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Optimal designs for estimating critical effective
dose under model uncertainty in a dose response
study
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Toxicologists have been increasingly using a class of mod-
els to describe a continuous response in the last few years.
This class consists of nested nonlinear models and is used for
estimating various parameters in the models or some mean-
ingful function of the model parameters. Our work here is
first to address design issues for this popular class of mod-
els among toxicologists. Specifically we construct a variety
of optimal designs under model uncertainty and study their
properties for estimating the critical effective dose (CED),
which is model dependent. Two types of optimal designs are
proposed: one type maximizes the minimum of efficiencies
for estimating the CED regardless which member in the class
of models is the appropriate model, and (ii) maximin com-
pound optimal design that simultaneously selects the most
appropriate model and provides the best estimate for CED
at the same time. We compare relative efficiencies of these
optimal designs and commonly used designs for estimating
CED. To facilitate use of these designs, we have constructed
a website that practitioners can generate tailor-made designs
for their settings.
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Keywords and phrases: compound optimal design, criti-
cal effect size, local optimal design, maximin optimal design,
model discrimination, robust design.

1. INTRODUCTION

This paper addresses design issues for dose response stud-
ies in toxicology when the main outcome is continuous and
it is not known a priori which model is an appropriate one to
use. Under this situation, one may consider a class of plau-
sible models within which we believe lies an adequate model
for fitting the data at hand. The statistical issues are how
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to design the study to select the ‘best’ model from the class
of models and at the same time able to estimate the critical
effective dose (CED) in the selected model efficiently. The
estimated CED is the dose that toxicologists use to estimate
the dose that will result in a user-specified change in the con-
tinuous outcome after accounting for background noise. The
user-specified change in the continuous outcome is usually
expressed in terms of the critical effective size (CES) which
is also pre-selected.

Ideally, we want the design to be able to identify the
correct model from the postulated class of models and also
provide an efficient estimate for the CED, which is a func-
tion of the parameters in the identified model. In this paper,
it is further assumed for simplicity that there is only one in-
dependent variable, the dose level. The design space is the
range of dose levels of interest where the researcher selects
the dose levels to observe the outcome. Throughout, we as-
sume all design issues have to be decided in advance of the
study and so sequential designs are not considered.

The researcher has to select the number of dose levels
from the design space to observe the continuous outcome,
decide where these dose levels are and the number of repli-
cates at each of these dose levels. We further generalize the
design problem to one for finding continuous designs, mean-
ing that we now view designs as probability measures on the
design space. Continuous designs were proposed by Kiefer in
the late 1950s and have been shown to be much more amend-
able to analytical description and study than exact designs.
Throughout we denote a continuous design with mass pi at
xi, i = 1, . . . , k by ξ = {x1, x2, . . . , xk; p1, p2, . . . , pk}.

Here is a simple illustration of a continuous design on the
design space [0, 25]. Let ξ be a continuous design that takes
half the observations at dose level 5 and half at dose level
20. We denote this design by writing ξ = {5, 20; 1/2, 1/2};
the first part denotes the two dose levels and the latter part
denotes the corresponding proportion of observations to be
taken at each of the dose levels. An optimal (continuous)
design is one that maximizes or minimizes a given optimal-
ity criterion over all designs on the design space. Further
details and motivations for working with continuous designs
are given in the voluminous collection of papers by Kiefer
and edited by Brown et al. (1985). Optimal rounding proce-
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dures to convert a continuous design to an exact design for
implementation are given in Rieder and Pukelsheim (1992).

Addressing design issues invariably requires model as-
sumptions that specify how the mean outcome relates to
the independent variable. Usually a specific functional form
is assumed either from experts’ opinions or from the science
of the problem, see Gaylor and Chen (1993), Catalano et al.
(1993), Slob and Pieters (1998), Oscar (2004), Moerbeek,
Piersma and Slob (2004), among many others. When it is
problematic to specify a single model to describe the func-
tional relationship between the mean outcome and the dose
level, a common strategy is to work with a class of plausi-
ble nested models assumed to include the ‘true’ model. This
class of models is usually arrived at after consultation with
experts in the area. The plausible models within this class
should be nested allowing one to be built upon another; typ-
ically this means the ‘largest’ model has the largest number
of parameters and the next ‘largest’ model is obtained from
the ‘largest’ one by specifying one or more parameters equal
to some user-selected fixed values. Dette, Melas and Wong
(2005) considered a simple class of plausible models consist-
ing of either the Emax and Michaelis-Menten models. These
are very popular models in the biological sciences with the
Emax model defined by

E(Y ) =
axh

b + xh
.

Here Y typically is the velocity of the enzyme kinetics and
x is the substrate concentration. When h = 1, the Emax
model reduces to the Michaelis-Menten. Other values of h
permit greater flexibility for the Emax model to capture
skewed and steep responses as the substrate concentration
varies. Once this class is identified, one works assuming the
‘largest’ model holds. For example, Dette, Melas and Wong
(2005) sought an efficient design to estimate h in the Emax
model as accurately as possible and at the same time also
have efficient estimates for the parameters a and b should
the Michaelis-Menten model hold.

The motivation for this work comes from repeated pro-
posals recently in the toxicology literature to use a class
of models to study a continuous outcome in toxicological
studies [Moerbeek, Piersma and Slob (2004), Piersma et al.
(2002), Woutersen et al. (2001), Slob (2002)]. In all these
papers, the interest was only in estimation problems and
so they did not consider design issues. As is typical in such
publications, the rationale for their designs is not explained.
Here are a few examples of designs used in toxicological
studies and their outcomes. In Piersma et al. (2002), rats
were prenatally exposed to diethylstilbestrol and the design
had 16 animals in each of the 10 dose groups at 0, 1.0, 1.7,
2.8, 4.7, 7.8, 13, 22, 36 and 60 mg/kg body weight per day.
In Woutersen et al. (2001), rats were exposed to Rhodorsil
Silane in a 28-day toxicity study and 3 designs were em-
ployed: the first one had 10 rats in each of the 7 dose groups
(7 × 10 design) and the second had 5 rats in each of the 7

dose groups; the 7 dose groups were 0, 50, 150, 300, 450, 600
and 750 mg/kg body weight/day. The third had 10 rats in
each of the 4 dose groups at 0, 50, 150 and 450 mg Rhodor-
sil Silane/kg body weight/day. There were many continu-
ous outcomes in each of these studies. The continuous out-
comes in these studies ranged from maternal body weight
on gestation day 21, maternal serum estradiol concentra-
tion at gestation day 21, weights of fetuses at gestation day
21, measures in haematology and clinical chemistry to im-
munological responses such as IgG and IgM to sheep red
blood cell challenge and pup weights at days 1 and 21. In
Woutersen et al. (2001), their main goals were to estimate
various critical effective doses; these are doses that will re-
sult in a user-specified level of toxicity found in rats over the
background noise. In the discussion section, we comment on
the performance of these designs.

In this paper, we develop optimal designs for identifying
an appropriate model within the class of models and also
at the same time provide a reliable estimate for the criti-
cal effect dose (CED) in the selected model. Design issues
are always difficult to address and we begin first by consid-
ering local optimal designs because they are the easiest to
construct for nonlinear models (Chernoff, 1953). These de-
signs require the user to supply nominal values of the model
parameters before the optimal design can be constructed.
Nominal values represent the best guess for the true val-
ues of the set of parameters and are usually obtained either
from prior similar experiments or experts’ opinions. When
model assumptions are mis-specified, local optimal design
can lose substantial efficiency. To overcome this risk, we pro-
pose maximin optimal designs that have been shown to be
robust to mis-specification of model assumptions in other
settings, see for example, Biedermann, Dette and Pepely-
shev (2006) and Dette et al. (2008). These maximin optimal
designs maximize the minimum efficiency regardless which
model in the class of models is the appropriate model. As
such, these optimal designs provide some protection against
picking a wrong model from the postulated class. We also
construct a compound optimal design to account for the
dual objectives of discriminating models and estimating the
CED simultaneously.

In Section 2, we describe the class of nonlinear models
and the design criterion for estimating CED. We describe
relationships among models in the class and provide local
optimal design for estimating the CED for each member in
the class. We also show how an optimal design constructed
for a specific setup can be used to deduce the optimal de-
sign under another setup where assumptions on the design
space and model parameters are different. In Section 3, we
construct maximin optimal designs and compound optimal
designs for toxicology studies and assess their robustness
properties to model mis-specification and their effectiveness
for discriminating between models and estimating CED at
the same time. We also compare performance of selected uni-
form designs that are intuitively appealing to practitioners.
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These designs take an equal number of observations over
a set of equally spaced dose levels. In Section 4, we dis-
cuss four practical issues. First, we construct and compare
corresponding optimal designs for log-normally distributed
outcomes, which is another popular assumption used by tox-
icologists. Secondly, we investigate efficiencies of several de-
signs used by toxicologists. Thirdly, we perform a simulation
study to assess how our optimal designs perform in a real
example with a relatively small sample size. Finally, we in-
troduce the reader to our design web site that the reader
can use freely to generate a variety of optimal designs for
a broad range of models frequently used in the biological
sciences, including optimal designs proposed in this paper.
We conclude the paper by noting that our proposed design
strategy represents a first step in finding an efficient design
for this difficult problem. For most practical applications,
optimal designs found here will have to be refined sequen-
tially before they can be implemented.

2. MODEL UNCERTAINTY AND
CED-OPTIMALITY

Moerbeek, Piersma and Slob (2004), Woutersen et al.
(2001), Piersma et al. (2002) and Slob (2002) used the fol-
lowing class of models in several toxicological studies. These
authors showed with justifications that the class of models is
sufficiently flexible to accommodate typical continuous out-
comes of interest in toxicological studies. For each of these
models defined on the given design space [0, T ], Y is the
response and t is the dose level:

E(Y ) = ae−bt with a > 0, b > 0,(2.3)

E(Y ) = ae−btd

with a > 0, b > 0, d ≥ 1,(2.4)

E(Y ) = a(c − (c − 1)e−bt) with a > 0, b > 0, c ≥ 0,(2.5)

E(Y ) = a(c − (c − 1)e−btd

)(2.6)
with a > 0, b > 0, c ≥ 0, d ≥ 1.

This class consists of models nested within one another,
where ‘smaller’ models can be obtained from the ‘largest’
model by setting specific parameters in the ‘largest’ model
equal to specific values. All observations are assumed to be
independent normally distributed with the same variance,
say σ2 > 0, and the expectation of Y observed at t is given
by

E[Y ] = η(t, θ)

where η(t, θ) is one of the functions (2.3)–(2.6) and all pa-
rameters in the mean response are components of the p× 1-
vector parameter θ. In what is to follow, we suppress the p-
dimensional parameter θ in η(t, θ) for simplicity when there
is no confusion.

In toxicological studies with a continuous outcome, the
benchmark response is usually expressed in terms of a criti-
cal effect size (CES). This is the amount that we expect the

percent change in the average level of the outcome compared
with the background noise. In practice, CES is user-specified
and traditionally set equal to 0.05 or 0.10. For a given mean
response η(t) and a user-selected CES, the critical effective
dose CED is calculated from

CES =
η(0) − η(CED)

η(0)

if η(t) is a decreasing function. All our functions η(t) defined
in (2.3)–(2.6) are decreasing.

The parameters in the above models may or may not
all have meaningful interpretations, but frequently a re-
parametrization of the mean function or working with a
function of the model parameters has a practical meaning.
By inverting the above functions, such as the mean function
in (2.6), it is straightforward to show that

CED = CED(b, d, c) =

(
−

ln c−1+CES
c−1

b

) 1
d

.

The corresponding expressions for CED for other models
can be directly deduced by setting c = 0 for models (2.3)
and (2.4) and by setting d = 1 for models (2.3) and (2.5).
Thus the CED is the dose that results in a percent change
in the mean response relative to the background noise and
the magnitude of the anticipated change is specified by the
critical effect size.

To estimate the confidence interval for CED for a specific
model using design ξ, one uses the delta method to obtain
its asymptotic variance and then finds a design to minimize
it. Specifically, we have

Var(ĈED) ≈ σ2

N
Φ(ξ)

where

Φ(ξ) = gT (θ)M−(ξ, θ)g(θ) and g(θ) =
∂CED

∂θ
.

For the vector of the parameters θ = (a, b, d, c)T the lo-
cal CED-optimal design minimizes the function Φ(ξ) by
choice of the design ξ. The matrix M(ξ, θ) in the above
expression is the information matrix for the specific model
η(t) using an arbitrary design ξ and M−(ξ, θ) is a general-
ized inverse of M(ξ, θ). We call a design nonsingular if its
information is nonsingular; otherwise it is a singular design.
For a specific model η, let f(t, θ) = ∂η(t,θ)

∂θ and recall that
the information matrix is given by

M(ξ, θ) =
∫ T

0

f(t, θ)fT (t, θ)dξ(t).

The corresponding regression vectors f(t, θ) for different
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models are

f (2.3)(t, θ) = f(t, a, b) = (e−bt,−ate−bt)T ,

f (2.4)(t, θ) = f(t, a, b, d)

= (e−btd

,−atde−btd

,−abtd ln(t)e−btd

)T ,

f (2.5)(t, θ) = (c − (c − 1)e−tb, a(c − 1)te−tb, a(1 − e−tb))T ,

f (2.6)(t, θ) =
(
c − (c − 1)e−btd

, a(c − 1)tde−btd

,

a(c − 1)td ln(t)be−btd

, a(1 − e−btd

)
)T

and the corresponding vectors g(θ) are

g(2.3)(θ) = g(a, b) =

(
0,

ln(1 − CES)

b2

)T

,

g(2.4)(θ) =

(
0,− 1

db

(
− ln(1 − CES)

b

) 1
d

− 1

d2

(
− ln(1 − CES)

b

) 1
d

ln

(
− ln(1 − CES)

b

))T

,

g(2.5)(θ) =

(
0,

ln c−1+CES
c−1

b2
,

1 − c−1+CES
c−1

b(c − 1 + CES)

)T

,

g(2.6)(θ) =

(
0,− 1

db

(
−

ln c−1+CES
c−1

b

) 1
d

− 1

d2

(
−

ln c−1+CES
c−1

b

) 1
d

ln

(
−

ln c−1+CES
c−1

b

)
,

(
−

ln c−1+CES
c−1

b

) 1
d 1 − c−1+CES

c−1

d(c − 1 + CES) ln c−1+CES
c−1

)T

.

The next five technical results provide analytical descrip-
tions and properties of local CED-optimal design for each
model. The first one shows that local CED-optimal design
does not depend on the value of the parameter a, and the
next four results describe the structure of the local CED-
optimal designs for the four nonlinear models (2.3)–(2.6).
We provide an illustrative proof of our results for model (2.3)
only; the arguments for the other models are similar. For
our class of models, the results also show how optimal de-
sign for a particular design setting can be deduced from an-
other design setting by only considering values of b and T .
Our technical justifications use a celebrated geometric result
called Elfving’s theorem which is widely discussed in design
monographs, such as in Pázman (1986, p. 71) or Pukelsheim
(1993, p. 50). We provide only proofs for Lemma 2.1 and 2.2;
the rest are similar. All support points of the optimal design
are denoted by t∗i and its weight by w∗

i ; clearly these support
points and the weights depend on the model parameters and
the lemmas also show how they vary as model parameters
take on different values. These relationships allow us to de-
duce optimal design for one set of model parameters from
another.

Lemma 2.1. A local CED-optimal design does not depend
on a.

Proof. The statement follows from the fact that an optimal-
ity function have a form

Φ(ξ, θ) = a2−2pΦ(ξ, θ̃)

where (a, θ̃T ) = θT ∈ Rp and p is the number of parameters.

Lemma 2.2. Let u∗ ≈ 1.278 be a unique solution of equa-
tion e−u = u − 1. For model (2.3) a local CED-optimal
design does not depend on a and CES and is given by{

0, u∗/b;
e−u∗

1 + e−u∗ ,
1

1 + e−u∗

}

if T > u∗/b; otherwise it is given by{
0, T ;

e−bT

1 + e−bT
,

1
1 + e−bT

}
.

Proof. By Elfving’s theorem, there exists a representation

(2.7) vg = w∗
1f(t∗1) − w∗

2f(t∗2)

for some v ∈ R and gT M−(ξ∗)g = 1/v2. Moreover, points
of optimal design lie on the boundary of Elfving set. Thus,
one of the support points of the optimal design is t∗1 = 0.
For large enough values of T , the point f(t2) belongs to the
boundary if t2 is small; otherwise it does not. The crucial
value of t2 is a solution of the equation

f ′
2(t2)

f ′
1(t2)

=
f2(t2) + f2(0)
f1(t2) + f1(0)

.

Straightforward calculation shows the other support point
of the optimal design is at t∗2 = u∗/b. From the equation
for the first coordinate of (2.7), we determine directly the
weights w∗

1 and w∗
2 for the optimal design.

Lemma 2.3. For model (2.4), the local CED-optimal design
has one of three possible forms. It is either given by a 2-point
singular design{

0, CED;
1 − CES

2 − CES
,

1
2 − CES

}

if the parameter b is small enough, or it has the form

{0, t∗2, t
∗
3; w

∗
1 , w∗

2 , w∗
3}

if t∗3 < T ; otherwise the optimal design takes on the form

{0, t∗2, T ; w∗
1 , w∗

2 , w∗
3}.

Moreover, for 3-point optimal designs, we have

t∗i (b, d, T ) = Tt∗i (bT
d, d, 1), w∗

i (b, d, T ) = w∗
i (bT d, d, 1).

t∗i (b, 1, 1) = (t∗i (b, d, 1))d
, w∗

i (b, 1, 1) = w∗
i (b, d, 1).
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Table 1. Local CED-optimal designs for model (2.3) and for model (2.6) with d = 1, c = 0 on the design space [0, T ] for
various values of the parameter b and CES = 0.05

model (2.3) model (2.6)
T b t1 t2 w1 w2 t1 t2 t3 t4 w1 w2 w3 w4

1 0.1 0 1 0.475 0.525 0 0.513 0.487 0.513
1 0.5 0 1 0.377 0.623 0 0.103 0.487 0.513
1 1.0 0 1 0.269 0.731 0 0.113 0.596 1 0.388 0.479 0.097 0.036
5 0.1 0 5 0.377 0.623 0 0.513 0.487 0.513
5 0.5 0 2.557 0.218 0.782 0 0.430 2.482 5 0.337 0.463 0.141 0.058
5 1.0 0 1.278 0.218 0.782 0 0.277 1.718 5 0.316 0.454 0.159 0.071

Table 2. Local CED-optimal designs for model (2.4) with d = 1 and for model (2.5) with c = 0 on the design space [0, T ] for
various values of the parameter b and CES = 0.05

model (2.4) model (2.5)
T b t1 t2 t3 w1 w2 w3 t1 t2 t3 w1 w2 w3

1 0.1 0 0.513 0.487 0.513 0 0.513 0.487 0.513
1 0.5 0 0.305 1 0.378 0.515 0.106 0 0.459 1 0.353 0.532 0.115
1 1.0 0 0.251 1 0.344 0.511 0.145 0 0.418 1 0.317 0.554 0.129
5 0.1 0 1.523 5 0.378 0.515 0.106 0 2.293 5 0.353 0.532 0.115
5 0.5 0 0.672 4.507 0.305 0.462 0.233 0 1.553 5 0.261 0.593 0.146
5 1.0 0 0.336 2.253 0.305 0.462 0.233 0 0.966 5 0.232 0.613 0.155

For a 3-point optimal design, Elfving theorem implies
that the weights of the optimal design are solutions of the
equation

(g
...f(t∗3) − f(0)

...f(t∗3) + f(t2))(v, w1, w2)T = f(t∗3)

and t2 = t∗2 is the middle support point of the optimal design
that solves ∂v/∂t2 = 0 where

v = v(t2) =
det(f(t∗3)

...f(t∗3) − f(0)
...f(t∗3) + f(t2))

det(g
...f(t∗3) − f(0)

...f(t∗3) + f(t2))
.

There is no explicit solution for model (2.4) but there is an
explicit solution for model (2.5) as seen in the next lemma.

Lemma 2.4. For model (2.5), the local CED-optimal design
has one of two forms. It is either given by a 2-point singular
design {

0, CED;
1 − CES

2 − CES
,

1
2 − CES

}

if the parameter b is small enough or c is large enough; oth-
erwise, it has the following form

{0, t∗2, T ; w∗
1 , w∗

2 , w∗
3},

where

t∗2 = t∗2(b, c, T ) =
1 − (1 + bT )e−bT

b(1 − e−bT )
.

Moreover, for 3-point optimal designs, we have

t∗i (b, c, T ) = Tt∗i (bT, c, 1), w∗
i (b, c, T ) = w∗

i (bT, c, 1),

and the points t∗i (b, c, T ) do not depend on c.

Lemma 2.5. For model (2.6), the local CED-optimal design
has one of two form. It is either a singular 2-point design
given by {

0, CED;
1 − CES

2 − CES
,

1
2 − CES

}

if the parameter b is small enough or c is large enough; oth-
erwise it has the form

{0, t∗2, t
∗
3, T ; w∗

1 , w∗
2 , w∗

3 , w∗
4}.

Moreover, for 4-point optimal designs, we have

t∗i (b, d, c, T ) = Tt∗i (bT
d, d, c, 1), w∗

i (b, d, c, T ) = w∗
i (bT d, d, c, 1),

t∗i (b, 1, c, 1) = (t∗i (b, d, c, 1))
d
, w∗

i (b, 1, c, 1) = w∗
i (b, d, c, 1)

and the points t∗i (b, d, c, T ) do not depend on c.

Tables 1 and 2 show local CED-optimal designs for each
of the four models when CES = 0.05 and selected values
for b and T . As is described in the above results, the local
CED-optimal design may be a singular 2-point design for
models (2.4)–(2.6) or a saturated design where the number
of points equal to the number of model parameters.

3. MAXIMIN CED-OPTIMAL DESIGN AND
COMPOUND OPTIMAL DESIGN

The local optimal design for estimating CED depends on
the assumed model and the nominal values of the model pa-
rameters. When the nominal values are mis-specified, local
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Table 3. Maximin CED-optimal designs for models (2.3)–(2.6) on the design space [0, T ] for various values of the parameter b
with d = 1, c = 0 and CES = 0.05 and their efficiencies

T b t1 t2 t3 t4 w1 w2 w3 w4 eff
(2.3)
CED eff

(2.4)
CED eff

(2.5)
CED eff

(2.6)
CED

1 0.1 0 0.513 1 0.417 0.296 0.287 0.686 0.686 0.686 0.692
1 0.5 0 0.183 0.612 1 0.299 0.228 0.231 0.242 0.597 0.636 0.597 0.597
1 1.0 0 0.170 0.594 1 0.261 0.217 0.288 0.234 0.615 0.615 0.615 0.615
5 0.1 0 0.914 3.059 5 0.299 0.228 0.231 0.242 0.597 0.636 0.597 0.597
5 0.5 0 0.820 2.451 5 0.237 0.292 0.350 0.121 0.655 0.655 0.655 0.655
5 1.0 0 0.529 1.545 5 0.236 0.366 0.326 0.072 0.639 0.639 0.639 0.673

optimal designs can lose substantial efficiency. This prob-
lem is further compounded when there is model uncertainty.
This implies that local optimal designs while potentially use-
ful as a starting point, are unlikely to be adequate for practi-
cal implementation. However, local optimal designs are use-
ful as a first step to constructing more versatile and robust
designs to model assumptions. We now discuss two design
strategies that utilize local optimal designs.

The maximin approach of designing a study provides an
alternative that can be appealing [see Dette (1995), Müller
(1995) and Müller and Pázman (1998) among others]. Pro-
cedurally, one first considers the efficiency of a design for
estimating the CED relative to each of the models; among
these relative efficiencies, the maximin CED-optimal design
is the one that maximizes the minimum of these relative ef-
ficiencies. Technically, for a fixed θ we call the design that
maximizes

min{eff(2.3)
CED(ξ, θ), eff(2.4)

CED(ξ, θ), eff(2.5)
CED(ξ, θ), eff(2.6)

CED(ξ, θ)}

over all designs on the design space a maximin CED-
optimal design, where CED-efficiency (for each model) is
given by

effCED(ξ) =
minξ̃ Φ(ξ̃)

Φ(ξ)
.

The last ratio is obviously a number between 0 and 1
and represents the reduction in sample size from use of the
optimal design compared with using the design ξ for the
same level of precision for estimating CED. For example if
effCED(ξ) = 0.5, the design ξ needs to be replicated twice to
obtain an CED estimate as accurate as the estimate from the
local optimal design. As expected, maximin optimal designs
are difficult to find and defy analytical description. They
have to be found numerically and several maximin optimal
designs are shown in Table 3 for selected values of b and
T , along with their efficiencies relative to the local CED-
optimal designs for models (2.3)–(2.6).

In practice, maximin CED-optimal designs are found by
first maximizing the optimality criterion within the class of
all 4-point designs on the given design space. This is because
4 points are required for CED estimation in all models (2.3)–
(2.6). The optimization is performed with the NelderMead
algorithm in the matlab package. After the optimal 4-point

Table 4. Maximin compound designs for models (2.3)–(2.6)
on the design space [0, T ] for various values of the parameter

b with d = 1, c = 0 and CES = 0.05
T b t1 t2 t3 t4 w1 w2 w3 w4

1 0.1 0 0.173 0.622 1 0.361 0.152 0.281 0.205
1 0.5 0 0.183 0.612 1 0.299 0.228 0.231 0.242
1 1.0 0 0.170 0.594 1 0.261 0.217 0.288 0.234
5 0.1 0 0.914 3.059 5 0.299 0.228 0.231 0.242
5 0.5 0 0.698 2.398 5 0.186 0.225 0.298 0.291
5 1.0 0 0.639 1.899 5 0.147 0.267 0.240 0.347

design is found, we next search for the optimal design within
the class of all 5 points designs, and repeat the procedure,
each time increasing the number of points by unity, until no
reduction in the criterion value is observed.

We can further extend our design strategy to discriminate
models and estimating parameters at the same time using a
maximin approach. To do this, we first set the design criteria
for discriminating between each pair of models and for CED
estimation. Specifically, for a fixed θ we call the design that
maximizes

min{eff(2.3)
CED(ξ, θ), eff(2.4)

CED(ξ, θ), eff(2.5)
CED(ξ, θ),

eff(2.6)
CED(ξ, θ), eff(2.4)−(2.3)(ξ, θ), eff(2.5)−(2.3)(ξ, θ),

eff(2.6)−(2.5)(ξ, θ), eff(2.6)−(2.4)(ξ, θ)}

over all designs on the design space a maximin compound
design where eff(M1)−(M2)(ξ, θ) is an efficiency of design ξ
for discrimination two models M1 and M2. Such designs
are efficient for CED estimation in the selected model af-
ter model discrimination. Table 4 displays exemplary max-
imin optimal designs and Table 5 shows their efficiencies for
estimating CED under each model and for discriminating
between pairs of models.

Our proposed maximin compound designs are still local
in the sense that they depend on nominal values of the pa-
rameters. One could in principle incorporate the uncertainty
of the nominal values at the design stage as well similar to
the approach proposed in Biedermann, Dette and Pepely-
shev (2006), Dette et al. (2008). We do note that our small
scale investigation showed that maximin optimal designs are
not sensitive to small changes in the nominal values of the
parameters in the models considered here.
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Table 5. CED-Efficiencies and efficiencies of discrimination of maximin compound designs for models (2.3)–(2.6) on the
design space [0, T ] for various values of the parameter b with d = 1, c = 0 and CES = 0.05

CED efficiency Efficiency of discrimination
T b (2.3) (2.4) (2.5) (2.6) (2.4)–(2.3) (2.5)–(2.3) (2.6)–(2.5) (2.6)–(2.4)

maximin compound design

1 0.1 0.610 0.620 0.620 0.610 0.622 0.651 0.610 0.694
1 0.5 0.597 0.637 0.597 0.597 0.678 0.634 0.720 0.737
1 1.0 0.615 0.615 0.615 0.615 0.643 0.626 0.743 0.803
5 0.1 0.597 0.637 0.597 0.597 0.677 0.634 0.720 0.737
5 0.5 0.605 0.633 0.605 0.605 0.697 0.605 0.716 0.813
5 1.0 0.456 0.456 0.596 0.474 0.456 0.456 0.527 0.517

Table 6. Maximin CED-optimal designs for models (2.3)–(2.6) with lognormality assumption on the design space [0, T ] for
various values of the parameter b with d = 1, c = 0 and CES = 0.05 and their efficiencies

T b t1 t2 t3 t4 w1 w2 w3 w4 eff
(2.3)
CED eff

(2.4)
CED eff

(2.5)
CED eff

(2.6)
CED

1 0.1 0 0.513 1 0.430 0.289 0.281 0.691 0.691 0.691 0.691
1 0.5 0 0.196 0.638 1 0.334 0.224 0.221 0.221 0.620 0.655 0.620 0.620
1 1.0 0 0.195 0.655 1 0.326 0.202 0.240 0.232 0.636 0.636 0.636 0.636
5 0.1 0 0.982 3.191 5 0.334 0.224 0.221 0.221 0.620 0.655 0.620 0.620
5 0.5 0 1.188 3.485 5 0.334 0.198 0.238 0.231 0.643 0.643 0.643 0.643
5 1.0 0 1.450 3.758 5 0.347 0.204 0.239 0.211 0.644 0.644 0.644 0.644

4. DISCUSSION

This closing section has four purposes aimed at the prac-
titioners. The first purpose is to address distributional as-
sumption on the error terms; in particular we construct op-
timal designs under the assumption of log-normality and
compare results obtained under the normality assumption.
Secondly, we discuss efficiencies of designs used by toxicol-
ogists relative to our proposed optimal designs. The third
purpose is to evaluate how well our maximin optimal designs
perform in practice using a small simulation study. The final
purpose is to draw attention to our design web site where
many types of optimal designs for several models can be gen-
erated under user-specified settings. We end the paper with
closing remarks on how to implement the proposed optimal
designs in practice.

4.1 Distributional assumptions

Sometimes toxicologists prefer to assume the continuous
outcomes are log-normally distributed, see for example, Slob
(2002). The dose-response model is fitted on the log-scale,
where both the model and the data are log-transformed.
After fitting the model, the model and the data may be back-
transformed to the original scale for purposes of plotting
and interpretation. We now show how our method can be
extended to accommodate the log-normality assumption to
find optimal designs.

It suffices to note here that we now assume logarithm of
different observations are independent with the same vari-
ance, say σ2 > 0, and have expectation

E[lnY ] = ln η(t, θ)

where η(t, θ) is one of the 4 functions listed at the beginning
of Section 2. Proceeding as in Section 2, one obtains an
expression for the CED and the asymptotic variance of the
estimated CED. The key difference is that the information
matrix is now given by

M̃(ξ, θ) =
∫ T

0

f̃ (t, θ)f̃T (t, θ)dξ(t)

where f̃(t, θ) = 1
η(t,θ)

∂η(t,θ)
∂θ .

It follows that the vector f̃(t, θ) for each model is now
different from the one under normality assumption in Sec-
tion 2. However, the vector g(θ) for each model remains
the same whether we assume the errors are normally or
log-normally distributed. The next few tables display se-
lected maximin CED-optimal designs (Table 6), maximin
compound optimal designs (Table 8) under log-normal as-
sumption and their efficiencies. From Tables 3 and 6, we
observe that the maximin optimal designs obtained under
the normality and log-normality assumptions do not appear
to be substantially different. The same is observed for max-
imin compound designs in Tables 4 and 7.

4.2 Efficiencies of commonly used designs

Now we discuss efficiencies of designs described in Sec-
tion 1 relative to our proposed optimal designs. Recall that
these are some of the types of designs commonly used by
toxicologists in practice. Specifically, designs and nominal
values of parameters are taken from Woutersen et al. (2001)
and Piersma et al. (2002). We list their various efficiencies
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Table 7. Maximin compound designs for models (2.3)–(2.6)
with lognormality assumption on the design space [0, T ] for

various values of the parameter b with d = 1, c = 0 and
CES = 0.05

T b t1 t2 t3 t4 w1 w2 w3 w4

1 0.1 0 0.176 0.628 1 0.374 0.155 0.271 0.200
1 0.5 0 0.196 0.638 1 0.334 0.224 0.221 0.221
1 1.0 0 0.199 0.659 1 0.325 0.202 0.242 0.232
5 0.1 0 0.981 3.191 5 0.334 0.224 0.221 0.221
5 0.5 0 1.174 3.469 5 0.322 0.199 0.241 0.238
5 1.0 0 1.357 3.683 5 0.312 0.206 0.250 0.233

in Table 9 relative to our optimal designs constructed un-
der the log-normality assumption. Generally, the efficiencies
of these designs are low for estimating CED or for discrim-
inating between competing models in the stipulated class.
They range from as low as 2% to mostly below 50%, and in
a couple of instances about 67% for model discrimination.

We see that in nearly all cases the minimal efficiency of the
maximin compound design is greater than the efficiencies
of the designs used by toxicologists. Additional calculations
not shown here also reveal that the efficiencies of maximin
compound designs are higher than the corresponding effi-
ciencies of the commonly used designs by at least 10%. This
means that any confidence interval for CED constructed
from the maximin optimal design is at least 10% shorter
than those from the commonly used designs. In many cases
the improvement is even more substantial. We also compare
performance of these commonly used designs with optimal
designs constructed under the normality assumption and the
overall results are quite similar.

4.3 Performance of maximin optimal design
in practice

All our optimal designs were found under a large sam-
ple assumption. These optimal designs minimize the asymp-
totic variance of the estimated CED obtained via the delta

Table 8. CED-Efficiencies and efficiencies of discrimination for compound optimal designs for models (2.3)–(2.6) on the
design space [0, T ] with lognormality assumption and various values of the parameter b with d = 1, c = 0 and CES = 0.05

CED efficiency Efficiency of discrimination
T b (2.3) (2.4) (2.5) (2.6) (2.4)–(2.3) (2.5)–(2.3) (2.6)–(2.5) (2.6)–(2.4)

maximin compound design

1 0.1 0.614 0.622 0.627 0.614 0.628 0.648 0.614 0.688
1 0.5 0.620 0.655 0.620 0.620 0.675 0.628 0.721 0.727
1 1.0 0.636 0.636 0.636 0.636 0.645 0.636 0.707 0.753
5 0.1 0.620 0.655 0.620 0.620 0.675 0.628 0.722 0.727
5 0.5 0.643 0.643 0.643 0.643 0.649 0.643 0.678 0.730
5 1.0 0.640 0.640 0.640 0.640 0.644 0.640 0.662 0.729

Table 9. CED-Efficiencies and efficiencies of discrimination for designs used by toxicologists for models (2.3)–(2.6) with
lognormality assumption on the design space [0, T ] for various values of the parameter b, d and c and CES = 0.05 where M∗

is the minimal efficiency of maximin compound design

CED efficiency Efficiency of discrimination
b c d M∗ (2.3) (2.4) (2.5) (2.6) (2.4)–(2.3) (2.5)–(2.3) (2.6)–(2.5) (2.6)–(2.4)

design 0, 0.5, 1.5, 3, 4.5, 6, 7.5 (in 100 mg/kg scale), T = 7.5

0.04 1 0 0.597 0.492 0.504 0.563 0.361 0.558 0.579 0.594 0.666
0.06 1 0 0.616 0.492 0.517 0.570 0.419 0.558 0.579 0.594 0.666
0.09 1 0 0.628 0.492 0.526 0.574 0.464 0.558 0.579 0.594 0.665

design 0, 0.5, 1.5, 4.5 (in 100 mg/kg scale), T = 7.5

0.04 1 0 0.597 0.217 0.375 0.185 0.551 0.245 0.057 0.126 0.032
0.06 1 0 0.616 0.217 0.348 0.165 0.497 0.245 0.053 0.121 0.028
0.09 1 0 0.628 0.217 0.331 0.150 0.375 0.245 0.047 0.114 0.024

design 0, 0.5, 1.5, 4.5 (in 100 mg/kg scale), T = 4.5

0.04 1 0 0.607 0.602 0.526 0.398 0.548 0.681 0.498 0.370 0.294
0.06 1 0 0.596 0.602 0.566 0.406 0.517 0.681 0.493 0.364 0.286
0.09 1 0 0.612 0.602 0.590 0.406 0.490 0.681 0.485 0.356 0.274

design 0, 1.0, 1.7, 2.8, 4.7, 7.8, 13, 22, 36, 60, T = 60

0.10 1 0 0.638 0.380 0.491 0.352 0.360 0.493 0.328 0.346 0.257
0.10 .5 0 0.613 0.380 0.440 0.352 0.478 0.488 0.328 0.613 0.640
0.04 .5 0 0.609 0.380 0.411 0.449 0.360 0.488 0.417 0.610 0.641
0.10 1 .9 0.614 0.380 0.491 0.417 0.319 0.493 0.529 0.551 0.265
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Table 10. Simulated normalized variance of CED for several
true values of parameters

b d c Var(ĈED) with ξmm Var(ĈED) with ξu

0.10 1.0 0.0 3.77 5.56
0.10 0.5 0.0 172.1 250.3
0.06 0.5 0.0 1821.0 3011.2
0.10 1.0 0.2 13.84 20.81
0.10 1.0 0.9 1850.4 3106.8

method. For this reason it is important to investigate the
superiority of the optimal designs for sample size observed
in practice. The purpose here is to briefly compare variances
of the estimated CED from the maximin CED-optimal de-
sign and a design used by toxicologists in a real example
with a relatively small sample size.

In Piersma et al. (2002), rats were prenatally exposed
to diethylstilbestrol and the implemented design ξu had 6
animals in each of the 10 dose groups at 0, 1.0, 1.7, 2.8,
4.7, 7.8, 13, 22, 36 and 60 mg/kg body weight per day.
This means that we have 60 observations on the design
space [0, 60]. The maximin CED-optimal design ξmm for
b = 0.1, d = 1, c = 0 has four dose levels and is given
by {0, 5.2, 15.4, 60; 14/60, 21/60, 19/60, 6/60}.

We simulate data with a = 1 and σ = 0.05 and sev-
eral values of parameters b, d and c with 1000 replicates in
each simulation. In Table 10 we report simulated normalized
variances of the estimated CED from the two designs under
normality assumption. It is reassuring that we observe that
in all the cases considered here, the variance obtained from
the maximin optimal design ξmm is consistently smaller than
the variance obtained from the design ξu used in practice.
This implies that use of our proposed designs can save ex-
perimental cost for toxicologists and more importantly, in
reducing the number of animals required in the study. In
addition, unlike designs used by toxicologists, our designs
are based on firm statistical considerations.

4.4 A design web site for practitioners

We conclude this paper with a reference to our web site
where algorithms for generating optimal designs in this
paper have been implemented. We believe that to facili-
tate use of optimal design ideas in practice, design tools
should be readily available to practitioners. We thank the
National Institute of General Medical Sciences for funding
the construction and maintenance of the site. This site
is housed at http://www.optimal-design.org/ and at
http://optimal-design.biostat.ucla.edu/optimal/.
Visitors to these sites can freely generate a variety of
optimal designs for a broad range of models listed on the
site. The site also contains introductory optimal design
material.

Presently, the site contains a list of models commonly
used in the biological sciences, along with information and
references on optimal design issues. The visitor selects an

appropriate model, an optimality criterion and inputs pa-
rameters for the design problem. The generated design is
displayed, and when appropriate, is also accompanied by a
plot of the directional derivative of the optimality criterion.
Depending on the features exhibited in this plot, we may or
may not confirm the optimality of the generated design over
all designs on the design space. This site also calculates ef-
ficiencies of user-supplied designs so that practitioners can
easily compare their designs with the optimum and make
an informed decision whether to stray away from the opti-
mum and if so by how much. The program for generating
the proposed optimal designs in this paper can be found on
our web site under the link “Optimal Designs for Toxicology
Studies.” For space considerations, we omit discussion and
refer the reader to our web site for details. We hope that the
site will promote use of optimal design ideas in practice.

4.5 Closing remarks

The optimal designs constructed in this paper are all lo-
cally optimal in the sense that nominal values of the model
parameters are required to implement the designs. These
nominal values are usually obtained from pilot studies or es-
timates from the literature for similar studies. Clearly inac-
curate nominal values lead to a poor design, and so nominal
values should be selected carefully. Locally optimal designs
were proposed by Chernoff (1953) and they remain to date
a useful first step in the construction of an efficient design
for a nonlinear model.

In practice, the optimal design is constructed sequen-
tially. One uses the current nominal values of the model
parameters to construct the locally optimal design, and use
the design to estimate the model parameters. Our experi-
ence is that after a few iterations, there is convergence and
the optimal design becomes stable and does not change any-
more with more iterations. An efficient way to achieve con-
vergence is to use the sequential approach discussed in Hu
and Zhang (2004) for finding an optimal design. Alterna-
tively, a response-adaptive approach can also be applied to
target the optimal design sequentially; see Hu and Rosen-
berger (2006) for details.
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