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Testing structural change in time-series
nonparametric regression models

Liangjun Su and Zhijie Xiao

We propose a CUSUM type of test for structural change
in dynamic nonparametric regression models. It is based
upon the cumulative sums of weighted residuals from a sin-
gle nonparametric regression and complements the conven-
tional parameter instability tests in parametric models. We
derive the limiting distributions of the test under both the
null hypothesis and sequences of local alternatives. A boot-
strap procedure is also proposed and its validity is justified.
Finally, simulation experiments are conducted to investigate
the finite sample properties of our test.
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1. INTRODUCTION

Since Page (1954), a great deal of research attention
has been devoted to the development of tests for param-
eter instability or, more generally, structural change in
statistical models. The problem began with testing for a
change in mean in i.i.d. samples, and moved naturally into
the time series context. Today, time series with structural
breaks are important models in econometrics as economic
and financial time series are frequently affected by mone-
tary policy and critical social events that may cause struc-
tural change. See, inter alia, Wichern et al. (1976), Per-
ron (1989), Ploberger and Krämer (1992), Andrews (1993),
Hidalgo (1995), Lavielle (1999), and Lee and Park (2001).

The greatest amount of research effort on testing for
structural changes has been devoted to the parametric linear
model:

yt = x′
tβ + ut,

(or variants of this model) and focuses on the instability of
parameters. Most tests are constructed based on a measure
of fluctuation in the partial sum of residuals. A procedure
that has played an important role in the study of structural
change is the CUSUM test proposed by Brown et al. (1975),
which is based on the maximum of partial sums of the recur-
sive residuals. Krämer, Ploberger and Alt (1988) extended

this test to linear regressions with lagged dependent vari-
ables, and Ploberger and Krämer (1992) studied CUSUM
tests based on OLS (instead of recursive) residuals.

Linear parametric models provide a parsimonious way in
characterizing the relationship among variables, but they
also impose restrictions on the regression functional form.
From this point of view, nonparametric models allow for a
larger class of regression functions and have certain advan-
tages in a variety of applications (see, e.g., Müller, 1992). For
this reason, there have been some recent studies on struc-
tural change based on nonparametric regression models. Un-
til now, most of the existing tests for structural change in
nonparametric regression have focused on sudden, localized
changes of a regression function that may not, in fact, be
associated with time at all. In particular, Müller (1992) pro-
vided a central limit theorem for the estimators of the lo-
cation and size of the change point, whereas Chu and Wu
(1993) proposed a test for the number of jumps in a regres-
sion model with fixed design. Loader (1996) studied struc-
tural change in a simple nonparametric regression model
with fixed design

yi = m (xi) + ui, i = 1, 2, . . . , n,

with xi = i/n and ui being i.i.d. N(0, 1). In the case where
ui is covariance stationary, Kim and Hart (1998) developed
an omnibus test for the null hypothesis that the underlying
mean is constant for the above model. They considered the
alternative where the mean function depends on the design
point but keeps fixed over time. Delgado and Hidalgo (2000)
proposed estimators of location and size of structural breaks
in nonparametric regression models when the regressors are
strictly stationary and when lagged dependent variables are
present and the break is explained by the regressor “time”.
Recently, Chen et al. (2005) proposed a hybrid test and es-
timation procedure for change points in volatility based on
the least squares method in nonparametric time series mod-
els where there is a scale change in the volatility function at
a certain time.

In this paper, we study testing for structural change in
time series nonparametric regression models. We propose a
CUSUM type of test for structural changes in the regression
function in time series framework. As was done in much of
the previous literature, the time of the structural change(s)
is not specified a priori. The test is based on the cumulative
sums of weighted residuals from nonparametric regressions,
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and has asymptotic pivotal null distribution. In addition, as
a companion to the asymptotic test, we propose a bootstrap
version of our test to achieve finite sample improvement. The
asymptotic validity of the bootstrap test is justified.

There are several important features that distinguish our
tests from the existing literature. First, our test is non-
parametric. As Kim and Hart (1998) remarked, paramet-
ric methods place restrictions on what the data can tell
whereas nonparametric techniques rely more on the data set
itself. Parametric tests are powerful against certain types of
alternatives and perform well in cases of correct specifica-
tion; but they can also provide misleading conclusions in
the case of misspecification. Smoothing-based nonparamet-
ric tests work well for a wide class of alternatives and yield
good power in a variety of circumstances. As a trade-off, it
is well known that nonparametric tests are subject to the
curse of dimensionality and usually only have non-trivial
power against local alternatives that converge to zero at a
rate slower than the parametric n−1/2-rate. Fortunately, the
proposed CUSUM test in this paper does not suffer much
from this problem and has non-trivial power against local
alternatives that converge to zero at the parametric n−1/2-
rate. This is largely due to the effect of averaging because
averaging reduces the variance of the original nonparametric
estimates, and by choosing the bandwidth appropriately the
bias of the nonparametric estimates can be well controlled.
Second, our test allows for weak dependence in the data.
As a result of using nonparametric regression estimates, the
limiting null distributions of our test statistics are free of
nuisance parameters. All have limiting distributions asso-
ciated with the standard Brownian bridge. The asymptotic
critical values of our test can easily be tabulated. We demon-
strate through simulations that our test works fairly well in
finite samples for a wide range of data generating processes.
Third, we relax the stationarity of the underlying process,
which is often assumed in parametric tests for structural
changes. We focus on testing for structural change in the
conditional mean process, and allow for flexibility in other
aspects of the time series under both the null and alter-
natives. For example, the conditional variance process can
exhibit structural changes under the null and/or alternative.

The rest of the paper is organized as follows. In Section 2,
we introduce our hypotheses and test statistics. The asymp-
totic properties of our test statistics are studied in Section 3.
Section 4 provides a bootstrap version of the test. In Sec-
tion 5, we report the results of Monte Carlo simulations. All
proofs are relegated to the appendix.

2. MODEL, HYPOTHESES AND TEST
STATISTICS

2.1 The model and hypotheses

Consider the following nonparametric regression model:

(2.1) Yt = mt (Xt) + Ut, t = 1, 2, . . . , n,

where Yt is the dependent variable, Xt is a R
d-valued re-

gressor, mt (.) is an unknown but smooth function, Ut is the
random disturbance term satisfying E (Ut|Xt) = 0 a.s., and
E
(
U2

t |Xt

)
= σ2

t (Xt). We assume that {Xt, Ut} is a strong
mixing process, but we don’t require stationarity. Note that
both the regression mean function mt (.) and the conditional
variance function σ2

t (.) may be time-varying.
We are interested in testing whether the conditional mean

function is stable over time. Namely, our null hypothesis is

(2.2) H0 : mt (Xt) = m (Xt) a.s. for all t = 1, . . . , n,

where m (.) is a smooth function that is not time-dependent.
In this case, we will say that there is no structural change
or break in the conditional mean process.

The alternative hypothesis can be specified in various
ways. The following two types of alternatives are widely used
in the literature, and we consider both of them in this paper.
The first one is

H1A : mt (Xt) = m (Xt) a.s. for all t = 1, . . . , k0,(2.3)
mt (Xt) = m (Xt) + Δn (Xt)

a.s. for all t = k0 + 1, . . . , n,

where Δn (.) is a nonzero function that may depend on the
sample size n but not on the time t, and k0 is an unknown
break point. That is, at time k0 + 1 we have a structural
change of the conditional mean function. The second one is

(2.4)
H1B : mt (Xt) = m (Xt)+gn (t/n) a.s. for all t = 1, . . . , n,

where gn (.) is an arbitrary non-constant function defined
on the [0, 1] interval. Note that we allow both Δn (.) and
gn (.) to depend on n to facilitate the study of local power
properties of our tests.

It is worth mentioning that the above hypotheses do not
impose any additional restrictions on the conditional vari-
ance process

{
σ2

t (Xt)
}
, or other aspects of the conditional

distribution of Yt given Xt, or the marginal distribution of
Xt. As a matter of fact, we allow for time varying behav-
ior in the conditional variance process and nonstationary
distribution of {Xt, Yt} under both the null and alternative
hypotheses.

2.2 Test statistics

To proceed, we introduce some notation. First, let k0 =
�ns0� for some 0 < s0 < 1, where �c� denotes the largest
integer less than or equal to c. We will call k0 as the break
point and s0 as the break ratio under H1A.

Next, let ft (x) denote the marginal density function of
Xt evaluated at x ∈ R

d. Define

(2.5) fn (x) = n−1
n∑

t=1

ft (x) and f (x) = lim
n→∞

fn (x) ,
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where f (x) is regarded as the long run average density of
{X1, . . . , Xn}. We estimate fn (x) or f (x) by

(2.6) fn,h (x) = n−1
n∑

i=1

Kh (x − Xi) ,

where Kh (.) = h−dK (./h), K (.) is a symmetric kernel func-
tion and h ≡ hn is a bandwidth parameter. There has been
much study on asymptotic properties of kernel smoothers for
dependent data under various conditions, including Robin-
son (1983), Roussas (1988), Liebscher (1996), Bosq (1996),
Fan and Yao (2003), and Hansen (2008). Most of these pa-
pers deal with stationary processes. A few exceptions include
Bosq (1991), Andrews (1995), Sun and Chiang (1997), and
Shen and Huang (1998).

Under weak conditions, Andrews (1995) showed
fn,h (x)

p→ f (x). The Nadaraya-Watson (NW) kernel
estimator of m (x) under the null hypothesis is given by

(2.7) mn,h (x) = n−1
n∑

i=1

YiKh (x − Xi) /fn,h (x) .

It is worth mentioning that mn,h (x) also converges to some
non-stochastic object under the alternative provided suit-
able conditions are met.

Define

(2.8)
Ût = Yt − mn,h (Xt) , and V̂t = Ûtfn,h (Xt) w (Xt) ,

where w (.) is a weight function that has crucial effect on
the power of the test. Define the cumulative sums of the
weighted residuals V̂t as

(2.9) Γn (s) =
1√
nσ̂

�ns�∑
i=1

V̂i,

where σ̂ = {n−1
∑n

i=1 V̂ 2
i }1/2. Assume σ2

0 ≡ p limn→∞ n−1

×
∑n

i=1 U2
i f

2
(Xi)w2 (Xi) exists. It is easy to show that

σ̂
p→ σ0 under certain conditions, where σ0 is the positive

square root of σ2
0 .

We shall show that Γn (.) converges weakly to the stan-
dard Brownian bridge W 0 (.). Let l (.) be a continuous func-
tional that measures the fluctuation of Γn (s) around zero.
By the continuous mapping theorem,

(2.10) l (Γn (.)) d→ l
(
W 0 (.)

)
,

where d→ denotes convergence in distribution. In princi-
ple, the choice of l is rich. When we take the classical
Kolmogorov-Smirnoff and Cramer-von Mises measures, we
obtain the following test statistics

KSn = sup
0≤s≤1

|Γn (s)| = max
1≤j≤n

∣∣∣∣∣ 1√
nσ̂

j∑
i=1

V̂i

∣∣∣∣∣ , and(2.11)

CMn =
∫ 1

0

Γn (s)2 ds =
1
n

n∑
j=1

(
1√
nσ̂

j∑
i=1

V̂i

)2

.(2.12)

We will study the limiting distributions of KSn and CMn

below.

3. ASYMPTOTIC PROPERTIES OF THE
TEST

In this section, we study the asymptotic properties of
the test under the null hypothesis and sequences of local
alternatives.

3.1 Assumptions

For the purpose of asymptotic analysis, we make the fol-
lowing assumptions.

Assumptions
A1. {Xt, Yt} is a strong mixing process with mixing co-

efficients α (τ) such that
∑∞

t=1 t3α (t)δ/(4+δ) ≤ C < ∞ for
some δ > 0 with δ/ (4 + δ) ≤ 1/2.

A2. E(Ut|Xt, . . . , X1, Ut−1, . . . , U1) = 0 and
E(|U4+δ

t ||Xt) ≤ ct (Xt) a.s. such that ct (Xt) is con-
tinuous and E[ct (Xt) |w (Xt) |4+δ] < ∞.

A3. The marginal density ft (.) of Xt is bounded on
its support X . For each t1 < . . . < tl, the joint density
ft1,...,tl

(.) of (Xt1 , . . . , Xtl
) exists and is uniformly bounded

on its support, where l = 2, . . . , 8. In addition, the long-run
average density f (x) = limn→∞ fn (x) exists.

A4. For each t = 1, 2, . . ., ft (.) ∈ G∞
r and m (.) ∈ G4+δ

r

for some integer r ≥ 2, where Gγ
r is a class of functions

defined in Definition D.3 in Appendix D.
A5. The kernel function K is symmetric and K ∈ Kr,

where Kr is defined in Definition D.2 in Appendix D.∫ ∣∣K4+δ (u)
∣∣ du < ∞.

A6. As n → ∞, nh2d → ∞ and nh2r → 0, where r is the
same r used in Definition D.2.

Assumption A1 specifies that the serial dependence in
the data is strong mixing and it implies that α (t) =
o(t−(4+16/δ)). The smaller δ, the faster rate at which α (t)
decays to zero. Together with Assumptions A2 and A4, this
reflects the trade-off between the degree of dependence and
moments of {Yt}. Note that Assumption A1 does not require
strict stationarity of the process {Xt, Yt}. This is important
since we allow Xt to include lagged dependent variables. As-
sumption A2 is typical in time series regressions, it can be
relaxed to allow correlation in the error terms at the expense
of a more complicated proof. The smoothness condition in
Assumptions A3–A4 and the assumptions on the kernel and
bandwidth in Assumptions A5–A6 are comparable to the
typical assumptions in the nonparametric literature (e.g.,
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Li, 1999). In particular, r represents the order of the kernel
K. Nevertheless, we allow the conditional variance function
σ2

t (.) and the marginal density ft (.) of Xt to vary over time.
Assumption A6 implies that r > d which is not as restrictive
as it appears because of the curse of dimensionality in the
nonparametric literature. Nevertheless, it is possible to re-
lax the assumption “nh2d → ∞” to “nhd/ log n → ∞” with
a stronger assumption on the mixing coefficient.

3.2 Asymptotic null distribution

Theorem 3.1. Under Assumptions A1–A6, and suppose
that the weighting function w (.) is uniformly continuous and
bounded, then under H0,

Γn (.) ⇒ W 0 (.) , as n → ∞,

where W 0 (.) denotes the standard Brownian bridge and ⇒
denotes weak convergence in the space D ([0, 1]) with respect
to the Skorohod J1-topology (see Pollard, 1984).

Asymptotic distributions of the Kolmogorov-Smirnoff
test (2.11) and the Cramer-von Mises test (2.12) can be
immediately obtained by the continuous mapping theorem
and Theorem 3.1:

KSn = sup
0≤s≤1

Γn (s) d→ sup
0≤s≤1

∣∣W 0 (s)
∣∣ , and

CMn =
∫ 1

0

Γn (s)2 ds
d→
∫ 1

0

∣∣W 0 (s)
∣∣2 ds.

The limiting distributions of the KSn and CMn test statis-
tics have the classical Kolmogoroff-Smirnoff and Cramer-von
Mises forms, respectively. The critical values for these tests
can be easily tabulated via simulations. Alternatively, one
can consult Anderson and Darling (1952) for the critical val-
ues of the CMn test statistic (0.3473, 0.4614, and 0.7435 for
the 10%, 5% and 1% tests, respectively), and Xiao (1999)
for the critical values of the KSn test statistic (1.128, 1.262,
and 1.521 for the 10%, 5% and 1% tests, respectively).

3.3 Asymptotic local power

Now we study the local power of the CUSUM test that is
built upon Γn (.). As mentioned above, once we deviate from
the null, several cases can arise. We focus on two scenarios
that are most popular in the literature.

We first study the local alternative:

(3.1)
H1A,n : E (Yt|Xt = x) = m (x) + n−1/2Δ(x) 1 (t ≥ k0 + 1) ,

where 1 (.) is the indicator function, and Δ (x) is an arbi-
trary non-zero function on X . Then we study the second
type of local alternative:

(3.2) H1B,n : E (Yt|Xt = x) = m (x) + n−1/2g (t/n) ,

where g (.) is an arbitrary non-constant function defined on
the [0, 1] interval. When g (s) = 0 for s ≤ s0 and g (s) =

c �= 0 for s > s0, (3.2) includes a one-time level shift of
the regression function at time k0 = s0n as a special case.
This is analogous to the one-time scale change of volatility
function in Chen et al. (2005).

We impose the following assumption concerning the al-
ternatives.

Assumption A7. For δ (Xt) = Δ (Xt) or 1, E|δ (Xt)×
w (Xt) f (Xt) |1+ε < ∞ for some ε > 0 and for all t.

Together with Assumption A1, Assumption A7 implies
that n−1

∑n
t=1 δ (Xt) w (Xt) f (Xt) − n−1

∑n
t=1 E

[
δ (Xt)×

w (Xt) f (Xt)
] a.s.→ 0. See Corollary 3.48 in White (2001).

Theorem 3.2. Suppose Assumptions A1—A7 hold.
(i) Under the local alternative H1A,n, Γn (.) ⇒ GA (.),

where GA (s) = W 0 (s) − s (1 − s0) (μ1/σ), and μ1 ≡
limn→∞ n−1

∑n
t=1 E

[
Δ(Xt)w (Xt) f (Xt)

]
.

(ii) Under the local alternative H1B,n, Γn (.) ⇒ GB (.),
where GB (s) = W 0 (s) + (μ2/σ)(

∫ s

0
g (v) dv − s

∫ 1

0
g (v) dv),

and μ2 ≡ limn→∞ n−1
∑n

t=1 E
[
w (Xt) f (Xt)

]
.

We make some remarks. First, the above theorem says
that the KSn and CMn tests have non-trivial power in de-
tecting n−1/2 local alternatives provided μ1 �= 0 or μ2 �= 0.
Second, the assumption on the weight function w (x) is
weak. It does not exclude the case where a weight func-
tion only focuses on a certain range of the data. In this
case, the test only has power in detecting deviations from
the null on the restricted range. Third, the choice of weight
function w (x) has important effects on the local power of
the tests. For clarity, we now look at the simplest case
where the process {Xt} is strictly stationary and the lo-
cal alternative is of the type specified in H1A,n. In this case,
μ1 = E [Δ (Xt)w (Xt) f (Xt)], where f (.) is the marginal
density of Xt. So if E [Δ (Xt) f (Xt)] = 0, say, in the case
where Xt is symmetrically distributed around zero and Δ (.)
is an odd function, we need to choose w such that it cannot
be an even function in order to detect these kinds of local
alternatives. In contrast, for the type of local alternatives
specified in H1B,n, it suffices to choose w (x) ≡ 1. The ef-
fect of different choices of w will be studied in our Monte
Carlo simulations. Fourth, the fact that the CUSUM test is
not consistent against H1A,n if μ1 = 0 is a nonparametric
analog of the parametric case. In the parametric setup, if all
structural shifts in the finite dimensional parameters are or-
thogonal to the average of regressors or the regressors them-
selves, then the CUSUM test is not consistent. See Ploberger
and Krämer (1992, 1996). Fifth, if the local alternative Δ (x)
were known in Theorem 3.2(i), we could derive the optimal
choice of weight function given by w∗ (x) = Δ (x) f (x) in
terms of maximizing the local power. Nevertheless Δ (x) is
typically unknown in practice, so this optimal choice is in-
feasible. Theoretically, we can follow Andrews (1993) and
make some distributional assumption on Δ (Xt) and max-
imize certain weighted average of local power. But this is
beyond the scope of this paper.
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4. A BOOTSTRAP TEST

It is well known that an asymptotic-distribution-based
nonparametric test may perform poorly in finite samples.
An important alternative approach is to use bootstrap ap-
proximation for the distribution of the test statistic. In this
section, we propose a bootstrap version of the test discussed
above. We stress the fact that the theorems obtained in this
paper are based on asymptotic considerations. As Neumann
and Paparoditis (2000) noted, in order to get an asymptot-
ically correct estimator of the null distribution of the test
statistics, it is not necessary to reproduce the whole depen-
dence structure of the stochastic processes generating the
original observations. On the other hand, it is important to
impose the null in the resampling scheme. Simple resam-
pling from the empirical distribution of Wt ≡ (Yt, X

′
t)

′ will
not impose the null restriction.

The wild bootstrap proposed by Wu (1986) and Liu
(1988) is designed to allow heteroskedasticity in the lin-
ear regression models. It has been examined in the time
series context by Kreiss (1997), and Hafner and Herwartz
(2000), among others. Before drawing the bootstrap resam-
ples, we re-center the residuals {Ût} to ensure that its sam-

ple mean is zero, i.e., we replace Ût by Û t = Ût − Û , where
Û = n−1

∑n
t=1 Ût. We then obtain the wild bootstrap resid-

uals by

U∗
t = Û tηt,

where {ηt} are i.i.d., independent of the process {Xt, Yt},
and satisfy the conditions: E (ηt) = 0, E

(
η2

t

)
= 1, and

E
(
η4

t

)
< ∞. There are many ways to obtain such a se-

quence {ηt}. In our simulation, we draw them independently
from a distribution with masses c =

(
1 +

√
5
)
/
(
2
√

5
)

and
1−c at the points

(
1 −

√
5
)
/2 and

(
1 +

√
5
)
/2, respectively.

Consequently, the wild bootstrap draws each U∗
t from a dif-

ferent distribution with mean zero and variance Û
2

t con-
ditional on the data. We generate the bootstrap resample
{Y ∗

t , X∗
t }

n
t=1 by1

Y ∗
t = mn,h0 (X∗

t ) + U∗
t ,

where X∗
t = Xt. Note that the bandwidth sequence h0 ≡

h0n used here is different from the bandwidth sequence h
that is used to construct the test statistics KSn and CMn.
See Härdle and Marron (1991) for the explanation why we
need different bandwidth choices here.

Based upon the bootstrap resampling data {Y ∗
t , X∗

t }
n
t=1,

we calculate the bootstrap analogue of mn,h (x) and Ût by

m∗
n,h (x) = n−1

n∑
i=1

Y ∗
i Kh (x − Xi) /fn,h (x) and

Û∗
t = Y ∗

t − m∗
n,h (Xt) .

1Note that even if Xt includes lagged dependent variables, say Xt =
Yt−1, we can generate the bootstrap data {Y ∗

t , X∗
t } in this way because

we don’t need to mimic the dependence structure of the process {Yt}
by that of {Y ∗

t }. We gratefully thank a referee for making this point
to us.

Then we can construct the bootstrap version {Γ∗
n (s)} of the

process {Γn (s)}:

(4.1) Γ∗
n (s) =

1√
nσ̂∗

�ns�∑
i=1

V̂ ∗
i ,

where V̂ ∗
i = Û∗

i fn,h (Xi) w (Xi) and σ̂∗ = {n−1
∑n

i=1V̂
∗2
i }1/2.

Based upon Γ∗
n (s), we can construct the bootstrap ver-

sion KS∗
n of the test statistic KSn (similarly for CMn).

We repeat this procedure B times and obtain the se-
quence {KS∗

n,j}B
j=1. We reject the null when p∗ = B−1 ×∑B

j=1 1(KSn ≤ KS∗
n,j) is smaller than the given level of

significance.
For the validity of the bootstrap method, we need to

make some additional assumptions. The following notation
is used. Let κ = (κ1, . . . , κd)

′ and λ = (λ1, . . . , λd)
′ denote

d-vector of nonnegative integer constants. For such vectors,
define (i) |κ| =

∑d
j=1 κj , (ii) κ ≤ λ iff κj ≤ λj ∀j = 1, . . . , d,

(iii) κ < λ iff κ ≤ λ and κj < λj for some j, (iv) for any
function c (z) on R

d, Dκc (z) = ∂|κ|/(∂zκ1
1 , . . . , ∂zκd

d ) (c (z)),
where z = (z1, . . . , zd)′, and (v) zκ = Πd

j=1z
κj

j .

Assumption A8. (i) supx E(|Yt|4+δ |Xt = x)ft (x) ≤ b1 <
∞ for each t, and supx ‖x‖

q
E(|Yt| |Xt = x)ft (x) ≤ b2 < ∞

for each t and some q ≥ d. There is some t∗ < ∞ such
that for all t ≥ t∗ > 1, supx1,xt

E(|Y1Yt| |X1 = x1, Xt =
xt)f1t (x1, xt) ≤ b3 < ∞, where f1t (x1, xt) denotes the joint
density of (X1, Xt). (ii) Let β = 4+16/δ. For some θ ∈ (0, 1),
we have log n/

(
nθhd

0

)
= o (1), and

(4.2)
d

q
+ 3 + 2θ − 1 − θ

2

(
(2β + 3) (δ + 2)

δ + 3
− 2d

)
≤ 0.

Assumption A9. (i) ft (x) is continuously differentiable
to integral order r on R

d, and supn≥1 supx∈Rd |Dκfn (x) | <
∞ ∀κ with |κ| ≤ r. (ii) mn (x) ≡ n−1

∑n
t=1 mt (x) is

continuously differentiable to integral order r on R
d, and

supn≥1 supx∈Rd |Dκ
[
fn (x) mn (x)

]
| < ∞ ∀κ with |κ| ≤ r.

Assumption A10. The kernel function K : R
d → R has

a compact support U . For any |λ| ≤ r, supu∈U
∣∣DλK (u)

∣∣ ≤
c1 < ∞, and DλK (u) = 0 for ‖u‖ ≥ c2, and∥∥DλK (u) − DλK (u′)

∥∥ ≤ c3‖u − u′‖ for any u, u′ ∈ R
d

and some c3 < ∞.

Assumption A8 (i) controls the tail behavior of the con-
ditional expectations E(|Yt|4+δ |Xt = x), E (|Yt| |Xt = x),
and E(|Y1Yt| |X1 = x1, Xt = xt). For example, the first one
can increase to infinity but at a rate slower than f−1

t (x). As-
sumption A8 (ii) reflects the trade-off between the mixing
coefficient, moments of the process {Xt, Yt}, and the band-
width h0. For fixed θ ∈ (0, 1) and q ≥ d, (4.2) can easily be
satisfied by requiring sufficiently small δ. Assumptions A9
and A10 are needed for the rth derivative of mn,h0 (x) to be
well behaved. In particular, we allow mt (x) to depend on t
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in the proof of the following theorem. But we can relax the
compact support of K at the cost of lengthier arguments
(see Hansen, 2008).

Theorem 4.1. Suppose Assumptions A1–A6 and A8–A10
hold. Suppose the weight function w (x) is uniformly contin-
uous and bounded and has support on the set Sn ≡ {x ∈
R

d : n−1
∑n

t=1 ft (x) ≥ dn} where dn = o (1). Suppose
nhd+2r

0 → C ∈ (0,∞], and nh2rd
−2(1+r)
n log n → 0 as

n → ∞. Then

Γ∗
n (.)

p⇒ W 0 (.) ,

where
p⇒ denotes weak convergence in probability as defined

by Giné and Zinn (1990).

Note that we have restricted ourselves to the class of
weight functions that have support on Sn. We do so be-
cause the derivatives of mn,h0 (x) are not well behaved if
n−1

∑n
t=1 ft (x) is too small. In practice, we can consider

choosing dn = O (1/ log n) and we find through simulations
in the next section that the bootstrap tests are not sensitive
to this choice.

Theorem 4.1 shows that the bootstrapped process
{Γ∗

n (.)} also converges weakly to the standard Brownian
bridge and thus provides an asymptotic valid approxima-
tion to the limit null distribution of the test statistics KSn

and CMn that are constructed from {Γn (.)}. This holds as
long as we generate the bootstrap data by imposing the null
hypothesis.

It is well known that the optimal bandwidth in minimiz-
ing the integrated mean squared errors (IMSE) of estimators
mn,h0 (x) of m (x) is proportional to n−1/(d+2r). Clearly, we
can choose h0 by the least squares cross validation. Since
undersmoothing is required for the estimate m∗

n,h (x), we
propose a rule of thumb to choose h according to the opti-
mal choice of h0 in our Monte Carlo – see Section 5 for more
discussion on this issue.

5. MONTE CARLO SIMULATIONS

In this section we conduct a small set of Monte Carlo
simulations to evaluate the finite sample performance of our
tests. We first focus on their finite sample performance under
the null and then examine their power properties.

5.1 Finite sample performance of the tests
under the null

To examine the finite sample performance of the tests
under the null, we generate data from the following data
generating processes (DGPs).

DGP s1: Yt = X2
t +Ut, where Xt and Ut are i.i.d. N (0, 1)

and mutually independent.

DGP s2: Yt = 0.6Yt−1 +
√

0.1 + 0.6Y 2
t−1Ut, where Ut are

i.i.d. N (0, 1).

DGP s3: Yt = Φ (Yt−1) +
√

0.1 + 0.4Y 2
t−1εt for t ≤ 0.5n,

and Yt = Φ (Yt−1) +
√

0.1 + 0.8Y 2
t−1εt for t > 0.5n, where

Φ (.) is the standard normal’s cumulative distribution func-
tion, and εt are i.i.d. N (0, 1).

DGP s1 specifies an i.i.d. sequence {Yt, Xt}. DGP s2
specifies a typical stationary AR(1)-ARCH(1) process {Yt}.
DGP s3 yields a nonstationary process that has a structural
change in the conditional variance but not in the conditional
mean. To conduct our test for DGPs s2–s3, we set Xt = Yt−1

and throw away the first 500 observations.
To construct the test statistics, let 1x = 1(fn,h (x) >

0.001/ log n). We choose the weighting function to be
w (x) = (sin(x) + cos(x)) 1x unless otherwise specified.
Notice that 1x is required for the bootstrap test to
avoid a random denominator issue. For the kernel, we
choose the fourth order Epanechnikov kernel K (u) =

3
4
√

5

(
15
8 − 7

8u2
) (

1 − 1
5u2

)
1
(
|u| ≤

√
5
)
.

We next discuss how to choose the two bandwidth se-
quences {h0, h}. In principle, we can choose the bandwidths
to optimize the size and power trade-off. However, this
would require higher order expansion of the testing statis-
tics (see, Fan and Linton (2003) and Sun, Phillips and Jin
(2008) for related research along this direction). A higher
order expansion of our testing statistic is possible but be-
yond the scope of the current study. We wish to investigate
this issue in later research.

Notice that Theorem 4.1 allows us to use the op-
timal rate of bandwidth for h0. So we can choose h0

by the least-squares cross-validation (LSCV). To be spe-
cific, denote the following leave-one-out kernel estimator
of the long run average density f (x) of {X1, . . . , Xn} by
f−t

n,h (Xt) = n−1
∑n

i=1,i �=t Kh (Xt − Xi). Then we can con-
struct the leave-one-out estimate of mn (Xt) by m−t

n,h (Xt) =
n−1

∑n
i=1,i �=t YiKh (Xt − Xi) /f−t

n,h (Xt), and the LSCV cri-
terion function CV (h) = 1

n

∑n
t=1[Yt − m−t

n,h (Xt)]21(|Xt −
X| ≤ 2σ̂X), where X and σ̂X are the sample mean and sam-
ple standard deviation of {Xt}. We denote the minimizer of
the LSCV objective function as h0. Notice that h0 is now
data dependent and converges to zero at rate n−1/9. (Even
though we assume non-stochastic bandwidth sequences in
Section 3, standard stochastic equicontinuity arguments can
be applied to show that stochastic bandwidth sequences
are also applicable under suitable conditions.) Since under-
smoothing is required for h, we follow Lee (2003, p. 16) to use
the rule of thumb: h = h0n

1
9 n−1/γ , where we shall study the

tests for different choices of γ = 7, 6, 5. See Robinson (1991,
p. 448) for very similar devices.

Table 1 reports the finite sample performance of our tests
for DGPs s1–s3. To save space, we only report the rejection
frequencies for the 5% test. We use 1000 replications for each
DGP and 199 bootstrap resamples in each replication. We
find that: (a) For different choices of γ, the KSn and CMn

tests behave similarly. This indicates our tests are robust to
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Table 1. Finite sample rejection frequency under the null
(nominal level: 0.05)

Sample DGP Bandwidth: h0 chosen by LSCV,

size h = h0n
1/9n−1/γ

n γ = 7 γ = 6 γ = 5
KSn CMn KSn CMn KSn CMn

100 s1 0.047 0.046 0.054 0.044 0.047 0.048
s2 0.064 0.046 0.069 0.052 0.052 0.054
s3 0.057 0.049 0.062 0.063 0.062 0.071

200 s1 0.056 0.053 0.064 0.052 0.061 0.053
s2 0.067 0.047 0.059 0.054 0.054 0.047
s3 0.056 0.057 0.062 0.055 0.061 0.061

400 s1 0.046 0.051 0.046 0.047 0.050 0.053
s2 0.062 0.055 0.056 0.046 0.051 0.051
s3 0.054 0.052 0.052 0.053 0.060 0.054

different choices of h. (b) For small sample sizes, the tests
(KSn in particular) are oversized for DGP s2 but improves
in terms of size as the sample size increases.

5.2 Finite sample performance of the tests
under different alternatives

To examine the power performance of the tests, we con-
sider three alternatives:

DGP p1: Yt = mt (Xt) + Ut, where Xt and Ut are i.i.d.
N (0, 1) and mutually independent, and

(5.1) mt (Xt) =
{

X2
t , for t ≤ ns0

X2
t + Δ0 for t > ns0

.

DGP p2: Yt = mt (Xt) + Ut, where Xt and Ut are i.i.d.
N (0, 1) and mutually independent, and

(5.2) mt (Xt) =
{

X2
t , for t ≤ ns0

X2
t + Δ0Xt for t > ns0

.

DGP p3: Yt = mt (Yt−1) + σt (Yt−1) εt, where εt are i.i.d.
N (0, 1), mt (Yt−1) = Φ (Yt−1) + Δ0g (t/n), g (z) = z − 1

2z2,
and

(5.3) σt (Yt−1) =

⎧⎨⎩
√

0.1 + 0.4Y 2
t−1, for t ≤ 0.5n√

0.1 + 0.8Y 2
t−1 for t > 0.5n

.

Note that for DGP p2, E (Δ0Xtf (Xt)) = 0, so that the
CUSUM test with the unit weight function (w (x) ≡ 1) has
no power in detecting such kind of alternatives. For DGP p3,
we have structural changes in both the conditional mean and
conditional variance process but our interest is still in testing
the structural change in the conditional mean process.

We will consider three different break ratios s0 =
0.25, 0.5, 0.75 and examine whether the tests are sensitive
to the location of the structural change point. Also, we will
consider three different break sizes Δ0 = 0.5, 1, 2 and check
how the test is sensitive to the size of the structural change.

Table 2 reports the rejection frequencies of our tests for
DGP p1. To save time, hereafter we use 250 replications for
each DGP and 199 bootstrap resamples in each replication.
We summarize some main findings from Table 2: (a) The
CMn and KSn tests behave similarly. (b) As the sample
size n or the break size Δ0 increases, the power of all tests
increases. (c) It is easiest to detect a break when it occurs
at the break ratio s0 = 0.5.

Table 3 reports the rejection frequencies of our tests for
DGP p2 where the test statistics are constructed by us-

Table 2. Finite sample rejection frequencies under DGP p1 (nominal level: 0.05)

Sample Break Break Bandwidth: h0 chosen by LSCV, h = h0n
1/9n−1/γ

size ratio size γ = 7 γ = 6 γ = 5
n s0 Δ0 KSn CMn KSn CMn KSn CMn

100 0.25 0.5 0.164 0.180 0.140 0.168 0.140 0.156
1 0.612 0.588 0.584 0.588 0.580 0.564
2 0.996 0.988 0.996 0.980 0.992 0.984

0.50 0.5 0.296 0.304 0.300 0.288 0.280 0.292
1 0.912 0.900 0.916 0.884 0.904 0.876
2 1 1 1 1 1 1

0.75 0.5 0.196 0.208 0.188 0.168 0.172 0.168
1 0.668 0.628 0.660 0.608 0.628 0.576
2 0.992 0.980 0.984 0.972 0.984 0.976

200 0.25 0.5 0.448 0.468 0.440 0.468 0.416 0.436
1 0.928 0.888 0.936 0.892 0.916 0.892
2 1 1 1 1 1 1

0.50 0.5 0.656 0.656 0.668 0.648 0.640 0.628
1 0.992 0.992 1 0.996 0.996 0.996
2 1 1 1 1 1 1

0.75 0.5 0.432 0.440 0.404 0.424 0.392 0.408
1 0.936 0.912 0.928 0.904 0.920 0.896
2 1 1 1 1 1 1
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Table 3. Finite sample rejection frequencies under DGP p2 (nominal level: 0.05)

Sample Break Break Bandwidth: h0 chosen by LSCV, h = h0n
1/9n−1/γ

size ratio size γ = 7 γ = 6 γ = 5
n s0 Δ0 KSn CMn KSn CMn KSn CMn

w(x) = (sin x + cos x)1x

100 0.25 0.5 0.052 0.052 0.052 0.048 0.056 0.052
1 0.176 0.160 0.144 0.152 0.144 0.160
2 0.524 0.460 0.532 0.452 0.520 0.448

0.50 0.5 0.096 0.104 0.092 0.092 0.088 0.088
1 0.284 0.312 0.244 0.284 0.272 0.280
2 0.832 0.796 0.820 0.800 0.820 0.784

200 0.25 0.5 0.184 0.176 0.180 0.180 0.168 0.168
1 0.408 0.424 0.408 0.424 0.428 0.428
2 0.852 0.840 0.860 0.848 0.852 0.852

0.50 0.5 0.240 0.280 0.252 0.268 0.256 0.264
1 0.632 0.632 0.628 0.632 0.620 0.616
2 0.952 0.944 0.952 0.948 0.944 0.948

w(x) = 1x

100 0.25 0.5 0.068 0.056 0.052 0.052 0.052 0.056
1 0.060 0.068 0.056 0.060 0.056 0.056
2 0.072 0.080 0.092 0.092 0.088 0.088

0.50 0.5 0.064 0.056 0.060 0.056 0.064 0.048
1 0.060 0.056 0.072 0.064 0.076 0.060
2 0.100 0.096 0.112 0.104 0.112 0.112

200 0.25 0.5 0.056 0.056 0.068 0.068 0.068 0.072
1 0.064 0.076 0.064 0.084 0.064 0.076
2 0.104 0.104 0.096 0.108 0.096 0.108

0.50 0.5 0.076 0.056 0.072 0.068 0.068 0.068
1 0.096 0.108 0.072 0.080 0.084 0.084
2 0.180 0.160 0.180 0.168 0.180 0.152

Table 4. Finite sample rejection frequencies under DGP p3 (nominal level: 0.05)

Sample Break Break Bandwidth: h0 chosen by LSCV, h = h0n
1/9n−1/γ

size ratio size γ = 7 γ = 6 γ = 5
n s0 Δ0 KSn CMn KSn CMn KSn CMn

100 0.25 0.5 0.136 0.128 0.140 0.128 0.140 0.144
1 0.312 0.356 0.336 0.364 0.348 0.396
2 0.584 0.640 0.676 0.708 0.672 0.712

0.50 0.5 0.204 0.212 0.216 0.216 0.232 0.208
1 0.472 0.456 0.508 0.480 0.540 0.492
2 0.744 0.760 0.780 0.796 0.832 0.836

200 0.25 0.5 0.260 0.280 0.300 0.312 0.300 0.320
1 0.648 0.648 0.688 0.680 0.692 0.704
2 0.840 0.868 0.872 0.896 0.908 0.936

0.50 0.5 0.360 0.364 0.416 0.392 0.424 0.408
1 0.768 0.764 0.800 0.796 0.840 0.840
2 0.908 0.912 0.960 0.960 0.972 0.976

ing two weight functions: w (x) = (sin (x) + cos(x))1x and
w (x) ≡ 1x. To save space, hereafter we only report the re-
sults for the break ratios s0 = 0.25, 0.5 because the case of
s0 = 0.75 is similar to that of s0 = 0.25. We find: (a) When
we choose the weight function that diverges from the direc-
tion where the test has no power in detecting deviations from
the null, the KSn and CMn tests perform reasonably well.

Otherwise, the KSn and CMn tests lose their power. (b)
The effects of the sample size, break size and break ratio are
similar to the case of DGP p1. Table 4 reports the rejection
frequencies for DGP p3 where w (x) = (sin (x) + cos(x))1x.
We find that both the KSn and CMn tests work fairly well
in detecting the breaks in the conditional mean process in
this case too.
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APPENDIX

We use C to signify a generic constant whose exact value may vary from case to case and Ei to denote expectation
with respect to vi ≡ (Ui, X

′
i)

′. Denote Kh,ij = Kh (Xi − Xj). We write An � Bn to signify that An = Bn (1 + op (1)) as
n → ∞.

A Proof of Theorem 3.1

By definition, V̂i = (Ui +m(Xi)−mn,h(Xi))fn,h(Xi)w(Xi) = Uif(Xi)w(Xi)+Uiw(Xi)[fn,h(Xi)−f(Xi)]− [mn,h(Xi)−
m(Xi)]fn,h(Xi)w(Xi). Noticing that

∑�ns�
i=1 Uiw (Xi) [fn,h (Xi) − f (Xi)] = n−1

∑�ns�
i=1

∑n
j=1 Uiw (Xi)

[
Kh,ij − fn (Xi)

]
+∑�ns�

i=1 Uiw (Xi)
[
fn (Xi) − f (Xi)

]
, and that

�ns�∑
i=1

(mn,h (Xi) − m (Xi)) fn,h (Xi)w (Xi)

= s

n∑
j=1

Ujw (Xj) f (Xj) + n−1

�ns�∑
i=1

n∑
j=1

Ujw (Xj)
[
Kh,ij − f (Xj)

]
+
(
�ns�

n
− s

) n∑
j=1

Ujw (Xj) f (Xj) + n−1

�ns�∑
i=1

n∑
j=1

Uj (w (Xi) − w (Xj))Kh,ij

+ n−1

�ns�∑
i=1

n∑
j=1

(m (Xj) − m (Xi)) w (Xi) Kh,ij ,

we have

σ̂Γn (s) =

{
n−1/2

�ns�∑
i=1

Uiw (Xi) f (Xi) − sn−1/2
n∑

i=1

Uiw (Xi) f (Xi)

}
(A.1)

+ n−3/2

�ns�∑
i=1

n∑
j=1

Uiw (Xi)
[
Kh,ij − fn (Xi)

]
+ n−1/2

�ns�∑
i=1

Uiw (Xi)
[
fn (Xi) − f (Xi)

]
− n−3/2

�ns�∑
i=1

n∑
j=1

Ujw (Xj)
[
Kh,ij − f (Xj)

]
− n−1/2

(
�ns�

n
− s

) n∑
j=1

Ujw (Xj) f (Xj)

− n−3/2

�ns�∑
i=1

n∑
j=1

Uj (w (Xi) − w (Xj)) Kh,ij − n−3/2

�ns�∑
i=1

n∑
j=1

(m (Xj) − m (Xi))w (Xi)Kh,ij

≡ An1(s) + An2(s) + An3(s) − An4(s) − An5(s) − An6(s) − An7(s).

By the invariance principle for a strong mixing process that is not necessarily stationary (e.g., Herrndorf, 1985), An1 (.)
converges weakly to σ0W

0 (.). The conclusion then follows from Lemmata A.1–A.6 below and the fact that σ̂
p→ σ0 under

the null.

We prove the following lemmata under the conditions of Theorem 3.1.

Lemma A.1. An2 (s) ≡ n−3/2
∑�ns�

i=1

∑n
j=1 Uiw (Xi)

[
Kh,ij − fn (Xi)

]
= op (1) uniformly in s.

Proof. Recall vi = (Ui, X
′
i)

′. Let ϕ1 (vj , vi) = Uiw (Xi) [Kh,ij − EjKh,ij ], and ϕ2 (vj , vi) = Uiw (Xi) [EjKh,ij − fj (Xi)].
Then An2 (s) = n−3/2

∑�ns�
i=1

∑n
j=1 ϕ1 (vj , vi)+n−3/2

∑�ns�
i=1

∑n
j=1 ϕ2 (vj , vi) ≡ An21 (s)+An22 (s). By Assumption A4 and

Lemma D.4, sup1≤s≤1 |An22 (s)| ≤ n−3/2hr
∑n

i=1

∑n
j=1 |Uiw (Xi)Df (Xi)| = Op(n1/2hr) = op (1), where Df (.) is defined

in Lemma D.4; see also the remark after it. To show sup1≤s≤1 |An21 (s)| = op (1), write

An21 (s) = n−3/2

�ns�∑
i=1

ϕ1ii + n−3/2
∑

1≤j<i≤�ns�
ϕ1ji + n−3/2

∑
1≤i<j≤n

ϕ1ji − n−3/2
n∑

�ns�+1≤i<j≤n

ϕ1ji

≡ An21a (s) + An21b (s) + An21c − An21d (s) ,
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where ϕ1ji = ϕ1 (vj , vi). It suffices to show that sup0≤s≤1 |An21a (s)| = op (1), sup0≤s≤1 |An21b (s)| = op (1), and
sup0≤s≤1 |An21d (s)| = op (1). First, by the invariance principle for the strong mixing process {Xi, Ui}, it is easy to
show that uniformly in s,

An21a (s) = n−3/2

�ns�∑
i=1

Uiw (Xi)
[
h−dK (0) −

∫
K (u) fi (Xi + hu) du

]
= Op

(
n−1h−d

)
= op (1) .

Next, write

(A.2)
E [An21b (s)]4 = n−6

∑
1≤i1<i2≤�ns�

∑
1≤i3<i4≤�ns�

∑
1≤i5<i6≤�ns�

∑
1≤i7<i8≤�ns�

ϕ1 (vi1 , vi2)ϕ1 (vi3 , vi4) ϕ1 (vi5 , vi6)ϕ1 (vi7 , vi8) .

It is easy to show that the dominating terms in the above summation constitute two cases: (a) i1, . . . , i8 are distinct
integers; (b) {i1, i2}, {i3, i4}, {i5, i6} and {i7, i8} form two identical pairs (e.g., {i1, i2} = {i3, i4} and {i5, i6} = {i7, i8}).
We will use EAn21b(l) to denote these two cases (l = a, b).

For case (a), let i1, . . . , i8 be distinct integers with 1 ≤ ij ≤ �ns�. Let 1 ≤ k1 < . . . < k8 ≤ �ns� be the permutation of
i1, . . . , i8 in ascending order and let dc be the c-th largest difference among kj+1−kj , j = 1, . . . , 7. Define H (k1, . . . , k8) =
ϕ1 (vi1 , vi2) ϕ1 (vi3 , vi4)ϕ1 (vi5 , vi6) ϕ1 (vi7 , vi8). For any 1 ≤ j ≤ 7, put P

(8)
0

(
E(8)

)
= P

(
(vi1 , . . . , vi8) ∈ E(8)

)
, and

P
(8)
j

(
E(j) × E(8−j)

)
= P ((vi1 , . . . , vij ) ∈ E(j))P ((vij+1 , . . . , vi8) ∈ E(8−j)), where E(j) is a Borel set in R

j(d+1). By

Assumptions A2–A3, one can show that for any 0 ≤ j ≤ 7,
∫
|H (k1, . . . , k8)|1+δ/4

dP
(8)
j ≤ Ch−dδ. Applying Lemma D.1

with ϑ = δ/4,

|E [H (k1, . . . , k8)]| ≤
{

Ch−4dδ/(4+δ)α
δ

4+δ (k2 − k1) if k2 − k1 = d1

Ch−4dδ/(4+δ)α
δ

4+δ (k8 − k7) if k8 − k7 = d1.

Therefore

∑
1≤k1<...<k8≤n

k2−k1=d1

|E [H (k1, . . . , k8)]| ≤ Ch−4dδ/(4+δ)
n−7∑
k1=1

n−6∑
k2=k1+maxj≥3{kj−kj−1}

n−5∑
k3=k2+1

· · ·
n∑

k8=k7+1

α
δ

4+δ (k2 − k1)

(A.3)

≤ Ch−4dδ/(4+δ)
n−7∑
k1=1

n−6∑
k2=k1+1

(k2 − k1)
6
α

δ
4+δ (k2 − k1) ≤ Cnh−4dδ/(4+δ)

n∑
j=1

j6α
δ

4+δ (j) .

Similarly, we have

∑
1≤k1<...<k8≤n

k8−k7=d1

|E [H (k1, . . . , k8)]| ≤ Cnh−4dδ/(4+δ)
n∑

j=1

j6α
δ

4+δ (j) ,(A.4)

∑
1≤k1<...<k8≤n

k2−k1=d2 or k8−k7=d2

|E [H (k1, . . . , k8)]| ≤ Cn2h−4dδ/(4+δ)
n∑

j=1

j5α
δ

4+δ (j) ,(A.5)

∑
1≤k1<...<k8≤n

k2−k1=d3 or k8−k7=d3

|E [H (k1, . . . , k8)]| ≤ Cn3h−4dδ/(4+δ)
n∑

j=1

j4α
δ

4+δ (j) ,(A.6)

and for all other subcases (k2 − k1 = dc and k8 − k7 = dc′ for c, c′ ≥ 4)

(A.7)
∑

1≤k1<...<k8≤n
other subcases

|E [H (k1, . . . , k8)]| ≤ Cn4h−4dδ/(4+δ)
n∑

j=1

j3α
δ

4+δ (j) .
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By (A.3)–(A.7), Assumptions A1 and A6, we have

EAn21b(a) ≤ n−6
∑

1≤k1<...<k8≤n

|E [H (k1, . . . , k8)]| ≤ Cn−2h−4dδ/(4+δ)
n∑

j=1

j3α
δ

4+δ (j) = O
(
n−2h−4dδ/(4+δ)

)
= o

(
n−1

)
.

(A.8)

Now for case (b), some calculations show that

(A.9) EAn21b(b) = O
(
n−2h−2d

)
= o

(
n−1

)
.

Hence E [An21b (s)]4 = o
(
n−1

)
by (A.8)–(A.9) and the remark after (A.2). For any ε > 0,

P

(
sup

0≤s≤1
||An21b (s)|| > ε

)
=

n∑
l=1

P (An21b (l/n) > ε) ≤ ε−4
n∑

l=1

E |An11 (l/n)|4 = o (1) .

It follows that sup0≤s≤1 |An21b (s)| = op (1).
Now, let ϕ̃ (vi, vj) = ϕ1 (vj , vi) and ṽi = vn−i+1 for 1 ≤ i, j,≤ n. Then

sup
1≤l≤n

∣∣∣∣∣ ∑
l≤i<j≤n

ϕ1 (vj , vi)

∣∣∣∣∣ = sup
1≤l≤n

∣∣∣∣∣ ∑
1≤i<j≤n−l+1

ϕ1 (vn−j+1, vn−i+1)

∣∣∣∣∣ = sup
1≤l≤n

∣∣∣∣∣ ∑
1≤i<j≤l

ϕ̃ (ṽi, ṽj)

∣∣∣∣∣.
So we can apply the above method to the {ṽi} variable to obtain 0≤s≤1 |An21d (s)| = op (1). Hence sup0≤s≤1 |An21 (s)| =
op (1).

Lemma A.2. An3 (s) ≡ n−1/2
∑�ns�

i=1 Uiw (Xi)
[
fn (Xi) − f (Xi)

]
= op (1) uniformly in s.

Proof. Let di = Uiw (Xi)
[
fn (Xi) − f (Xi)

]
. Recall vi = (Ui, X

′
i)

′. Define Fl = σ-field (v1, . . . , vl) for 1 ≤ l ≤ n. Then
{di,Fi}i=1,...,n is a martingale difference sequence (m.d.s.) by Assumption A2, and An3 (s) = n−1/2

∑�ns�
i=1 di. By the

Kolmogorov’s maximal inequality for m.d.s. (see, e.g., Theorem 15.14 in Davidson, 1994), we have for any ε > 0,

P

(
sup

1≤s≤1
|An3 (s)| > ε

)
= P

(
sup

1≤l≤n

∣∣∣∣∣
l∑

i=1

di

∣∣∣∣∣ > n1/2ε

)
≤ n−1ε−2

n∑
l=1

Var (di) .

Noting that E(di) = 0, by the dominated convergence theorem Var (di) = E{U2
i w2 (Xi) [fn (Xi) − f (Xi)]2} = o(1). So

P
(
sup1≤s≤1 |An3 (s)| > ε

)
= o(1), implying that sup1≤s≤1 |An3 (s)| = op (1).

Lemma A.3. An4 (s) ≡ n−3/2
∑�ns�

i=1

∑n
j=1 Ujw (Xj)

[
Kh,ij − f (Xj)

]
= op (1) uniformly in s.

Proof. Recall vi = (Ui, X
′
i)

′. Let φ (vi, vj) = Ujw (Xj)
[
Kh,ij − f (Xj)

]
. Then

An4 (s) = n−3/2

�ns�∑
i=1

�ns�∑
j=1

φ (vi, vj) + n−3/2

�ns�∑
i=1

n∑
j=�ns�+1

φ (vi, vj) ≡ An4a (s) + An4b (s) .

It suffices to show sup0≤s≤1 |An4a (s)| = op (1) and sup0≤s≤1 |An4b (s)| = op (1).
We now write An4b (s) as the sum of three U-statistics:

An4b (s) = n−3/2

{ ∑
1≤i<j≤n

φ (vi, vj) −
∑

1≤i<j≤�ns�
φ (vi, vj) −

n∑
�ns�+1≤i<j≤n

φ (vi, vj)

}
.

We shall prove that for all εn > 0 and some fixed sufficiently large C,

p1 ≡ P

(
sup

1≤l≤n

∣∣∣∣∣ ∑
1≤i<j≤l

φ (vi, vj)

∣∣∣∣∣ > εn

)
≤ Cε−2

n n2h−d, and(A.10)

p2 ≡ P

(
sup

1≤l≤n

∣∣∣∣∣ ∑
l≤i<j≤n

φ (vi, vj)

∣∣∣∣∣ > εn

)
≤ Cε−2

n n2h−d.(A.11)
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By construction,
∫∫

φ (v1, v2) dFυ1 (v1) dFυ2 (v2) = 0, where Fvi is the distribution function of vi. Let φ (v) =∫
φ (v, v2) dFv2 (v2) and φ̃ (v) =

∫
φ (v1, v) dFv1 (v1). By Assumption A2, φ (v) = 0 and φ̃ (v) = 0. For the investi-

gation of p1, define Fl = σ-field (v1, . . . , vl) for 1 ≤ l ≤ n. Let B1 = 0, Δ1 = 0, Bl =
∑

1≤i<j≤l φ (vi, vj), and

Δl = Bl − Bl−1 =
∑l−1

i=1 φ (vi, vl), for l = 2, . . . , n. Then {Δl,Fl}l=1,...,n is an m.d.s. By the Kolmogorov’s maximal
inequality for m.d.s., we have

P

(
sup

1≤l≤n

∣∣∣∣∣ ∑
1≤i<j≤l

φ (vi, vj)

∣∣∣∣∣ > εn

)
= P

(
sup

1≤l≤n

∣∣∣∣∣
l∑

i=1

Δi

∣∣∣∣∣ > εn

)
≤ ε−2

n

n∑
l=1

Var (Δl) .

Noticing that E [Δl] = 0, we have

(A.12) Var (Δl) =
l−1∑
i=1

E [φ (vi, vl)]
2 + 2

l−2∑
i=1

l−1∑
j=i+1

Cov (φ (vi, vl) , φ (vj , vl)) .

It is easy to show that E [φ (vi, vl)]
2 ≤ Ch−d for all i < l ≤ n. Applying Lemma D.1 with ϑ = δ, we have that for all

1 ≤ i < j < l ≤ n,

|Cov (φ (vi, vl) , φ (vj , vl))| = |E {φ (vi, vl) φ (vj , vl)}|

≤
∣∣∣∣∫ E [φ (vi, v) φ (vj , v)] dFvl

(v)
∣∣∣∣+ Ch

−2δd
1+δ [α (l − j)]

δ
1+δ

≤ C [α (j − i)]
δ

1+δ max
1≤j≤n

∫ (
E |φ (vj , v)|2+2δ)1/(1+δ)

dFvl
(v) + Ch

−2δd
1+δ [α (l − j)]

δ
1+δ

= Ch
−2δd
1+δ [α (j − i)]

δ
1+δ + Ch

−2δd
1+δ [α (l − j)]

δ
1+δ .

Note that Assumption A1 implies that αδ/(1+δ) (j) is summable. Hence

Var (Δl+1) ≤ C

(
lh−d + 2h

−2δd
1+δ

l−2∑
i=1

l−1∑
j=i+1

{
[α(j − i)]

δ
1+δ + [α(l − j)]

δ
1+δ

})

≤ C

(
lh−d + 2lh

−2δd
1+δ

l−1∑
j=1

{
[α(j − i)]

δ
1+δ + α(l − j)

δ
1+δ

})

≤ C
(
lh−d + Clh

−2δd
1+δ

)
≤ Clh−d,

and assertion (A.10) follows. Let φ̃ (vi, vj) = φ (vj , vi) and ṽi = vn−i+1 for 1 ≤ i, j,≤ n. Then

sup
1≤l≤n

∣∣∣∣∣ ∑
l≤i<j≤n

φ (vi, vj)

∣∣∣∣∣ = sup
1≤l≤n

∣∣∣∣∣ ∑
1≤i<j≤n−l+1

φ (vn−j+1, vn−i+1)

∣∣∣∣∣ = sup
1≤l≤n

∣∣∣∣∣ ∑
1≤i<j≤l

φ̃ (ṽi, ṽj)

∣∣∣∣∣.
So we can apply (A.10) to the ṽi variables to get (A.11).

Now taking εn = n3/2ε for some finite ε > 0, we obtain

p1 ≡ P

(
sup

1≤l≤n

∣∣∣∣∣ ∑
1≤i<j≤l

φ (vi, vj)

∣∣∣∣∣ > n3/2ε

)
≤ Cε−2n−1h−d → 0, and

p2 ≡ P

(
sup

1≤l≤n

∣∣∣∣∣ ∑
l≤i<j≤n

φ (vi, vj)

∣∣∣∣∣ > n3/2ε

)
≤ Cε−2n−1h−d → 0.

Consequently, sup0≤s≤1 |An4b (s)| = op (1).
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To show sup0≤s≤1 |An4a (s)| = op (1), let ϕ (vi, vj) = Ujw (Xj) [Kh,ij − fi (Xj)]. Then

An4a (s) = n−3/2

�ns�∑
i=1

�ns�∑
j=1

ϕ (vi, vj) + n−3/2

�ns�∑
i=1

�ns�∑
j=1

Ujw (Xj)
[
fi (Xj) − f (Xj)

]
= n−3/2

∑
1≤i<j≤�ns�

ϕ (vi, vj) + n−3/2
∑

1≤i<j≤�ns�
ϕ (vj , vi) + n−3/2

�ns�∑
i=1

ϕ (vi, vi)

+ n−3/2

�ns�∑
i=1

�ns�∑
j=1

Ujw (Xj)
[
fi (Xj) − f (Xj)

]
≡ Dn3 (s) + Dn4 (s) + Dn5 (s) + Dn6 (s) .

By similar arguments to the above analysis and that of Lemma A.1, we have sup0≤s≤1 |Dnj (s)| = op (1) for j = 3, 4. We
can readily show that

Dn5 (s) = n−3/2

�ns�∑
i=1

Uiw (Xi)
[
h−dK (0) − fi (Xi)

]
= Op

(
n−1h−d

)
= op (1) uniformly in s.

Now write

Dn6 (s) = n−3/2

�ns�∑
i=1

�ns�∑
j=1

Ujw (Xj)
[
fi (Xj) − f (Xj)

]
=

�ns�
n3/2

�ns�∑
j=1

Ujw (Xj)
[
f�ns� (Xj) − f (Xj)

]
.

Analogously to the proof of by Lemma A.2, we can show that sup0≤s≤1 |Dn6 (s)| = op (1). Consequently
sup0≤s≤1 |An4a (s)| = op (1).

Lemma A.4. An5 (s) ≡ n−1/2 (�ns� /n − s)
∑n

j=1 Ujw (Xj) f (Xj) = op (1) uniformly in s.

Proof. The result follows from the fact that �ns� /n−s = O
(
n−1

)
uniformly in s and the fact that n−1/2

∑n
j=1 Ujw (Xj)×

f (Xj) = Op (1).

Lemma A.5. An6 (s) ≡ n−3/2
∑�ns�

i=1

∑n
j=1 Uj (w (Xi) − w (Xj))Kh,ij = op (1) uniformly in s.

Proof. The proof is analogous to that of Lemma A.3.

Lemma A.6. An7 (s) ≡ n−3/2
∑�ns�

i=1

∑n
j=1 (m (Xj) − m (Xi)) w (Xi) Kh,ij = op (1) uniformly in s.

Proof. Using Lemma D.4, we can show that uniformly in x,∣∣∣∣∣n−1
n∑

j=1

[m (Xj) − m (x)] w (x) Kh (x − Xj)

∣∣∣∣∣
�
∣∣∣∣∣n−1

n∑
j=1

E {[m (Xj) − m (x)] w (x)Kh (x − Xj)}
∣∣∣∣∣ ≤ hrDm (x) |w (x)| .

Consequently, sup0≤s≤1 |An7 (s)| ≤ n−1/2hr
∑n

i=1 Dm (Xi) |w (Xi)| = Op

(
n1/2hr

)
= op (1).

B Proof of Theorem 3.2

Under both H1A,n and H1B,n, Lemmata A.1–A.5 also hold true and σ̂
p→ σ0. Now

σ̂Γn (s) = An1 (s) + An2 (s) + An3 (s) − An4 (s) − An5 (s) − An6 (s) − Ãn7 (s) ,

where Ani (s), i = 1, . . . , 6, are as defined in (A.1), and Ãn7 (s) = n−3/2
∑�ns�

i=1

∑n
j=1 (mj (Xj) − mi (Xi)) w (Xi)Kh,ij . Let

An7a (s) = n−3/2
∑�ns�

i=1

∑n
j=1 (mj (Xi) − mi (Xi)) w (Xi) Kh,ij , and An7b (s) = n−3/2

∑�ns�
i=1

∑n
j=1(mj (Xj) − mj (Xi))×

w (Xi) Kh,ij . Then Ãn7 (s) = An7a (s) + An7b (s). Analogous to the proof of Lemma A.6, we can prove that
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sup0≤s≤1 |An7b (s)| = op (1) under both H1A and H1B . To analyze An7a (s), we first focus on the case of H1A. Under
H1A, mj (Xi) − mi (Xi) = n−1/2Δ(Xi) 1 (j ≥ k0 + 1). Uniformly in s, we have

An7a (s) =
1
n2

�ns�∑
i=1

Δ(Xi)w (Xi)
n∑

j=k0+1

Kh,ij =
1 − s0

n

�ns�∑
i=1

Δ(Xi)w (Xi) f (Xi) + op (1) = s (1 − s0) μ1 + op (1) ,

where μ1 = limn→∞ n−1
∑n

i=1 E
[
Δ(Xi)w (Xi) f (Xi)

]
.

We now focus on the case of H1B . Under H1B , mj (Xi)−mi (Xi) = n−1/2 (g (j/n) − g (i/n)). By Lemma 4 of Krämer,
Ploberger and Alt (1988), we have that uniformly in s,

An7a (s) =
1
n2

�ns�∑
i=1

w (Xi)
n∑

j=1

(
g

(
j

n

)
− g

(
i

n

))
Kh,ij

=
1
n2

n∑
j=1

g

(
j

n

) �ns�∑
i=1

w (Xi) Kh,ij −
1
n2

�ns�∑
i=1

g

(
i

n

)
w (Xi)

n∑
j=1

Kh,ij

� s

n

n∑
j=1

g

(
j

n

)
w (Xj) f (Xj) −

1
n

�ns�∑
i=1

g

(
i

n

)
w (Xi) f (Xi) + op (1)

� sμ2

∫ 1

0

g (v) dv − μ2

∫ s

0

g (v) dv = μ2

(
s

∫ 1

0

g (v) dv −
∫ s

0

g (v) dv

)
,

where μ2 = limn→∞ n−1
∑n

i=1 E
[
w (Xi) f (Xi)

]
, the third line follows from the fact that 1

n

∑n
j=1 h−dK ((x − Xj)/h) =

f (x) + op (1) uniformly in x, and that 1
n

∑�ns�
i=1 w (Xi) h−dK ((x − Xi)/h) � 1

n

∑�ns�
i=1 E

[
w (Xi)h−dK ((x − Xi)/h)

]
→

sw (x) f (x) uniformly in x and s.

C Proof of Theorem 4.1

Let P ∗ denote the probability conditional on the original sample W ≡ {(Yt, Xt)}n
t=1 and E∗ denote the expectation

with respect to P ∗. Let Op∗ (1) and op∗ (1) denote the probability order in the bootstrap world, e.g., bn = op∗ (1) if for
any ε > 0, P ∗ (‖bn‖ > ε) = op (1). Note that bn = op (1) implies that bn = op∗ (1). Similar conclusions hold when little o
is replaced by big O.

By definition, we can write V̂ ∗
i =

[
U∗

i + mn,h0 (Xi) − m∗
n,h (Xi)

]
fn,h (Xi)w (Xi) = U∗

i fn,h (Xi) w (Xi) −
n−1

∑n
j=1 U∗

j Kh,ijw (Xi) −
{
E∗[m∗

n,h (Xi)
]
− mn,h0 (Xi)

}
fn,h (Xi)w (Xi). Hence

σ̂∗Γ∗
n (s) =

{
n−1/2

�ns�∑
i=1

U∗
i fn,h (Xi) w (Xi) − sn−1/2

n∑
i=1

U∗
i fn,h (Xi) w (Xi)

}
(C.1)

− n−3/2

�ns�∑
i=1

n∑
j=1

U∗
j w (Xj) [Kh,ij − fn,h (Xj)] − n−1/2

(
�ns�

n
− s

) n∑
j=1

U∗
j fn,h (Xj)w (Xj)

− n−1/2

�ns�∑
i=1

{
E∗ [m∗

n,h (Xi)
]
− mn,h0 (Xi)

}
fn,h (Xi)w (Xi)

≡ A∗
n1 (s) − A∗

n2 (s) − A∗
n5 (s) − R∗

n (s) ,

where the expressions of A∗
n1 (s), A∗

n2 (s), and A∗
n5 (s) parallel those of An1 (s), An2 (s), and An5 (s) in the proof of

Theorem 3.1. It suffices to show that conditional on W,

(i) A∗
n1 (.)

p⇒ σ∗W 0 (.),
(ii) A∗

nj (s) = op∗ (1) uniformly in s for j = 2, 5,
(iii) R∗

n (s) = op∗ (1) uniformly in s,
(iv) σ̂∗2 = σ∗2 + op∗ (1),

where σ∗2 = limn→∞ n−1
∑n

i=1 E{
[
f (Xi)Ui + δ (Xi)

]2
w2 (Xi)}, and δ (Xi) = limn→∞ n−1

∑n
j=1[mi (Xi) − mj (Xi)]×

fj (Xi). Clearly, under the null hypothesis or local alternatives, δ ≡ 0. Otherwise, it is not identically zero.

360 L. Su and Z. Xiao



Let v∗i = U∗
i fn,h (Xi) w (Xi). Conditional on W, {v∗i } is an independent but not identically distributed (i.n.i.d. for

abbreviation) sequence. To show (i), it suffices to show that conditional on W, {v∗i } satisfies the Liapounov i.n.i.d.
functional central limit theorem, see, e.g., Theorem 7.16 of White (2001). By construction, E∗ (v∗i ) = 0. Var∗ (v∗i ) =

Û
2

i f
2
n,h (Xi) w2 (Xi) and E |v∗i |

4 = E
(
η4

i

)
Û

4

i f
4
n,h (Xi) w4 (Xi) are bounded in probability for all i and for sufficiently large

n. In addition, noting that Ûifn,h (Xi) = n−1
∑n

j=1 Khij (Yi − Yj) = f (Xi)Ui + δ (Xi) + op (1), we have

Var∗
(

n−1/2
n∑

i=1

v∗i

)
= n−1

n∑
i=1

Û
2

i f
2
n,h (Xi) w2 (Xi) = n−1

n∑
i=1

Û 2
i f2

n,h (Xi) w2 (Xi) + op (1)

= n−1
n∑

i=1

[
f (Xi)Ui + δ (Xi)

]2
w2 (Xi) op (1) = σ∗2 + op (1) .

Hence the conditions of Theorem 7.16 of White (2001) are satisfied, and A∗
n1 (.)

p⇒ σ∗W 0 (.).

To show A∗
n2 (s) = op∗ (1), let ξ∗j = (ηj , Û j , Xj) and φ

(
ξ∗i , ξ∗j

)
= ηjÛ jw (Xj) [Kh,ij − fn,h (Xj)]. Then A∗

n2 (s) =
n−3/2

∑�ns�
i=1

∑n
j=1 φij , where φij = φ

(
ξ∗i , ξ∗j

)
. Fix s ∈ [0, 1]. For any ε > 0,

(C.2) P ∗ (A∗
n2 (s) ≥ ε) ≤ n−6ε−4

n∑
i1=1

�ns�∑
i2=1

n∑
i3=1

�ns�∑
i4=1

n∑
i5=1

�ns�∑
i6=1

n∑
i7=1

�ns�∑
i8=1

E∗ [φi1i2φi3i4φi5i6φi7i8 ] .

Note that E∗ [φi1i2φi3i4φi5i6φi7i8 ] is nonzero if and only if (a) i1 = i3 = i5 = i7, or (b) i1 = i3 and i5 = i7, or i1 = i5 and
i3 = i7, or i1 = i7 and i3 = i7 and these four indices are not all equal. In Case (a), the summation in (C.2) is

n−6ε−4
n∑

i1=1

�ns�∑
i2=1

�ns�∑
i4=1

�ns�∑
i6=1

�ns�∑
i8=1

E∗ [φi1i2φi1i4φi1i6φi1i8 ]

= n−6ε−4
n∑

i1=1

�ns�∑
i2=1

�ns�∑
i4=1

�ns�∑
i6=1

�ns�∑
i8=1

Û
4

i1w
4 (Xi1) [Kh,i2i1 − fn,h (Xi1)]

× [Kh,i4i1 − fn,h (Xi1)] [Kh,i6i1 − fn,h (Xi1)] [Kh,i8i1 − fn,h (Xi1)]

≤ C

(
n−1

(
n−1/2h−d/2

√
log n + hr

)4
)

n−1
n∑

i1=1

Û
4

i1w
4 (Xi1)

= Op

(
n−1

(
n−1/2h−d/2

√
log n + hr

)4
)

= op

(
n−1

)
,

where the first inequality follows from the fact that for any s ∈ [0, 1], supx∈Rd | 1
�ns�

∑�ns�
i=1 [Kh (x − Xi) − fn,h (x)]| ≤

supx∈Rd | 1
�ns�

∑�ns�
i2=1 Kh (x − Xi) − fn (x) | + supx∈Rd

∣∣fn,h (x) − fn (x)
∣∣ = Op(n−1/2h−d/2

√
log n + hr) by Lemmas D.4

and D.6. Similarly, in Case (b), the summation in (C.2) is of the order

n−6ε−4
n∑

i1=1

�ns�∑
i2=1

�ns�∑
i4=1

n∑
i5=1

�ns�∑
i6=1

�ns�∑
i8=1

E∗ [φi1i2φi1i4φi5i6φi5i8 ]

= n−6ε−4
n∑

i1=1

l∑
i2=1

l∑
i4=1

n∑
i5=1

l∑
i6=1

l∑
i8=1

Û
2

i1w
2 (Xi1) [Kh,i2i1 − fn,h (Xi1)] [Kh,i4i1 − fn,h (Xi1)]

× Û
2

i5w
2 (Xi5) [Kh,i6i5 − fn,h (Xi5)] [Kh,i8i5 − fn,h (Xi5)]

= Op

((
n−1/2h−d/2

√
log n + hr

)4
)

= op

(
n−1

)
.

Consequently P ∗ (sup0≤s≤1 |A∗
n2 (s)| ≥ ε

)
≤
∑

1≤l≤n P ∗ (A∗
n2 (l/n) ≥ ε) = op (1) and sup0≤s≤1 |A∗

n2 (s)| = op∗ (1) by the
Markov inequality.

It is straightforward to A∗
n5 (s) = Op∗

(
n−1/2

)
= op∗ (1) uniformly in s.
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To show (iii), it suffices to show that {E∗[m∗
n,h (x)] − mn,h0 (x)}fn,h (x) w (x) = Op(hrd

−(1+r)
n

√
log n) uniformly in x

since then sup0≤s≤1 |R∗
n (s)| ≤ n−1/2

∑n
i=1

∣∣{E∗[m∗
n,h (Xi)] − mn,h0 (Xi)}fn,h (Xi) w (Xi)

∣∣ = Op(n1/2hrd
−(1+r)
n

√
log n) =

op (1) = op∗ (1). Standard bias calculation in the Nadaraya-Watson estimation shows that uniformly in x,∣∣{E∗ [m∗
n,h (x)

]
− mn,h0 (x)

}
fn,h (x)w (x)

∣∣
�
∣∣∣∣∣hrn−1

n∑
j=1

d∑
l=1

∂rmn,h0 (x)
∂xr

l

fj (x)
∫

K (u) ur
l du w (x)

∣∣∣∣∣
≤ Chrfn (x)

d∑
l=1

sup
x∈Rd

∣∣∣∣∂rmn,h0 (x)
∂xr

l

∣∣∣∣ 1 (fn,h0 (x) ≥ dn)

= hrfn (x) Op

(
n−1/2h

−d/2−r
0 d−2−r

n

√
log n + d−(1+r)

n

)
= Op

(
hrd−(1+r)

n

√
log n

)
,

by Lemma D.6 and equation (D.8). (Note that the dominating terms in the summation
∑

|λ|=r Dλ[mn,h0 (x) fj (x)] are∑
|λ|=r Dλmn,h0 (x) × fj (x).) Now,

σ̂∗2 = n−1
n∑

i=1

V̂ ∗2
i = n−1

n∑
i=1

[
U∗

i −
(
m∗

n,h (Xi) − mn,h0 (Xi)
)]2

f2
n,h (Xi) w2 (Xi)

= n−1
n∑

i=1

η2
i Û

2

i f
2
n,h (Xi) w2 (Xi) + n−1

n∑
i=1

(
m∗

n,h (Xi) − mn,h0 (Xi)
)2

f2
n,h (Xi)w2 (Xi)

+ n−1
n∑

i=1

2ηiÛ i

(
m∗

n,h (Xi) − mn,h0 (Xi)
)
f2

n,h (Xi) w2 (Xi) ≡ Tn1 + Tn2 + Tn3.

It is easy to show that Tn1 = n−1
∑n

i=1 Û 2
i f2

n,h (Xi)w2 (Xi)+ op (1) = σ∗2 + op (1), and Tn2 = op∗ (1). Hence Tn3 = op∗ (1)
by the Cauchy-Schwartz inequality and σ̂∗2 = σ∗2 + op∗ (1).

D Some technical lemmas

This appendix presents some technical lemmas that are used in proving the main results.

Lemma D.1. Let {ξi} be a strong mixing process with the mixing coefficient α (i). For any integer p > 1 and in-
tegers (i1, . . . , ip) such that 1 ≤ i1 < i2 < · · · < ip, let g be a Borel function such that

∫
|g (x1, . . . , xp)|1+ϑ ×

dF (1) (x1, . . . , xj) dF (2) (xj+1, . . . , xp) ≤ M for some ϑ > 0 and M > 0, where F (1) = Fi1,...,ij and F (2) = Fij+1,...,ip

are the distribution functions of (ξi1 , . . . , ξij ) and (ξij+1 , . . . , ξip), respectively. Let F denote the distribution func-
tion of (ξi1 , . . . , ξip). Then |

∫
g (x1, . . . , xp) dF (x1, . . . , xp) −

∫
g (x1, . . . , xp) dF (1) (x1, . . . , xj) dF (2) (xj+1, . . . , xp) | ≤

4M1/(1+ϑ)α (ij+1 − ij)
ϑ/(1+ϑ).

Proof. This is Lemma 2.1 of Sun and Chiang (1997).

The following definitions are adopted from Robinson (1988).

Definition D.2. Kr, r ≥ 2, is the class of even functions K that is a product of a univariate kernel function k satisfying∫
R

uik (u) du = δi0 (i = 0, 1, . . . , r − 1),
∫

R
urk (u) du �= 0, and k (u) = O((1 + |u|r+1+ε)

−1
) for some ε > 0, where δij is the

Kronecker’s delta.

Definition D.3. Gγ
μ , γ > 0, μ > 0, is the class of functions g : R

d → R satisfying: g is (m−1)-times partially differentiable,
for m − 1 ≤ μ ≤ m; for some ρ > 0, supy∈φzρ

|g (y) − g (z)| / |y − z|μ ≤ Dg (z) for all z, where φzρ = {y : |y − z| < ρ};
Qg = 0 when m = 1; Qg is a (m − 1)th degree homogeneous polynomial in y − z with coefficients the partial derivatives
of g at z of orders 1 through m − 1 when m > 1; and g (z), its partial derivatives of order m − 1 and less, and Dg (z),
have finite γth moments.

Lemma D.4. Denote the density function of Xj as fj. Suppose K ∈ Kr, fj ∈ Gγ
r , and m ∈ Gγ

r where r ≥ 2 is an integer.
Let x ∈ R

d, and h → 0 as n → ∞. Then

(i)
∣∣E [

K ((Xj − x) /h) − hdfj (x)
]∣∣ ≤ hd+rDfj (x), uniformly in x,

(ii) |E {[m (Xj) − m (x)] K ((Xj − x) /h)}| ≤ hd+rDm,j (x), uniformly in x,

where both Dfj (.) and Dm,j (.) have finite γth moments.
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Proof. See Lemmas 4–5 of Robinson (1988).

To apply Lemma D.4, we will suppress the dependence of Dfj (.) and Dm,j (.) on j ∈ {1, 2, . . . , n} by assuming that
they are dominated respectively by the functions Df (.) and Dm (.) that have finite γth moments.

Lemma D.5. Let {ξt ∈ R
q, t = 1, 2, . . .} be a strong mixing process, not necessarily stationary, with the mixing coefficient

α (t) satisfying
∑∞

t=1 α (t) < ∞. Suppose that ςn : R
q → R is a measurable function such that E [ςn (ξt)] = 0, and

|ςn (ξt)| ≤ Mn for every t = 1, 2, . . ., then for any ε > 0,

P

(∣∣∣∣∣n−1
n∑

i=1

ςn (ξt)

∣∣∣∣∣ > ε

)
≤ C0 exp

(
− npnε2

C1σ2 (pn) + C2Mnpn (pn + 1) ε

)
+ C3

√
Mn

ε

n

pn
α (pn + 1) ,

where 1 ≤ pn ≤ n/2, σ2 (pn) = sup1≤j≤2pn
max

{
σ2

j,pn
, σ2

j,pn+1

}
, σ2

j,pn
= E [

∑pn

t=1 ςn (ξj+t)]
2, and C ′

is, i = 0, 1, 2, 3, are
constants that do not depend on n, ε, Mn, and pn.

Proof. See Lemma 5.2 in Shen and Huang (1998).

Lemma D.6. Let K : R
d → R be a kernel-like function with a compact support U satisfying supu∈U |K (u)| ≤ C1 < ∞,

K (u) = 0 for ‖u‖ ≥ C2, and |K (u) −K (u′)| ≤ C3 ‖u − u′‖ for any u, u′ ∈ R
d. Suppose that {Xi, Yi} is a strong mixing

process satisfying the mixing, moment and tail conditions in Assumptions A1 and A8. Then supx∈Rd |Ψ(x) − EΨ(x)| =
Op(n−1/2h

−d/2
0

√
log n), where Ψ(x) = n−1h−d

0

∑n
i=1 YiK ((x − Xi) /h0).

Remark. Andrews (1995, Lemma A-2) obtains a slower rate of convergence under more general conditions that allow for
near-epoch-dependent arrays. Applying Lemma A-2 of Andrews with η = ∞ (see the remark on p. 569 of Andrews, 1995)
gives us supx∈Rd |Ψ(x) − EΨ(x)| = Op

(
n−1/2h−d

0

)
. Hansen (2008, Theorem 4) proves the result for a stationary strong

mixing process. Since we don’t assume stationarity of {Yi, Xi}, we need to modify the proof of Hansen (2008) by using
Lemma D.5.

Proof. The proof follows closely from that of Theorems 2 and 4 of Hansen (2008). We only outline the difference here.
Let cn = O((log n)1/d

n1/(2q)) for some q ≥ d, we first show that

(D.1) sup
‖x‖≤cn

|Ψ(x) − EΨ(x)| = Op

(
n−1/2h

−d/2
0

√
log n

)
.

Let an = n−1/2h
−d/2
0

√
log n and τn = a

−1/(3+δ)
n . Similarly to Hansen (2008), we can show that we can replace Yi with

the truncated process Yi1 (|Yi| ≤ τn) by Assumption A8. So in the following we simply assume that |Yi| ≤ τn. By selecting
N = O

(
cd
nh−d

0 a−d
n

)
grid points x1, . . . , xN , we can cover the region {x : ‖x‖ ≤ cn} by Aj = {x : ‖x − xj‖ ≤ anh0},

j = 1, . . . , N . By the triangle inequality

a−1
n sup

‖x‖≤cn

|Ψ(x) − EΨ(x)| ≤ a−1
n sup

1≤j≤N,x∈Aj

|Ψ(x) − Ψ(xj)| + a−1
n sup

1≤j≤N
|Ψ(xj) − EΨ(xj)|(D.2)

+ a−1
n sup

1≤j≤N,x∈Aj

|EΨ(xj) − EΨ(x)| ≡ Tn1 + Tn2 + Tn3.

It suffices to show that Tni = Op (1) for i = 1, 2, 3. By the Lipschitz continuity of K (.) and the fact that ‖x − xj‖ ≤ anh0

for all x ∈ Aj , we have

(D.3) Tn3 ≤ sup
1≤j≤N

n−1h−d
0

n∑
i=1

E

∣∣∣∣YiK∗
(

xj − Xi

h0

)∣∣∣∣ = O (1) ,

and

(D.4) Tn1 ≤ sup
1≤j≤N

n−1h−d
0

n∑
i=1

∣∣∣∣YiK∗
(

xj − Xi

h0

)∣∣∣∣ = Op (1) ,

where K∗ (u) = C31
(
‖u‖ ≤ 2C2

)
is bounded and integrable.
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For any M > 0,

(D.5) P

(
a−1

n sup
1≤j≤N

|Ψ(xj) − EΨ(xj)| > M

)
≤ N max

1≤j≤N
P
(
a−1

n |Ψ(xj) − EΨ(xj)| > M
)
.

Define ξni (x) = YiK ((x − Xi) /h0)−E [YiK ((x − Xi) /h0)]. Then supx E [
∑pn

i=1 ξni (x)]2 ≤ Cpnhd
0 and |ξni (x)| ≤ 2C1τn.

We apply Lemma D.5 with Mn = 2C1τn, pn = a−1
n τ−1

n , ε = Manhd
0 and σ2 (pn) = Cpnhd

0 to obtain

N max
1≤j≤N

P
(
a−1

n |Ψ(xj) − EΨ(xj)| > M
)

(D.6)

= N max
1≤j≤N

P

(∣∣∣∣∣n−1
n∑

i=1

ξni (xj)

∣∣∣∣∣ > Manhd
0

)

≤ NC0 exp
(
− nM2a2

nh2d
0(

C1Chd
0 + 2C1C2Mhd

0

))+ NC3

√
2C1τn

Manhd
0

nanτnα
(
(anτn)−1

)
≤ NC0 exp

(
− M log n(

C1C + 2C1C2

))+ cd
nh−d

0 nh
−d/2
0 O

(
aβ+1/2−d

n τβ+3/2
n

)
≤ NC0 exp

(
− M log n(

C1C + 2C1C2

))+ n3/2
(
cd
nh−d

0

)(
n−1/2h

−d/2
0

)
O
(
aβ+1/2−d

n τβ+3/2
n

)
≤ o(n(d/2q)+θ+d(1−θ)/2−M/(C1C+2C1C2)) + o

(
nτ/2

)
= o (1) by Assumption A8(ii) for sufficiently large M,

where

τ =
d

q
+ 3 + 2θ − 1 − θ

2

(
(2β + 3) (δ + 2)

δ + 3
− 2d

)
,

and the last inequality follows from the facts that cd
nh−d

0 = o
(
n(d/2q)+θ

)
, an =

(
n−1h−d

0 log n
)1/2

= o
(
n−(1−θ)/2

)
, and

τn = a
−1/(δ+3)
n = o

(
n(1−θ)/[2(δ+3)]

)
. Then (D.1) follows from (D.2)–(D.6).

Now define Ψ̃ (x) = n−1h−d
0

∑n
i=1 YiK ((x − Xi) /h0) 1×(‖Xi‖ ≤ cn/2). Noting that c−q

n = O (an), by Assumption A8(i)
and the conditions on K, we can follow the proof of Theorem 4 of Hansen (2008) to show that supx |Ψ(x) − EΨ(x)| =
supx |Ψ̃(x) − EΨ̃(x)| + Op(an). (D.1) implies that sup‖x‖≤cn

|Ψ̃(x) − EΨ̃(x)| = Op(an). So we are left to show that
sup‖x‖>cn

|Ψ̃(x)−EΨ̃(x)| = Op(an). Since cn → ∞, cn > 2C2 for sufficiently large n. On the set {‖x‖ > cn, ‖Xi‖ ≤ cn/2},
‖x − Xi‖ ≥ cn/2 > C2 and thus K ((x − Xi) /h0) = 0 as h0 < 1 for sufficiently large n. Consequently, sup‖x‖>cn

|Ψ̃(x)| ≤
n−1h−d

0

∑n
i=1 |Yi| sup‖x‖>cn

K ((x − Xi) /h0) 1 (‖Xi‖ ≤ cn/2) = 0. This completes the proof.

Lemma D.7. Under the conditions of Theorem 4.1, supx∈Sn

∣∣Dλmn,h0 (x)
∣∣ = Op(n−1/2h

−d/2−|λ|
0 d

−2−|λ|
n

√
log n +

d
−(1+|λ|)
n ), where Sn = {x ∈ R

d : fn (x) ≥ dn} and |λ| ≤ r.

Proof. The proof follows closely from that of Theorem 1(b) of Andrews (1995). So we only sketch it. Recall fn (x) =
n−1

∑n
i=1 fi (x) and mn (x) = n−1

∑n
i=1 mi (x). Let gn (x) = mn (x) fn (x) and gn,h0 (x) = mn,h0 (x) fn,h0 (x). If fn (x) �=

0, we have

(D.7) Dλmn (x) = Dλ[gn (x) f
−1

n (x)] =
∑

0≤κ≤λ

CκDλ−κgn (x) Dκ[f
−1

n (x)]

for some positive finite constants Cκ.
Let S∗

n = {x ∈ R
d : fn,h0 (x) ≥ dn} and S̃n = Sn∩S∗

n. By Assumption A9(i), sup
x∈S̃n

∣∣∣Dκf
−1

n (x)
∣∣∣ = Op(d

−(1+|κ|)
n )∀κ ≤

λ. Noting that Dκfn,h0 (x) = n−1h
−(|κ|+d)
0

∑n
i=1 Dκ [K (x − Xi) /h0] we can apply Lemma D.6 with K (u) = DκK (u) and

Yi = 1 to obtain
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sup
x∈Rd

∣∣Dκfn,h0 (x) − Dκfn (x)
∣∣ ≤ sup

x∈Rd

|Dκfn,h0 (x) − E [Dκfn,h0 (x)]| + sup
x∈Rd

∣∣E [Dκfn,h0 (x)] − Dκfn (x)
∣∣(D.8)

= Op

(
n−1/2h

−d/2−|κ|
0

√
log n

)
+ O (hr

0) ∀κ ≤ λ.

Hence

(D.9) sup
x∈Rd

|Dκfn,h0 (x)| = Op

(
n−1/2h

−d/2−|κ|
0

√
log n + 1

)
.

Some further calculations show that

sup
x∈S̃n

∣∣∣Dκ[f−1
n,h0

(x)] − Dκf
−1

n (x)
∣∣∣ =

|κ|∑
j=0

∑
|ι|=j

Op

(
d−(2+|κ|−j)

n

)
sup
x∈Rd

∣∣Dιfn,h0 (x) − Dιfn (x)
∣∣(D.10)

=
|κ|∑
j=0

Op

(
d−(2+|κ|−j)

n n−1/2h
−d/2−j
0

√
log n

)
.

Similarly,

sup
x∈Rd

∣∣Dλ−κgn,h0 (x) − Dλ−κgn (x)
∣∣(D.11)

≤ sup
x∈Rd

∣∣Dλ−κgn,h0 (x) − E
[
Dλ−κgn,h0 (x)

]∣∣+ sup
x∈Rd

∣∣E [
Dλ−κgn,h0 (x)

]
− Dλ−κgn (x)

∣∣
= Op

(
n−1/2h

−d/2−|λ−κ|
0

√
log n

)
+ O (hr

0) ∀κ ≤ λ.

Combining (D.7)–(D.11), we can show that sup
x∈S̃n

∣∣Dλmn,h0 (x)
∣∣ ≤ sup

x∈S̃n

∣∣Dλmn,h0 (x) − Dλmn (x)
∣∣ +

sup
x∈S̃n

∣∣Dλmn (x)
∣∣ = Op(n−1/2h

−d/2−|λ|
0 d

−2−|λ|
n

√
log n + d

−(1+|λ|)
n ). The result follows because (D.8) implies that

d−1
n supx∈Rd

∣∣fn,h0 (x) − fn (x)
∣∣ = Op(n−1/2h

−d/2
0

√
log nd−1

n + hr
0d

−1
n ) = op (1) and we can replace S̃n by Sn with proba-

bility approaching 1.
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