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A new quantile function based model for
modeling price behaviors in financial markets
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This paper uses a class of quantile functions to develop
a new time series model for studying financial price behav-
iors through the tail properties of the price instead of the
volatilities (variances) of the price. The model takes the up-
dated information into account and characterizes the price
behaviors using a tail order measure which helps forecast
how volatile the prices will be, and a tail balance measure
that helps estimate whether an investment tends to gain or
tends to lose. The model parameters can be estimated us-
ing the method of maximum likelihood, and two real data
sets are analyzed to show the potential usefulness of our
proposed model.
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1. INTRODUCTION

Price behaviors of securities have long received attention
from researchers and practitioners, and forecasting future
prices using financial time series models is of importance in
the fields of risk management and portfolio selection. Re-
searchers have made significant efforts to characterize price
behaviors of various securities in order to provide valuable
advice for investors to make investment and financial deci-
sions. Recently, generalized autoregressive conditionally het-
eroskedastic (GARCH) process based models have been well
accepted for financial modeling.

The literature on GARCH models roots in the semi-
nal work [4] on autoregressive conditionally heteroskedastic
models and those developed in [1, 10]. Studies along this line
have focused on modeling the effects of stochastic volatility
in financial data. Reference [7] summarizes that GARCH
models provide a reasonably good fit to real financial data
with a relatively small number of parameters.
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In price behavior forecasting, however, some of the com-
monly used assumptions on the historical price behaviors
may be inadequate. For GARCH models this includes the
stationarity assumption ([8]) and the assumptions about the
distributions of financial time series observations ([7]). In
practice, price behaviors and the performance of financial
securities show features such as volatility clustering, fat tails
and changing tail orders empirically ([5, 9, 3, 2]), and the
distributions in some parametric GARCH models cannot fit
the tail behaviors very well over time ([3]). On the other
hand, the nonparametric GARCH models are rather time
consuming to implement, and the trade-off between forecast-
ing accuracy and computational efficiency related to model
complexity is a well known issue and a major concern in the
literature.

This paper presents a novel approach to model financial
time series. Instead of modeling volatilities (variances) as in
GARCH models, we propose to model the tail properties
of the financial time series using a class of quantile func-
tions that have been shown to be capable of representing
real price behaviors well ([6, 3]). There are several features
in our approach. First, our approach offers an alternative
way to understand price behaviors. While the usual volatil-
ity approach uses highs and lows and the switching among
the highs and the lows in the observations to help people
read the price behaviors, our approach uses a tail order mea-
sure to convey the volatility information in terms of fat tail
(more volatile) and thin tail (less volatile) in distribution,
and uses a balance measure to describe the degree of ten-
dency for the average prices to move up or move down. For
investors, our approach provides useful information that the
volatility approach does not provide or does not provide di-
rectly. Second, our approach is straightforward to implement
and easy to connect to related modeling efforts because of
the availability of closed form quantile, density and distri-
bution functions. Third, our approach seems to be robust
and stable for financial time series from different financial
markets.

The rest of the paper is organized as below. Section 2
introduces the class of quantile functions to be used. Section
3 develops our quantile function based time series model and
discusses the estimation of the model parameters. Section 4
illustrates the use of our proposed model through modeling
two real data sets, and Section 5 draws some conclusions
and offers a discussion on future research questions.
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2. THE QUANTILE FUNCTIONS

To find alternative characterization of price behaviors of
financial securities, two families of distributions were intro-
duced in [6] through two classes of quantile functions. In this
paper we make use of the Class I quantile functions.

A generic member q(y; α, β, δ, μ) of the Class I quantile
functions is defined by

(1) q(y; α, β, δ, μ) = δ
1
α

{
log

yβ

1 − yβ

}( 1
α )

+ μ,

where y ∈ (0, 1) and the parameters α, β, δ and μ satisfy
α ∈ (0,∞), β ∈ (0,∞), δ ∈ (0,∞) and μ ∈ (−∞,∞), and
the superscript ‘(α)’ represents the operation

x(α) =

⎧⎨
⎩

xα if x > 0,
0 if x = 0,
−(−x)α if x < 0.

As discussed in [6] (page 78), μ is the location parameter
and δ is the scale parameter. As to the other two parame-
ters α and β, α controls the tail order (how fat or thin the
tail is) while β serves as a tail balance adjuster. If we think
of the returns or log returns of the prices of a stock that
follow the probability law induced from q(y; α, β, δ, μ), then
the tail order α describes the volatility of the price move-
ment because a smaller value of α leads to a fatter tail in
the distribution or a bigger probability of getting values far
from the center, which means more volatile. The tail balance
adjuster β, on the other hand, indicates the probability of
making profit relative to that of losing. When β = 1 which
gives a balanced distribution, the probabilities of making
and losing money are equal. If β < 1, the right tail is fatter
than the left tail, which means that it is more likely to make
a profit. If β > 1, the left tail is fatter than the right tail,
which means that it is more likely to lose.

For a given quantile function q(y; α, β, δ, μ), the corre-
sponding distribution function F (x; α, β, δ, μ) and density
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Figure 1. Density functions.
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function p(x; α, β, δ, μ) also have closed forms and are given
by

F (x; α, β, δ, μ) =
{

1
1 + e−

1
δ (x−μ)(α)

} 1
β

,

p(x; α, β, δ, μ) =
α · (x−μ)(α)

(x−μ) e−
1
δ (x−μ)(α)

δβ · (1 + e−
1
δ (x−μ)(α))1+

1
β

,

for x ∈ (−∞, +∞) but x �= μ. These closed-form formu-
lae are good to have when it comes to estimate the model
parameters and use the model in financial applications. Fig-
ure 1 displays the various possible shapes of the density
function (δ = 1 and μ = 0).

3. A QUANTILE FUNCTION BASED
MODEL

GARCH models assume that the returns or the log-
returns Xt satisfy

Xt = σtZt,

where {σt} is the volatility process, {Zt} is the noise process
consisting of i.i.d. random variables with zero mean and unit
variance, and σt and Zt are independent. The focus is on σt,
which is modeled as a function of some past Xt values and
past σt values.

We propose to model tail properties of the return or log-
return distributions and define our quantile function based
model for the returns or the log-returns Xt to be

(2) Xt = δ
1

αt
t

{
log

Uβt

t

1 − Uβt

t

}( 1
αt

)

+ μt,

where {Ut} are i.i.d. random variables over interval (0, 1).
In principle we can allow each of αt, βt, δt and μt to depend
on past Xt values and past values of itself. However, we will
focus on the following special case in this paper, namely,

Xt = δ
1

αt

{
log

Uβt

t

1 − Uβt

t

}( 1
αt

)

+ μ,(3)

αt =
p∑

i=1

ai(log(2 + X2
t−i))

−1 +
q∑

j=1

bjαt−j ,(4)

βt =
r∑

l=1

cl

(
log(1 + eX

(αt−l)

t−l ) − X
(αt−l)
t−l

)
(5)

+
s∑

m=1

dmβt−m,

where p, q, r and s are non-negative integers, and δ, μ,
a1, . . . , ap, b1, . . . , bq, c1, . . . , cr and d1, . . . , ds are the un-
known model parameters. The two profiles created by the
two tail property measures αt and βt convey useful informa-
tion for investors. The tail order measure αt helps investors

tell whether the price behaviors will be more volatile or rel-
atively quiet, while the tail balance measure βt helps in-
vestors tell whether an investment tends to gain or tends
to lose. The function (log(2 + x2))−1 used in defining αt

is decreasing as |x| increases in (0, +∞) and the function
log(1 + ex(α)

) − x(α) used in defining βt is decreasing as x
increases in (−∞, +∞). These functions are chosen in this
way to implement the discussion in Section 2 and keep the
αt and βt profiles positive.

To estimate the parameters for model (3), we employ the
maximum likelihood method. Let Θ denote the parameter
space for model (3) (p, q, r and s are fixed) and let θ0 be
the unknown parameter under which X = (X1, . . . , Xn) are
generated. The log likelihood function for θ ∈ Θ, conditioned
on Xt = X̄ (the sample mean), αt = 0.5, and βt = 1, for
t = 0,−1,−2, . . . (finite and no more than −max(p, q, r, s))
is given by

(6)

l(θ) =
n∑

t=1

ln(p(Xt; αt, βt, δ, μ))

=
n∑

t=1

{
ln

(
αt

δβt

)
+ ln

(
(Xt − μ)(αt)

Xt − μ

)
− 1

δ
(Xt − μ)(αt)

−
(

1 +
1
βt

)
ln

[
1 + exp

(
−1

δ
(Xt − μ)(αt)

)]}
.

The value of θ that maximizes equation (6) is the maximum
likelihood estimate of θ0, denoted by θ̂0.

4. APPLICATIONS

In this section, we illustrate the usefulness of our quantile
function based model by fitting the model to two stock price
data sets: the IBM and the Wal-Mart stock prices from Jan-
uary 4, 1999 to November 12, 2007. Let p = 1, q = 1, r = 1
and s = 1 in model (3), the maximum likelihood estimates
for θ0 = (a1, b1, c1, d1, δ, μ) are given in Table 1. In Figure 2
and Figure 3, we plot the observed stock series, the α profile
and the β profile for IBM and Wal-Mart, respectively.

We see from Figure 2 that for the IBM stock, the α̂t pro-
file matches the volatility movements seen in the observed
prices very well, and that the β̂t profile summarizes the profit
making/losing opportunities over the time. Except in the
three periods of late September and October in 2002, May
in 2005 and July in 2002, in which the IBM stock tended to
lose, for the rest of the time in the time period considered,
the IBM stock tended to make a profit.

Table 1. Parameter estimates of our model for the IBM and
Wal-Mart stock data sets

â1 b̂1 ĉ1 d̂1 δ̂ μ̂

IBM 6.838 0.013 1.546 0.078 1.012 74.585
Wal-Mart 0.392 0.949 0.818 0.011 0.956 34.308
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Figure 2. Modeling IBM stock prices.

From Figure 3 we see that for the Wal-Mart prices, the
α̂t profile mostly stays high and flat, and the β̂t profile is
below one initially and way below one afterward for the en-
tire period, implying that the Wal-Mart stock was relatively
stable and tended to make a profit all the time.

The initial parts of the α̂t profiles and the β̂t profiles in
Figures 2 and 3 are affected by the conditions used to set up
the conditional likelihood (6). We have tried different start-
ing conditions and found that for the data sets we used, the
impact of the starting conditions is very little, and certainly
does not alter the shapes of the α̂t and β̂t profiles after a
few days into the price series.

5. CONCLUSIONS AND DISCUSSION

In this paper we have proposed to study price behaviors
through modeling the tail properties of the return or log-
return distributions instead of the usual approach of model-
ing the standard deviations of the return or log-return distri-

butions. We have developed a specific model to do so using
a class of quantile functions and shown that our new model
is capable of fitting various financial time series. A feature
of our new model is that it offers intuitively clear and useful
information to help investors understand the price behaviors
better.

We have however only started a research direction in
this paper. Other parameter estimation methods should be
explored, standard errors for the parameter estimates are
needed, a large sample theory that can back up our ap-
proach will be helpful, and more data sets must be tried to
gain more experience in using our new model.
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Figure 3. Modeling Wal-Mart stock prices.
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