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Identification of cancer-associated gene clusters
and genes via clustering penalization

SHUANGGE MA, JIAN HUANG* AND SHIHAO SHEN

Identification of genes associated with cancer develop-
ment and progression using microarray data is challeng-
ing because of the high dimensionality and cluster struc-
ture of gene expressions. Here the clusters are composed of
multiple genes with coordinated biological functions and/or
correlated expressions. In this article, we first propose a
hybrid approach for clustering gene expressions. The hy-
brid approach uses both pathological pathway information
and correlations of gene expressions. We propose using the
group bridge, a novel clustering penalization approach, for
analysis of cancer microarray data. The group bridge ap-
proach explicitly accounts for the cluster structure of gene
expressions, and is capable of selecting gene clusters and
genes within those selected clusters that are associated with
cancer. We also develop an iterative algorithm for com-
puting the group bridge estimator. Analysis of three can-
cer microarray datasets shows that the proposed approach
can identify biologically meaningful gene clusters and genes
within those identified clusters.

KEYWORDS AND PHRASES: Gene selection, group bridge,
microarray, clustering, penalization.

1. INTRODUCTION

Cancer is a complex disease. Unlike diseases such as the
cystic fibrosis or Huntington’s disease, which can be caused
by mutation of a single gene, cancer usually results from
accumulations of multiple gene defects, including mutations
and epigenetic changes. To understand the complexity of
cancer, a comprehensive understanding of the genetic alter-
ations presented in tumors is required. Since mutations and
epigenetic changes influence gene expressions at a transcrip-
tion level, genome wide expression profiling can be used to
identify cancer susceptibility genes. Advancements in mi-
croarray techniques make it possible to profile gene expres-
sions on a whole genome scale. Many cancer pharmacoge-
nomic studies have been conducted using microarrays. Rep-
resentative examples include Alon et al. (1999), Alizadeh et
al. (2000), Garber et al. (2001), and Rosenwald et al. (2003).

Many statistical approaches have been proposed to iden-
tify individual genes or their linear combinations that are
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associated with cancer development and progression. To de-
tect genes differentially expressed under comparative con-
ditions, various hypothesis testing methods and the false
discovery rate approach have been proposed (Dudoit et al.
2002). To detect genes that are associated with cancer clin-
ical outcomes (such as categorical cancer status or censored
cancer survival) in the joint modeling of multiple genes, pre-
viously employed methods include (a) dimension reduction,
such as singular value decomposition, principal components
analysis, and partial least squares (Nguyen and Rocke 2002),
(b) variable selection, especially penalization methods such
as Lasso, bridge and SCAD (Ma and Huang 2008), (c) clas-
sification tree and random forest (Zhang et al. 2001), among
others.

Recent studies have suggested that genes have the inher-
ent cluster structure. Here, clusters are composed of mul-
tiple genes with co-regulated functions or correlated ex-
pressions. Without causing confusion, we use the phrases
gene “clusters” and “groups” interchangeably. Several sta-
tistical approaches have been proposed to detect gene clus-
ters that are differentially expressed. Examples include the
global test (Geoman et al. 2004), the maxmean approach
(Efron and Tibshirani, 2007), and the gene set enrichment
analysis (Subramanian et al. 2005) among others. In cancer
classification and survival analysis, the simple clustering ap-
proach has been proposed as follows. Genes clusters are first
constructed using statistical measurements or biological in-
formation or both. Then the mean/median expression levels
within clusters are used as covariates in downstream analy-
sis. Wei and Li (2007) proposes a nonparametric pathway-
based regression approach that explicitly makes use of avail-
able gene pathway information. However, they do not explic-
itly consider variable selection at either the gene cluster or
individual gene level.

Early studies have suggested that, for development and
progression of cancer, gene clusters, instead of individual
genes, are the functional units (Curtis et al. 2005 and refer-
ences therein). Compared with individual gene based meth-
ods, statistical methods that take into account the cluster
structure of genes can identify biologically more meaning-
ful genes and provide more accurate predictions (Pang and
Zhao 2008; Wei and Li 2007; Ma and Huang 2007; Ma, Song
and Huang 2007). On the negative side, most available gene
cluster based methods are not capable of within-cluster gene
selection. Those methods make the implicit assumption that
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if a gene cluster is associated with cancer clinical outcomes,
then all the genes within that cluster are associated. Such
an assumption can be unrealistic, especially when the gene
clusters are not defined based on the specific cancer clini-
cal outcome of interest. In addition, without within-cluster
gene selection, many genes can be identified, which makes
the identification results hard to interpret.

In this article, we consider cancer microarray studies,
where gene expressions are measured along with cancer clin-
ical outcomes. The goal of such studies is to identify biologi-
cally meaningful genes that have the potential to explain the
development and progression of cancer. Our study has been
guided by the following understanding of cancer genomics:
cancer development is caused by mutations or defects of a
few gene clusters. Within those gene clusters, only a subset
of genes are associated with cancer development.

In recent studies, we have developed the Clustering
Threshold Gradient Directed Regularization (CTGDR; Ma
and Huang, 2007) and Supervised Group Lasso (SGL; Ma,
Song and Huang, 2007), which take gene cluster structure
into consideration in regularized gene selection. Analyses of
multiple cancer microarray data suggest that biologically
meaningful gene selection can be achieved using the CT-
GDR and SGL, which partly demonstrates the benefit of
accounting for the cluster structure of gene expressions.

More recently, Huang et al. (2007) proposes the group
bridge, a novel clustering penalization approach, for variable
selection at both the cluster and within-cluster-covariate
levels in the context of linear regression. In this article, we
adopt the group bridge approach and extend it to cancer
microarray studies. The unique structure of cancer microar-
ray data makes this article advance from Huang et al. (2007)
along the following directions. First, in Huang et al. (2007),
the cluster structure of covariates is assumed to be defined a
priori. This can be a realistic assumption when there are a
small number of covariates. However, in cancer microarray
studies, determination of clusters of gene expressions can be
difficult. In this article, we propose a hybrid approach for
clustering genes which uses both pathological information
retrieved from public databases and statistical correlations.
Second, we generalize the group bridge approach to a class
of more general models including the logistic regression and
proportional hazards models. Third, we generalize the com-
putational algorithm for computing the group bridge esti-
mator in linear regression to more general models.

This article is organized as follows. The model and data
structure are introduced in Section 2. A hybrid clustering
approach for microarray data is proposed. The group bridge
method is described in Section 3. Computational algorithm,
tuning parameter selection, and prediction evaluation are in-
vestigated. Analyses of three cancer microarray datasets are
provided in Section 4. The paper concludes with discussions
in Section 5.
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2. DATA AND MODEL

2.1 Gene clustering

Many different approaches for clustering genes expression
data have been proposed. Examples include: (1) Patholog-
ical clustering (Wei and Li 2007). For genes with well de-
fined biological pathways, one pathway can be treated as
one cluster. Pathway information can be retrieved from pub-
lic databases such as GO (www.geneontology.org), KEGG
(www.genome.jp/kegg), GenMAPP (www.genmapp.org),
among others. Genes without pathway information are ei-
ther removed or put into one big “cancer gene” cluster; and
(2) Statistical clustering (Ma and Huang 2007 and refer-
ences therein). Most commonly used methods include the
K-means, Hierarchical, and mixture model based cluster-
ing. With the K-means and Hierarchical approaches, the
Gap approach (Tibshirani et al. 2001) can be used to iden-
tify the optimal number of clusters as follows. First choose
M — the largest number of clusters. Then form =1,..., M:
(a) Generate m clusters using the selected approach. Denote
r8Sm as the total within cluster sum of squares; (b) Create
a new dataset by separately permuting each gene expres-
sion’s measurements. Apply the clustering method to the
permuted expression data. Let rss,, denote the resulting
within cluster sum of squares. Repeat this step for a num-
ber of times and compute the average ave(rss,,); and (c)
Compute the Gap statistic as gap(m) = ave(r$sy,) — rSSm.
Choose the value m that maximizes gap(m). With the mix-
ture model based clustering, the BIC or ICL criterion can be
used to determine the optimal number of clusters. We refer
to Section 3.15 of McLachlan et al. (2004) for more details.

Since many genes are still not annotated or only partially
annotated, pathological pathway information for them is
not available. Simply excluding those genes or putting them
into one big gene cluster may not be informative. On the
other hand, statistical clustering uses statistical measure-
ments such as correlations only. Valuable biological pathway
information, which has been gathered from many indepen-
dent studies, is not used.

Given those considerations, we propose the following hy-
brid clustering: (1) for genes with cancer-related pathway
information, use that information to construct gene clusters,
as in the pathological clustering. In this study, we retrieve
cancer pathway information from KEGG; and (2) for genes
without pathway information, construct statistical clusters
as in the statistical clustering. Specifically, we propose us-
ing the K-means + Gap approach because of the simplicity
and extensive applicability. Final clusters are the union of
(1) and (2). That is, the proposed approach is a hybrid of
pathological and statistical clustering.

When genes are clustered using the pathway information,
genes within the same cluster are expected to have coordi-
nated biological functions. On the other hand, when genes
are clustered using the statistical correlations, genes within
the same cluster have correlated expression levels. We note



that genes within the same pathway do not necessarily have
correlated expressions; and genes with correlated expres-
sions do not necessarily have similar biological functions.
With the proposed hybrid clustering, we encourage using
biological function as the basis of clustering as much as pos-
sible. However, when biological information is not available,
statistical clustering has been shown to provide satisfactory
clustering of gene expression data, and can provide a basis
for future pathological clustering (Eisen et al. 1998; Knud-
sen 2006).

2.2 Notations

Let Y be the cancer clinical outcome of interest. Two
types of clinical outcomes that have been extensively inves-
tigated are: censored survival outcome, such as relapse free
survival or overall survival, and categorical outcome, such
as cancer status or response to treatment.

Let Z be the length d vector of gene expressions. De-
note m as the number of clusters. Assume that the clus-
ters have sizes p1, ..., pm. Denote Z', ... Z™ as the expres-
sions of genes in cluster 1,...,m. Assume that Y is associ-
ated with Z through a parametric or semiparametric model
Y ~ ¢(B'Z) with a known regression function ¢ and un-
known regression coefficient 3. Here 3 = ([)’1, ...,08™) and
B = (p7,...,p3Pi) for j = 1,...,m. Assume that n iid
observations (Y1,Z4),...,(Y,,Z,) are available.

2.3 Survival analysis with Cox model

With right censored survival data, Y = (T,A), where
T = min(U,V) and A = I(U < V). Here U and V denote
the event time of interest and censoring time, respectively.
The most widely used model for censored survival data is
the Cox model, which assumes that the conditional hazard
function A\(u|Z) = \o(u) exp(B'Z). o is the unknown base-
line function and 3 is the regression coefficient. Based on
a random sample of n observations, the partial likelihood
estimator is defined as the value 3 that maximizes R,(8) =
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risk set at time 7;.

2.4 Binary classification with logistic
regression

In cancer classification analysis, Y is a categorical vari-
able indicating cancer status. For simplicity, we only de-
scribe the model for binary classification.

We assume the commonly used logistic regression model,
where the logit of the conditional probability is logit(P(Y =
1|Z)) = a+B'Z. Here 3 is the unknown regression coefficient
and « is the unknown intercept. Based on a random sam-
ple of n observations, the maximum likelihood estimator is
defined as (&, 3) = argmax, g R,(a, 3), where R, (a,3) =

n exp(a+B'Z;
> i—1 Yilog (W) + (1 -Y;)log (W)
For simplicity, denote R, («, B) as R, (8).

3. GROUP BRIDGE METHOD

Penalization methods have been extensively used for gene
selection in microarray studies. We refer to Ma and Huang
(2008) for more detailed discussions. The group bridge is a
newly proposed penalization method, and it embeds vari-
able selection in penalized estimation. The group bridge
objective function includes a likelihood term as defined in
Sections 2.3 and 2.4, which measures goodness-of-fit, and a
penalty term to be defined in Section 3.1, which measures
the complexity of the model. A group bridge estimate can
be obtained by maximizing the penalized objective func-
tion. Genes and gene clusters with nonzero estimates are
identified as cancer-associated genes and gene clusters, re-
spectively.

3.1 Penalized estimation

The group bridge estimate is defined as

© A= argmaX{Rn(ﬁ) NS Wm},
j=1

where ), is a data-dependent tuning parameter that can
be determined via cross validation, 0 < v < 1 is the fixed
group bridge index, and ||3[|; = 37| +- -+ |37Pi|. We set
~v = 1/2 in the analysis.

The group bridge penalty is a composite penalty, which
shares certain similarities with the penalties in Zhao et al.
(2006). Within cluster j, the penalty is defined as ||3’]1, and
has a Lasso form. Within-cluster gene selection is expected
due to the sparsity property of the Lasso-type estimate. At
the cluster level, the L. group penalty is adopted, which
is partly motivated by the group Lasso penalty (Yuan and
Lin, 2006) and the individual-variable-based bridge penalty
(Huang, Horowitz and Ma 2008). Cluster selection can be
achieved due to the sparsity of the bridge-type estimate with
0 < v < 1. With the combination of two penalties, two-level
selection can be achieved.

The group bridge approach has a well defined statistical
framework. From the formulation, we can see that it ex-
plicitly takes into consideration the cluster nature of gene
expressions. It is the first penalization approach for simulta-
neously selecting both gene clusters and genes within those
clusters that are associated with cancer clinical outcomes.

If v = 1/2 and the within-cluster penalty is defined as
(B71)2 + - + (B973)2, then the group bridge penalty be-
comes the group Lasso penalty in Yuan and Lin (2006). As
has been noted, with the group Lasso penalty, the objec-
tive function is differentiable as long as 3 # 0, which makes
it easier to maximize than the group bridge objective func-
tion. However, as a tradeoff, the within-cluster penalty has a
ridge form, which makes within-cluster selection impossible.
When there are a small number of covariates, within-cluster
selection can be less important and the group Lasso can be
preferred. However, with cancer microarray data, gene clus-
ters can have large sizes. So if selection is only carried out
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at the cluster level, many genes can be potentially identi-
fied as being associated with cancer, as can be seen from
analysis in Section 4. Such a result can be difficult to inter-
pret and makes future confirmation studies difficult. If we
set v = 1, then the group bridge penalty becomes the Lasso
penalty, which has been extensively used for individual gene
selection in cancer microarray studies. We refer to Ma and
Huang (2008) and references therein for more discussions on
the Lasso penalty.

Different clusters may share common genes. This may
happen for example if there exist genes belonging to mul-
tiple pathways. To assess if there is any potential identifi-
ability problem caused by overlapped genes, we conduct a
small simulation study (results not shown). In the first set
of simulation, there are two clusters both of size p, and there
are p/2 genes belonging to both clusters. Moreover, the p/2
overlapped genes are associated with the cancer outcome,
while the rest of the genes are noises. What we find is that,
the p/2 overlapped genes can be identified with a very high
probability. However, each cluster only has a ~ 50% prob-
ability of being identified. This is expectable since the two
clusters are simply copies of each other. We note that this
scenario is unlikely to happen with practical cancer microar-
ray data. First, there are only a small number of genes be-
longing to multiple clusters. In addition, it is unlikely that
only the overlapped genes are cancer associated. Thus, in the
second set of simulation, we assume that there exist more
genes associated with the cancer outcome besides the p/2
overlapped genes. Under this more realistic scenario, both
gene clusters can be identified with high probabilities.

3.2 Computational algorithm

With v < 1, the group bridge penalty is not convex. Stan-
dard approaches, such as the boosting or gradient searching,
cannot be straightforwardly applied. Define

@)
Su(Bo01, - 0m) = Bu(B) =4 300 @]+ 7Y 05
j=1 Jj=1

where 7 is a penalty parameter. It can be shown that if \,, =
71=74=7(1 —~)7~1, then 8 maximizes the group bridge ob-
jective function defined in (1) if and only if (B, by, ... ,ém) =
argmax .S, (3,01,...,0,,), subject to é\] > 0. Based on this
formulation, we propose the following iterative algorithm.

1. Initialize ﬂ(o) as the group Lasso estimate. For s =

1,2...
2. Compute 9§S) = (PT”)WHBJ(S*”HY, ji=1,...,m.
3. Compute B = argmax{R,(8) -
m s)y1—21 j
SO TG, where ¢, = .
This is a weighted Lasso estimate, and can

be obtained wusing the following boosting algo-
rithm. We first re-scale the covariates so that
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S m s _1 1
B8 — arg max{R,(8) — Zj:1(9§ =28} =
arg max{R,,(8) — 27, |87 [l1}. Then for 0 < u < oo
Initialize 8) = (0,...,0).
Compute ¢(8) = 8R+ﬁ(ﬂ)
nent of ¢ as ¢F.

Find k* that maximizes |¢*|. If [¢* | = 0, then
stop the iteration.

. Denote the k** compo-

Otherwise find 7 = argmax,.¢[o 1] R, ((1-m)B8% +
7 x u x sign(¢F) x n*7), where n¥" is a length d
vector with the k**" element equal to 1 and the
rest equal to 0.

Let B = (1 — )8 for k # k* and B{Y =
(1=m)BY + & x u x sign(¢").

(f) Repeat steps (b) to (e) until convergence.

Find w«  that R.(B) -

maximizes
1-1 1 j
zg’;l(ej@) Wcj/v||,£"')”||1. Compute the cor-
responding Lasso estimate.

4. Tterate steps 2—3 until convergence.

In Step 1, we propose using the group Lasso estimate as
the starting value. According to Yuan and Lin (2006), the
group Lasso has the tendency of over-selecting covariates
(genes). Thus with the group Lasso estimate as the starting
value, cancer-associated gene clusters are unlikely to be ex-
cluded. Step 3 involves a weighted Lasso estimation with a
general loss function. We propose using a boosting algorithm
in this step. The boosting algorithm only involves simple cal-
culations. Its computational cost is relatively insensitive to
the number of genes. More details of this boosting algorithm
can be found in Ma, Song and Huang (2007). Our numer-
ical studies show that convergence can usually be achieved
within 20 iterations.

3.3 Tuning parameter selection

The group bridge approach involves the tuning parameter
An, which determines the balance between the goodness-of-
fit and sparsity. We propose selecting the optimal \,, using
the V-fold cross validation because of its computational sim-
plicity. In our numerical studies, we set \,, = 27% and search
over a range of ¢ values.

3.4 Evaluation

In our study, we evaluate the biological implica-
tions of selected genes and gene clusters by surveying
www.ncbi.nlm.nih.gov and www.ihop-net.org. We search
for independent evidences of connections between selected
genes, gene clusters, and cancer clinical outcomes. We note
that, our knowledge of cancer genomics is still quite lim-
ited. So it is possible that genes having no prior evidence
of associating with cancer are potentially important cancer



markers. Those genes provide the basis for future confirma-
tion studies.

If selected genes are biologically more meaningful, then
prediction based on those genes are expected to be more ac-
curate. With cancer microarray data, ideal prediction evalu-
ation should be based on independent data, which is usually
not available. As an alternative, we consider the following
Leave-One-Out (LOO) evaluation approach: (1) remove sub-
ject j from the data; (2) for the reduced data with sample
size n — 1, compute the group bridge estimate B(fj). A new
tuning parameter for this reduced dataset needs to be com-
puted; (3) compute the predictive risk score for subject j as

B’H)zj; and (4) repeat Steps 1-3 over all subjects. A pre-

diction index can be computed using ,@,(_j)Zj,j =1,...,n.
For censored survival studies, we first create two risk groups
by dichotomizing the predictive risk scores at the median.
We then use the Logrank statistic, which has a x? distri-
bution with degree of freedom 1, to assess if the survival
functions of different risk groups are different. A large value
of the Logrank statistic indicates that the high and low risk
groups are well separated, and suggests satisfactory predic-
tion performance. For classification studies, the prediction
index can be the prediction error.
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3.5 A graphic representation

We use a small simulated dataset to demonstrate the pa-
rameter paths of the group bridge estimates. We consider
the binary logistic classification. We assume four gene clus-
ters, with three genes in each cluster. We set a = 0 and
B8 =1(2,2,2,220,2000,0,0). Out of the four gene clus-
ters, the first three are associated with the outcome, with
the number of outcome-associated genes 3, 2 and 1, respec-
tively. We generate Z such that all gene expressions are
marginally N(0, 1) distributed; and expressions of genes i
and j have correlation coefficient 0.3/=7! if they belong to
the same cluster, and 0 otherwise. Y is generated from the
logistic model. We generate n = 50 iid samples.

With the simulated data, there is no “pathological in-
formation”. We first use the K-means + Gap approach to
correctly recover the cluster structure. We employ the group
bridge approach. The 5-fold cross validation is used to de-
termine \,,.

We set )\, = 27 and show the group bridge estimates
as a function of ¢, which is denoted as “tuning”, in Fig-
ure 1. The four panels correspond to the four gene clusters,
and the vertical lines correspond to the cross validated op-
timal tuning. We can see that the group bridge approach is
capable of selecting outcome-associated gene clusters. Clus-
ter 4, which is not associated with the outcome, has zero
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Figure 1.

Simulation: parameter paths as a function of the tuning parameter. Left-upper: cluster 1; Right-upper: cluster 2;
Left-lower: cluster 3; Right-lower: cluster 4. Vertical lines correspond to the optimal tuning.
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Table 1. Analysis of the DLBCL data

Gene name Gene Symbol Cluster Estimate
p21 (CDKN1A)-activated kinase 2 PAK?2 ErbB signaling 0.261
p21 (CDKN1A)-activated kinase 2 PAK?2 ErbB signaling  —0.319
PTK2 protein tyrosine kinase 2 PTK2 ErbB signaling  —0.152
PTK2 protein tyrosine kinase 2 PTK2 ErbB signaling  —0.109
mitogen-activated protein kinase 9 MAPK9 ErbB signaling 0.044
v-myc myelocytomatosis viral oncogene homolog MYC ErbB signaling 0.109
v-myc myelocytomatosis viral oncogene homolog MYC ErbB signaling 0.247
v-raf murine sarcoma viral oncogene homolog B1 BRAF ErbB signaling 0.087
B-cell CLL/lymphoma 2 BCL2 ErbB signaling 0.240
B-cell CLL/lymphoma 2 BCL2 ErbB signaling 0.094
Hs.170501 Cancer Gene 1 0.172
Hs.73792 (3d/Epstein Barr virus) receptor 2 CR2 Cancer GeneI ~ —0.025
Hs.85155 zinc finger protein 36, C3H type-like 1 ZFP36L1 Cancer Gene | —0.041
major histocompatibility complex, class II, DM beta Cancer Gene I —0.111
major histocompatibility complex, class II, DR alpha Cancer Gene I —0.253

estimates for all genes. In addition, the group bridge is ca-
pable of selecting outcome-associated genes within clusters.
For example in cluster 2 (right-upper panel), only the two
outcome-associated genes have nonzero estimates.

Of note, this small simulation study is only used to
demonstrate the characteristics of the parameter paths of
the proposed group bridge approach. Since cancer microar-
ray data is usually difficult to simulate, we illustrate the
performance of the proposed approach using real data in
Section 4.

4. CANCER MICROARRAY STUDIES
4.1 DLBCL study

The proposed approach is used to re-analyze the diffuse
large B-cell lymphoma (DLBCL) study, which was first re-
ported in Rosenwald et al. (2002). This data set consists
of a total of 240 patients with DLBCL, including 138 pa-
tient deaths during the follow up with median death time of
2.8 years. Gene expression measurements of 7399 genes are
available for analysis. Detailed experimental setup and raw
data can be accessed at llmpp.nih.gov/DLBCL/.

Since it is expected that the number of lymphoma-
associated genes to be much smaller than the total number
of genes, we first conduct supervised screening and remove
“noisy” genes as follows: (a) Compute the correlation coef-
ficients of the uncensored survival times with gene expres-
sions; (b) Consider the top 1000 genes with the largest ab-
solute values of correlation coefficients; (¢) Among the top
1000 genes, 157 belong to known cancer pathways. Select
those 157 genes; (d) Select the 143 genes with the largest
absolute values of correlation coefficients, but no pathway
information; and (e) The final gene set consists of the 300
genes from (c) and (d).

With the hybrid clustering, a total of 120 clusters are
constructed. Among them, 30 are constructed using statis-
tical correlations. The group bridge estimate is shown in
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Table 1. Two gene clusters are identified to be associated
with lymphoma prognosis. One of the identified gene clus-
ters is constructed using statistical correlations and referred
to as “Cancer Gene I”. The two clusters consist of 15 and 13
genes, respectively. Among them, 10 and 5 genes are identi-
fied to be associated with lymphoma prognosis.

Ten of the identified genes belong to the ErbB signaling
pathway. ErbB receptors are expressed in a variety of tissues
of epithelial, mesenchymal and neuronal origin, where they
play fundamental roles in development, proliferation and
differentiation. Moreover, deregulated expression of ErbB
receptors, in particular ErbB1 and ErbB2, has been impli-
cated in the development and malignancy of numerous types
of human cancers (Linggi and Carpenter 2006). PAK?2 is ex-
pressed in malignant lymphatic cells. The ability of PAK2
to repress the functions of MYC that lead to cellular trans-
formation raises the possibility that PAK2 can serve as a
tumor suppressor. The PAK2 gene resides at a chromo-
somal location (3q29) that is frequently affected by rear-
rangements in hematological malignancies, such as chronic
myeloid leukemia and B-cell lymphoma (Li et al. 2006). The
protein encoded by gene MYC is a multifunctional, nuclear
phosphoprotein that plays a crucial role in cell cycle pro-
gression, apoptosis and cellular transformation. It functions
as a transcription factor that regulates transcription of spe-
cific target genes. Mutations, overexpression, rearrangement
and translocation of this gene have been associated with a
variety of hematopoietic tumors, leukemias and lymphomas,
including Burkitt lymphoma (Bentley and Groudine 1986).
BRAF, which encodes a RAF family member in the down-
stream pathway of RAS, is somatically mutated in a num-
ber of human cancers, including lymphoma. The activating
mutation of BRAF is known to play a role in tumor devel-
opment (Lee et al. 2003). There are a total of 25 genes in
the Bcl-2 family known to date. Bcl-2 derives its name from
B-cell lymphoma 2, as it is the second member of a range



of proteins initially described as a reciprocal gene transloca-
tion in chromosomes 14 and 18 in follicular lymphomas. It
is also thought to be involved in resistance to conventional
cancer treatment (Chao and Korsmeyer 1998). Complement
component receptor-2 (CR2) is the membrane protein on B
lymphocytes to which the Epstein-Barr virus (EBV) binds
during infection of these cells (Cooper et al. 1990). Zinc
finger protein 36 is up-regulated in human T-lymphotropic
virus 1(HTLV-1)-infected cells. HTLV-1 is associated with
adult T-cell leukemia/lymphoma (Stumpo and Blackshear
2007). The major histocompatibility complex (MHC) class
I (HLA-A, B, C) and class IT (HLA-DR) antigens are in-
volved in cell-to-cell recognition and in regulating the im-
mune response. Researchers have shown that MHC class 1
and class I antigens may be absent in a subset of malignant
lymphomas, prompting the hypothesis that the absence of
MHC antigen expression may be one of the mechanisms in-
volved in the growth and dissemination of malignant lym-
phomas by allowing a neoplasm to escape immune surveil-
lance (Medeiros et al. 1993).

For comparison, we also employ the Lasso and group
Lasso. We are aware that there are many other alterna-
tives, including the support vector machine, threshold gra-
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dient directed regularization, CTGDR, SGL among others.
The Lasso and group Lasso have the penalization frame-
work most closed to the group bridge, and have been used
as benchmark in many previous studies. The Lasso identi-
fies 3 genes, which have no overlap with those identified with
the group bridge. The group Lasso identifies 42 genes, which
represent 3 gene clusters. Since we use the group Lasso esti-
mate as the starting value in the computational algorithm,
all genes identified with the group bridge are identified with
the group Lasso.

We use the LOO approach to evaluate the predictive
performance. We note that, since the screening procedure
uses the associations between the genes and outcome, for
each reduced data with sample size n — 1, the screening
needs to be re-conducted. This may result in slightly dif-
ferent sets of genes for different reduced datasets. With
the LOO, the Lasso has the logrank statistic equal to 8.76
(p value = 0.003); the group Lasso has the logrank statis-
tic equal to 5.88 (p value = 0.015); and the group bridge
has the logrank statistic equal to 15.2 (p value < 0.001).
In Figure 2, we show the survival functions of the two risk
groups created by dichotomizing the predictive risk scores
under different approaches. The survival functions under the
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Figure 2. Analysis of DLBCL data: Kaplan-Meier curves for the overall survival (upper-left), survival for the two risk groups
created using the Lasso (upper-right), group Lasso (lower-left), and group bridge (lower-right).
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group bridge have the best separation, which corresponds to
the smallest p-value of the logrank. This suggests that with
the group bridge, we are able to classify subjects into risk
groups with the best separation.

4.2 Follicular lymphoma study

Follicular lymphoma is the second most common form of
non-Hodgkin’s lymphoma, accounting for about 22 percent
of all cases. A study was conducted to determine whether
the survival risks of patients with follicular lymphoma can
be predicted by gene expression profiles of the tumors (Dave
et al. 2004). Detailed experimental setup and the raw data
can be accessed at llmpp.nih.gov/FL/.

Fresh-frozen tumor-biopsy specimens from 191 untreated
patients who had received a diagnosis of follicular lymphoma
between 1974 and 2001 were obtained. The median age at
diagnosis was 51 years (range: 23 to 81), and the median fol-
low up time was 6.6 years (range: less than 1.0 to 28.2). The
median follow up time among patients alive at last follow
up was 8.1 years. Eight records with missing survival infor-
mation are excluded from the analysis. Affymetrix U133A
and U133B microarray genechips were used to measure gene
expressions. A log2 transformation was first applied to the
Affymetrix measurements. We first process the 44928 gene
expressions as follows.

1. Unsupervised processing with the following criteria: (a)
the max expression value of each gene across all samples
must be greater than the median max expressions; and
(b) the max — min expressions should be greater than
their median.

2. Supervised processing. (a) Compute the correlation co-
efficients of the uncensored survival times with gene
expressions; (b) Consider the top 1000 genes with the
largest absolute values of correlation coefficients; (c)
Among the top 1000 genes, 163 belong to known can-
cer pathways. Select those 163 genes; (d) Select another
137 genes with the largest absolute values of correlation
coefficients, but no pathway information; and (e) The
final gene set consists of the 300 genes from (c) and (d).

With the hybrid clustering, a total of 130 clusters are con-
structed. Among them, 12 are constructed using statistical
correlations. We show the group bridge estimate in Table 2.
16 genes are selected, representing 4 different gene clusters.
Among them, 6 genes are from the same cluster constructed
using correlations and that cluster is referred to as “Cancer
Gene I1”.

Among the identified genes, early B cell factor (EBF) is
a transcription factor suggested to be involved in the tran-
scriptional control of several B cell restricted genes. EBF
is also essential for B lymphocyte development (Akerblad
and Sigvardsson 1999). ENO2 is also known as NSE. The
frequency of a high NSE serum value in acute and lym-
phoma type adult T-cell leukemia (ATL) suggests that ATL
cells preferentially produce NSE compared with other NHL
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cells (Fujiwara et al. 2002). NSE may have a role in the de-
velopment of pyothorax-associated lymphoma (PAL). Alde-
hyde dehydrogenase (ALDH; gene aldh3a2) plays a sig-
nificant role in the metabolism of many biological sub-
stances. It has been shown to be related to lymphoma in
animal models. Gene IFNGR1 has been carefully inves-
tigated as one of the lymphoma signature genes in Lan
et al. (2006). In situ hybridization has shown that lym-
phoma cells express IL7R. The protein encoded by this
gene is a receptor for interleukin 7 (IL7). This protein
has been shown to play a critical role in the V(D) J re-
combination during lymphocyte development (www.ithop-
net.org/UniPub/iHOP /bng/89458 html). CREB has been
implicated in the pathogenesis of lymphomas. CREB binds
the CRE site in the promoter of translocated bcl-2 in fol-
licular lymphoma with the t(14;18) translocation, but not
normal alleles in both follicular and transformed lymphomas
(Ji et al. 1996). Gene GNAS codes recombinant lymphoma
associated protein (LAP). GNAS also plays a role in dis-
eases other than leukemias and lymphomas. Mutations in
GNASI1, the human GNAS gene, result in Alright hered-
itary osteodystrophy (AHO), which may suggest its more
general role in cancer (Ahrens et al. 2001).

We also employ the Lasso and group Lasso. The Lasso
identifies 27 genes. Two genes are identified by both the
Lasso and group bridge: genes ENO2 and ALDH2. The
group Lasso identifies 149 genes, representing 15 gene clus-
ters. With the proposed computational algorithm, all genes
identified by the group bridge are identified by the group
Lasso. We employ the LOO approach for prediction evalu-
ation. The supervised screening is conducted for each re-
duced data. The Logrank statistics are 3.92 (p value =
0.048; Lasso), 3.36 (p value = 0.067; group Lasso) and 8.28
(p value = 0.004; group bridge), respectively. Plots of the
survival functions are similar to those shown in Figure 2
and are omitted.

Table 2. Analysis of the Follicular lymphoma data

UNIQID Gene symbol Cluster Estimate
1100790 Cancer Gene 11 0.009
1104365 EBF Cancer Gene II —0.322
1106389 Cancer Gene 11 —0.032
1109193 ANKRD13  Cancer Gene II —0.055
1112339 Cancer Gene I1 —0.014
1137071 TRA2A Cancer Gene 11 0.225
1119299 ENO2 Glycolysis/Gluconeogenesis ~ —0.198
1119350 ALDH2 Glycolysis/Gluconeogenesis ~ —0.161
1112764 IFNGR1 Jak-STAT signaling pathway —0.035
1098405 IL7R Jak-STAT signaling pathway —0.295
1100582 CREB3L2 Melanogenesis 0.163
1097846 CREBI1 Melanogenesis —0.138
1132548 CREBI1 Melanogenesis —0.339
1128804 FZD3 Melanogenesis 0.151
1101010 GNAS Melanogenesis 0.189
1116700 CAMK2D Melanogenesis 0.239




4.3 Breast cancer study

Breast cancer is the second leading cause of death from
cancer among women in the United States. Despite major
progress in breast cancer treatment, the ability to predict
the metastatic behavior of the tumor remains limited. The
breast cancer study was first reported in van’t Veer et al.
(2002). 97 lymph node-negative breast cancer patients 55
years old or younger participated in this study. Among them,
46 developed distant metastases within 5 years (metastatic
outcome coded as 1) and 51 remained metastases free for
at least 5 years (metastatic outcome coded as 0). Expres-
sion levels for 24481 gene probes were collected. The goal of
this study is to build a statistical model that can accurately
predict the risk of distant recurrence of breast cancer in
a five-year post-surgery period. The dataset is available at
www.rii.com/publications/2002/vantveer.html. We process
gene expression data as follows.

1. Unsupervised processing. (a) Remove genes with more
than 30% missing measurements. (b) Fill in missing
measurements with median values across samples. (c)
Normalize gene expressions to have zero means and unit
variances.

2. Supervised processing. (a) Compute the correlation co-
efficients of the gene expressions with binary outcome.
(b) Consider the top 1000 genes with the largest ab-
solute values of correlation coefficients. (¢) Among the
top 1000 genes, 179 of them belong to known cancer
pathways. Select those 179 genes. (d) Select another
121 genes with the largest absolute values of correla-
tion coefficients, but no pathway information. (e) The
final gene set consists of the 300 genes from (c) and (d).

With the hybrid clustering, a total of 130 clusters are
constructed, 125 of which are based on pathway information.
We employ the proposed group bridge with the 5-fold cross
validation to determine the optimal tuning. We show the
group bridge estimate in Table 3. Eight genes from seven
clusters are identified.

We retrieve gene annotations from www.ncbi.nlm.
nih.gov. Numerous experiments have shown that alcohol de-
hydrogenase (ADH) and aldehyde dehydrogenase (ALDH,;
gene aldh3a2) play a significant role in the metabolism
of many biological substances. Some metabolic disorders

that can lead to breast carcinogenesis may be the cause of
changes in ADH and ALDH activity (Jelski et al. 2006).
Gene ins is one of the insulin genes and regulates the in-
sulin level. A high level of insulin is associated with an
increased risk of breast cancer. Gene stxla is one of the
prognosis markers used in the Oligo GEArray human breast
cancer biomarker microarray (www.superarray.com). It has
also been linked to several other cancers, such as non-small
cell lung cancer, which suggests its broader associations with
neoplasm. Protein encoded by gene ptpnll is a member of
the protein tyrosine phosphatase (PTP, Shp2) family. PTPs
are known to be signaling molecules that regulate a vari-
ety of cellular processes including cell growth, differentia-
tion, mitotic cycle, and oncogenic transformation. Activat-
ing Shp2 mutations have also been detected in neuroblas-
toma, melanoma, acute myeloid leukemia, breast cancer,
lung cancer, colon cancer, which suggests that Shp2 may
be a proto-oncogene (Tartaglia and Gelb 2005). Gene krt18
is one of the genes that have been commonly used to de-
fine luminal-type breast cancers. Many independent studies
have confirmed its role as a breast cancer biomarker (Yau
et al. 2007). The protein encoded by gene appll has been
shown to be involved in the regulation of cell proliferation,
and in the crosstalk between the adiponectin signaling and
insulin signaling pathways. Gene tgfb3 is among the breast
cancer signature genes identified in Glinsky et al. (2004).

We also analyze this data using the Lasso and group
Lasso. With the Lasso, 33 genes are identified. Two genes
are identified by both the Lasso and group bridge: genes ins
and ptpnll. With the group Lasso, 167 genes are identified,
representing 58 gene clusters. The LOO approach is used
for predictive evaluation. The numbers of mis-predicted sub-
jects are 26 (Lasso), 19 (group Lasso) and 18 (group bridge),
respectively.

5. CONCLUSION

Cancer microarray data has high dimensionality and clus-
ter structure. In this article, we propose using the group
bridge approach to identify cancer-associated gene clusters
and genes within those clusters. The group bridge is a penal-
ized approach and shares similar spirits with, but differs sig-
nificantly from the composite penalty in Zhao et al. (2006).

Table 3. Analysis of the breast cancer data

Gene symbol  Cluster Estimate
aldh3a2 Urea cycle and metabolism of amino groups —0.713
ins Maturity onset diabetes of the young —0.943
stxla Parkinson’s disease 0.786
arldd Cholera — Infection —0.515
ptpnll Epithelial cell signaling in Helicobacter pylori infection 1.027
krt18 Pathogenic Escherichia coli infection — EHEC —0.863
appll Colorectal cancer —0.250
tgfb3 Colorectal cancer —0.464
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We assess performance of this approach in terms of biologi-
cal implications of identified genes, gene clusters, and their
prediction performance. Analyses of three cancer datasets
show that the group bridge can identify a small number
of pathologically meaningful genes with satisfactory predic-
tion performance, and can behave better than the Lasso and
group Lasso.

We have proposed a hybrid clustering approach. The hy-
brid clustering is intuitive, and numerical studies in Section
4 show that such a clustering approach performs reasonably
well. In our data analysis, we use the probe-level gene ex-
pression data. Multiple probes may correspond to the same
gene, as shown in the tables. However, since different probes
may measure different areas of chromosomes, and different
probes for the same genes may yield weakly correlated gene
expressions, we choose not to combine multiple probes. We
have proposed to carry out gene screening prior to the analy-
sis. Such an approach has been used in Ma, Song and Huang
(2007), Ma and Huang (2007), and many references therein.
Although the screening can be subjective, previous stud-
ies have demonstrated its great benefits. Carrying out the
supervised screening in each step of the LOO makes the
evaluation process fair. Of note, even with the gene screen-
ing, the number of genes used in the analysis is still much
larger than the sample size. Since most available approaches
do not have a comparable two-level selection paradigm, and
the SGL and CTGDR do not have a well defined penaliza-
tion framework, we do not pursue comparisons with those
alternatives. The Lasso and group Lasso are chosen for com-
parison since they are the most widely used, and have been
used in many other studies.
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