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Bootstrap tests for simple structures in
nonparametric time series regression∗
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This paper concerns statistical tests for simple structures
such as parametric models, lower order models and additiv-
ity in a general nonparametric autoregression setting. We
propose to use a modified L2-distance between the nonpara-
metric estimator of regression function and its counterpart
under null hypothesis as our test statistic which delimits the
contribution from areas where data are sparse. The asymp-
totic properties of the test statistic are established, which
indicates the test statistic is asymptotically equivalent to a
quadratic form of innovations. A regression type resampling
scheme (i.e. wild bootstrap) is adapted to estimate the dis-
tribution of this quadratic form. Further, we have shown
that asymptotically this bootstrap distribution is indeed the
distribution of the test statistics under null hypothesis. The
proposed methodology has been illustrated by both simula-
tion and application to German stock index data.
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1. INTRODUCTION

Testing on parametric structures is an important issue
in nonparametric statistics. In the context of time series
modeling, this problem has also been addressed by many
authors. For example, Hjellvik and Tjøstheim (1995, 1996)
proposed linearity tests based on nonparametric estimates
of conditional means and conditional variances. Their tests
are based on average L2-distances between parametric and
nonparametric estimators of mean (or conditional variance)
functions. Hjellvik, Yao and Tjøstheim (1998) established
the asymptotic theory of the tests. Further, simulation con-
ducted in that paper clearly demonstrates that the ap-
proximation from the first order asymptotic theory is far
too crude to be useful in practice unless the sample size
is tremendously large. Following the lead of Hjellvik and
Tjøstheim (1995, 1996), Hjellvik, Yao and Tjøstheim (1996,
1998) adopted a parametric bootstrap scheme to estimate
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the critical values of tests, which amounted to resampling es-
timated residuals from the best fitted linear autoregressive
model. This bootstrap procedure was proposed in Kreiss
(1988); see also Bühlmann (1997) and Kreiss (1997). Again
by simulations, Hjellvik, Yao and Tjøstheim (1998) demon-
strate that the bootstrap approximation for the distribution
of the test statistic is much more accurate than a first-order
asymptotic approximation. However, there has been no the-
oretical justification of using bootstrap method in this con-
text. One goal of this paper is to fill in this gap.

In this paper, we propose statistical tests for simple struc-
tures such as parametric models, lower order models and
additivity in a general setting of stochastic regression model
which includes autoregression as a special case. Our test
statistic can be viewed as a generalized form of L2-distance
between nonparametric regression and its counterpart un-
der null hypothesis. The idea to use the L2-distances as test
statistics goes back to Härdle and Mammen (1993), where
the regression is considered with independent observations.
In fact, Härdle and Mammen considered various kinds of
bootstrap methods and concluded that the wild bootstrap
method was most relevant to regression type of problems.
Our test statistic is an improved version of that used by
Härdle and Mammen. The improvement is effectively due
to the introduction of a weight function in the statistic,
which is proportional to the squared marginal density of
the regressor. This not only stabilizes the statistic against
the so-called boundary effect in nonparametric regression,
but also delimits the influence from the areas where data
are sparse. Furthermore, it simplifies theoretical derivation
considerably. Following Härdle and Mammen’s suggestion,
we also use the wild bootstrap method. However different
from Härdle and Mammen, we only use it to estimate the
distribution of a quadratic form of innovations which has
an uniform form for all the three types of null hypothe-
ses considered in the paper. Indeed this quadratic form is
asymptotically equivalent to the test statistics under the null
hypotheses. This means that practically we bootstrap from
a population which always reflects the null hypothesis con-
cerned (Hall and Wilson (1991)). This resampling scheme
is nonparametric, which retains conditional heteroscedastic-
ity in the model. For further discussion on using regression
types of resampling techniques in autoregression, we refer to
Neumann and Kreiss (1998) and Franke, Kreiss and Mam-
men (2002).
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The rest of paper is organized as follows. We present the
bootstrap test and the three types of null hypotheses in Sec-
tion 2. In Section 3, the finite sample properties of the pro-
posed methodology will be demonstrated by simulation and
later by the application to German stock index data. The
asymptotic properties in Section 4 guarantee that the boot-
strap distributions are asymptotically the same as the null
hypothesis distributions of the test statistics. All technical
proofs are relegated in the Appendix.

2. BOOTSTRAP TESTS

2.1 Model and hypotheses

Suppose that {Xt, Yt} is a strictly stationary discrete-
time stochastic process with Xt ∈ R

d and Yt ∈ R. Given ob-
servations {(Xt, Yt) : 1 ≤ t ≤ T}, we are interested in test-
ing whether the conditional expectation m(x) = E{Yt|Xt =
x} is of some simple structure. We write

(2.1) Yt = m(Xt) + εt, t ≥ 1,

where E{εt|Ft} = 0 for all t, and Ft is the σ-algebra gener-
ated by {(Xs, Ys−1), s = t, t − 1, . . .}. This setting includes
the autoregressive model as a special case in which Xt con-
sists of some lagged values of Yt. We do not assume that the
random variables εt, t ≥ 1, are independent. This, in partic-
ular, allows us to include the conditional heteroscedasticity
in the model (see an application in Subsection 3.2 below).
In fact, our original motivation is to test whether an autore-
gressive function has some simple forms such as, for exam-
ple, a given parametric representation.

In this paper, we consider three types of null hypotheses
on m(·):

Hp : m(·) ∈
{
mθ(·) | θ ∈ Θ

}
,

H0 : m(x1, . . . , xd) = m0(x1),
Ha : m(x1, . . . , xd) = m1(x1) + . . . + md(xd).

As a simple example of Hp, we may think of testing for a
linear regression, namely mθ(x1, . . . , xd) =

∑d
i=1 θixi. An-

other example would be to test for a parametric threshold
model (Tong (1990)). For applications in econometrics, it
is interesting to test for a so-called ARCH-structure (Engle
(1982)), i.e. to test the validity of the model

Xt = σθ(Xt−1, . . . , Xt−d)et,

where σθ(x1, . . . , xd) =

√√√√θ0 +
d∑

i=1

θix2
i .

In the above expression, it is assumed that Eet = 0 and
Ee2

t = 1. This problem can be formulated as a special case
of testing for Hp by writing Yt = X2

t . (See Subsection 3.2
below.) Although hypothesis H0 specifies a one-dimensional

model only, our approach can be applied to test for the hy-
pothesis of a d0-dimensional model for some d0 < d. In view
of the curse of dimensionality which makes nonparametric
methods in high dimensions problematic, it is often appeal-
ing to assume, for example, the additivity in nonparamet-
ric modeling. To date, most work on additive modeling has
focused on the estimation aspect, whereas little attention
has been paid on testing the validity of the additivity. The
method proposed in this paper provides a bootstrap test for
this purpose.

All the tests concerned in this paper are omnibus in the
sense that they are designed for the testing against the alter-
native (2.1) which is a very general d-dimensional regression
model. Therefore they are typically less powerful than the
tests constructed for the alternatives with explicitly spec-
ified structures. We refer to Fan and Jiang (2007) for an
overview on function-based nonparametric tests with the
structured alternative hypotheses.

2.2 The test statistic

Let m̃(·) be a corresponding estimator of m(·) under the
relevant null hypothesis, namely,
(2.2)

m̃(x1, . . . , xd) =

⎧⎪⎨⎪⎩
m

θ̂
(x1, . . . , xd) if Hp holds,

m̂0(x1) if H0 holds,
m̂1(x1) + . . . + m̂d(xd) if Ha holds.

We propose to use the test statistic
(2.3)

ST =
∫

Rd

(
1
T

T∑
t=1

Kh(x − Xt){Yt − m̃(Xt)}
)2

w(x) dx,

where Kh(·) = h−dK(·/h), K(·) is a kernel function on R
d,

h > 0 is a bandwidth, and w(·) denotes a weight function.
The statistic defined above can be viewed as a modified

version of the following statistic used by Härdle and Mam-
men (1993) for testing the hypothesis Hp based on indepen-
dent observations

(2.4)
∫

Rd

⎛⎝∑T
t=1 Kh(x − Xt){Yt − m

θ̂
(Xt)}∑T

t=1 Kh(x − Xt)

⎞⎠2

w(x)dx.

Their basic idea is to use the average L2-distance between a
parametric estimator m

θ̂
(·) and a nonparametric estimator

(2.5) m̂h(·) =
T∑

t=1

YtKh(· − Xt)
/ T∑

t=1

Kh(· − Xt)

as a test statistic. To compensate the bias in nonparamet-
ric estimation under H0, they smooth m

θ̂
(·) as well. We

omit the estimator of the stationary density π(·) of Xt in
the denominator of the integrand in (2.3), which could be
interpreted as that we add a factor π2(·) into the weight
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function in (2.4). This means that we consider the differ-
ence of the two estimators only at the values of x within the
support of π(·) and pay substantially less attention in areas
where the data are sparse (see Subsection 3.2, especially Fig-
ure 3.5). Further, this modification not only simplifies the
theoretical derivations, but also makes the statistic stable in
practice – regardless of the choice of weight function w(·).
In fact, we can choose w(·) ≡ 1 for testing Hp. Note that
Fan and Zhang (2004) Subsection 3.1 presents an interesting
interpretation of the above bias correction via smoothing in
terms of reparametrization. It also points out the link to the
prewhitening technique of Press and Tukey (1956).

Our test statistics for the three different null hypotheses
Hp, H0 and Ha have a common representation ST as given
in (2.3). The respective estimators for the regression func-
tion m(·) under different hypotheses are building blocks in
defining ST (see (2.2)). We specify those estimators as fol-
lows.

For testing a parametric hypothesis Hp, we assume that
θ̂ is a

√
T -consistent estimator of θ0 (the true parameter)

for which

(2.6) m
θ̂
(·)−mθ0

(·) = (θ̂−θ0)τṁθ0
(·)+OP

(
|| · ||2√
T log T

)
,

where ṁθ(·) denotes the derivative of mθ(·) with respect to
θ, and || · || denotes the Euclidean norm.

For testing the one-dimensional nonparametric regression
model H0, we use a local polynomial estimator of order p,
where [p/2] > 5d/16, ([p/2] denotes the integer part of p/2),
i.e. we estimate m0(x1) by m̂g(x1) = â, where

(â, b̂1, . . . , b̂p)(2.7)

= arg min
a,b1,...,bp

T∑
t=1

{
Yt − a − b1(x1 − Xt,1) − · · ·

− bp(x1 − Xt,1)p
}2

W

(
x1 − Xt,1

g

)
,

W is a kernel function on R, g > 0 is a bandwidth, and
Xt,1 is the first component of Xt. We use a local polynomial
estimator with a sufficiently high order (i.e. [p/2] > 5d/16)
rather than a conventional kernel (i.e. local constant) esti-
mator in order to keep the bias in estimation of m0(·) small
enough in the first place. Note that the way of defining the
statistic ST involves the further smoothing on the estima-
tor of m0(·), which inevitably increases its bias further un-
der H0.

We use the so-called nonparametric integration estima-
tors for the additive conditional mean function m(x) =
m1(x1) + · · · + md(xd), which, as proved by Fan, Härdle
and Mammen (1998) achieve the usual one-dimensional rate
of nonparametric curve estimators. This indicates that ob-
tained results for testing on a one-dimensional nonparamet-
ric hypothesis immediately carry over to the additive non-
parametric case.

2.3 Bootstrapping

It is easy to see that

Thd/2ST

(2.8)

= Thd/2S′
T − 2hd/2

T

∫ T∑
t=1

Kh(x − Xt)εt

×
T∑

s=1

Kh(x − Xs){m̃(Xs) − m(Xs)}w(x)dx

+
hd/2

T

∫ ( T∑
t=1

Kh(x − Xt){m̃(Xt) − m(Xt)}
)2

w(x)dx,

where

(2.9) S′
T =

1
T 2

∫ ( T∑
t=1

Kh(x − Xt)εt

)2

w(x)dx,

which is a quadratic form of the innovations {εt} and is in-
variant under the three null hypotheses. Theorem 1 in Sec-
tion 4 below shows that under the null hypotheses, Thd/2ST

is asymptotically normal, and more importantly its asymp-
totic distribution is the same as that of Thd/2S′

T . (The dom-
inating role played by the quadratic term was also observed
by Härdle and Mammen (1993) for regression with indepen-
dent observations.) This indicates that we may mimic the
distribution of ST by bootstrapping the quadratic form S′

T

only. Note that the distribution of S′
T does not depend on

whether the null hypothesis holds or not, although ST does.
Therefore, the derived bootstrap test automatically follows
the first guideline set by Hall and Wilson (1991). Namely our
bootstrap approximation to the null hypothesis distribution
of ST is always valid even the data {(Yt,Xt)} were drawn
from a population under which the null hypothesis does not
holds. (See Figure 3.3 below for an illustration.) This en-
sures the reasonable power of the bootstrap test against the
departure from the null hypothesis.

Härdle and Mammen (1993) studied three different boot-
strap procedures and concluded that the wild bootstrap is
the most pertinent method for testing the regression struc-
ture. Following their lead, we adopt a wild bootstrap scheme
to estimate the distribution of (2.9). To this end, we define
the bootstrap statistic

(2.10) S∗
T =

1
T 2

∫ ( T∑
t=1

Kh(x − Xt)ε∗t

)2

w(x)dx,

where the bootstrap innovations ε∗1, . . . , ε
∗
T are conditionally

independent given the observed data {(Xt, Yt) : 1 ≤ t ≤ T},
and

E∗ε∗t = 0 and E∗(ε∗t )
2 = ε̂t

2 = (Yt − m̂h(Xt))2,
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where E∗ denotes the expectation under bootstrap distribu-
tion (i.e. the conditional distribution given {(Xt, Yt) : 1 ≤
t ≤ T}), m̂h(·) is defined as in (2.5). In practice, we can
define ε∗t = ε̂t · ηt, where {ηt} is a sequence of i.i.d. random
variables with zero mean and unit variance. We reject the
null hypothesis if ST > t∗α, where t∗α is the upper α-point of
the conditional distribution of S∗

T . The latter can be evalu-
ated via repeated bootstrap samplings. In fact, the p-value
of the test is the relative frequency of the event {S∗

T ≥ ST }
in the bootstrap replications. We have proved that this boot-
strap test is asymptotically correct in the sense that its sig-
nificance level converges to α as T → ∞ (Corollary 1 in
Section 4 below).

3. NUMERICAL PROPERTIES

In this section, we investigate the finite sample properties
of the proposed method by both simulation and application
with a real data set. As an illustration, we deal only with
the parametric hypothesis Hp. We always use the kernel
K(u) = 3/4 (1 − u2) I[−1,1](u) in our calculations, whereas
the standard Gaussian kernel is also possible, and weight
function w(·) ≡ 1. We use the cross-validation to choose
bandwidths for nonparametric regression estimation.

3.1 Simulations

We conduct simulations with five different models. It
turns out that the bootstrap scheme provides fairly accu-
rate approximations to the significance levels of the tests.
The simulated power of tests are also reported. Finally, we
demonstrate by example that the bootstrap approximation
stays closely to the distribution of S′

T , which is equal to the
null hypothesis distribution of ST asymptotically, even when

ST is calculated from the data generated from a nonlinear
model.

We consider three linear autoregression models

(M1) Xt = −0.9 · Xt−1 + εt, t = 1, . . . , T,
(M2) Xt = 0.9 · Xt−1 − 0.5 · Xt−2 + εt, t = 1, . . . , T,
(M3) Xt = 0.9 · Xt−1 − 0.5 · Xt−2 + 0.3 · Xt−3 + εt, t =

1, . . . , T,

and two nonlinear autoregression models

(M4) Xt = 0.9 · sin(Xt−1) + εt, t = 1, . . . , T,
(M5) Xt = −0.9 · Xt−1 + sin(Xt−2) + εt, t = 1, . . . , T.

We always assume that innovations in the above models are
i.i.d.. Their distribution may be normal, double exponen-
tial (heavier tails), logistic or shifted exponential (in order
to have zero mean). All the five models are stationary. We
replicate simulation 500 times with sample size T = 100, 200
and 500 respectively. We replicate bootstrap sampling 500
times.

Tables 3.1 and 3.2 report the actual levels of the pro-
posed bootstrap tests for all five models with different in-
novation distributions. For the first three models we test
for linearity, while for model four and five we test for the
parametric hypothesis m(x) ∈ {θ sin(x)} and m(x1, x2) ∈
{θ1 x1 + θ2 sin(x2)} respectively. It can be seen from
Tables 3.1 and 3.2 that the actual levels of the proposed
bootstrap tests are very stable around or below the nom-
inal level α. Even when the distribution of innovations in
model (M2) is exponential, which is strongly asymmetric,
the proposed test tends to make the right decision. Note
that it is not always trivial to separate nonlinearity from
non-normality, and some classical test procedures would re-
ject a linearity hypothesis for a linear model with strongly
skewed innovations.

Table 3.1. Nominal level α = 0.05
model T=100 L(ε1) T=200 L(ε1) T=500 L(ε1)

M1 0.048 logistic 0.036 logistic 0.050 logistic

M2 0.066 logistic 0.048 logistic 0.036 logistic

M2 0.040 exponential 0.018 exponential 0.022 exponential

M3 0.066 normal 0.045 normal 0.030 normal

M4 0.052 double exp. 0.048 double exp. 0.046 double exp.

M4 0.026 exponential 0.028 exponential 0.024 exponential

M5 0.048 normal 0.034 normal 0.028 normal

Table 3.2. Nominal level α = 0.10
model T=100 L(ε1) T=200 L(ε1) T=500 L(ε1)

M1 0.074 logistic 0.055 logistic 0.086 logistic

M2 0.106 logistic 0.100 logistic 0.068 logistic

M2 0.078 exponential 0.044 exponential 0.062 exponential

M3 0.106 normal 0.080 normal 0.082 normal

M4 0.124 double exp. 0.084 double exp. 0.058 double exp.

M4 0.076 exponential 0.060 exponential 0.064 exponential

M5 0.096 normal 0.092 normal 0.066 normal
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Table 3.3. Underlying model (M4), test on first order linear autoregression

level α T=100 L(ε1) T=200 L(ε1) T=500 L(ε1)

0.05 0.540 double exp. 0.878 double exp. 1.000 double exp.
0.05 0.432 exponential 0.806 exponential 1.000 exponential
0.10 0.676 double exp. 0.950 double exp. 1.000 double exp.
0.10 0.614 exponential 0.914 exponential 1.000 exponential

Figure 3.1. T = 200. Simulated density of L(Thd/2ST ) (thick) and six bootstrap approximations (thin).

Table 3.4. Underlying model (M5), test on second order
linear autoregression

level α T=100 L(ε1) T=200 L(ε1) T=500 L(ε1)

0.05 0.992 normal 1.000 normal 1.000 normal
0.10 0.998 normal 1.000 normal 1.000 normal

Now we apply the bootstrap test for the linearity hypoth-
esis for models (M4) and (M5). Tables 3.3 and 3.4 report
the simulated values of the power function of the proposed
bootstrap test. Comparatively, the proposed test is more
powerful to detect the nonlinearity in model (M5) than that
in (M4). The wider dynamic range of Xt in model (M5)
than that in (M4) is certainly more helpful to identify the
nonlinearity.

Finally, we look more closely at models (M2) and (M4).
We plot the density functions of the test statistic Thd/2ST

(obtained from a simulation with 1000 Monte Carlo replica-
tions) and a couple of its bootstrap approximations in Fig-
ure 3.1 for model (M2) with T = 200 and in Figure 3.2 for
model (M4) with T = 100. The null hypothesis concerned
here is the correct parametric form specified in model (M2)
and (M4), respectively. For testing the linearity for model
(M4), we plot the distributions of Thd/2ST and Thd/2S′

T to-

gether in Figure 3.3. Since now the null hypothesis no longer
holds, the distributions of Thd/2ST and Thd/2S′

T are quite
different. The bootstrap approximations are always close
to the null hypothesis distribution of Thd/2ST whenever
the underlying models reflect null hypothesis (Figures 3.1
and 3.2) or not (Figure 3.3).

One pillar of the consistency of our bootstrap proposal is
that the more complicated test statistic ST (cf. (2.3)) can be
approximated by a simpler quadratic form S′

T (cf. (2.9)). For
a proof of this approximation it is necessary that the band-
width h fulfills the restrictions of assumption A5, i.e. espe-
cially converges to zero as sample size increases (cf. proof of
Theorem 1 (i)). On the other hand it seems reasonable that
the approximation of the bootstrap statistic S∗

T (cf. (2.10))
to the quadratic form S′

T (cf. (2.9)) is less dependent on
the choice of the bandwidth h. For a larger h we even are
more close to a parametric situation which indicates that the
accuracy of the bootstrap approximation to the quadratic
form S′

T tends to be better the larger the bandwidth h is
chosen.

3.2 Application

We apply our test to the daily German stock index
DAX (St) for the period January 2, 1990 — December 30,
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Figure 3.2. T = 100. Simulated density of L(Thd/2ST ) (thick) and five bootstrap approximations (thin).

Figure 3.3. T = 100. Simulated density of test statistic (thick), simulated density of quadratic form (broken) and three
bootstrap approximations (thin).

1992 plotted in Figure 3.4. It is of practical interest to
test whether the first order ARCH-model is an appropri-
ate parametric form for the so-called returns Rt ≡ log St −
log St−1, t = 1, . . . , T = 746. The implied ARCH model is

Rt =
√

α0 + α1R2
t−1 · et,

which can equivalently be expressed as,

R2
t = α0 + α1R

2
t−1 +

(
α0 + α1R

2
t−1

)
· (e2

t − 1),

where the innovations {et} are assumed to be i.i.d. random
variables with zero mean and unit variance. Our test statis-
tic is based on the average L2-distance of the parametric
estimator α̂0 + α̂1x

2 and the nonparametric estimator of
E
[
R2

t |Rt−1 = x
]
, the volatility function, over the interval

[−0.02, 0.02] (in which we find 91.4% of our data). Note
that we are now dealing with a model with (conditional)
heteroscedasticity.

In a first step we use the statistic (2.3) with weight func-
tion w equal to one. As is explained in Subsection 2.2 this
means that we implicitly make use of an intrinsic weight
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Figure 3.4.

function proportional to the square of the stationary den-
sity, i.e. we weight down regions where the observations are
sparse. The value of the test statistic is T

√
hST = 1.2 ·10−6,

where the bandwidth h = 9.0 · 10−3 has been selected by
cross-validation. From 5000 bootstrap replications we ob-
tain the bootstrap critical value t∗0.10 = 3.1 · 10−6 (at a
level of 10 per cent), which implies that the first order para-
metric ARCH-model for the returns of the German stock
index (1990–1992) cannot be rejected. The related p-value,
obtained from the bootstrap simulations, reads 0.367. Fig-
ure 3.5 depicts both parametric estimator and nonparamet-
ric estimator of the regression function, together with the
estimated marginal density function. It is clear that the
ARCH structure is predominant when the density function
is reasonably large and it fades away when we look at more
extreme values of returns (which could be positive or neg-
ative). Note that the estimated density function takes very
small values in the areas where the returns take extreme val-
ues. The intrinsic weight function in our test statistic weighs
down the discrepancy of the two estimators in those areas
automatically.

In a second step we don’t use the simplified statistic (2.3)
but instead the statistic (2.4) with two different weight
functions w given below. This means that we don’t want
to weight down regions where the data are sparse as we
did above. In order to be able to detect asymmetry of the
conditional expectation of the squared returns we use the
following two weight functions w1 = 1[−0.020,−0.005] and
w2 = 1[0.005,0.020], i.e. we test, separately, for the same para-
metric ARCH-structure on a part of the negative and posi-
tive axes. Recall that we could not reject the ARCH-model
at the level of 10% above. Now, at the stricter level of 5%,
the bootstrap test applied to the test statistic (2.4) with
weight function w2 yields a clear cutoff rejection (bootstrap
p-value obtained reads 0.023) while no rejection for the same
test with w1 of the parametric ARCH-structure is obtained
(bootstrap p-value 0.205). The above analysis suggests that
while ARCH(1) may provide a reasonable fitting in a mid-
dle area, it certainly fails to quantify the volatilities due to
extreme negative returns. Our analysis also reinforces the
common knowledge that volatility functions are not sym-
metric.
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Figure 3.5: Nonparametric estimator m̂h(x), parametric estimator α̂0 + α̂1x
2 of E[R2

t |Rt−1 = x] and density of the
underlying data (scaled by factor 10−5) (broken).

4. ASYMPTOTIC PROPERTIES

To study the asymptotic properties of the proposed
method, we need to introduce some regularity conditions
as follows.

(A1) The process {(Xi, Yi)} is absolutely regular, i.e.

β(j) ≡ sup
i≥1

E

{
sup

A∈F∞
i+j

|P (A|Fi
1) − P (A)|

}
→ 0,

as j → ∞,

where Fj
i is the σ-field generated by {(Xk, Yk) :

k = i, . . . , j} (j ≥ i). Further it is assumed that
{β(j)} decay at a geometric rate.

(A2) Xt has a bounded density function π(·). Fur-
ther, the joint density of distinct elements of
(X1, Y1,Xs, Ys,Xt, Yt) (t > s > 1) is continuous
and bounded by a constant independent of s and t.

(A3) E{εt|Xt,Ft−1
1 } = 0 for all t, σ2(x) = Var{Yt|Xt =

x} = E[ε2
t |Xt = x] is continuous, and

E{[m(Xt)]16 + Y 16
t } < ∞.

(A4) K is a product kernel, i.e. K(x) =
∏d

i=1
W (xi), and

W is a symmetric density function with a bounded
support in R, and |W (x1)−W (x2)| ≤ c|x1−x2| for
all x1 and x2 in its support.

(A5) h ∈ [aT
− 1

d+4 / log T, bT
− 1

d+4 log T ], where 0 < a <
b < ∞ are some constants.

(A6) This assumption differs for the three different null
hypotheses.

• For testing the hypothesis Hp, it is assumed
that Eθ0

||ṁθ0
(X1)||2 < ∞, and w(·) ≡ 1.

• For testing H0, it is assumed that m0(·)
is (p+1)-times differentiable with a
bounded (p+1)-th order derivative, and

g ∈ [aT
− 1

4[p/2]+5 / log T, bT
− 1

4[p/2]+5 log T ],
where [p/2] denotes the integer part of p/2
and 0 < a < b < ∞ are some constants.
Further, we assume that [p/2] > 5d/16. The
weight function w(·) has a compact support
contained in the support of π(.).
Further, for any M < ∞ and arbitrary
compact subset B contained in the support of
Xt,1, there exists a constant CM,B < ∞ such
that

sup
x∈B

{
E

(
|εt|M

∣∣∣Xt,1 = x

)}
≤ CM,B for all t.

• For testing Ha, smoothness conditions on
mk(·) (1 ≤ k ≤ d) and suitable assumptions on
the bandwidth are assumed in order to ensure
that all the estimators for {mk(·)} achieve the
one-dimensional convergence rate and the uni-
form convergence over compact sets contained
in the support of π(·).

Some remarks are now in order.

Remark 1. We impose the boundedness on the support of
W (·) for brevity of the proofs; it may be removed at the
cost of lengthier proofs. In particular, the Gaussian kernel
is allowed. The assumption of the convergence rate of β(j)
is also imposed for technical convenience.

Remark 2. We assume all the bandwidths taking values
around their optimal orders (with symmetric kernels) in the
sense which minimize the risks in estimation of regression
functions. (For practical implementation we recommend to
use data-driven bandwidths such as cross-validation which
achieve these orders.) Lepski and Spokoiny (1999) showed
that the bandwidths which provide the most powerful tests
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against local alternatives are of slightly different orders. To
achieve the best power, they proposed to use the supremum
of a family of statistics instead of just one single statistic.
They adopted a slightly conservative rule to determine the
critical value based on Bonferroni’s inequality. See also the
multi-frequency test of Fan (1996) and the multi-scale test
of Fan, Zhang and Zhang (2001). We do not opt for those
approaches simply to keep our method simple and easy to
implement.

Remark 3. The theoretical results presented in this paper
are proved for nonrandom bandwidths. It is conceivable that
they should also hold for some data-driven bandwidths, for
which it remains to be proved that the difference between
the test statistics based on two types of bandwidths are neg-
ligible. Neumann (1995) proved such a result in the context
of confidence intervals of regression function.

Remark 4. In testing H0, we need to use p-th order local
polynomial estimator for m0(·) with [p/2] > 5d/16, which
always favors an even value of p if we wish to keep p as
small as possible. For example, we have to use at least local
quadratic estimation in order to test whether the model is
one-dimensional against a two- or three-dimensional alter-
native.

Remark 5. Concerning suitable assumptions in order to
ensure (A6) for testing Ha we refer to Yang, Härdle and
Nielsen (1999). Also see Fan, Härdle and Mammen (1998).

Theorem 1. Suppose that one of the null hypotheses Hp,
H0 or Ha holds, and that the statistic ST given in (2.3) is
defined in terms of one of the estimators specified in (2.6)–
(2.8) according to the null hypothesis concerned. We also
suppose that assumptions (A1)–(A6) hold. Then, as T → ∞,

(i) ST = S′
T + op(T−1h−d/2), where S′

T is defined as
in (2.9).

(ii) (Thd/2){S′
T − E(S′

T )} d−→ N(0, V ) as T → ∞, where

E(S′
T )=

1
Thd

∫
Rd

∫
Rd

K2(u)w(x+hu)π(x)σ2(x) dx du,

V = 2
∫

Rd

σ4(x)π2(x)w(x) dx

×
∫

R3d

K(u)K(v)K(u − z)K(v − z) du dv dz.

Theorem 2. Assume that the conditions of Theorem 1 hold.
For the bootstrap statistic S∗

T defined as in (2.10), we have
that as T → ∞,

Thd/2[S∗
T − E∗(S∗

T )] d−→ N(0, V )

conditionally on {(Xt, Yt), 1 ≤ t ≤ T}, where V is the same
as given in Theorem 1, and Thd/2|E(S′

T )−E∗(S∗
T )| → 0 in

probability.

Corollary 1. Assume that the conditions of Theorem 1
hold. Let t∗α be the upper α-point of the conditional distribu-
tion of S∗

T given {(Xt, Yt), 1 ≤ t ≤ T} and α ∈ (0, 1). Then
as T → ∞, P{ST > t∗α} → α under the corresponding null
hypothesis.

The above corollary follows immediately from Theo-
rems 1 and 2. The proofs of Theorems 1 and 2 are given
in the Appendix.

APPENDIX: PROOFS

A.1 Proof of Theorem 1

We first prove Theorem 1 (ii). Then we present the proof
of Theorem 1 (i) for the case of testing H0 only, since it is
technically more involved than the case of testing Hp. We
always use δ to denote an arbitrarily small positive constant.

Proof of Theorem 1 (ii). It is easy to see that

Thd/2S′
T =

1
Th3d/2

T∑
t=1

∫
K2

(
x− Xt

h

)
w(x) dx ε2

t

+
2

Th3d/2

∑
1≤t<s≤T

∫
K

(
x − Xs

h

)

× K

(
x − Xt

h

)
w(x) dx εtεs.

By the Ergodic Theorem, the first term on the right-hand
side of the above expression is equal to

E

{
h−3d/2

∫
K2

(
x − Xt

h

)
w(x)σ2(Xt) dx

}
+OP (1/

√
Thd),

where

E

{
h−3d/2

∫
K2

(
x − Xt

h

)
w(x)σ2(Xt) dx

}
= h−d/2

∫ ∫
K2(u)w(x + hu)π(x)σ2(x) dx du.

Assumption (A3) ensures that the second term has mean 0.
By Theorem A of Hjellvik, Yao and Tjøstheim (1996), this
term is asymptotically normal with mean 0 and asymptotic
variance

2h−3d

∫
ε2
t ε

2
s

{∫
K

(
z − Xt

h

)
K

(
z − Xs

h

)
dz
}2

dP (Xt, Yt)dP (Xs, Ys)

= 2h−3d

∫
σ2(u1)σ2(u2)π(u1)π(u2)K

(
u1 − z1

h

)
·

K

(
u2 − z1

h

)
K

(
u1 − z2

h

)
·

K

(
u2 − z2

h

)
du1du2dz1dz2 → V.
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To prove Theorem 1 (i) (for the case of H0), we introduce
two lemmas first. Recall that m̂g(·) is the local polynomial
estimator of m0(·) with bandwidth g (see (2.7)). We write

Xt = (Xt,1, . . . , Xt,d)τ , x = (x1, . . . , xd)τ .

Let B denote any compact subset contained in the support
of Xt,1. It follows from Propositions 2.1 and 2.2 of Neumann
and Kreiss (1998) that uniformly in x1 ∈ B,

m̂g(x1) − m0(x1)(4.11)

=
T∑

t=1

w̄g(x1, Xt,1)εt + b∞(x1)

+ OP

(
(log T )3/2

Tg
+

gp+1 log T√
Tg

)
.

The last term does not depend on x1 and b∞ denotes a
non-random function with

(4.12) sup
x1∈B

|b∞(x1)| = O(gp+1),

and the weights w̄g(x1, Xt,1) are given as
(4.13)

w̄g(x1, Xt,1) =
p∑

k=0

d
(∞)
k (x1)W

(
x1 − Xt,1

g

)(
x1 − Xt,1

g

)k

.

d
(∞)
k (x1) denotes the (1, k + 1)-th element of the inverse

of a (p + 1) × (p + 1) matrix with TE
{

K
(

x1−Xt,1
g

)
×(

x1−Xt,1
g

)i+j−2}
as its (i, j)-th element. The minimal eigen-

value of this matrix is of order Tg, which immediately im-
plies d

(∞)
k (x1) = O(1/(Tg)).

Lemma 1. Suppose that assumptions (A1)–(A6) hold. Un-
der hypothesis H0,

(4.14) sup
x1∈B

∣∣∣∣∣
T∑

t=1

w̄g(x1, Xt,1)εt

∣∣∣∣∣ = OP

(
log T/

√
Tg
)

,

sup
x1∈B

∣∣∣∣∣
T∑

t=1

˙̄wg(x1, Xt,1)εt

∣∣∣∣∣ = OP

(
log T/

√
Tg3

)
,

sup
x1∈B

∣∣∣∣∣
T∑

t=1

¨̄wg(x1, Xt,1)εt

∣∣∣∣∣ = OP

(
log T/

√
Tg5

)
,

where ˙̄wg(x1, .) and ¨̄wg(x1, .) denote the first and second or-
der derivative with respect to x1.

Proof of Lemma 1. We prove (4.14) only, the two other
equations can be proved in a similar way.

Without loss of the generality we assume B = [a, b]. First
we divide [a, b] into I ≡ I(T ) = O(T 2) small intervals with
the same length. Let b0 = a < b1 . . . < bI = b be the

endpoints of the intervals and Bi = [bi−1, bi]. It is obvious
that

sup
x1∈B

∣∣∣∣∣
T∑

t=1

w̄g(x1, Xt,1)εt

∣∣∣∣∣(4.15)

≤ max
1≤i≤I

sup
x1∈Bi

∣∣∣∣∣
T∑

t=1

{w̄g(x1, Xt,1) − w̄g(bi, Xt,1)} εt

∣∣∣∣∣
+ max

1≤i≤I

∣∣∣∣∣
T∑

t=1

w̄g(bi, Xt,1)εt

∣∣∣∣∣ .
Since W (·) is bounded and has a compact support, it

follows from (4.13) that | ˙̄wg(x1, Xt,1)| = OP (T−1g−2) holds
uniformly in x1 ∈ B and t = 1, . . . , T . Therefore,

max
1≤i≤I

sup
x1∈Bi

∣∣∣∣∣
T∑

t=1

{w̄g(x1, Xt,1) − w̄g(bi, Xt,1)} εt

∣∣∣∣∣(4.16)

≤ max
1≤i≤I

sup
x1∈Bi

1
Tg2

T∑
t=1

|εt||x1 − bi|

= OP

(
1

g2I

)
= OP

(
log T√

Tg

)
.

Now we apply Lemma 2.1 (ii) of Neumann and Kreiss (1998)
to the second summand on the right-hand side of (4.15).
Because of (A3) we have that Tg w̄g(bi, Xt,1)εt satisfies the
assumptions of that lemma. Since

Var (Tgw̄g(bi, Xt,1)εt) = O(g)

we obtain for some C > 0

P

{∣∣∣∣∣
T∑

t=1

w̄g(bi, Xt,1)εt

∣∣∣∣∣ > C
log T√

Tg

}
= O(T−λ),

where λ denotes an arbitrarily large constant. Consequently,

P

{
max
1≤i≤I

∣∣∣∣∣
T∑

t=1

w̄g(bi, Xt,1)εt

∣∣∣∣∣ ≥ C log T√
Tg

}

≤
I∑

i=1

P

{∣∣∣∣∣
T∑

t=1

w̄g(bi, Xt,1)εt

∣∣∣∣∣ ≥ C log T√
Tg

}
= o(1).

Combining this with (4.16) and (4.15), we have completed
the proof of (4.14).

Lemma 2. Suppose that assumptions (A1)–(A6) hold. Un-
der hypothesis H0,

sup
x1∈B

|m̂g(x1) − m0(x1)| = OP

(
log T/

√
Tg + gp+1

)
.

Lemma 2 follows immediately from Lemma 1 and (4.11).

Proof of Theorem 1 (i). We decompose Thd/2ST as in (2.8).
The first term on the right-hand side of (2.8) is Thd/2S′

T .
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We denote the last two terms by −2RT,1 and RT,2. Theo-
rem 1 (i) follows from (a) RT,1 → 0 and (b) RT,2 → 0 in
probability. We establish (a) and (b) in the sequel.

Substituting {m̂g(·) − m0(·)} by the right-hand side
of (4.11), we have that

(4.17) |RT,1 − R′
T,2 − R′

T,3| ≤ R′
T,1,

where

R′
T,1 =

hd/2

T

∫ ∣∣∣∣∣
T∑

t=1

Kh(x − Xt)εt

∣∣∣∣∣
T∑

s=1

Kh(x − Xs)w(x)dx

× OP

(
(log T )3/2

Tg
+

log Tgp+1

√
Tg

)
,

R′
T,2 =

hd/2

T

∫ T∑
t=1

Kh(x − Xt)εt

×
T∑

s=1

Kh(x − Xs)b∞(Xs,1)w(x)dx,

R′
T,3 =

hd/2

T

∫ T∑
t=1

Kh(x−Xt)εt

T∑
s=1

Kh(x−Xs)

×
T∑

k=1

w̄g(Xs,1, Xk,1)εkw(x)dx.

We split R′
T,2 into the following two terms

hd/2

T

∫ T∑
t=1

Kh(x − Xt)εt

T∑
s=1

{Kh(x − Xs)b∞(Xs,1)(4.18)

− E[Kh(x − Xs)b∞(Xs,1)]}w(x)dx,

(4.19)

hd/2

∫ T∑
t=1

Kh(x − Xt)εtE{Kh(x − X1)b∞(X1,1)}w(x)dx.

By Cauchy-Schwarz inequality, the expectation of the abso-
lute value of (4.18) is bounded by

hd/2

T

∫ {
E

(
T∑

t=1

Kh(x − Xt)εt

)2

× E

(
T∑

s=1

{
Kh(x − Xs)b∞(Xs,1)

− E[Kh(x − Xs)b∞(Xs,1)]
})2}1/2

w(x)dx.

Assumption (A3) implies that

E

(
T∑

t=1

Kh(x − Xt)εt

)2

= O(Th−d).

Recall that the absolute regularity with geometrically de-
caying mixing coefficients implies strong mixing with mixing
coefficients decaying at the same rate. Applying the covari-

ance inequality for strong mixing processes (Corollary 1.1,
Bosq (1996)), we have that

E

(
T∑

s=1

{Kh(x−Xs)b∞(Xs,1)−E[Kh(x−Xs)b∞(Xs,1)]}
)2

≤ O(T ) ·
(
E |Kh(x − Xs)b∞(Xs,1)|2+δ

)2/2+δ

= O(Th−d(1+δ)g2(p+1)).

The last equality uses the fact (4.12). Hence, (4.18) is of the
order

OP

(
T−1hd/2

{
Th−dTh−d(1+δ)g2(p+1)

}1/2
)

= OP

(
gp+1h−d(1+δ)/2

)
= oP (1) .

The expectation of the square of (4.19) is equal to

hd

T∑
t=1

E

{∫
Kh(x−Xt)E[Kh(x−X1)b∞(X1,1)]σ

2(x)w(x)dx

}2

= ThdE

{∫
K(u − Xt/h)

× E[Kh(hu − X1)b∞(X1,1)]σ
2(hu)w(hu) du

}2

= O(Thdg2(p+1)) → 0.

To obtain the last equality we make use of (4.12).
We have proved that both (4.18) and (4.19) converge to
0 in first or second moment. Consequently, R′

T,2 → 0 in
probability. In a similar way, it can be proved that R′

T,1 → 0
in probability.

To deal with R′
T,3, we first make a Taylor expansion

w̄g(Xs,1, Xk,1) = w̄g(x1, Xk,1) + ˙̄wg(x1, Xk,1)(Xs,1 − x1)

+
1
2

¨̄wg(X̃s,1, Xk,1)(Xs,1 − x1)2,

where X̃s,1 is between Xs,1 and x1 (and also possibly de-
pends on Xk,1). Accordingly, we split R′

T,3 into the following
three terms:

hd/2

T

∫ T∑
t=1

Kh(x − Xt)εt

T∑
s=1

Kh(x − Xs)(4.20)

×
T∑

k=1

w̄g(x1, Xk,1)εk w(x)dx,

hd/2

T

∫ T∑
t=1

Kh(x − Xt)εt

T∑
s=1

Kh(x − Xs)(Xs,1 − x1)

(4.21)

×
T∑

k=1

˙̄wg(x1, Xk,1)εkw(x)dx,
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hd/2

2T

∫ T∑
t=1

Kh(x − Xt)εt

T∑
s=1

Kh(x − Xs)(Xs,1 − x1)2

(4.22)

×
T∑

k=1

¨̄wg(X̃s,1, Xk,1)εkw(x)dx.

We further split (4.20) into the following two terms:

hd/2

T

∫ T∑
t=1

Kh(x − Xt)εt

T∑
s=1

{Kh(x − Xs) − EKh(x − Xs)}

(4.23)

×
T∑

k=1

w̄g(x1, Xk,1)εkw(x)dx

hd/2

∫ T∑
t=1

Kh(x − Xt)εtEKh(x − X1)(4.24)

×
T∑

k=1

w̄g(x1, Xk,1)εkw(x)dx.

Using Lemma 1, we can prove that (4.23) is of order
OP

(
log T/

√
Tghd(1+δ)

)
= oP (1) in the same way as the

proof for that of (4.18). Using Lemma 1 again, (4.24) can
be bounded by√

hd

Tg
log T

∫
R

∣∣∣∣{∫
Rd−1

Kh(x−Xt)

× EKh(x−X1)w(x)dx2 . . . dxd

}
εt

∣∣∣∣dx1 · OP (1).

The expectation of the whole integral in the above expres-
sion is less than∫

R

[
E

(
T∑

t=1

εt

∫
Rd−1

Kh(x − Xt)

× EKh(x − X1)w(x)dx2 . . . dxd

)2]1/2

dx1

=
√

T

∫
R

[
E

(
Wh(x1 − X1,1)

∫
Rd−1

{
d∏

i=2

Wh(xi − X1,i)

}

× π(x)σ2(x)w(x)dx2 . . . dxd

)2]1/2

dx1

=
√

T

∫
R

[
E

(
Wh(x1 −X1,1)

∫
Rd−1

{
d∏

i=2

W (ui −X1,i/h)

}
× π(x1, hu2, . . . , hud) · σ2(x1, hu2, . . . , hud)

× w(x1, hu2, . . . , hud)du2 . . . dud

)2]1/2

dx1

≤ O(
√

T ) ·
∫

R

[
EW 2

h (x1 − X1,1)
]1/2

dx1 = O(
√

T/h).

Therefore, (4.24) is of the order OP (h(d−1)/2g−1/2 log T ) =
oP (1). Combining what we have shown for (4.23) and (4.24),
we conclude that (4.20) converges to 0 in probability. In a
similar way, we can also show that (4.21) is of the order

OP

(
g−3/2 log T{T−1/2h−d(1+δ)/2+1 + Th(d+1)/2}

)
= oP (1).

Using Lemma 1, (4.22) may be bounded by

hd/2 log T

T 3/2g5/2

∫ ∣∣∣∣∣
T∑

t=1

Kh(x − Xt)εt

∣∣∣∣∣∣∣∣∣∣
T∑

s=1

Kh(x − Xs)(x1 − Xs,1)2
∣∣∣∣∣w(x)dx · OP (1).

The integral in the above expression is smaller than the sum
of the following two terms:

∫ ∣∣∣∣∣
T∑

t=1

Kh(x − Xt)εt

∣∣∣∣∣
∣∣∣∣∣

T∑
s=1

{Kh(x − Xs)(x1 − Xs,1)2

(4.25)

− E[Kh(x − Xs)(x1 − Xs,1)2]}
∣∣∣∣∣w(x)dx,

(4.26)

T

∫ ∣∣∣∣∣
T∑

t=1

Kh(x − Xt)εt

∣∣∣∣∣E[Kh(x−Xs)(x1 −Xs,1)2]w(x)dx.

Along the same lines as the proof of that for (4.18), we
can show that (4.25) is of order OP (Th2−d(1+δ)). Note that
E[Kh(x−Xs)(x1 −Xs,1)2] = O(h2), which entails that the
expectation of (4.26) is of order O(T 3/2h(4−d)/2). Conse-
quently, we have that (4.22) is of the order

OP

⎛⎝log T

√
hd

T 3g5
{Th2−d(1+δ) + T 3/2h(4−d)/2}

⎞⎠
= OP

⎛⎝log T

⎧⎨⎩
√

h4−d(1+2δ)

Tg5
+
√

h4/g5

⎫⎬⎭
⎞⎠ = oP (1).

Since we have proved that all three terms in (4.20)–(4.22)
converge to 0 in probability, we obtain that R′

T,3 → 0 in
probability. Now it follows from (4.17) that (a) has been
established.

The proof of (b) is much simpler. It follows from Lemma 2
that

|RT,2| ≤
{

sup
u∈B

|m̂g(u) − m0(u)|
}2

hd/2

T

×
∫ { T∑

t=1

Kh(x − Xt)

}2

w(x)dx

= OP

(
(log T )2{hd/2g−1 +

1
Tghd(1+2δ)/2

}
)

= oP (1).
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The first equality in the above expression makes use of the
fact that the expectation of the integral is of the order (T 2+
T/hd(1+δ)), which has been proved before. This completes
our proof.

A.2 Proof of Theorem 2

Proof of Theorem 2. It is easy to see that Thd/2[S∗
T −

E∗(S∗
T )] d−→ N(0, V ∗), where V ∗ = V + oP (1). In contrast,

the proof of Thd/2|E(S′
T )−E∗(S∗

T )| → 0 requires more work.
We have

E∗Thd/2S∗
T =

hd/2

T

∑
t

∫
K2

h

(
x − Xt

h

)
w(x)dx ε̂t

2.

First, we split up

ε̂t
2 = ε2

t + [m̂h(Xt) − m(Xt)]2 + 2εt [m̂h(Xt) − m(Xt)].

We get, by the Ergodic theorem,

hd/2

T

∑
t

∫
K2

h

(
x − Xt

h

)
w(x)dx ε2

t

= h−d/2

∫ ∫
K2(u)w(x + hu)π(x)σ2(x) dx du

+ OP

(
1/

√
Thd

)
.

Further,

hd/2

T

∑
t

∫
K2

h

(
x − Xt

h

)
w(x) dx [m̂h(Xt) − m(Xt)]2

= OP

(
h−d/2

[
1

Thd
+ h2p+2

])
= oP (1),

since 2p + 2 > d/2 and therefore h 
 T−2/(3d).
Analogously to (4.11), we can show that, uniformly in

x ∈ B,

m̂h(x) − m(x) =
∑

wh(x,Xs)εs + b∞

+ OP

(
(log T )3/2

Thd
+

hp+1 log T√
Thd

)
,

where b∞ = O(hp+1). This implies

hd/2

T

∑
t

∫
K2

h

(
x − Xt

h

)
w(x)dx [m̂h(Xt) − m(Xt)]εt

=
hd/2

T

∑
s,t

∫
K2

h

(
x − Xt

h

)
w(x) dx wh(Xt,Xs) εsεt

+ OP

(
hd/2

T
hp+1h−d

√
T

)
+ OP

(
h−d/2

[
(log T )3/2

Thd
+

hp+1 log T√
Thd

])

= O
(
h−3d/2T−1 + h−dT−1

)
+ OP

(
hp+1/

√
Thd

)
+ OP

(
h−d/2

[
(log T )3/2

Thd
+

hp+1 log T√
Thd

])
= oP (1),

which completes the proof of the desired result.
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