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Convergency and divergency of functional
coefficient weak instrumental variables models∗

Zongwu Cai and Henong Li

In this paper, we consider a functional coefficient model
under weak instrument assumptions as in Staiger and Stock
(1997) and Hahn and Kuersteiner (2002). Under this func-
tional coefficient representation, models are linear in endoge-
nous components with coefficients governed by unknown
functions of the predetermined exogenous variables. We pro-
pose a two-step estimation procedure to estimate the coeffi-
cient functions. We investigate how the limiting distribution
of the proposed nonparametric estimator changes as the de-
gree of weakness of instruments varies. As a result, our new
theoretical findings are that the possible convergency of the
proposed nonparametric estimator can be attained only for
the nearly weak case and the rate of convergence for the
nonparametric estimator for coefficient functions of endoge-
nous variables is slower than the conventional rate. But the
nonparametric estimator for coefficient functions of endoge-
nous variables is divergent for both the weak and nearly
non-identified cases. A Monte Carlo simulation is conducted
to illustrate the finite sample performance of the resulting
estimator and results support these theoretical findings.

Keywords and phrases: Discontinuity, Divergence, En-
dogeneity, Functional coefficient model, Local linear fitting,
Simultaneous equations, Weak instrumental variables.

1. INTRODUCTION

Since the seminal work by Staiger and Stock (1997), the
literature has grown swiftly on the studies of weak instru-
mental variables (IV) models due to their various applica-
tions in economics and finance. A non-exhaustive list of im-
portant recent contributions to this growing literature in-
clude Angrist and Krueger (1991), Cai, Fang and Li (2007),
Campbell (2003), Chao and Swanson (2007), Hahn, Haus-
man and Kuersteiner (2004), Hahn and Kuersteiner (2002),
Hausman, Stock and Yogo (2005), Li (2006), Mavroeidis
(2004), Nason and Smith (2005), Neeley, Roy and White-
man (2001), Staiger and Stock (1997), Stock (2002), Stock
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and Wright (2000), Stock, Wright and Yogo (2002), Wood-
ford (2003), Yogo (2004), and the references contained
therein. Weak instruments are variables weakly correlated
with the endogenous explanatory variables. Bound, Jaeger,
and Baker (1995) pointed out that the weak instrument is
not a small-sample problem by providing an empirical study
on weak instruments with 329, 000 observations, while Nel-
son and Startz (1990) and Maddala and Jeong (1992) ex-
amined the behavior of the two-stage least squares (TSLS)
estimator and showed that the normal approximation of
sampling distributions of TSLS estimator can not be good.
These findings led many researchers to look for nonstandard
approximations to sampling distributions.

Staiger and Stock (1997) was the first paper to consider
a classical simultaneous equations model by proposing the
so-called local-to-zero parameterization of the coefficients of
the instruments in the reduced form equation. This idea
is similar to the local-to-unity in nonstationary time series.
Also, Staiger and Stock (1997) showed that, under this local-
to-zero framework with the number of instruments fixed, the
TSLS and limited information maximum likelihood estima-
tors are inconsistent but converge to nonstandard distribu-
tions, while Hahn and Kuersteiner (2002) considered the
same type model as Staiger and Stock (1997), but gener-
alized Staiger and Stock’s (1997) specification by varying
degrees of weakness. Indeed, Hahn and Kuersteiner (2002)
considered three cases: (i) the weak case defined by Staiger
and Stock (1997), (ii) the nearly weak case, in which the
instruments are stronger than the weak case considered by
Staiger and Stock (1997), and (iii) the nearly non-identified
case, in which the instruments are weaker than the weak
case considered by Staiger and Stock (1997). Also, Hahn and
Kuersteiner (2002) showed that, for the nearly non-identified
case and Staiger and Stock’s (1997) weak case, the TSLS
estimators are inconsistent although their limiting distribu-
tions exist but not normal, while for the nearly weak, the
TSLS estimator is consistent and its limiting distribution is
normal. As pointed out by Hahn and Kuersteiner (2002),
for the nearly weak case, the limiting distribution does not
reflect the type of finite sample moments usually associated
with the TSLS estimator, while Chao and Swanson (2007)
showed that the weak instrument limit of Staiger and Stock
(1997) preserves the exact finite sample moments of TSLS
under some regularity conditions. Finally, Cai, Fang and Li
(2007) extended the work by Hahn and Kuersteiner (2002)
for cross-sectional data to panel data model.
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The goal of this paper is to consider a simultaneous equa-
tions model under a functional coefficient representation for
the structural equation of interest with weak instruments
and to adopt a local-to-zero assumption as in Hahn and
Kuersteiner (2002) on the coefficients of the instruments in
the reduced form equation as follows

yi = g0(zi1) +
p∑

j=1

gj(zi1)xij + ui, 1 ≤ i ≤ n,(1)

xi = n−αC′zi + vi, 1 ≤ i ≤ n,(2)

where {gj(·)}p
j=0 are unspecified smooth coefficient func-

tions, {xij}p
j=1 are endogenous variables ({xij}p

j=1 and ui

are correlated), zt1 is the vector of exogenous variables,
z′i = (z′i1, z′i2) with zi2 being the vector of instrumental
variables, C is the parameter matrix, and 0 < α < 1 con-
trols the degree of weakness.

As mentioned earlier, under this functional coefficient
representation, models are linear in the endogenous compo-
nents with coefficients driven by unknown functions of the
predetermined variables. Under such a setting, the ill-posed
inverse problem disappears. To estimate the coefficient func-
tions {gj(·)}, we propose a two-stage semiparametric esti-
mation procedure similar to that in Cai, Das, Xiong and Wu
(2006), described as follows. The first step is to estimate a
matrix of unknown parameters of the reduced form equa-
tion by using the least squares estimation, and the second
step is local linear regression using the estimated reduced
forms as regressors. We investigate how the limiting dis-
tribution of the resulting nonparametric estimator changes
as the different degree of weakness (α) varies. The consis-
tency (with the conventional rate of convergence at

√
nh)

and the asymptotic normality of the estimator of the inter-
cept coefficient function g0(·) are established when instru-
mental variables are weak for all three cases as in Hahn and
Kuersteiner (2002): the weak case considered by Staiger and
Stock (1997) (α = 1/2), the nearly weak case (α < 1/2), and
the nearly non-identified case (α > 1/2). The consistency
(with convergence rate at n1/2−αh1/2) and asymptotic nor-
mality of the estimator of coefficient functions gj(·) (j ≥ 1)
of endogenous variables are given only for the case when
instrumental variables are the nearly weak case (α < 1/2).
More importantly, we show that the estimators of coefficient
functions gj(·) (j ≥ 1) of endogenous variables are divergent
in the sense that the limiting distribution does not exist, for
the cases when instrumental variables are weak as the case
considered by Staiger and Stock (1997) (α = 1/2), and the
nearly non-identified case (α > 1/2). By contrast, this dif-
fers totally from that for parametric models studied in Hahn
and Kuersteiner (2002). These interesting theoretical find-
ings are novel in the literature.

The rest of the paper is organized as follows. In Section 2,
we introduce the model and propose the nonparametric es-
timators as well as discuss their large sample results, in-
cluding the divergence and convergence. For the convergent

results, the consistency and asymptotic normality of the es-
timators are presented in the same section. In Section 3,
we examine the finite sample properties of the nonparamet-
ric instrumental variables estimator by Monte Carlo simula-
tions. Section 4 provides some preliminary results stated as
lemmas and the detailed derivations of main result and its
corollaries. Appendix contains the detailed proofs of certain
lemmas needed in the proofs of the theorem in Section 2.

2. STATISTICAL MODELS AND
PROPERTIES

2.1 The setup

We consider the model given in (1) and (2), re-expressed
as

yi = g0(zi1)+g(zi1)′xi+ui, xi = n−αC′zi+vi, 1 ≤ i ≤ n,

where yi is a scalar dependent variable, g(zi1) =
(g1(zi1), . . . , gp(zi1))′ is a p × 1 column vector of the coeffi-
cient functions {gj(·), 0 ≤ j ≤ p}, unspecified smooth func-
tions in �k (k ≥ 1, zi1 ∈ �k), xi = (xi1, xi2, . . . , xip)′

is a p × 1 column vector of endogenous variables, zi1 =
(zi1, zi2, . . . , zik)′ is a k × 1 column vector of exogenous
variables, zi2 = (zi(k+1), zi(k+2), . . . , zi(k+q))′ is a q × 1
column vector of instrumental variables, zi = (z′i1, z

′
i2)

′,
C is a (k + q) × p matrix of unknown parameters, vi =
(vi1, vi2, . . . , vip)′ is a p × 1 column vector of measurement
errors, and α is a known parameter, 0 < α < 1. Here,
we assume that zi is uncorrelated with ui and uncorrelated
with vi so that zi1 is a vector of exogenous variables and
zi2 is a vector of excluding instrumental variables. That is;
E(ui|zi) = 0 and E(vi|zi) = 0.

As showed in Cai et al. (2006), a sufficient condition to
identify the model given in (1) is that q ≥ p, which is as-
sumed throughout the paper. In what follows, we assume
that model (1) is identified. To estimate the nonparametric
coefficient functions {gj(·)}, we take conditional expectation
on (1) with respect to zi. It is easy to show that

E(yi | zi) = g0(zi1) + E[xi | zi]′ g(zi1)(3)

= g0(zi1) + n−αz′iCg(zi1) ≡ π(zi)′ g∗(zi1),

where π(zi)′ = (1, n−αz′iC) and g∗(zi1)′ = (g0(zi1),
g(zi1)′), which implies that {gj(·)} are functional coefficients
of π(zi), and {gj(·)} could be estimated by running a non-
parametric regression of yi versus π(zi) if π(zi) were known.
However, π(zi) is unknown in practice. Therefore, estimat-
ing {gj(·)} requires a two-stage method. A preliminary step
is to estimate π(zi) by regressing xi on zi, while the next
step is to estimate {gj(·)} by a regression of yi on zi and the
estimated value π̂(zi) (the estimator of π(zi)) at the first
step. This method will be described in detail in the next
section.
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Note that the class of models given in (1) includes some
interesting special cases that arise commonly in empirical
research. For example, model (1) includes the nonparamet-
ric IV model with binary endogenous variable considered
by Das (2005) and a threshold IV model studied by Caner
and Hansen (2004) if gj(·) is a threshold function. Finally,
note that when α = 0, model (1) becomes the functional-
coefficient IV model studied by Cai et al. (2006) with non-
parametric reduced form in (2) and if there is no endogeneity
(E(ui|xi, zi1) = 0), it reduces to the ordinary functional-
coefficient regression model explored by many authors, in-
cluding Hastie and Tibshirani (1993) for iid data, Cai, Fan
and Yao (2000) for time series and Cai and Xu (2008) for
quantile regression.

For simplicity of presentation, we provide some additional
definitions and notations. If W is a p × q matrix, Vec(W)
denotes the pq×1 vector formed by stacking the columns of
W under each; that is, if W = (W1,W2, . . . ,Wq), where
Wi is a p × 1 vector for i = 1, . . . , q, then Vec(W) =
(W′

1,W
′
2, . . . ,W

′
q)

′. Also, ⊗ denotes the Kronecker prod-
uct. Further, we use “ ⇒ ” to stand for convergence in
distribution and “ →p ” to present convergence in proba-
bility. For ease of notation, we consider only the case when
k = 1 in (1). Extension to the case when k > 1 involves no
fundamentally new ideas. Note that the asymptotic results
for univariate case continue to hold for multivariate case
(k > 1). For k = 1, we change notation from zi1 to zi1 ∈ �
throughout this paper.

2.2 A two-stage estimator

Given observed data {(yi,xi, zi)}n
i=1, our suggested es-

timation procedure is a two-stage approach, described as
follows. The first stage involves the estimation of π(zi) by
using least squares estimation to model (2) and the second
stage is to use a local linear regression to model (3) by re-
placing π(zi) in (3) by the estimated value of π(zi), denoted
by π̂(zi).

We begin with the first stage, where we obtain Ĉ, the
estimated value for C. To this end, (2) is re-expressed in a
matrix form as

(4) x = n−αzC + v,

where x′ = (x1 x2 . . . xn), z′ = (z1 z2 . . . zn), and v′ =
(v1 v2 . . . vn). Then, using the least squares estimation to
reduced form equation (4), we have

(5) Ĉ = nα(z′z)−1z′x.

Now, we derive the local linear estimator of {gj(.)}. For
this purpose, we assume throughout this paper that the
functions {gj(.)} have a continuous second partial deriva-
tive at any given point z1 ∈ �. By the Taylor expansion for
zi1 in a neighborhood of z1, gj(zi1) can be approximated
by a linear function θ1,j + (zi1 − z1)θ2,j with θ1,j = gj(z1)

and θ2,j = g
(1)
j (z1) = ∂gj(z1)/∂z1. Denote πi = π(zi), and

π̂i = π̂(zi) = (1, n−αz′iĈ)′ as well as Π′
i = (π′

i (zi1−z1)π′
i).

Then, the conditional mean in model (3) can be approxi-
mated by E(yi | zi) ≈ Π′

iΘ, where Θ = Θ(z1) = (θ′
1 θ′

2)′,
θ1 = (θ1,0 . . . θ1,p)′, and θ2 = (θ2,0 . . . θ2,p). The local lin-
ear estimator Θ̂ is defined as the minimizer of the following
sum of locally weighted least squares

n∑
i=1

⎡⎣yi −
p∑

j=0

{θ1,j + (zi1 − z1)θ2,j} π̂i,j

⎤⎦2

Kh(zi1 − z1)

(6)

=
n∑

i=1

[
yi − Π̂i

′
Θ
]2

Kh(zi1 − z1),

where π̂i,j denotes the j-th element of π̂i, Kh(·) =
h−1K(·/h), K(·) is a kernel function on �, h > 0
is the bandwidth at the second step, h → 0 and
nh → ∞. By minimizing (6) with respect to Θ,
we obtain the local linear estimate of θ1,j(z1) and
θ2,j(z1). It follows from the least squares theory that
Θ̂ =

(
Π̂WΠ̂

′)−1
Π̂WY, where Y = (y1, y2, . . . , yn)′,

W = diag {Kh(z11 − z1), . . . , Kh(zn1 − z1)}, and Π̂ =(
Π̂1 . . . Π̂n

)
is the estimator of Π =

(
Π1 . . . Πn

)
.

It is easily verified that Θ̂ can be re-written as Θ̂ =
H−1Ŝ

−1

n T̂n, where H = H(h) = diag {Ip+1, h Ip+1}, Ip+1

is the (p + 1) × (p + 1) identity matrix,

Ŝn =
1
n

n∑
i=1

z∗⊗2
i1 ⊗ π̂⊗2

i Kh(zi1 − z1), and(7)

T̂n =
1
n

n∑
i=1

z∗i1 ⊗ π̂i Kh(zi1 − z1)yi

with z∗⊗2
i1 = z∗i1z

∗′

i1 and z∗i1 = z∗i1(h, z1) = (1, (zi1 − z1)/h)′.

2.3 Distribution theory

2.3.1. Assumptions and notations

Set H1 = H1(n) = diag {1, nαIp+1}, H2 = H2(n) =
diag

{
1, n1/2Ip+1

}
, and H3 = H3(n) = H2. Let f1(·) be

the probability density function of zi1. Define μ2(K) =∫
u2K(u)du and νj(K) =

∫
ujK2(u)du. The following con-

ditions are listed for the asymptotic theory.

Assumptions:

A1. The kernel K(·) is symmetric and bounded second order
kernel function.

A2. {zi} are independent and identically distributed. Σzz =
E(ziz′i) exists and is positive definite. Also, the condi-
tional covariance matrix of zi given zi1 = z1, M2(z1) =
E[ziz′i|zi1 = z1] is positive definite for a given grid
point z1.
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A3. The second order derivative functions {g(2)
j (z1)} are

continuous at a given grid point z1.
A4. {(ui,v′

i)
′} are independent and identically distributed

with the mean zero and conditional covariance matrix of

(ui,v′
i)

′ given zi is Σ = Σ(zi) =
(

σuu(zi) Σuv(zi)
Σvu(zi) Σvv(zi)

)
,

positive definite for all zi.
A5. h → 0 and nh → ∞.
A6. The density function f1(·) is continuous and f1(z1) > 0

at a given grid point z1.
A7. E((zij1zij2)

2) < ∞ for all 1 ≤ j1, j2 ≤ (1 + q).

Assumptions A1–A3 and A5–A6 are commonly imposed
in local polynomial smoothing methods; see Fan and Gij-
bels (1996). The asymptotic sampling theory for the result-
ing two-stage estimator is established in Theorem 1 and its
corollaries for the consistency, inconsistency, divergency, and
asymptotic normality.

To give precisely the distributional results, we need
some additional notations. Define M1(z1)= E(zi|zi1 = z1)
and M(z1)= E[z∗⊗2

i |zi1 = z1], where z∗
′

i = (1 z′i). Set
Δuu = E[σuu(zi)z∗⊗2

i |zi1 = z1], Δvu = g(z1)′E ×
[Σvu(zi)z∗⊗2

i |zi1 = z1], Δuv = Δ′
vu = Δvu, Δvv =

E[g(z1)′Σvv(zi)g(z1)z∗⊗2
i |zi1 = z1], and Λ= diag{Λ1, Λ3},

where Λ3 = E[Σvv(zi) ⊗ z⊗2
i ] and

Λ1 = f1(z1)

×
(

diag{ν0(K), ν2(K)} ⊗ Δuu diag{ν0(K), ν2(K)} ⊗ Δuv

diag{ν0(K), ν2(K)} ⊗ Δvu diag{ν0(K), ν2(K)} ⊗ Δvv

)
.

Also, we define a dummy variable c(α) to characterize dif-
ferent degrees of weakness. c(α) = 1 is for the nearly weak
case if 0 < α < 1/2, c(α) = 2 stands for the weak case, if
α = 1/2, and c(α) = 3 represents the nearly non-identified
case, if α > 1/2. Moreover, define, for 1 ≤ j ≤ 3, S(j)(z1) =
diag{1, μ2(K)}⊗Ω(j)(z1), where Ω(j)(z1) = D∗′

j M(z1)D∗
j ,

D∗
j = diag{1, Dj}, D1 = C, D2 = C + Σ−1

zz Zv, and
D3 = Σ−1

zz Zv with Zv being a (q + 1) × p matrix of
random variables and Vec(Zv) ∼ N(0,Λ3). Finally, de-
fine εi = yi − E(yi|zi). Then, by (3), εi = ui + v′

ig(zi1)
and Δε = Var(εi z∗i |zi1 = z1) = E

[
σ2

ε(zi)z∗⊗2
i |zi1 = z1

]
=

Δuu +2Δuv +Δvv, where σ2
ε(zi) is the conditional variance

of εi given zi.

2.3.2. Asymptotic properties

We discuss the asymptotic distribution of the estimator
Θ̂, stated in Theorem 1 with its proof given in Section 4. In
particular, we discuss the consistency, inconsistency, diver-
gency, and asymptotic normality of the proposed estimator.

Theorem 1. Under Assumptions A1–A7, we have
(i) for c(α) = 1,

√
nh (I2 ⊗ H−1

1 )
[
H
{
Θ̂ − Θ

}
− h2

2

(
μ2(K)g∗(2)(z1)

0

)]
⇒
[
f1(z1)S(1)(z1)

]−1

(I2 ⊗ D∗
1(z1)′) (Zku + Zkvg),

and (ii) for c(α) ≥ 2,

√
nh (I2 ⊗ H−1

2 )
[
H
{
Θ̂ − Θ

}
− h2

2

(
μ2(K)g(2)

0 (z1)
0

)]
⇒
[
f1(z1)S(c(α))(z1)

]−1 (
I2 ⊗ D∗

c(α)(z1)′
)

(Zku + Zkvg),

where Zku and Zkvg are 2(q + 1) × 1 normal random vec-
tors and the joint distribution of Zku, Zkvg, and Vec(Zv) is
N(0,Λ).

Note that Zku and Zkvg are independent of Zv. By Theo-
rem 1, we are ready to have the asymptotic distributions of
the estimators ĝ0(·) and ĝ(·), which are provided in Corol-
lary 1.

Corollary 1. Under Assumptions A1–A7, then,
(i) for c(α) = 1,

√
nhH−1

1

(
ĝ0(z1) − g0(z1) − h2

2 μ2(K) g
(2)
0 (z1)

ĝ(z1) − g(z1) − h2

2 μ2(K)g(2)(z1)

)
⇒ f−1

1 (z1)Ω(1)(z1)−1D∗′

1 (Iq+2, 0)(Zku + Zkvg),

and (ii) for c(α) ≥ 2,

√
nhH−1

2

(
ĝ0(z1) − g0(z1) − h2

2 μ2(K) g
(2)
0 (z1)

ĝ(z1) − g(z1)

)
⇒ f−1

1 (z1)Ω(c(α))(z1)−1D∗′

c(α)(Iq+2, 0)(Zku + Zkvg),

where Zku and Zkvg are given in Theorem 1.

Corollary 2. Under Assumptions A1–A7,
(i) for c(α) = 1,

√
nh

[
ĝ0(z1) − g0(z1) −

h2

2
μ2(K)g(2)

0 (z1)
]

⇒ f−1
1 (z1)(Ω1, −M1(z1)′D1J1D′

1, 0)(Zku + Zkvg),

and

n1/2−αh1/2

[
ĝ(z1) − g(z1) −

h2

2
μ2(K)g(2)(z1)

]
⇒ f−1

1 (z1)(−J1D′
1M1(z1), J1D′

1, 0)(Zku + Zkvg),

and (ii) for c(α) ≥ 2,

√
nh

[
ĝ0(z1) − g0(z1) −

h2

2
μ2(K)g(2)

0 (z1)
]

⇒ f−1
1 (z1)(Ωc(α), −M1(z1)′Dc(α)Jc(α)D

′
c(α), 0)

× (Zku + Zkvg),

and

h1/2 [ĝ(z1) − g(z1)]

⇒ f−1
1 (z1)(−Jc(α)D

′
c(α)M1(z1),Jc(α)D

′
c(α),0)

× (Zku + Zkvg),
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where for 1 ≤ j ≤ 3, Jj =
[
D′

j (M2(z1) − M1(z1) ×
M1(z1)′)Dj

]−1, and Ωj = 1 + M1(z1)′Dj Jj D′
j M1(z1).

Remark 1. It follows clearly from Corollary 2 that the two-
stage estimator for g0(·) is always consistent with the same
convergence rate at

√
nh for any α although the magnitudes

might be different for different values of α. However, the
two-stage estimator for g(·) is consistent only for the nearly
weak case 0 < α < 1/2 and the rate of convergence is lower
than that for ĝ0(·). Further, the estimator is divergent when
α ≥ 1/2 (for both weak and nearly non-identified cases).
Moreover, from Corollary 2, it is easy to obtain the asymp-
totic normality for ĝ0(z1) and ĝ(·) for the case 0 < α < 1/2,
stated in Corollary 3. These findings are novel in the litera-
ture.

Corollary 3. Under Assumptions A1–A7, for 0 < α < 1/2,
if nh5 = O(1), then

√
nh

[
ĝ0(z1) − g0(z1) −

h2

2
μ2(K)g(2)

0 (z1)
]
⇒N(0, σ2

g0
(z1)),

and if n1−2αh → ∞ and n1−2αh5 = O(1), then

n1/2−αh1/2

[
ĝ(z1) − g(z1) −

h2

2
μ2(K)g(2)(z1)

]
⇒ N(0, Σg(z1)),

where σ2
g0

(z1) = f−1
1 (z1)ν0(K)e′1[Ω

(1)(z1)]−1D∗′

1 ΔεD∗
1 ×

[Ω(1)(z1)]−1e1, e1 = (1, 0, . . . , 0)′, Σg(z1)= f−1
1 (z1)ν0(K)×

e′2[Ω
(1)(z1)]−1D∗′

1 ΔεD∗
1[Ω

(1)(z1)]−1e2, and e′2 = (0, Ip).

Remark 2. From Corollary 3, we can easily derive the
asymptotic mean squared error (AMSE) [the asymptotic
variance plus the square of the asymptotic bias] for the es-
timator ĝ0(z1), which is

AMSE0 = AMSE(ĝ0(z1))

=
1
4

h4μ2
2(K)

[
g
(2)
0 (z1)

]2
+ σ2

g0
(z1)/(nh).

By minimizing AMSE0 with respect to h, we obtain the
optimal bandwidth for ĝ0(z1), which is h0,opt = O(n−1/5), so
that the optimal AMSE0 has an order O(n−4/5). Similarly,
for j ≥ 1, the optimal bandwidth for estimating gj(z1) is
hj,opt = O(n−(1−2α)/5) and the optimal AMSE for ĝj(z1)
is O(n−4/5+8α/5), which is larger than AMSE0 = O(n−4/5).
This discussion implies that a single value of h can not make
the estimation of both g0(·) and g(·) optimally in the sense of
minimizing the asymptotic mean squared error. Therefore,
to estimate both g0(·) and g(·) optimally, some iterative
estimation steps are needed. One possible solution is to use
the profile least square approach discussed in Cai (2002) and
it is beyond the scope of this paper. Of course, it deserves a
further investigation in future studies.

Remark 3. There is an important practical aspect to be
noted. The question is now how to adaptively select the
bandwidth in practice. Here, we suggest rule-of-thumb band-
widths. Based on the aforementioned discussions and re-
sults, to estimate g0(·) for all three cases, the choice of
bandwidth can be carried out as in standard nonparamet-
ric regression. In that case, a number of methods could be
used to select the bandwidth such as the plug-in approach
in Ruppert, Sheather and Wand (1995); see Cai et al. (2006)
for further discussions. To estimate g(·) for the case when
c(α) = 1, first, use the bandwidth selected earlier to esti-
mate all coefficient functions and then obtain the partial
residual y∗

i = yi− ĝ0(zi1). Finally, estimate g(·) through the
regression model y∗

i = g(zi1)′xi + ui by using a bandwidth
selected based on the aforementioned methods. However,
there appears to be no results available in the literature
for a data-driven bandwidth selection with optimal prop-
erties for a two-stage nonparametric estimation procedure;
see Newey, Powell and Vella (1999) for the related discus-
sion. It is an open question for future work, but it is beyond
the scope of the present paper to give a more precise result.
Nevertheless, the procedure suggested above is a useful one
for practitioners and found to be practicable in our own
simulation studies (see Section 3).

Finally, we remark from Corollary 3 that the asymptotic
variance (sandwich form) consists of three terms: the first
term Δuu in the meat part Δε addresses the variation of
measurement error at the second step, the second term Δuv

accounts correctly for the asymptotic covariance between
the first and second steps, and the third term Δvv mea-
sures the variability of the estimated reduced form. By con-
tract, the presence of the covariance term under this set-
ting is different from some parametric IV estimators; see, for
example, Staiger and Stock (1997), Hahn and Kuersteiner
(2002), Cai, Fang and Li (2007), Li (2006), and Chao and
Swanson (2007).

3. MONTE CARLO SIMULATIONS

To illustrate our modeling procedure, we consider some
Monte Carlo simulations. In our computation, we use the
Epanechnikov kernel K(u) = 0.75(1 − u2)I(|u| ≤ 1) as
the kernel function and the ad hoc bandwidth selection ap-
proach mentioned in Remark 3 is used in our simulations.
We evaluate the finite sample performances of our estimator
in terms of the mean absolute deviation error (MADE)

Ej =
1
n0

n0∑
j=1

|ĝj(sj) − gj(sj)| ,

where sj , 1 ≤ j ≤ n0 are the regular grid points.
We consider the following data generating model,

yi = g0(zi1)+g1(zi2)xi +ui, xi = 2n−αzi1−3n−αzi2 +vi,

where g0(x) = 2 sin(x), g1(x) = 3 exp(−(0.5x−1)2), the ex-
ogenous variable zi1 is generated from uniform distribution
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Figure 1. Simulation results for Case I (α = 0.2). (a) The true coefficient function g0(·) (solid line) with the two-stage local
linear estimator (dashed line). (b) The true coefficient function g1(·) (solid line) with the two-stage local linear estimator

(dashed line). (c) Boxplots of the 500 MADE values of ĝ0(·). (d) Boxplots of the 500 MADE values of ĝ1(·).

(−3, 3), and the excluded instrument variable zi2 is gener-
ated from uniform distribution (−3, 3) independently. Fi-
nally, ui and vi are generated jointly from a standard bi-
variate normal with the correlation coefficient 0.8. Clearly,
{(ui, vi)} is independent of zi1 and zi2. But xi is correlated
with ui, since ui and vi are correlated. For different de-
grees of weakness, we consider three cases: α = 0.2, 0.5,
and 0.7, corresponding to the nearly weak, weak and nearly
non-identified cases, respectively. For each case, we consider
three sample sizes: n = 100, 250, and 500 and 500 replica-
tions are performed for each sample size.
Case I: nearly weak (α = 0.2). The results are summa-
rized in Figure 1. For each sample size, the boxplots of the

500 MADE values are plotted in Figures 1(c) for ĝ0(·) and
1(d) for ĝ1(·), respectively. We observe from Figures 1(c) and
1(d) that as the sample size increases, the MADE values de-
crease to zero. This implies that both estimators are consis-
tent. Also, we can see that the MADE value for ĝ0(·) decays
faster than that for ĝ1(·). These are in line with the asymp-
totic theory for the proposed estimators that the estimators
are consistent and the rate of convergence for ĝ0(·) is faster
than that for ĝ1(·). Figures 1(a) and 1(b), respectively dis-
play the true coefficient functions g0(·) and g1(·) (solid line)
with their two-stage local linear estimators (dashed line) for
n = 500 from a typical sample. The typical sample is se-
lected in such a way that its total MADE value (= E0 + E1)
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Figure 2. Simulation results for Case II (α = 0.5). (a) The true coefficient function g0(·) (solid line) and its two-stage local
linear estimator (dashed line). (b) Boxplots of the 500 MADE values of ĝ0(·). (c) Boxplots of the 500 MADE values of ĝ1(·).

equals to the median of the 500 replications. Overall, the
proposed modeling procedure performs fairly well.
Case II: weak (α = 0.5). The settings are same as those
for Case I. The results are reported in Figure 2. For each
sample size, the boxplots of the 500 MADE values are re-
spectively plotted in Figure 2(b) for ĝ0(·) and Figure 2(c) for
ĝ1(·). We observe from Figure 2(b) that as the sample size
increases, the MADE for ĝ0(·) value becomes smaller. This
concludes that ĝ0(·) is consistent. But the MADE for ĝ1(·)
in Figure 2(c) has an increasing trend as n becomes larger,
which implies that the estimator for g1(·) is divergent. Fig-
ure 2(a) displays the true coefficient function g0(.) (solid
line) and its the two-stage local linear estimator (dashed
line) for n = 500 from a typical sample. The typical sample
is selected in such a way that its MADE value (= E0) equals
to the median the 500 replications.
Case III: nearly non-identified (α = 0.7). The settings
are same as those for Case II. The results are presented
in Figure 3. The same conclusion as that for Case II can
be made. Further, we can observe from Figure 3(c) that

the divergent rate is slightly faster than that for the weak
case (α = 0.5) due to the weaker correlation between the
endogenous variable and the instruments.

4. MATHEMATICAL DERIVATIONS

This section is devoted to the proofs of Theorem 1 and
Corollaries 1–3. To prove Theorem 1, we fist consider the
asymptotic behavior of Ŝn in (7). The result is stated in
the following lemma, which will be used subsequently. The
proofs of this lemma and other lemmas are given in the
appendix.

Lemma 1. Under Assumptions A1–A7, then

(I2 ⊗ Hc(α))Ŝn(I2 ⊗ Hc(α)) ⇒ f1(z1) S(c(α))(z1),

where S(j)(z1) is given in Section 2.

Before we embrace on establishing the asymptotic proper-
ties of the resulting estimator, first, we decompose H[Θ̂−Θ]
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Figure 3. Simulation results of Case III (α = 0.7). Caption is the same as that for Case II.

into three terms as

(8) H
[
Θ̂ − Θ

]
≡ Ŝ

−1

n [Pn + Qn + Rn] ,

where with G = (π′
1g

∗(z11), . . . , π′
ng∗(zn1))′, Pn =

n−1H−1Π̂W(Y−G), Qn = n−1H−1Π̂ W(G−Π′Θ), and
Rn = n−1H−1Π̂W(Π′Θ − Π̂

′
Θ). The reason of doing the

above decomposition is to show that Pn contributes to only
the asymptotic variance, Qn is the resource of the bias, and
Rn is negligible comparing with Pn, which are presented in
the following lemmas.

Lemma 2. Under Assumptions A1–A6, we have

√
nh (I2 ⊗ Hc(α))Pn ⇒ (I2 ⊗ D∗′

c(α))(Zku + Zkvg),

where the distributions of Zku and Zkvg are given in Theo-
rem 1.

Lemma 3. Under Assumptions A1–A7, we have

(i) for c(α) ≤ 2,

(I2 ⊗ Hc(α))Qn = f1(z1)
(

μ2(K)
0

)
⊗ (D∗′

c(α)M(z1)D∗
1)

× H−1
c(α) g

∗(2)(z1)
[
h2

2
+ op(h2)

]
,

and (ii) for c(α) = 3,

(I2 ⊗ H3)Qn = f1(z1)
(

μ2(K)
0

)
⊗ (D∗′

3 M(z1)D∗
1)

× H−1
1 g∗(2)(z1)

[
h2

2
+ op(h2)

]
.

Next, we consider the term Rn, which is decomposed
into two terms as Rn ≡ Rn,1 + Rn,2, where Rn,1 =
n−α−1

∑n
i=1 z∗i1⊗π̂iKh(zi1−z1)z′i(C−Ĉ)g(z1), and Rn,2 =

n−α−1
∑n

i=1 z∗i1⊗ π̂i Kh(zi1−z1)z′i(zi1−z1)(C− Ĉ)g′(z1).
Then, we have the following results for both Rn,1 and Rn,2,
respectively.
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Lemma 4. Under Assumptions A1–A7, we have

n1/2(I2 ⊗ Hc(α))Rn,1 = Op(1), and

h−1n1/2(I2 ⊗ Hc(α))Rn,2 = Op(1).

Next, we proceed with the proof of Theorem 1 and its
corollaries.

Proof of Theorem 1. It is easy to conclude from (8) that

(9) H
[
Θ̂ − Θ

]
− Ŝ

−1

n Qn − Ŝ
−1

n Rn = Ŝ
−1

n Pn.

First, we consider the nearly weak case (0 < α < 1/2). To
this end, by Lemmas 1 and 4,

√
nh(I2 ⊗ H−1

1 )Ŝ
−1

n Rn = h1/2
[
(I2 ⊗ H1)Ŝn(I2 ⊗ H1)

]−1

× n1/2(I2 ⊗ H1(n))Rn →p 0,

and by Lemmas 1 and 2,

√
nh(I2 ⊗ H−1

1 )Ŝ
−1

n Pn =
[
(I2 ⊗ H1)Ŝn(I2 ⊗ H1)

]−1

× n1/2h1/2(I2 ⊗ H1)Pn

⇒
[
f1(z1)S(1)(z1)

]−1 (
I2 ⊗ D∗′

1

)
× (Zku + Zkvg).

By Lemmas 1 and 3 and the fact that H−1
1 (n)g∗(2)(z1) =(

g
(2)
0 (z1)

0

)
+ o(1),

(I2 ⊗ H−1
1 (n))Ŝ

−1

n Qn

=
[
(I2 ⊗ H1)Ŝn(I2 ⊗ H1)

]−1

(I2 ⊗ H1(n))Qn

=
h2

2

[
f1(z1)S(1)(z1)

]−1

f1(z1)
(

μ2(K)
0

)
⊗ Ω(1)(z1)H−1

1 g∗(2)(z1) + op(h2)

=
h2

2

(
μ2(K)H−1

1 (n)g∗(2)(z1)
0

)
+ op(h2)

=
h2

2

(
μ2(K) g

(2)
0 (z1)

0

)
+ op(h2).

Thus,

√
nh(I2 ⊗ H−1

1 )
[
H
{
Θ̂ − Θ

}
− h2

2

(
μ2(K)g∗(2)(z1)

0

)]
⇒
[
f1(z1)S(1)(z1)

]−1 (
I2 ⊗ D∗′

1

)
(Zku + Zkvg).

Second, we consider the weak case (α = 1/2). Similar to the
above arguments, we have

√
nh(I2 ⊗ H−1

2 )Ŝ
−1

n Rn →p 0,

√
nh(I2 ⊗ H−1

2 )Ŝ
−1

n Pn

⇒
[
f1(z1)S(2)(z1)

]−1 (
I2 ⊗ D∗′

2

)
(Zku + Zkvg),

and

(I2 ⊗H−1
2 )Ŝ

−1

n Qn =
h2

2

[
S(2)(z1)

]−1
(

μ2(K)
0

)
⊗ (D∗′

2 M(z1)D∗
1)H

−1
2 g∗(2)(z1)+ op(h2)

≡ Kn + op(h2),

where

Kn =
h2

2

[
S(2)(z1)

]−1
(

μ2(K)
0

)
⊗
[
D∗′

2 M(z1)D∗
1H

−1
2 g∗(2)(z1)

]
.

Then, by (9),
√

nh
[
(I2 ⊗ H−1

2 )H
{
Θ̂ − Θ

}
− Kn + op(h2)

]
⇒
[
f1(z1)S(2)(z1)

]−1 (
I2 ⊗ D∗′

2

)
(Zku + Zkvg).

Now, we evaluate the term Kn. By definitions of D∗
1 and

D∗
2, it is clear that

D∗′

2 M(z1)D∗
1H

−1
2 g∗(2)(z1)

= D∗′

2 M(z1)
(

1 0
0 D1

)(
g
(2)
0 (z1)

n−1/2 g(2)(z1)

)
= D∗′

2 M(z1)
(

1 0
0 D1

)(
g
(2)
0 (z1)

0

)
+ o(1)

= D∗′

2 M(z1)
(

1 0
0 D2

)(
g
(2)
0 (z1)

0

)
+ o(1)

= D∗′

2 M(z1)D∗
2

(
g
(2)
0 (z1)

0

)
+ o(1)

= Ω(2)(z1)
(

g
(2)
0 (z1)

0

)
+ o(1).

Therefore,(
μ2(K)

0

)
⊗
[
D∗′

2 M(z1)D∗
1H

−1
2 g∗(2)(z1)

]
=

⎛⎝μ2(K)Ω(2)(z1)
(

g
(2)
0 (z1)

0

)
0

⎞⎠+ o(1).

Hence, by the definition of S(2)(z1),

Kn =
h2

2

[
S(2)(z1)

]−1

⎛⎝μ2(K)Ω(2)(z1)
(

g
(2)
0 (z1)

0

)
0

⎞⎠+ o(h2)

=
h2

2

[(
μ2(K)g(2)

0 (z1)
0

)
+ op(1)

]
.

Convergency and divergency of functional coefficient weak instrumental variables models 341



Therefore,
√

nh(I2 ⊗ H−1
2 )

×
[
H
{
Θ̂ − Θ

}
− h2

2

(
μ2(K)g(2)

0 (z1)
0

)
+ op(h2)

]
⇒
[
f1(z1)S(2)(z1)

]−1 (
I2 ⊗ D∗′

2

)
(Zku + Zkvg).

Similar to the proof for the case when α = 1/2, we can estab-
lish the case when α > 1/2. Hence, the proof of Theorem 1
is complete.

Proof of Corollary 1. From Theorem 1, it suffices to com-
pute each component of the limiting distribution given in
Theorem 1. To this end, some simple algebras lead to[
f1(z1)S(c(α))(z1)

]−1

(I2 ⊗ D∗′

c(α))(Zku + Zkvg)

=

[
f−1
1 (z1)

(
1 0
0 μ2(K)

)−1

⊗ Ω(c(α))(z1)−1

]
× (I2 ⊗ D∗′

c(α))(Zku + Zkvg)

= f−1
1 (z1)

(
Ω(c(α))(z1)−1 0

0 μ−1
2 (K)Ω(c(α))(z1)−1

)
×
(

D∗′

c(α)

(
Iq+2 0

)
(Zku + Zkvg)

D∗′

c(α)

(
0 Iq+2

)
(Zku + Zkvg)

)
= f−1

1 (z1)

×
(

Ω(c(α))(z1)−1D∗′

c(α)

(
Iq+2 0

)
(Zku + Zkvg)

μ−1
2 (K)Ω(c(α))(z1)−1D∗′

c(α)

(
0 Iq+2

)
(Zku + Zkvg)

)
.

Therefore, the corollary holds.

Proof of Corollary 2. By the inverse of a partitioned ma-
trix,

Ω(c(α))(z1)−1

=
(

Ωc(α) −M1(z1)′Dc(α)Jc(α)

−Jc(α)D
′
c(α)M1(z1) Jc(α)

)
,

which implies that

f−1
1 (z1)Ω(c(α))(z1)−1D∗′

c(α)

(
Iq+2 0

)
(Zku + Zkvg)

= f−1
1 (z1)Ω(c(α))(z1)−1D∗′

c(α)

( (
1 0 0

)
(Zku + Zkvg)(

0 Iq+1 0
)

(Zku + Zkvg)

)
=

(
f−1
1 (z1)

(
Ωc(α) −M1(z1)′Dc(α)Jc(α)D

′
c(α)

0
)

(Zku + Zkvg)

f−1
1 (z1)

(
−Jc(α)D

′
c(α)

M1(z1) Jc(α)D
′
c(α)

0
)

(Zku + Zkvg)

)
.

By Corollary 1, we have proved Corollary 2.

Proof of Corollary 3. It is easy to see from Lemma A.1 in

Appendix that
(

Zku

Zkvg

)
∼ N(0,Λ1), and

(
Iq+2 0

)
(Zku +

Zkvg) ∼ N(0,Λ4), where Λ4 = f1(z1)ν0(K)Δε. By the
fact that

Ω(1)(z1)−1 =
(

Ω1 −M1(z1)′CJ1

−J1C′M1(z1) J1

)
,

we have

f−2
1 (z1)Ω(1)(z1)−1D∗′

1 Λ4D∗
1Ω

(1)(z1)−1

=
(

σ2
g0

(z1) Σg0,g(z1)
Σg0,g(z1) Σg(z1)

)
for some Σg0,g(z1). Thus, Corollary 3 holds from Corollary 2.
Hence, Corollary 3 is proved.

5. CONCLUSIONS

This paper considers a nonparametric structural model
that satisfies a functional coefficient representation under
the weak instrumental assumptions as Staiger and Stock
(1997) and Hahn and Kuersteiner (2002) by allowing the dif-
ferent degrees of weakness. This model representation can be
regarded as a generalization of classical random coefficients
models and is useful in applications. In particular, under this
representation the model overcomes the so-called ill-posed
problem of other structural models while retaining appre-
ciable flexibility over partially linear models. A two-step lo-
cal linear estimator is developed to estimate the coefficient
functions. Asymptotic properties including consistency and
asymptotic normality and divergency are derived. Finally,
some future research related to this work includes deriving
asymptotic properties for the linear component of a partially
linear case of the model, choosing optimal weak instruments,
considering the case when the number of weak instruments
goes to infinity, and selecting the optimal bandwidth, as well
as obtaining the optimality advocated in Remark 2.

APPENDIX: PROOFS OF LEMMAS

Throughout this appendix, we use the same notations as
introduced in Sections 2 and 4. Before we embrace on the
proofs of Lemmas 1–4, we first establish three preliminary
results below. Also, we employ the following notations. De-
fine Cβ = diag{1, nβ C} and Ĉβ = diag{1, nβ Ĉ}.

Lemma A.1. Let η′
i = z∗i1 ⊗ z∗i . Then, under Assumptions

A1–A4 and A6, we have

n−1/2
n∑

i=1

(h1/2η′
iuiKh(zi1 − z1), h1/2η′

iv
′
ig(zi1)

× Kh(zi1 − z1), ziv′
i) ⇒ (Zku,Zkvg,Zv),

where the joint distribution of Zku, Zkvg, and Vec(Zv) is
N(0,Λ).
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Proof. It is clear that to establish the lemma, it suffices to
show that n−1/2

∑n
i=1 ξi ⇒ N(0,Λ), where

ξi =

⎛⎝ h1/2η′
iuiKh(zi1 − z1)

h1/2η′
iv

′
ig(zi1)Kh(zi1 − z1)
Vec(ziv′

i)

⎞⎠ ≡

⎛⎝ξi1

ξi2

ξi3

⎞⎠ .

Clearly, E[ξi] = 0. Since {(zi, ui,vi)} are independent and
identically distributed, then, so are {ξi}. It follows from the
central limit theorem and the kernel smoothing technique
(e.g., Fan and Gijbels (1996)) as well as the Cramér-Wold
device that n−1/2

∑n
i=1 ξi ⇒ N(0,Λ) holds. The remaining

is to show that Λ is the limiting covariance matrix of ξi.
Indeed, Cov(ξi) is written as

Cov(ξi) =

⎛⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞⎠ ,

where A11 = Var(ξi1), A12 = Cov(ξi1, ξi2), A13 =
Cov(ξi1, ξi3), A22 = Var(ξi2), A23 = Cov(ξi2, ξi3), A33 =
Var(ξi3), A21 = A′

12, A31 = A′
13, and A32 = A′

23. By
Assumptions A1–A4 and A6, one can show easily that
η′

iηi = z∗⊗2
i1 ⊗ z∗⊗2

i , A33 = E[Σvv(zi) ⊗ zi z′i] = Λ3,

A11 = hE
[
z∗⊗2

i1 ⊗ z∗⊗2
i u2

i K
2
h(zi1 − z1)

]
= f1(z1)diag{ν0(K), ν2(K)} ⊗ Δuu + o(1),

A12 = hE
[
g′(zi1)viuiz∗⊗2

i1 ⊗ z∗⊗2
i K2

h(zi1 − z1)
]

= f1(z1)diag{ν0(K), ν2(K)} ⊗ Δuv + o(1),

and

A22 = hE
[
g(zi1)′viv′

ig(zi1)z∗⊗2
i1 ⊗ z∗⊗2

i K2
h(zi1 − z1)

]
= f1(z1)diag{ν0(K), ν2(K)} ⊗ Δvv + o(1).

Similarly, one can show easily that

A13 = h1/2E

[(
uivi1 . . . uivip

(zi1 − z1)uivi1/h . . . (zi1 − z1)uivip/h

)
⊗
(

z′i
ziz′i

)
Kh(zi1 − z1)

]
= h1/2f1(z1)E

[(
Σuv(zi)

0

)
⊗
(

z′i
ziz′i

) ∣∣∣∣∣ zi1 = z1

]
+ o(h1/2) = o(1),

and

A23 = h1/2E

[(
g′(zi1)viv′

i

g′(zi1)viv′
i
zi1−z1

h

)
⊗
(

z′i
ziz′i

)
Kh(zi1 − z1)

]
= h1/2f1(z1)E

[(
g′(z1)Σvv(zi)

0

)
⊗
(

z′i
ziz′i

) ∣∣∣∣∣ zi1 = z1

]
+ o(h1/2) = o(1).

Therefore, we prove the lemma.

Lemma A.2. Under Assumptions A1–A4 and A6,

n1/2−α
[
Ĉ − C

]
⇒ Σ−1

zz Zv.

Moreover, for c(α) ≤ 2, Ĉ ⇒ Dc(α), and for c(α) = 3,
n1/2−α Ĉ ⇒ Dc(α).

Proof. Since {zi} are iid, it follows by a law of large numbers
that n−1z′z →p Σzz. It follows from equations (4) and (5)
that Ĉ = C + nα−1/2(n−1z′z)−1(n−1/2z′v), which, in con-
junction with Lemma A.1, implies that n1/2−α(Ĉ − C) ⇒
Σ−1

zz Zv. In particular, for 0 < α < 1/2, Ĉ →p C. Therefore,
Lemma A.2 holds.

Lemma A.3. Under Assumptions A1–A7, we have

Bl,j ≡ n−1
n∑

i=1

z⊗l
i ζj

i Kh(zi1−z1) →p μj(K) f1(z1)Ml(z1),

where ζi = (zi1 − z1)/h, z⊗2
i = zi z′i and z⊗1

i = zi.

Proof. It follows from the kernel smoothing technique by
computing the mean and variance; see Fan and Gijbels
(1996).

Proof of Lemma 1. First, we consider the case when c(α) ≤
2. To this end, recall definitions of π̂i and z∗i1. Then, it is
clear that

π̂⊗2
i =H−1

c(α)Ĉ
′
0

(
1 z′i
zi ziz′i

)
Ĉ0H−1

c(α) ≡H−1
c(α)Ĉ

′
0LiĈ0H−1

c(α),

where the definition of Li is apparent, and

z∗i1
⊗2 ⊗ π̂⊗2

i =

(
H−1

c(α)Ĉ
′
0 0

0 H−1
c(α)Ĉ

′
0

)(
Li Liζi

Liζi Liζ
2
i

)

×
(

Ĉ0H−1
c(α) 0

0 Ĉ0H−1
c(α)

)

= (I2 ⊗ H−1
c(α))

(
I2 ⊗ Ĉ

′
0

)( Li Liζi

Liζi Liζ
2
i

)
×
(
I2 ⊗ Ĉ0

)
(I2 ⊗ H−1

c(α)).

Therefore, by (7), we can re-write Ŝn as follows

Ŝn = (I2 ⊗ H−1
c(α))

(
I2 ⊗ Ĉ

′
0

)(B0 B1

B1 B2

)
×
(
I2 ⊗ Ĉ0

)
(I2 ⊗ H−1

c(α)),

where B0 =
(
B0,0 B′

1,0

B1,0 B2,0

)
, B1 =

(
B0,1 B′

1,1

B1,1 B2,1

)
, and B2 =(

B0,2 B′
1,2

B1,2 B2,2

)
. Then, it follows from Lemmas A.2 and A.3
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and the fact that M(z1) =
(

1 M1(z1)′

M1(z1) M2(z1)

)
that for

j ≥ 0,

Bj ⇒ f1(z1)μj(K)M(z1),

and

(I2 ⊗ Hc(α))Ŝn(I2 ⊗ Hc(α))

=
(
I2 ⊗ Ĉ

′
0

)(B0 B1

B1 B2

)(
I2 ⊗ Ĉ0

)
⇒ f1(z1)

(
I2 ⊗ D∗′

c(α)

)(M(z1) 0
0 μ2(K)M(z1)

)
×
(
I2 ⊗ D∗

c(α)

)
= f1(z1)S(c(α))(z1).

Now, we consider the case when c(α) = 3. Similarly, we have

(I2 ⊗ H3)Ŝn(I2 ⊗ H3)

=
(
I2 ⊗ Ĉ

′
1/2−α

)(B0 B1

B1 B2

)(
I2 ⊗ Ĉ1/2−α

)
.

Then, it follows from Lemmas A.2 and A.3 that

(I2 ⊗ H3)Ŝn(I2 ⊗ H3) ⇒ f1(z1)S(3)(z1).

The proof of Lemma 1 is complete.

Proof of Lemma 2. It is easy to see that

Pn = n−1
n∑

i=1

z∗i1 ⊗ π̂i Kh(zi1 − z1)(ui + v′
ig(zi1)).

First, for the case when c(α) ≤ 2, one has

√
nhPn = (I2 ⊗ H−1

c(α))
(
I2 ⊗ Ĉ

′
0

)
n−1/2h1/2

×
n∑

i=1

η′
iKh(zi1 − z1)(ui + v′

ig(zi1)),

where ηi is defined in Lemma A.1. Then, from Lemmas A.1
and A.2, we obtain

√
nh (I2 ⊗ Hc(α))Pn ⇒ (I2 ⊗ D∗′

c(α))(Zku + Zkvg).

Next, for the case when c(α) = 3, we re-express
√

nhPn as

√
nhPn = (I2 ⊗ H−1

3 )
(
I2 ⊗ Ĉ

′
1/2−α

)
n−1/2h1/2

×
n∑

i=1

η′
iKh(zi1 − z1)(ui + v′

ig(zi1)).

Then, it follows from Lemmas A.1 and A.2 that
√

nh (I2 ⊗ H3)Pn ⇒ (I2 ⊗ D∗′

3 )(Zku + Zkvg).

This completes the proof of Lemma 2.

Proof of Lemma 3. For zi1 in a neighborhood of z1, by the
Taylor expansion,

gj(zi1) = gj(z1) + (zi1 − z1)g
(1)
j (z1)

+
1
2
(zi1 − z1)2g

(2)
j (z1) + op(h2).

Then,

Qn = n−1
n∑

i=1

z∗i1 ⊗ π̂i Kh(zi1 − z1)

× π′
i

[
1
2
(zi1 − z1)2g∗(2)(z1) + op(h2)

]
.

For the case when c(α) ≤ 2, one has

(I2 ⊗ Hc(α))Qn =
1
2
h2
(
I2 ⊗ Ĉ

′
0

)(B4

B5

)
⊗ D∗

1 H−1
c(α) g

∗(2)(z1) + op(h2),

where B4 =
(
B0,2 B′

1,2

B1,2 B2,2

)
and B5 =

(
B0,3 B′

1,3

B1,3 B2,3

)
with

Bl,j defined in Lemma A.3. An application of Lemmas A.2
and A.3 leads to

(I2 ⊗ Hc(α))Qn =
1
2
h2
(
I2 ⊗ D∗′

c(α)

)
×
(

f1(z1)μ2(K)M(z1)D∗
1

0

)
× H−1

c(α) g
∗(2)(z1) + op(h2)

=
1
2
h2f1(z1)

(
μ2(K)

0

)
⊗ (D∗′

c(α)M(z1)D∗
1)

× H−1
c(α) g

∗(2)(z1) + op(h2).

Similarly, for the case when c(α) = 3,

(I2 ⊗ H3)Qn =
1
2
h2
(
I2 ⊗ Ĉ

′
1/2−α

)(B4

B5

)
⊗ D∗

1 H−1
1 g∗(2)(z1) + op(h2)

=
1
2
h2
(
I2 ⊗ D∗′

3

)(
f1(z1)μ2(K)M(z1)D∗

1

0

)
× H−1

1 g∗(2)(z1) + op(h2)

=
1
2
h2f1(z1)

(
μ2(K)

0

)
⊗ (D∗′

3 M(z1)D∗
1)

× H−1
1 g∗(2)(z1) + op(h2).

This proves Lemma 3.

Proof of Lemma 4. Similar to Lemma 3, we first consider
the case when c(α) ≤ 2. To this end, we rewrite Rn,1 as

n1/2(I2 ⊗ Hc(α))Rn,1

=
(
I2 ⊗ Ĉ

′
0

) (B6

B7

)
n1/2−α

[
C − Ĉ

]
g(z1),
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where B6 =
(
B′

1,0

B2,0

)
and B7 =

(
B′

1,1

B2,1

)
. Applying Lem-

mas A.2 and A.3, we have

n1/2(I2 ⊗ Hc(α))Rn,1

⇒ −f1(z1)
(

1
0

)
⊗
[
D∗′

c(α)

(
M1(z1)′

M2(z1)

)
Σ−1

zz Zvg(z1)
]

.

By an analogue,

h−1n1/2(I2 ⊗ Hc(α))Rn,2

=
(
I2 ⊗ Ĉ

′
0

)(B7

B8

)
n1/2−α(C − Ĉ)g′(z1)

⇒ −f1(z1)
(

0
μ2(K)

)
⊗
[
D∗′

c(α)

(
M1(z1)′

M2(z1)

)
Σ−1

zz Zvg′(z1)
]
,

where B8 =
(
B′

1,2

B2,2

)
. Next, for the case when c(α) = 3, by

the same token,

n1/2(I2 ⊗ H3(n))Rn,1

=
(
I2 ⊗ Ĉ

′
1/2−α

)(B6

B7

)
n1/2−α(C − Ĉ)g(z1)

⇒ −f1(z1)
(

1
0

)
⊗
[
D∗′

3

(
M1(z1)′

M2(z1)

)
Σ−1

zz Zvg(z1)
]

and

h−1n1/2(I2 ⊗ H3(n))Rn,2

=
(
I2 ⊗ Ĉ

′
1/2−α

)(B7

B8

)
n1/2−α(C − Ĉ)g′(z1)

⇒ −f1(z1)
(

0
μ2(K)

)
⊗
[
D∗′

3

(
M1(z1)′

M2(z1)

)
Σ−1

zz Zvg′(z1)
]

.

This accomplishes the proof of the lemma.
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