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Bayesian non-randomized response models for

surveys with sensitive questions

GUoO-L1ANG TI1AN, KaM CHUEN YUEN,
MAN-LAIT TANG AND MING T. TAN

Three non-randomized response (NRR) models (namely,
the non-randomized triangular, crosswise and hidden sen-
sitivity models) have recently been developed for analyzing
dichotomous sensitive questions. Unlike existing randomized
response (RR) models, no randomizing device is required
for NRR models. This helps to reduce the cost, increase the
efficiency, ensure the reproducibility, widen the applicabil-
ity and encourage the cooperation. However, in applications
(e.g., estimating the proportion of a rare sensitive attribute
in a population) with highly skewed likelihood functions,
classical asymptotic methods based on maximum likelihood
estimates and their asymptotic standard errors may not be
adequate. The purposes of this article are two folds. First,
we develop Bayesian approaches for analyzing dichotomous
sensitive questions based on the aforementioned NRR mod-
els. For both the non-randomized triangular and crosswise
models, we obtain the exact posterior distribution and its
explicit posterior moments, derive posterior mode via the
EM algorithm and provide procedure for generating i.i.d.
posterior samples. For the hidden sensitivity model, we con-
sider Bayesian analysis under the commonly used conjugate
Dirichlet prior. Second, noting that the covariance structure
associated with the Dirichlet distribution is completely non-
positive, we propose three new joint priors for modeling in-
dependence structure with restrictions, negative correlation
structure and positive correlation structure, respectively. A
new hierarchical modeling strategy is provided. Importance
sampling and data augmentation algorithm are employed to
compute posterior moments and generate posterior samples.
Three data sets from a sensitive sexual behavior study, an
induced abortion study and a HIV study are used to illus-
trate the proposed methodologies.

KEYWORDS AND PHRASES: Bayesian method, DA algo-
rithm, EM algorithm, Non-randomized response models,
Randomized response technique, Sensitive questions.

1. INTRODUCTION

Asking people questions and collecting their responses is
an important source of information that informs decision
making in many medical studies, public health policies and

social issues. However, asking sensitive questions is gener-
ally seen as problematic in survey research due to concerns
about information privacy. Because of these concerns, some
respondents might intentionally give false information or
simply refuse to divulge any information at all. As a result,
directly asking sensitive questions is prone to error and bias.
In order to increase the reliability and validity of responses,
a number of strategies have been developed to minimize the
likelihood of such error and bias.

The randomized response (RR) technique proposed by
Warner (1965) is perhaps the first attempt to obtain more
reliable information for estimating the proportion of a sensi-
tive attribute in a population without revealing any respon-
dent’s actual status. However, a randomizing device (RD) is
necessary and must be provided to each respondent to deter-
mine whether he/she needs to answer the sensitive question
directly (with probability p) or the complement of the sensi-
tive question (with probability 1 — p). Possible RDs include
spinner with an arrow pointer, colored plastic balls/beads,
coins, dice and poker chips. The requirement of RDs almost
restricts the applicability of Warner RR model to face-to-
face interview only; otherwise, inevitably increases the cost
of the survey. Even worse, Warner model does not work
for p = 1/2, which is a fatal limitation for obtaining trust
from interviewees. In addition, Warner model is usually criti-
cized by its inefficiency. To overcome some of the above lim-
itations, Horvitz et al. (1967) and Greenberg et al. (1969)
developed an unrelated question RR model. Subsequently,
other authors (Kuk, 1990; Mangat & Singh, 1990; Mangat,
1994; Chang & Liang, 1996; Zou, 1997; Gjestvang & Singh,
2006) suggested various modified RR models. Nonetheless,
all these RR techniques heavily rely on those interviewer-
controlled RDs, resulting in high cost, low cooperation and
lack of reproductivity.

To overcome these drawbacks associated with RR mod-
els, two non-randomized response (NRR) models, namely
the triangular and crosswise models, were developed recently
by Yu et al. (2008) for a single sensitive dichotomous ques-
tion. Tian et al. (2007) proposed a non-randomized hidden
sensitivity (HS) model for analyzing the association between
two sensitive dichotomous questions. Unlike traditional RR
models, the NRR models utilize an independent (or unre-
lated) non-sensitive question (e.g., season of birth) in the
survey to indirectly obtain a respondent’s answer to a sen-
sitive question. In general, the non-randomized triangular
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Table 1. The triangular model and the corresponding cell probabilities

Categories | W=0W =1 Categories W=0 W=1 Total
Y=0 O . Y=0 1-m1-p) @QA-m)p| 1-—m
Y=1 . . Y=1 (1 —p) TP ™

Total 1—p D 1

Respondent: Please truthfully put a tick in the circle or in the triangle formed by the three dots.

design is more efficient than the randomized Warner design.
Most importantly, all NRR designs do not require any RDs
and hence substantially reduce the cost, improve the coop-
eration, and ensure the reproductivity.

Although the aforementioned NRR models have been
shown to be very useful to surveys involving sensitive ques-
tions, existing classical analysis methods based on maximum
likelihood estimates and their asymptotic standard errors
may not be adequate in applications (e.g., estimating the
proportion of a rare sensitive attribute in a population) with
highly skewed likelihood function.! In addition, when in-
vestigators have some knowledge about the parameters of
interest before they obtain the data, Bayesian estimation
methods may be more appealing. For instance, Greenberg
et al. (1969) suggested that if a membership in the sensi-
tive group really possesses a socially disapproved attribute
it is reasonable to assume that the corresponding propor-
tion should be in neighborhood of 0.05 and 0.10. Winkler &
Frankin (1979), Pitz (1980) and Spurrier & Padgett (1980)
presented Bayesian approaches for the Warner and unre-
lated question RR models, respectively, using parametric
models of prior information. Using the Bayes linear estima-
tor, similar results were obtained by O’Hagan (1987) from
a nonparametric model. Migon & Tachibana (1997) consid-
ered Bayesian approximation in RR model. Using the Gibbs
sampler, Unnikrisknan & Kunte (1999) developed an uni-
fied model for RR strategies of which the Warner, unrelated
question RR as well as polychotomous models are special
cases. Bar-Lev et al. (2003) presented a common Bayesian
approach to four RR models. DiPietro (2004) described a
data analysis project in the Bayesian framework. Kim et
al. (2006) provided Bayesian methods for Mangat’s (1994)
RR model.

The purposes of this article are two-fold. First, we develop
Bayesian approaches for the aforementioned three NRR
models under the commonly used beta or Dirichlet priors.
The main advantage of adopting the conjugate prior is for its
mathematical and computational simplicity. It is well known
that the covariance structure associated with the Dirichlet
distribution is completely non-positive. For those cases that
require positive covariance structures, the Dirichlet distri-
bution is not appropriate. Hence, it is the second purpose
of this paper to propose three new priors for modeling in-
dependence structure with restrictions, negative correlation

1See Figure 1(b) and (c) in §3. We note that the likelihood function
is entirely identical to the posterior distribution when the prior is a
uniform distribution.
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structure and positive correlation structure, respectively. A
new hierarchical modeling strategy is also proposed.

The rest of the paper are organized as follows. We first
briefly review the three NRR models and discuss some of
their advantages over the RR models in Section 2. In Sec-
tions 3 and 4, we obtain the exact posterior distributions and
their explicit posterior moments, derive posterior modes via
the EM algorithm and provide approach to generate i.i.d.
posterior samples for both the triangular and crosswise mod-
els, respectively. In Section 5, we present the Bayesian anal-
ysis for the HS model under a conjugate Dirichlet prior. We
then propose three new priors for different covariance struc-
tures. Importance sampling and data augmentation (DA)
algorithms are employed to compute the posterior moments
and generate posterior samples under the positive covariance
structure. Three data sets from a sensitive sexual behavior
study, an induced abortion study and a HIV study are used
to illustrate the proposed methods in Section 6. We finally
conclude in Section 7.

2. NON-RANDOMIZED RESPONSE
MODELS

2.1 The non-randomized triangular model
for one sensitive question

Let Y = 1 denote the class of people with a sensitive char-
acteristic (e.g., drug-taking) and Y = 0 the complementary
class. Let W be a dichotomous variate associated with a
non-sensitive question and independent of Y. For instance,
W =1 may represent the class of people who were born be-
tween July and December and W = 0 represents the corre-
sponding complementary class. The survey designer should
choose an appropriate W in such a way that the proportion
p = Pr(W = 1) is either known or can be estimated easily.
Without loss of generality, let p be known. The purpose is
to estimate the proportion 7 = Pr(Y = 1).

For a face-to-face personal interview, the survey designer
may replace the sensitive question by the tabular form pre-
sented on the left-hand side of Table 1 and ask the respon-
dent to put a tick in the circle or in the triangle formed by
the three dots according to his/her truthful status. It is note-
worthy that respondents to {Y = 0, W = 0} are simply non-
drug users born between January and June. In other words,
{Y = 0,W = 0} represents a non-sensitive subclass. On the
other hand, a tick in the triangle indicates the respondent
can be either a drug user or a non-drug user born between



Table 2. The crosswise model (Yu et al., 2008)

Categories | W=0W =1 Categories W =0 W=1 Total
Y =0 O . Y =0 1-m(1-p) @QA-m)p| 1—m
Yy=1 . O Y=1 w(1—p) TP ™

Total 1—p D 1
Respondent: Please truthfully put a tick in the diagonal with the two circles or the off-diagonal with the
two dots.
Table 3. Questionnaire for the hidden sensitivity (HS) model
Categories W=1 W =2 W =3 W =4
I {X=0,Y =0} Block 1: Block 2: Block 3: Block 4:

L{X=0,Y =1}

Category II: please put a tick in Block 2

M {X=1,Y =0}

Category II: please put a tick in Block 3

NV {X=1Y =1}

Category IV: please put a tick in Block 4

July and December. Therefore, {Y =1} U{Y =0,W =1}
can be regarded as a non-sensitive subclass as well. Such
camouflage would presumably encourage respondents to not
only participate in the survey but also provide truthful re-
sponses. In all subsequent discussion, this is called the ¢ri-
angular model.

2.2 The crosswise model for one sensitive
question

Besides the triangular model, we can consider the follow-
ing so-called crosswise model for analyzing a single sensitive
question. Let Y and W be defined in §2.1, p = Pr(W = 1)
and 7 = Pr(Y = 1). The interviewer may reformulate
the sensitive question in the format as shown on the left-
hand side of Table 2 and ask the interviewee to truth-
fully put a tick in either the diagonal with two circles
or the off-diagonal with two dots. It is important to no-
tice that both {Y = 0,W = 0} U{Y = 1,W = 1} and
{Y =0,W =1} U{Y = 1,WW = 0} are non-sensitive sub-
classes. Thus, whether an interviewee possesses the sensitive
attribute will not be exposed. Yu et al. (2008) showed that
this crosswise model is a non-randomized version of the orig-
inal Warner model.

2.3 The hidden sensitivity model for two
sensitive questions

Consider two binary sensitive variates X and Y. For the
sensitive variate X, let X = 1 denote the sensitive attribute
of a respondent (e.g., taking drug), and X = 0 the non-
sensitive one (e.g., not taking drug). For the sensitive variate
Y, let Y = 1 be the other sensitive attribute (e.g., HIV+)
and Y = 0 the non-sensitive one (e.g., HIV—). Let 6, =
Pr(X = 1), 0, = Pr(Y = 1), 6, = Pr(X = 0,Y = 0),
O =Pr(X =0,Y =1),0;3 =Pr(X =1,Y =0) and 64 =
Pr(X =1,Y =1). Hence, 0, = 03 + 04 and 0, = 6> + 6,.
A commonly used measure of association is the odds ratio

defined as § = 6104/(02603). The objective is to estimate 6,
0y, 0;s and 6.

To obtain reliable responses from respondents, we intro-
duce a non-sensitive variate W, which is independent of
(X,Y), with four mutually exclusive categories. Let p; =
Pr(W =) for i = 1,...,4. Like the triangular and cross-
wise models, the variate W should be chosen in such a way
that all p;s can be obtained or estimated easily. Therefore,
we assume that p;s are known. For example, let {W = i}
denote that a respondent was born in the i-th quarter and
we can thus assume that p;s are approximately all equal to
1/4.

Instead of directly answering the sensitive question, each
respondent is asked to answer a new question as shown in
Table 3. Since {X = 0,Y = 0} represents an non-sensitive
subclass, we have reason to believe that a respondent will
put a tick in Block ¢ (¢ = 1,...,4) according to his/her
truthful status if (s)he belongs to this category. The other
categories (i.e., Blocks I to IV), however, are sensitive to the
respondent. If the respondent belongs to Block I (II or IV),
(s)he is requested /forced to put a tick in Block 2 (3 or 4) so
that his/her privacy is somehow protected. This technique
is simply called the hidden sensitivity model in the sense
that the sensitive attribute of a respondent is being hidden.
Table 4 shows the cell probabilities ;s and the observed
frequencies n;s. Let n; denote the observed frequency of
respondents putting a tick in Block 1. no represents the sum
of the frequencies of respondents belonging to Block 2 and
Block II. We can interpret ns and n4 similarly.

Unlike the popular randomized response models, it is
noteworthy that all the aforementioned NRR models have
the following advantages: (i) they do not require any RDs
and the study cost is thus reduced; (ii) the results can be
reproducible; (iii) they can be easily operated for both in-
terviewers and interviewees; and (iv) they can be applied
to both face-to-face personal interviews and mail question-
naires.

Non-randomized response models 15



Table 4. Cell probabilities, observed and unobservable frequencies for the HS model

Categories wW=1 W =2 W =3 W =4 Total
L {X=0,Y =0} p161 p201 psb1 paby 61 (Z1)
L {X=0Y=1} 02 (Z2)
I: {X =1,Y =0} 03 (Zs)
NV: {X=1,Y =1} 04 (Za)
Total p1 (n1) | p2 (n2) | ps (n3) | P4 (na) 1 (n)

Note: n = Zle

(a) n=200, s=135

(b) n=200, s=115

ni, Z1 =n — (Za + Zs + Za), where (Z2, Z3, Z4) are unobservable.

(c) n=200, s=105

The posterior density
The posterior density

The posterior density

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2

pi

04

0.6 0.8 1.0 0.0 02 0.4 0.6 08 1.0

pi pi

Figure 1. Posterior distributions for = under the uniform prior (i.e., a =b=1) and p = Pr(W = 1) = 0.5 for the
non-randomized triangular model. (a) n = 200 and s = 135, (b) n = 200 and s = 115, (c) n = 200 and s = 105.

3. BAYESIAN METHODS FOR THE
NON-RANDOMIZED TRIANGULAR
MODEL

In this section, we first derive the exact posterior distribu-
tion of 7w and its explicit posterior moments. We then derive
the posterior mode via the EM algorithm (Dempster et al.,
1977) when the posterior distribution of 7 is highly skewed.
Finally, we utilize the exact inverse Bayes formulae (IBF)
sampler (Tian, Tan & Ng, 2007) to generate i.i.d. posterior
samples.

3.1 Posterior moments in closed-form

For the triangular model given in Table 1, we define a
‘hidden’ variable YHT as follows:

1, with probability = + (1 — m)p,
if a tick is put in the triangle,
0, with probability (1 —7)(1 — p),

if a tick is put in the circle.

YHT —

Let Yops = {yi1 : i =1,...,n} denote the observed data for
the n respondents with y/'T = 1 if the i-th respondent puts
a tick in the triangle; = 0 otherwise. The likelihood function
for 7 is then given by

HT

—p)' v

H (1—mp)"" [(1—m)(1
=+ (-mpf[l-mA-p)" ", 0< 7 <1,
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where s= 3" yHT. If we choose the beta distribution
Beta(a, b) to be the prior distribution of 7, then the posterior
distribution of 7 takes the following closed-form expression:

(3.1)  f(m|Yows) = 0;1

X 71'“_1(1 —

(a,b;8,m — 8)
7T)b+n_s_1[71' + (1 _ 7_(_)p]s’

where the normalizing constant is given by

S

>

=0

(3.2) cp(a,b;s,n—s) (j)ps_jB(a—l-J}b—i-n—j).

Fora=b=1and p=Pr(W = 1) = 0.5, Figure 1 shows the
posterior distributions of 7 for three different combinations
of n and s.

When f(7|Yops) is fairly symmetric, the first two posterior
moments are good enough to describe the location and dis-
crepancy of the posterior distribution. From (3.1), the ¢-th
posterior moment of 7 has the following explicit expression:

s)

a+tb;s,n—

)

3.2 Calculation of the posterior mode via
the EM algorithm

C
E(T"tD{)bs) — T(

3.3
(3:3) cy(a,b;s,m —

t>1.

When f(7|Yohs) is highly skewed (for instance, see Fig-
ure 1(c)), the posterior mode is usually adopted for de-
scribing the location. To derive the mode, we first intro-
duce an unobservable variable Z, which denotes the num-
ber of respondents with the sensitive attribute. Obviously,



the number of respondents without the sensitive character-
istic is n — Z. Thus, the complete-data is Yeom = {Yobs, Z}-
The complete-data posterior distribution and the condi-
tional predictive distribution are given by

(34)  f(n|Yops, Z) = Beta(n|la+ Z,b+n — Z),
and
(3.5)  f(Z|Yobs, ™) = Binomial (Z|s, 7 /[m + (1 — 7)p]),

respectively. Using the EM algorithm, the M-step computes
the complete-data posterior mode as

a+27—1

(3.6) WT:4a+b+n—2

and the E-step is to replace Z by its conditional expectation

ST

(3.7) P

E(Z|Yops, ™) =

3.3 Generation of i.i.d. posterior samples via
the exact IBF sampling

We re-write (3.4) and (3.5) as f(7|Yops, Z) = Beta(w|a +

Z,b+n—Z) and f(Z|Yops, 7) = Binomial (Z|s, 7 /[7 + (1 —

m)p]). According to the exact IBF algorithm presented in

Appendix A, to generate i.i.d. posterior samples we simply
need to identify S(z)y,, ) and calculate {wi}E_|. Obviously,

Lzt =10,1,...,s}

and K = s+ 1. Setting mp = 0.5, from (A.2) and (A.3), we
obtain

S(2%0s) = S(21psm) = {215+

(0.5) = (5)pr /(0 +p)p
B0l = 0.50+%+n /B(a + 2z, b+ n — z)
s\T(a+zp)T(b+n—z)

X ( ) pEE

)

2k
fork=1,...,K, and wy = qk(0.5)/2521 q(0.5).

4. BAYESIAN METHODS FOR THE
CROSSWISE MODEL

4.1 Posterior moments in closed-form

Let Yops = {yf™W :i =1,...,n} denote the observed data
for the n respondents, where y!™" = 1 if the i-th respondent
puts a tick in the main diagonal with the two circles; = 0
otherwise. The likelihood function for 7 is then given by

n
HW

LW (7T|){>bs) = H[Tfp + (1 — 77)(1 _p)]yi
r(=p)+ (1= m)p) s
— [rp+ (1= m)(1—p)]"

r(l—p)+ (1 —mp"™", 0<7<1

)

where 7= Y"1 yAW. Assume that 7 ~ Beta(a,b). Thus,
the posterior distribution of 7 is

m (1= )" Ly, (7] Yobs)

4.1
(4.1) ey (a,b;ryn — 1)

f(m[Yons) =

)

where the normalizing constant

P (1=p)”
I'(a+b+n) ~“w

ey (a,byryn — )

(a,b;r,n —r) and

S
T(a+ 71+ 72)T(b+n —j1 — j2).

Therefore, the ¢t-th posterior moment of 7 is given by

(4.2)
* t,byr,n —
F(n'|data) = ch (a+t,byr,n—r) .

I(a+b+n) >1
ct (a,byr,n —) '

Tla+t+b+n)  —

4.2 Calculation of the posterior mode via
the EM algorithm

To derive the posterior mode, we first introduce two un-
observable variables Z = (Z1,Z;), where Z; and Z, are
respectively the counts of cell-(1,1) and cell-(1,0) in Ta-
ble 2. Thus, the complete-data posterior distribution and
the conditional predictive distribution are given by

(4.3)

f(7[¥obs, Z) = Beta(w|a + Z1 + Z2,b+n — Z1 — Z»), and
(4.4)

F(ZYobs, ™) = f(Z1]Yobs, ) = f(Z2|Yobs, )

= Binomial <Z1

. —
"ap+ (1 —m)(1-p)

m(1 —p) )
T(1—p)+(1—m)p)’

respectively. Using the EM algorithm, the M-step yields the
following complete-data posterior mode

n—r,

- Binomial <Z2

CL+Zl+ZQ—1

4.5 p—
(4.5) Tw a+b+n-—2

while the E-step is to replace Z; + Z5 by its conditional
expectation

(4.6)
B rap
E(Zy + Z2|Yobs, m) = ™+ (L—m)(1—p)
(n—r)m(1—p)
A-pra-mp 7TV

In fact, when p = 1/2, (4.6) becomes E(Zy + Z3|Yops, 7) =
nm, which does not depend on the observed data Y;,s nor r.

Non-randomized response models 17



In this case, the EM algorithm in (4.5) and (4.6) converges The posterior moment of € is given by
in one step and we have 7, = (a —1)/(a + b — 2), which is
actually the mode of the prior distribution Beta(a, b).

(a+t, (Y ai
E(eil 952953934 ng S) _ Cy (*a(;'_ )Il) . = (421:1 a; + n) )

. .. . ] c* (a,n : 4t
4.3 Generation of i.i.d. posterior samples via H (Qiza(as +1:) + 1)

the exact IBF sampling Hence, the posterior moments of 6,, 6, and § can be readily
expressed as

To apply the exact IBF algorithm to the present model,
we simply need to identify the conditional support of

Z|(Yops, 7). From (4.4), we have E(0:Yovs) = E(0[Yobs) + E(0afYons),
E(07Yons) = E(03Yobs) + 2E(0504]Yobs) + E(07|Yobs),
S(Z¥ps) = S(21pem) = {21500 2K} E(0y|Ysns) = E(02|Yobs) + E(04]Yons),
(0,00 (0,1) -~ (0,n—r) E(02(Yons) = E(62(Yons) + 2E(0204]Yobs) + E(63Yobs),
_ (1,_0) (1,.1) (l,n.— T) | E(5|Yons) = (010505 204]Y,y), and
(r);()) (r,zl) (r, . r) B Rown) = B(010;705 01 o).

5.1.2. Calculation of the posterior mode via the EM algo-

where K = (r +1)(n — r + 1). We then calculate {wy}< rithm

according to (A.2) and (A.3) with mp = 0.5.
To derive the posterior mode of 8, we treat the observed

5. BAYESIAN METHODS FOR THE frequencies no,ng and ny4 as incomplete data and the fre-

quencies Zs, Z5 and Z, as missing data (see Table 4). Let
HIDDEN SENSITIVITY MODEL Z = (Za, 73, 24) with Zy = n — Zs — Zs — Zs. Thus,

5.1 Bayesian inferences under Dirichlet prior the complete-data posterior distribution and the conditional

predictive distribution are given by
Assume that there are totally n respondents with n; ticks

being put in Block i for i = 1,...,4 (see Table 4). Let Yobs = (5.3)  f(8|Y,ps, Z) = Dirichlet (8lay + Z1,. .., a4 + Z4),
{n;ni,...,n4} denote the observed frequencies with n =

Z?:l n; and @ = (61,...,04)" € T4 be the cell probability and 4
vector, where Ty={(01,...,04)" : 6; > 0, Z?Zl 0; = 1}, (5.4) f(Z|Yops, 0) = HBinomial (Zilng, 0;/[pib1 + 0:)),
The observed-data likelihood function for € is then i=2
. 4 . respectively. Based on the EM algorithm, the M-step calcu-
(5.1) L, (0|Yons) = 07" H(Pz"91 +6;)",  0€Ty, lates the complete-data posterior mode by
= (5.5)

.= =1 , = 3S n @; + Z’L -1 . 0 n n n

Khere i Pr(W = 4), ¢ 1,...,4, are assumed to be b = — C i=2,3.4, 6, =1— 0y — 5 — 0,
nown constants. Yo_jar+n—4

5.1.1. Posterior moments in closed-form and the E-step is to replace {Z;} by their conditional expec-

The natural prior for @ is the Dirichlet distribution tations
Dirichlet (a) with a = (ay,...,a4)". Thus, the posterior dis-

ni0; ,
tribution of @ has the following closed-form expression: (5.6) E(Z;|Yops,0) = 00y 1+ 0; i1=2,3,4.
i0h + 0;
4 . . . .
(5.2) f(0]Yps) = C}—{l(a7 n)H Gzifl'LH(ODf)bs), 6cT,, 5.1.3. Generation of posterior samples via the DA algorithm
i=1 Based on (5.3) and (5.4), we can use the DA algorithm

(Tanner & Wong, 1987) to generate posterior samples of .
We may choose 6y = (0.25,...,0.25)" as the initial value.

where  the normalizing constant ¢, (a,n)
ci (a, n)/F(ZZ 1 a; +n) and
5.2 Bayesian inferences under other priors

= Z Z Z {F(al +ny 4 jo + 3 + ja) In the previous section, we consider the Dirichlet distri-
72=0j3=0 j1=0 bution as the prior of 6. It is well known that the covariance

4 e _ structure associated with the Dirichlet distribution is com-

. H < i )F(ag + e — Jo)py! } pletely non-positive. Obviously, those cases that possess, for
£=2 instance, positive covariance structures cannot be modeled
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Table 5. Parameter spaces © and O, and their cell probabilities

Categories | Y =0 Y =1 | Marginal Categories Y=0 Y=1 Marginal
X=0 01 02 01+ 02 =0 (1—-02)¢ (1—0,)(1-¢) 1—0,
X=1 03 04 O3 + 04 X=1 91(1 — T]) Gzn 0.

Space © 1 Space ©, 1

by the Dirichlet prior. To explore the essence of the Dirich-
let prior, we first transform the original parameter space
O = {601,02,05} into an orthogonal parameter space, say
0, = {0,&,n}, and present an equivalent prior distribution
for (0,,&,m)" when (0y,60,,03)" follows a Dirichlet distribu-
tion. Next, we develop three new joint priors for (6,,&,1)"
for modeling (i) independence structure with restrictions,
(ii) negative correlation structure, and (iii) positive corre-
lation structures. Finally, for the positive correlation struc-
ture, we derive the corresponding posterior moments for the
parameters of interest via the importance sampling and gen-
erate posterior samples via the DA algorithm.

5.2.1. Orthogonal parameter space

Let 6, = Pr(X = 1) denote the marginal probability of
X, £=Pr(Y =0|X =0) and n =Pr(Y = 1|X = 1) be the
corresponding conditional probabilities. Table 5 illustrates
the fundamental relationship between the two parameter
spaces © = {01, 05,05} and O, = {0,,&,1}.

It is noteworthy that the following one-to-one transfor-

mation
(5.7)

01

0x = 03 + 047

52914—027

1—61—6y—065
R

maps the original parameter space © into the orthogonal
parameter space (i.e., an unit cube in R?) ©,. The corre-
sponding Jacobian is given by

0(01,0,03)
(0, &,m)
We have the following result.

Theorem 1. If (61,05,03)" follows the Dirichlet prior
Dirichlet (a1, as,as; aq) in space O, the equivalent prior dis-
tribution of (0,,&,m)" in ©, is given by

7] :’ = 0,(1— 0,).

0, ~ Beta(ag + a4, a1 + a2),
¢ ~ Beta(ay, az),

1 ~ Beta(aq,as), or

(5.8) and

1 —n ~ Beta(as, a4),
where 0, £ and n are mutually independent.

5.2.2. Joint prior for modeling independence with restric-
tions

Sometimes, prior information on 6,, £ and 7 are available
in the form of restrictions. For example, let X = 1 if a person

has annual income being greater than or equal to $100,000;
= 0 otherwise, and Y = 1 if a person travels at least once
every year; = 0 otherwise. Thus, we have n = Pr(a person
travels once every year| the annual income > $100, 000) and
& = Pr(a person does not travel at all every year| the annual
income > $100,000). In general, the possibility of traveling
every year is positively related to annual income. Therefore,
it is reasonable to impose the following restrictions on 7
and &,

(5.9) n=1-n, and {=>1-¢,

ie., n>0.5,&>0.5. Let TBeta(a,b; L,U) denote the trun-
cated beta distribution defined on the interval [L, U]. Hence,
an alternative joint prior for (6,,&,7)" to (5.8) is

0 ~ Beta(as + a4, a1 + a2),

¢ ~ TBeta(ay,a9;0.5,1),
1 ~ TBeta(aq, a3; 0.5, 1),

(5.10) and

where 0., £ and 1 are independent. In other words, the joint
prior (5.10) is adequate for modeling the assumption of in-
dependence between ¢ and 7 with restrictions (5.9).

5.2.3. Joint prior for modeling negative correlation structure

In some applications, the assumption of independence be-
tween £ and 1 may not be adequate while the negative corre-
lation structure appears to be more practical. One possible
way for modeling negative correlation structure is to con-
sider the following inequality constraint:

§>1—mn.

Define £* = 1—¢, n* = 1—n. From this inequality constraint,
we obtain

(5.11) & >0, n*>0, and & +n*<1.

Naturally, a Dirichlet prior can be assigned to (£*,7*)". It
is well known that the components of a Dirichlet random
vector are negatively correlated, and so are ¢ and 7.

5.2.4. Joint prior for modeling positive correlation structure

Now, we consider the case that £ and 7 are positively cor-
related. The first problem is to identify an appropriate prior
distribution. The second problem is to compute the corre-
sponding posterior moments for the parameters of interest.
Here, we propose a positively correlated bivariate-beta dis-
tribution as the joint prior of (£, 7). We then employ the im-
portance sampling to calculate the posterior moments and
the DA algorithm to obtain posterior samples.

Non-randomized response models 19



5.2.4.1. Positively correlated bivariate-beta distribution. A
two-dimensional random vector w = (wy,ws)" is said to
follow a positively correlated bivariate-beta distribution, de-
noted as w ~ PCBBeta(y1,72;a,b), if the conditional dis-
tributions of w; and wy given 7 are independent, and

wi|T ~ Beta(v;7,7:(1 — 7)), 7 >0,i=1,2,

where 7 ~ Beta(a,b), a > 0, b > 0 (see, e.g., Albert and
Gupta, 1983; 1985). Theorem 2 below gives the joint density
of w and an algorithm for generating the random vector w.

Theorem 2. If w = (wy,ws)" ~ PCBBeta(y1,72;a,b),
then (i) the density of w is
(5.12)

o = [ s

(ii) Samples of w can be generated as follows: First gener-
ate a Beta(a,b) random variate 7, and then independently
generate w; from Beta(y;T,7v;(1 — 7)) fori=1,2.

We obtain the correlation coefficient between wy; and wq
in the following theorem.

Theorem 3. If w = (wy,wz)! ~ PCBBeta(v1,72;a,b),
then the correlation coefficient between wy and wso is

1(1 _ T)b
B(a,b)

viT—1 1 ')’y,;(l—T)—l

2
H i — dr.

U B0 0 =)

(n+102+1)
(mt+at+tb+)(2+a+b+1)

(5.13)  p(wy,ws) = \/

The proof of Theorem 3 is given in Appendix B. Theo-
rem 3 shows that the PCBBeta distribution can be used to
quantify the positive association between two random vari-

ables. In particular, if vy = v, =y and a = b =1, then
y+1 2

w1, W =1-—-

p(wy, wz) = ~+3 ~+3

which is an increasing function of . The larger the pre-
specified value of «, the stronger the association between
wi and wa.

5.2.4.2. Computing posterior moments via importance sam-

pling. Substituting (5.7) into (5.1), we can rewrite the like-
lihood function as

(5.14) L, (02,8 nl¥ons) = (1= 02)" "2 - h(0a, &, ),
where

h(Ox,&m) = " [p2§ + (1 = )" [ps(1 = 02)€ + 0 (1 — n)]™

“[pa(1 = 02)€ + 0m]"™.

Motivated by (5.8) and (5.12), we may consider the following
distributions as the joint prior for (6,,&,n)" if € and n are
believed to be positively correlated

(5.15) 0, ~Beta(a,),  (&n)" ~ PCBBeta(y,7;1,1)
and they are independent.
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The resultant posterior distribution can be shown to be

f(B2, & nldata) = ¢, (o, B,7,m) - 627 (1

By importance sampling, we obtain

_ gx)n1+n2+ﬂ*1

L
. Blayn +n +0)
(e By = DT E BN S0 0 0,
=1

where {H,Ef)}le are a sample of size L from Beta(a,nq +
ny + B) and {€@ nW}L | are a sample of size L from
PCBBeta(v,v;1,1) via Theorem 2(ii).

The parameters of interest can be expressed as

0 = 0, gy: (1_093)(1_5)"_0967]; and
5= gin
(1-=8A—mn)

Therefore, the posterior moments of 6, can be readily cal-
culated via the importance sampling. However, calculations
of posterior moments such as E(6!|data) and E(5t|data) re-
quire the evaluation of the expression ((1—0,)(1—&)+60,n)t

h(0.,&,m) L times at ( §(€) n®) for £ =1,..., L. To this
end, the DA algorithm can be adopted for thls purpose and
we discuss the algorithm as follows.

5.2.4.3. Generating posterior samples via the DA algorithm.
The likelihood function (5.14) and the prior assumption
(5.15) can be re-formulated in terms of a hierarchical model
with three stages. In the first stage, we can augment the
observed data Y)ps with three latent variates {Zs, Z3, Z4} =
Yiis so that the complete-data likelihood is given by

L, (emafam){)bs,YmiS) = 953+Z4(1 - ox)niz‘gi&
(1= P (1 - )P,
where Z7; = n—Zy—Z3—Z4. Similar to (5.4), the conditional
predictive distribution is
(5.16)
f(Ymis|){>bS7 9:1:7 £7 77)
= Binomial (Za|ng, (1 —&)/[p2€ +1—¢))

—1)/[p3(1 = 02)€ + 0, (1 —n)])
0.)& + 0,1]).

In the second stage, given a hyperparameter 7, the joint
prior is a product of independent beta distributions:

[0z, 8n|T) = f(0z) - f(E]T) - fnlT)
= Beta(0,|a, 3) - Beta(§|yr,y(1 — 7))
-Beta(n|yr,v(1 — 7).

- Binomial (Z3|ns, 0,(1
- Binomial (Z4|na, 0,m/[pa(1 —

In the third stage, we assign 7 an uniform prior, namely,
f(7) = I9,1)(7), where Ip(-) represents the indicator func-
tion of the set D. We write the joint distribution of the



Table 6. Sensitive sexual behavior data

Item Self-report (N =102) | UCT (N = 244)
(N = 346) Rate  Yes No Rate Yes No
1. Sex without a condom 0.59 60 42 0.70 171 73
2. Drank until intoxication 0.77 79 23 0.70 171 73
3. Sex after drinking 0.48 49 53 0.49 120 124
4. Sex without a condom after drinking | 0.36 37 65 0.65 159 85
5. Had sex 0.74 75 27 0.84 205 39

Source: LaBrie & Earleywine (2000).

complete-data and parameters as L, (05,8, 1|Yobs, Ymis) -
f0.,& m|T) - f(1). Thus, we have

(5.17)  f(0z, & 1 Yobs, Yinis, T)
=Beta(0,|Z3 + Zs + a,n — Zs — Zy + )
-Beta(§|Z1 + 71, Za + [l —7])
-Beta(n|Zy + y1, Z3 +~[1 — 7))
(5.18)  f(r]¥ows, &, m)

o e - 9 - ) -7
[B(yr,y(1 —7))]? ’

Sampling from (5.16) and (5.17) is pretty straightforward.
Note that (5.18) is an un-normalized one-dimensional den-
sity function defined on (0,1). The grid points method (see,
e.g., Gelmen et al., 1995, p. 302) can be used to generate
random samples from this distribution. The implementation
of the Gibbs sampling and the calculation of arbitrary ex-
pectations of interest were presented thoroughly in Gelfand
& Smith (1990) and Arnold (1993), and are hence omitted
here.

7€ (0,1).

6. NUMERICAL ILLUSTRATIONS

6.1 Sensitive sexual behavior data

Most studies of sexual behaviors employ conventional
self-report surveys. Researchers have long criticized the va-
lidity of these self-reports since sexual behavior is often
highly private. An alternative approach, called unmatched-
count technique (UCT), provides participants a chance to
answer sensitive items without directly admit to the sen-
sitive behavior (Wimbush & Dalton, 1997). In the UCT
method, half of the participants will receive a set of, for
instance, five questions (in which all questions are non-
sensitive) while the other half will receive a set of six ques-
tions (in which one of them is the sensitive question). It
should be noted that the five non-sensitive questions are
common to all respondents. At the end of the survey, re-
spondents simply indicate the number of statements that
are true for them. The base rate estimate for the sensitive
item is determined through random assignment of partici-
pants and comparisons between the two samples. All sam-
ples were obtained via simple random sampling. The main

feature of the UCT is that participants do not respond di-
rectly to the sensitive item(s).

LaBrie & Earleywine (2000) used an anonymous self-
report questionnaire and the UCT to estimate the base rates
for some sexual risk behaviors (e.g., having sex without a
condom and having sex without a condom after drinking).
Three hundred forty-six college students were randomly di-
vided into three groups. Group 1 (102 subjects) received
a true/false conventional self-report survey. Groups 2 (122
subjects) and 3 (122 subjects) were UCT protocol groups,
with Group 2 receiving Form A and Group 3 receiving Form
B (see Appendix B in LaBrie & Earleywine, 2000, for more
details). Their findings are reported in Table 6. For exam-
ple, 36% of the respondents receiving the conventional sur-
vey endorsed having sex without a condom after consuming
alcohol while the UCT protocol revealed a base rate esti-
mate of 65% for the same behavior. Thus, the anonymous
self-report questionnaire revealed only half the percentage
of persons engaging in risky sexual behavior after drinking
reported by the UCT protocol.

To illustrate the proposed methods in Section 3, for
the third sensitive item, we combine the numbers of “Yes”

and “No” with those for the two survey methods, result-
ing in n = 346, nyes = 49 + 120 = 169 and n,, =
53 4+ 124 = 177. In the triangular model, we further let

7 = Pr(Y = 1) = Pr(having sex after drinking) and p =
Pr(W = 1) = 0.5. For the ideal situation (i.e., no sam-
pling errors), the observed counts in the triangle would be
S = Npo/2 + Nyes ~ 258. Therefore, we obtain the ob-
served data Yops = {n,s,n—s} = {346, 258, 88}. Using (3.3),
we have E(7|Yps) = 0.488506 and E(7?|Y,ps) = 0.240819.
Thus, the 95% Bayesian credible interval (CI) for m based on
normality approximation is given by [0.396960, 0.580052].
Using 7(%) = 0.5 as an initial value, the EM algorithm
(3.6) and (3.7) converges in 28 iterations. The resultant pos-
terior mode of 7 is 7, = 0.49133, which is very close to the
Bayesian mean F(7|Y,ps). Using the exact IBF sampling de-
scribed in Section 3.3, we generate L = 20,000 i.i.d. posterior
samples from f(7|Yops). The histogram based on these sam-
ples is plotted in Figure 2(b), which shows that the exact
IBF sampling can recover the density completely. The corre-
sponding posterior mean, standard error and 95% Bayesian
CI for 7 are 0.488805, 0.0468918 and [0.395190, 0.577961].
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Figure 2. Posterior distribution of
7w = Pr(having sex after drinking) under the uniform prior
(ie, a=b=1)and p=Pr(W =1) = 0.5 for the

non-randomized triangular model for n = 346 and s = 258.
(a) The comparison between the posterior distribution (solid
curve) exactly given by (3.1) with the dotted curve estimated
by a kernel density smoother based on i.i.d. posterior samples

generated via the exact IBF sampling. (b) The histogram
based on i.i.d. posterior samples generated via the exact IBF

sampling.

6.2 Induced abortion data

Liu & Chow (1976) considered an induced abortion study
in Taichung City and Taoyuan County, Taiwan (see also
Winkler and Franklin, 1979). They adopted the multiple-
trial version of the Warner model to increase the efficiency
of estimation. Since the present paper only discusses the
single-trial Warner model with the crosswise model as its
non-randomized version, we simply use the data from the
first trial of each respondent. The target population of in-
terest in this study is those married women of age 20 to 44
in the South District of Taichung City, Taiwan. The investi-
gators would like to estimate the incidence rate of induced
abortions in the target population. With p = 0.3, the sur-
vey yielded 90 “Yes” answers (ie., r =Y ., yIW =90 in
(4.1)) and 60 “No” answers (i.e., n = 150). Using likelihood-
based method, the proportion of married women of child-
bearing age who have had induced abortion is estimated to
be 7, = 0.25 with estimated variance being Var (7, ) = 0.01
(Migon & Tachibana, 1997, p. 406). The resultant 95% CI
of 7 is [0.25—1.961/0.01, 0.25+1.96+/0.01] = [0.054, 0.446].

To illustrate the proposed methods in Section 4, we
consider the uniform prior (i.e., a = b = 1). Note that
p = 0.3 and the observed data Yo,s = {n,r,n —r} =
{150, 90, 60}. Using (4.2), we obtain F(7|¥s) = 0.2544 and
E(7?|Y,ps) = 0.0742. Thus, Var(7|Yps) = 0.0095 so that the
95% Bayesian CI for 7 based on normality approximation is
[0.0632,0.4457].

Using 7(®) = 0.5 as an initial value, the EM algorithm
(4.5) and (4.6) converges in 96 iterations. The posterior
mode of 7 is 7, = 0.25, which is same as the MLE 7, .
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Figure 3. Posterior distribution of
m = Pr(having induced abortion) under the uniform prior
(ie, a=b=1)andp=Pr(W =1) = 0.3 for the
non-randomized cross model for n = 150 and r = 90. (a) The
comparison between the posterior distribution (solid curve)
exactly given by (4.1) with the dotted curve estimated by a
kernel density smoother based on i.i.d. posterior samples
generated via the exact IBF sampling. (b) The histogram
based on i.i.d. posterior samples generated via the exact IBF
sampling.

Using the exact IBF sampling described in Section 4.3, we
generate L = 20,000 i.i.d. posterior samples from f(7|¥ops)-
The histogram based on these samples is plotted in Fig-
ure 3(b), which shows that the exact IBF sampling recovers
the density completely. The corresponding posterior mean,
standard error and 95% Bayesian CI for 7 are 0.2546, 0.0973
and [0.0680, 0.4490].

6.3 HIV data

Strauss et al. (2001) reported an HIV data set which ex-
amined the relationship between self-reported HIV status
and history of sex exchange for drugs and money. All par-
ticipants were drug dependent women offenders who were
mandated to treatment through the criminal justice system
of New York City. The data were collected as part of an eval-
uation study of four drug treatment programs, respectively
classified as prison-based, jailed-based, community-based
residential and community-based outpatient. The data re-
flected baseline responses from 325 clients interviewed at
the four treatment programs from May, 1995 through De-
cember, 1996. Notice that there are incomplete data for 83
subjects. Table 7 gives the cross-classification of history of
sex exchange (no or yes, denoted by X = 0 or X = 1)
and HIV status (negative or positive, denoted by ¥ = 0 or
Y = 1) as reported by the women. The objective is to ex-
amine if association exists between sex exchange and HIV
status. Obviously, both questions (i.e., sex history and HIV
status) are highly sensitive questions to respondents.

To illustrate the proposed methods in Section 5.1, we let
W = ¢ if the respondent was born in the k-th quarter, and it



Table 7. HIV data from Strauss et al. (2001)

History of HIV status
sex exchange | Y =0 (HIV—) Y =1 (HIV+) | missing
X = 0 (IlO) 108 (ml, 01) 18 (mz, 02) 44
X =1 (yes) | 93 (ms, 03) 23 (m4, 64) 39
Note: X denotes history of sex exchange and Y denotes HIV status.
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Figure 4. The posterior density of the odds ratio § estimated
by a kernel density smoother based on the last 20,000
posterior samples generated by the DA algorithm.

is thus reasonable to assume that p; = Pr{WW = i} = 0.25 for
i=1,...,4, and W is independent of the two sensitive ques-
tions. For the ideal situation (i.e., no sampling errors), the
observed counts would be ny = my/4 =27, no =27+ my =
45, ng = 27+ m3 = 120 and ngy = 27 + myg = 50 if the
missing data in Table 7 are ignored. To consider the situ-
ation with sampling errors, we first generate 50 i.i.d. sam-
ples from Multinomial(108; (0.25, . ..,0.25)"), then calculate
the average of these counts, and finally yield (n},...,n}) =
(28,26, 26,28)". Therefore, we obtain the observed frequen-
cies Yops = {n;nq,...,nq} = {242,28,44,119,51}.

Using 09 = (0.25,0.25,0.25,0.25)" as initial values, the
EM algorithm (5.5) and (5.6) converges in 100 iterations.

The posterior modes of 6 and odds ratio § are listed in
the second column of Table 8. Based on (5.3) and (5.4),
we employ the DA algorithm to generate 40,000 posterior
samples and only use the second half of the samples. The
Bayes estimates of @ and § are given in Table 8. Since the
Bayes Cls include the value of 1, we have reason to believe
that there is no association between sex exchange and HIV
status. Figure 4 shows the posterior density of the odds ratio
¢ estimated by a kernel density smoother based on the last
20,000 posterior samples generated by the DA algorithm.

7. DISCUSSION

Yu et al. (2008) and Tian et al. (2007) studied the survey
designs for the triangular, crosswise and hidden sensitivity
models, respectively. They investigated these models from a
frequentist perspective. In this article, we on the other hand
focus on the analysis of these models in the Bayesian frame-
work. The Bayesian framework provides a natural way to
study these models when only partial information are avail-
able. Furthermore, the Bayesian approach is particularly ap-
pealing when sample information are relatively limited.

For the HS model, the resultant MLE 6 = (91, ce 9A4)T
with explicit form is possibly invalid, i.e., it does not satisfy:
0; > 0,i=1,...,4, Zle 0; = 1. However, we do not have
this issue in the Bayesian framework.

In practice, the selection of prior is very important to re-
searchers. For the HS model, the choice of a Dirichlet prior
is equivalent to a product of three independent beta dis-
tributions (see (5.8)). In some cases, the assumption of in-
dependence between £ and 1 may not be appropriate. For
modeling independence with restrictions and negative cor-
relation structure, we suggest two distinct priors (see (5.10)
and (5.11)). By implementing a very simple sampling al-
gorithm, the PCBBeta distribution becomes desirable for
modeling positive correlation structure. The control of simi-
larity can be fine tuned by selecting appropriate value of the
parameter . Based on the PCBBeta prior, we employ the
importance sampling to calculate the corresponding poste-
rior moments.

The DA algorithm is a special Gibbs sampler. In order to
implement the DA algorithm, we first formulate the original
problem into a hierarchical models with three stages. We
then derived the full conditional distributions (5.16)—(5.18)
with simple sampling methods.

Table 8. Posterior modes and estimates of parameters for HIV data

Parameters Posterior mode | Bayes mean | Bayes std | 95% Bayes CI
01 0.4628 0.4635 0.0757 [0.3208, 0.6172]
02 0.0661 0.0680 0.0317 [0.0105, 0.1339]
03 0.3760 0.3723 0.0426 [0.2877, 0.4538]
04 0.0950 0.0960 0.0346 [0.0300, 0.1648]
0 = 0104/6203 1.7692 3.6939 31.431 [0.5733, 11.932]
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APPENDIX A. THE EXACT IBF SAMPLING

Suppose that both the complete-data posterior distri-
bution f(7|¥ps, Z) and the conditional predictive distri-
bution f(Z|Yps, ) are available. The fundamental condi-
tional sampling principle states that: If we could obtain in-
dependent samples {Z()}L | from f(Z|Y;ps) and generate
7O ~ (7| Yops, Z©)) for £ =1,..., L, then {zn(©}£ are i.i.d.
samples from the observed posterior distribution f(m|¥ps).
In other words, the key issue is to generate independent
samples from f(Z|Yops)-

Let S(,r%bs) and S(Z%bs) denote the conditional sup-
ports of 7|Yops and Z|Y0ps, respectively. The sampling-wise
IBF states that (Tan et al., 2003)

(A1)
F(ZYone) o J(Z|Yops, o) for any arbitrary mo € S(m|Yops)

,]“(71'0|Y(;]DS7Z)7 and all Z € S(ZD{)bs)

When Z is a discrete random variable/vector taking finite
values on the domain, we denote the conditional support of
Z|(Yobs, ™) by S(z|y,p m) = {21, -+, 2K }. Since f(Z]Yops, 7)
is available, we can first directly identify {z;}¥ from the
model specification and all {z;}¥ become known. Not-
ing that {z;}# generally do not depend on 7, we have
S(Z%bs) = S(Z%bsv”) ={z1,...,2K}. Due to the discrete-
ness of Z, the notation f(zx|Yops) will be used to denote
the probability mass function, i.e., f(zx|¥ons) = Pr{Z =
2 |Yobs }. Therefore, it suffices to find wy, = f(z|¥ons) for
k=1,...,K. For any my € S(7|¥ops), let

(A.2)
qx(m0) = Pr{Z = 21 |Yous, M0}/ f (70| Yobs 2k

From the sampling-wise IBF (A.1), we immediately obtain
(A.3)

k=1,...,K.

Wy, = qk(ﬂ'o)/Zﬁzlqkf(ﬂ'o), k=1,....K

and {w;, }¥ are independent of 7. Thus, it is easy to sam-
ple from f(Z|Y,ps) since it is a discrete distribution with
probability wy on zi for k = 1,..., K. We summarize the
algorithm as follows (Tian, Tan & Ng, 2007).

THE EXACT IBF SAMPLING:

(i) Identify Siz)y,.) = Sziypem = {#1,---, 2K} from
f(Z|Yops,m) and calculate {wy}¥ according to (A.3)
and (A.2);

(ii) Generate i.i.d. samples {Z¥}L_| of Z from the proba-
bility mass function f(Z|Y,ps) with probabilities {wy }H¢
on {24 HY;

(iii) Generate 79 ~ f(7|Yops, Z1)) for £ = 1,..., L, then
{n®}L are i.i.d. samples from the observed posterior
distribution f(7|Yops)-

APPENDIX B. THE PROOF OF
THEOREM 3

Let 1+ and 02 denote the mean and variance of T, respec-
tively. We have p = a/(a +b) and 02 = ab/{(a + b+ 1)(a +
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b)2}. Using the rule of conditional expectation, we obtain

E(wi) = B{E(wi|T)} = E(r) =p, i=12,
2
T+ T
E(w?) = E{E(w? :E(L)
(wi) = E{E(w;|7)} Pl
(2 2
_nl ) ey
vi+1
E(wiws) = E{E(wiws|7)} = E(1?) = 0 + 12,
72 _ 2
Var(wi) = w, i = 172.
v +1
Hence,
FE - F E
pwy, ws) = (wiws) — E(wy) E(w»)

v/ Var(wy) - Var(ws)

¢ (11 + )72 + 1)
(1 + (= p2)/02) (2 + (1 — p?) /0?)

Noting that (u — p?)/0? = a+ b+ 1, we obtain (5.13) im-
mediately. [J
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