hazard function
for each age group form the most direct basis of inference.
The log ratio of smoothed hazards and bootstrap pointwise
confidence limits summarize the evidence. In Section 4 the
methods are implemented and results for the Case K data
are discussed. With the practitioner in mind, R code is in-
terwoven. The estimated cumulative incidence functions are
discussed in Section 4.1. Inference based on empirical es-
timates of conditional probability functions is conducted
in Section 4.2. The conditional odds ratio of involuntary
termination is defined. Bootstrap confidence intervals are
used to draw inference. The evidence provided by compar-
ing smoothed empirical hazard functions is presented in Sec-
tion 4.3. In Section 4.4, the semiparametric proportional
hazards model is used, and we show that standard diagnos-
tics for this model would also lead to an adequate analysis.
Section 5 is a brief discussion.

2. THE DATASET

The “case K” dataset CaseK is available from the archive
statLib located at lib.stat.cmu.edu/datasets under


http://www.intlpress.com/SII/
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Table 1. Cross tabulation of termination type by age group

Status
age  involuntary other censored
> 40 79 47 88 214
< 40 17 53 113 183
96 100 201 397

employment. For 416 subjects employed by the company in-
volved, birth, hire, and end of employment dates, as well as
cause of termination were recorded. Through personal com-
munication, we learned the study period began on June 1,
1990 and ended on Sep 2, 1994. The spreadsheet in Table 2
in the Appendix indicates the nature of the original data.

Upon checking the individual cases, we found four cases
had missing birth dates. Fourteen had hire dates after the
study end date and one had an exit date before the study
start date which excludes them from the analysis as they
are outside the study period. Hence, our reference dataset
contains 397 employees.

A cross tabulation of age group by failure type is given
in Table 1. Of those involuntarily terminated, 82.3% are age
40 or older, which clearly exceeds the percentage, 54%, of
this age group among the employees. Expressed differently,
37% of the protected age group were fired, compared to 9%
of those under 40. This simple analysis suggests clear evi-
dence for age discrimination. Note, however, that young em-
ployees leave the company more frequently than their older
colleagues for other reasons, and therefore, a more detailed
analysis is needed.

The failure time T is day in study period when termina-
tion occurred. Thus, T* equals the exit date (or end date of
study period if still employed then), expressed in days af-
ter the study start. The delayed entry time X is days until
entry into the study period, which is 0 for those who were
working in the company at the study start. Censored indi-
viduals include all cases which were still employed at the
end of the study period. There are two failure types: invol-
untary termination, coded as 1, and exit for other reasons
(quit, retired, died, etc.), as 2. For example, in Table 2, ob-
servation 2 is censored with X = 0. The 3rd observation
has failure type 2 with X = 248. Observation 15 (the 14th
after deletion of the cases mentioned above) corresponds to
an employee with X = 210 and who was involuntarily ter-
minated at 24-JAN-1992, which corresponds to T" = 603.

A complication arises with employees that turn 40 within
the study period. It is resolved by splitting such cases into
two, the first one generating an observation censored the
day before the 40th birthday, belonging to the young age
group, and the second, with delayed entry time equal to the
day before the 40th birthday, attributed to the protected
age group. The new dataset d.casekext then counts 430
records. In the Appendix we explain the R function julian
used to convert dates into days in the study period. The
generated variables are displayed in Table 3.
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3. COMPETING RISKS MODEL WITH LTRC
DATA

A nonparametric estimator of the survivor func-
tion under LTRC. Let us first consider overall survival,
overlooking type of termination. The termination time 7' is
assumed to be a continuous random variable with distribu-
tion function F. The survivor function S(t) = 1 — F(¢) is
the probability of termination after day ¢. Let C' denote the
right censoring time and X, the delayed entry time. The
random times X, T, and C are assumed to be independent.
In the LTRC model we observe the triple (T, X, §), where

y . 1 T <C,
(1) T* = min(T,C) and ¢ = {O fC<T
conditional on X < T*. The data we observe are n inde-
pendent and identical random triples {T7*, X;, d;} for which
X; < T}. For an introduction to left truncation, see, for
example, Tableman and Kim (2004), Chapter 7.3.

An analogue to the Kaplan-Meier (1958) estimator (K-
M), obtained by adjusting the risk set at each failure time to
account for delayed entries, provides a nonparametric con-
sistent estimator for the survivor function S. It is defined
as follows: The adjusted risk set at time ¢ consists of all
employees with delayed entry time x; before ¢ that are still
employed just before time ¢,

(2)

Let t) <--- <t,,n' <n, denote the set of distinct ordered
uncensored observed event times (7} with §; = 1). Let ny
be the size of the risk set at time ¢ = t},, and djy be the
number of uncensored observations with T;* = ¢ ; that is,
np =#{i | x; <t <t} and dp = #{i | t), =t},0; = 1}.
Then, the modified K-M estimator is

§adj(t) - H (L_dk)

ng
t) <t

R(t) = {i |z <t <t}

3)

As Sodi (t) estimates the probability of termination after day
t, the left-hand limit 5%¥ (t—) estimates the probability of
being at risk at day t¢. This estimator, referred to as the
product-limit estimator under LTRC, was proposed by Tsai,
Jewell, and Wang (1987). They show it is the nonparametric
maximum likelihood estimator of S. Further, they establish
asymptotic normality and provide a consistent estimator for
the asymptotic variance. When all z; = 0, S%¥(t) reduces
to the K-M estimator for right-censored data.

Competing risks setting. In the competing risk set-
ting, we study jointly the random variable T' = failure time
and j = 1,2,...,J distinct, exclusive, and exhaustive failure
types (or causes). The J causes are called competing risks
as the occurrence of any one precludes the occurrence of the
others. Let ¢ denote the failure type. The observations now
consist of random triplets {T*, X;, €;6;}.



Population quantities of interest, which provide an overall
description of company and employee termination activity,
are the cumulative incidence functions (CIF) for type j fail-
ure, which are the subdistribution functions F}; defined as

(4)

It is called a subdistribution function as the total probability
is less than one. The F}(t) are assumed to be continuous with
subdensities f;(t). The term CIF was coined by Kalbfleisch
and Prentice (1980, pages 168-169). It is also known as the
marginal probability, the crude incidence, and the absolute
cause-specific risk. The survivor function for T' is now given
by

Fi(t) =Pr(T < t,e = j).

(5)  S(t) = Pr(T >1t)
J J
=1-> Pr(T <te=j)=1-> Ft).

The population quantity most relevant to the plaintiff’s
claim of age discrimination is the cause-specific hazard func-
tion hy(t), where h;(t) defined to be

Prit<T <t+At,e=j5|T>1)

6)  hy(t) = Jim, Al
_ oy PHE<T St Ate =)
A0 AtPr(T > t)
f3(t)
S(t)

This quantity measures the rate — the intensity — of type 1
failure at time ¢ amongst all employed at time ¢. The main
question we seek to answer is: Was the hazard of involun-
tary termination on a particular day in the study period
significantly greater for those employees 40 years or older
compared to their younger colleagues? This question is ad-
dressed in Section 4.3.
The cause specific CIF is now reexpressed as

t t
M BO= [ = [ s

where Hj(u) = [ h;j(v)dv is called the cumulative hazard
of type j failure.

Another population quantity of interest, which is also
useful for the plaintiff’s case, is the conditional probability
function CP; defined as
(8) CP;(t) = Pr(type j failure by t |

not failed from other causes by t).

This quantity is appealing in that it has a straightforward
interpretation. It is the proportion of subjects who have ex-
perienced type j failure by time ¢ among those surviving all
other causes through time ¢. It is also useful when interested

in quantifying the odds of a type j failure by time ¢ since
its total probability is one, in contrast to the CIF (4). To
see this, suppose there are two failure types 1 and 2. By (5),
1—5(t) = Fi(t) + Fa(t). Then

9) T1-F(t) St + @)

which increases from zero to one as 0 < ¢t — oo, since S(t)
goes to zero.

Empirical estimators adjusted to account for
LTRC. Define the counting processes

Ni(t) =D I(X; <T7 < t,ei6; = j)

i=1
for j > 1, and
n

Y(t) =) I(X;<t<T)).

=1

The N, (t) counts the number of type j failures by ¢ and Y (¢)
counts the number of subjects with delayed entry before ¢
and still at risk just prior to t. The empirical estimator of
the CIF for type j failure adjusted for delayed entry is given
by

d Nj(u)
Y(u)

Hadj _ i Qadj U—
(10) F <t>—/os (u-)

where §%4 (t—) is the left-hand limit of §°% (3) computed
over all observed failure times ¢} irrespective of failure type.
Sadi(t—) is defined to be 0 when Y (¢) = 0, and 0/0 = 0.
For the case when left truncation is not present, that is,
all z; = 0, the estimator F;zd] (t) reduces to that studied
by Aalen (1978a). He proves strong consistency and weak
convergence when the data are right-censored. For those who
may not be familiar with computing the Stieltjes integral in
(10), the formula yields the following sum: Let ¢; < --- < ¢/,
denote the set of distinct ordered observed times as before.
Then F;dj () can be expressed as follows:

~ P dix
(1) e = 30 §t-) 2,
t, <t

where n; = number of subjects with delayed entry before
t), that are still at risk just prior to ¢}, and dj, = num-
ber of type j failures at tj. (The censoring times may be
included in the sum since the dj; = 0 for these.) To under-
adj

stand the marginal probability estimator ﬁj

that Sedi (t),—) estimates the probability of being at risk at
t), and dji/ny estimates the probability of a type j failure
at ¢}, conditional on being at risk at ¢};; hence their product
estimates the probability of a type j failure at ). Therefore,

(t), observe

ﬁ;dj (t) estimates the probability of type j failure by time ¢.
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For the Case K study there are two competing risks. Pepe
and Mori (1993) discuss the empirical estimator of the CP
function for a type 1 failure when data are subject to right
censoring, which consists of plugging F jadj into equation 9,

e adj fadj

(12) cp? (1) = 1A7ffj)

1= Fy" (1)
With uncensored and non-left-truncated data, é?’(lldj (t) is
simply the number of subjects who have been involuntarily
terminated by t divided by the number who did not leave
employment for other reasons by time ¢. In the same article,
Pepe and Mori show that the large sample distribution of

C/JTDTd] (t) is normal when left truncation is not present, and
they provide a consistent variance estimator.

Lastly, to estimate the cause-specific hazard function (6)
at time ¢, we smooth the empirical values

) d:
hy(ty,) = =2,

(13)
ny,

where t}, d;i, and nj, were previously defined for expression
(11). The sum of these values over all ¢}, < t, H(t) =
Z%St dji/nk, is a modified version of the Nelson-Aalen
(1972, 1978b) estimator of cumulative hazard of type j fail-
ure. It is constructed with risk sets adjusted to account for
delayed entries. This was used to estimate H;(u) in (7), as
seen in (11). The estimates in (13) are the same when the
risks competing with j are treated as censored.
The kernel estimator of h;(t) is given by

A 18—\ d
14 plernelpy — — LT B L}
(14) gt bk§_1j/c( )4,

where the kernel K is a bounded function which has integral
1 and vanishes outside [—1,1], and b is the bandwidth. The
kernel estimator smoothes the occurrence/exposure rates
~ the increments dji/ng in H(t). This estimator is a
modified version of the kernel estimator of intensity pro-
posed by Ramlau-Hansen (1983). He establishes consistency
and asymptotic normality. Andersen et al. (1993, Chap-
ter IV.2.2) generalize these results to include left truncation.

4. IMPLEMENTATION AND RESULTS FOR
THE CASE K DATA

We use the statistical computing package R. It’s free and
downloadable from www.r-project.org. The R function
survfit together with Surv yields the values essential to
compute the estimates in the foregoing section for each age
group g = 0, 1. Details are shown in the Appendix.
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Figure 1. Estimated cumulative incidence curves for
involuntary and other within age group. The vertical dotted
line indicates day of plaintiff's dismissal.

4.1 Descriptive summary provided by
empirical estimator of CIF

The estimated CIF’s, ﬁ;fj (t) (11) for each combination
of the age groups ¢ = 0,1 and termination types j = 1,2
are displayed in Figure 1. At about day 600 the firm’s de-
cisions regarding involuntary termination become apparent.
The rate of this activity in the protected age group dramat-
ically increases whereas the rate within the younger group,
remains rather low. This results in the dramatic divergence
of CIF’s. By the end of the study period, 39% of the pro-
tected group were affected in comparison to only 11% of the
younger group.

However, the firm can also use Figure 1 to defend its ac-
tions. The CIF’s for other reasons reveal that by day 600
about 10% of the younger group left voluntarily, whereas
such activity amongst the older group was much lower
(3.6%). The firm may say that they had no other choice
but to assign layoffs more frequently to the older group. The
Figure shows, however, that the two curves meet around day
760. Nevertheless, we seek more convincing evidence.

4.2 Inference based on an empirical
estimator of CP function

The comparison of type 1 conditional probabilities does,
however, make it more difficult for the firm to explain its
actions. In context, CP 4 (t) is the probability of involuntary
termination by day t, given that the subject has not left for
other reasons by time t. Estimates are computed for each
age group using expression (12). Figure 2 confirms what

— adj
was detected in Figure 1. As of day 600, CPHJ (t) jumps

up sharply and continues a steady increase while éf’glj (1),
after a gentle jump between day 500 and 600, flattens. By
day 764 (the day the plaintiff was dismissed), among those
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Figure 2. Estimated conditional probability curves for
involuntary termination in each age group. The vertical
dotted line indicates day (764) of plaintiff's dismissal.

in the protected group who did not leave for other reasons,
about 21% were terminated by the firm in comparison to
only 6% among the younger group. By the end of the study
period, the gap widens to 64% versus 12%.

The conditional odds ratio (OR) is defined to be

_CPu() . CPw(h)
OR®) = 1= P 1 ~ T=CPur (@

and its estimator OR is given by plugging in the adjusted
estimators 61\3:?]. Pointwise 95% bootstrap confidence limits
for the true conditional log-OR. of involuntary termination
are displayed in Figure 3.

For obtaining these limits, 1000 bootstrap samples were
drawn, stratified within the groups of employees which had
their 40th birthday by their day X; + 1, those with 40th
birthday after their exit time 7™, and those 33 who moved
from the unprotected to the protected group within their
observation period (X; 4+ 1,T7]. For each employee in the
third group, there are two records in the extended dataset,
and both are selected for the bootstrap sample. This avoids
problems with independence that would arise in principle
(though with tiny effect on the result) if the records of the
extended dataset were sampled directly. Based on the 1000
bootstrap values for the log odds ratio, pointwise percentile
confidence intervals were calculated.

The log-OR at day 764 is 1.36. The lower and upper
confidence limits are 0.49 and 2.41, respectively. That is,
among those who did not leave for other reasons by day
764, the odds of involuntary termination by day 764 are
significantly greater for the protected group with estimated
odds 3.9 times the odds for the younger group. If a one-sided
test were asked for, its p-value would therefore be less than
2.5%. The OR continues to increase to about 12 by day 1300
and is fairly constant thereafter.

_______

log odds ratio
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Figure 3. Conditional log odds ratios of involuntary
termination, with pointwise 95% bootstrap confidence limits
( - - - ). The vertical dotted line indicates the day of
plaintiff's dismissal.

A naive estimate of the odds ratio may be obtained from
Table 1. The conditional probabilities of 79/(214 — 47) =
0.47 and 17/(183 — 53) = 0.13 lead to an odds ratio of 6.0.
The discrepancy with the appropriate estimate stems from
the Kaplan-Meier type adjustments for estimating the CIF
and from splitting the data of those subjects which turn 40
into two records.

In view of the foregoing findings, just how would the firm
now explain such grossly disproportionate adverse actions
against the protected age group?

4.3 Evidence provided by comparing
smoothed empirical hazard functions

Comparison of smoothed hazard estimates provides the
most compelling evidence because it specifically describes
the firm’s actions at any given time in the study period.
Because there are very few firings near the start of the
observation period and heavy right censoring at the end,
smoothing estimates are unreliable before day 300 and af-
ter about day 1400. The kernel estimates (14) are computed
for each age group using the R function density and dis-
played in Figure 4. Clearly, between day 400 and 1300, the
protected group is at a far greater risk of involuntary ter-
mination than their younger colleagues. The curve for the
older group dramatically increases beginning about day 400
and peaks about day 900.

The log-relative risk, estimated by the log ratio of the
smoothed hazards, and pointwise bootstrap 95% confidence
limits are displayed in Figure 5. The log-relative risk is
clearly not constant nor linear. The interval captured by
the vertical gray lines, day 440 to 1476, is where the lower
confidence limits lie above zero. The log-risk of being fired
on day 764 is 1.79, with a confidence interval from 1.1 to
2.69. Thus, the risk is estimated to be about 6 times higher
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Figure 4. Smoothed estimates of cause-specific hazards for
involuntary termination. The Epanechnikov kernel
K(t) = 0.75(1 — t2), |t| < 1 was used with bandwidth
(standard deviation) of 155.51/5 = 348. The vertical dotted
line indicates day 764.
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Figure 5. Log of the ratio of smoothed hazards of involuntary
termination, with pointwise 95% bootstrap confidence limits
(- - - ). The vertical dotted line indicates the day of
plaintiff's dismissal, and the gray lines, the days when the
lower confidence limit crosses zero.

for the protected group to be involuntarily terminated on
day 764.

4.4 Cox proportional hazards model with
diagnostics

Let’s fit the data to a Cox proportional hazards (PH)
model, which assumes

hcox (t) = hO(t) eXp(ﬁQ))

where ho(t) is some unspecified baseline hazard function.
The model explicitly implies that log hazards ratio [ is con-
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Figure 6. Scaled Schoenfeld residuals, incremented by Bcom,
resulting from fitting the Cox PH model h(t) = ho(t) exp(8g)
accounting for delayed entry. The lines show a spline smooth

estimating (3(t) along with £2 standard error bands.

stant over the study period. We know this assumption is vi-
olated. Anyhow, if we had started with the Cox PH model
— a reasonable place to start — good data diagnostics on the
residuals would have led us to reject the model and try a
refinement of it.

More specifically, as an alternative to the above model
with a simple coefficient 3, Grambsch and Therneau (1994)
consider a time-varying coefficient §(t) = 5 + 0g(t), where
g(t) is a specified function of time. They show the scaled
Schoenfeld residual has approximate mean 6g(t). From the-
ory and by Monte Carlo simulation studies they show a
smoothed scatter plot of the scaled Schoenfeld residuals plus
Beow (estimates resulting from fitting the Cox PH model)
versus time gives a direct estimate of 5(t), and show how to
test if the time-varying term 0g(t) improves the fit signifi-
cantly. When the PH model is adequate, the spline smooth
would appear horizontal, indicating 3(t), the log hazards ra-
tio, is constant. The R function cox.zph produces Figure 6
and tests the default hypothesis Hy : 6 = 0 for g(t) = t.

The p-value obtained for a linear dependence of 3 on
time, that is, for g(¢t) = ¢, is 0.47. Hence, the test fails to
reject @ = 0, indicating no significant time dependence. But
clearly, Figure 6 shows the log hazards ratio is neither con-
stant nor linear over time and, in fact, is a smoother version
of the curve in Figure 5. When we specify g(t) = (t — )2,
where t is the average of the uncensored observed times,
the p-value decreases to 0.053. Our point here is to alert
the reader that the results from testing the default hypoth-
esis can be misleading. The test depends on an appropriate
specification of ¢g(t) and has low power. Figure 6 is indeed
welcome validation of the goodness of the kernel estimator
(14) of the empirical hazard estimates (13) and the power
of the bootstrap confidence limits for the log hazards ratio.



5. DISCUSSION

The data have been analyzed using nonparametric fre-
quentist methods. The results reveal the hazards ratio — the
relative risk of the protected group being involuntarily ter-
minated on a given day in the observation period — to be
neither constant nor linear, but to have a maximum near
day 900. The bootstrap confidence limits show significant
discrimination against employees aged 40 and above was
present in involuntary terminations between days 440 and
1476, and, in particular, on the day of the plaintiff’s dis-
missal. The conditional log-odds ratio of involuntary termi-
nation by a certain day provides strong supporting evidence
of disproportionate adverse actions against the protected
age group. The results provide ample descriptions of the
data which would certainly help to establish a prima facie
case against the defendant — the company.

Kadane and Woodworth (2004) conducted a Bayesian
analysis and claim that a frequentist approach would not
lead to useful conclusions. They “presume that a frequen-
tist would opt for a constant odds model” (page 188). Mean-
while, as we have demonstrated, established diagnostics for
the Cox PH model would lead to an extension by a time-
varying coefficient, and would arrive at descriptions similar
to ours and to the Bayesian findings. It remains unclear
why Kadane and Woodworth accuse frequentists of “unex-
amined subjectivity” when selecting a functional form of a
model (page 192). All good statisticians share the tradition
of examining model adequacy with diagnostics. The present
nonparametric analysis avoids having to choose a functional
form for the survival time distribution, let alone prior dis-
tributions. The question of which analysis — Bayesian versus
frequentist — is easier to explain to a juror shall be left open.

APPENDIX

The original data for this study follows the pattern given
in Table 2.

Table 2. Flow Data on employment termination for the
Period June 1, 1990 to September 2, 1994. Dates are of the
form MM DD YYYY. DOB : Date of Birth; DOH : Date of

Hire; DOX : Date of Exit (termination), 99 99 1999 : still
employed at study end; T| : Termination Indicator, 1 =

Involuntary, 0 = Other. Observation 233 stems from the

plaintiff in the legal case

obs DOB DOH DOX TI
1 11241972 02111991 9999 1999 O
2 03221955 03041985 99991999 0
3 11131941 02041991 10021992 O
15 04 16 1930 1228 1990 01241992 1
233 04011928 01021990 07031992 1

In this Appendix, we document the essential R code
needed to obtain the results of this paper.
The R function julian converts dates into days, like

dox <- ifelse(t.dd$D0X=="99 99 1999", 1556,
julian(as.Date(t.dd$D0X, format="%m %d %Y"),
origin=as.Date("1990-05-31"))

(since €99 99 9999’ is used for most of those who were
still employed at the study’s end) and similarly for DOH.
The generated variables are shown in Table 3.

To compute §gdj (t) (eq. 3), the probability of overall sur-
vival beyond day t for age40 = g, run

survfit (Surv(entry,time,status!=0),
subset=(age40==g), data=d.casekext)

Note §gdj (t—) is the estimated probability of being at risk
on day t for age40 = g. To obtain the unique observed times
t}., the dj; = number of type j terminations at ¢}, and nj =
number of subjects with delayed entry before tj that are
still employed just prior to ¢}, (see (11)), use

fitgj <-
summary (survfit( Surv(entry,time,status==j),
subset=age40==g, data=d.casekext), censor=TRUE)

Then, fitgj$time contains the ¢}, fitgj$n.event, the d;y,
and fitgj$n.risk, the ny values.

The kernel estimates (eq. 14) are computed by the R
function density with weights = dgj/ngj. (Weights can
be specified only in versions 2.2.1 or newer of R.)

The following R code fits the Cox model with risk sets
adjusted for delayed entries, tests the default hypothesis
Hy: 0 =0 for g(t) = t, and produces Figure 6:

(r.cox <-
coxph(Surv(entry,time,status==1) “age4O0,
data=d.casekext))

coef exp(coef) se(coef) z P
age40 1.52 4.57 0.268 5.66 1.5e-08
(r.phtest <- cox.zph(r.cox))

rho chisq P
age40 0.073 0.517 0.472
plot(r.phtest)

Table 3. The transformed variables which fit into the
framework of competing risks with LTRC data

time = T = pmin(dox,1555)
entry = X = pmax(doh-1,0)
status = & = 0 if censored, 1 if involuntary, 2 if other
= (2-TI)*(dox<1556)
aged0 = g = 0 if age less than 40, 1 if age 40 or older
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The test for a quadratic function g(t) =

(t —1)? is

obtained from cox.zph(r.cox, transform=function(t)

(t-t.bar)"2).
Received 19 August 2008
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