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A nonparametric threshold model with application
to zero returns

Oliver Linton
∗

We propose a nonparametric censoring model for time se-
ries data. We propose an estimator of the censoring function
based on extreme value regression. We obtain the pointwise
distribution theory and suggest confidence intervals based
on this theory. We use our model to explain the evolution
of the frequency of zeros in stock index returns.
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1. INTRODUCTION

High frequency stock returns are well known to possess
discreteness, meaning that their marginal distributions and
conditional distributions can possess atoms. In particular,
there are atoms at zero and other places. There are a num-
ber of economic reasons for this including the actual dis-
creteness of prices (until quite recently US stock prices could
only vary in multiples of 1/8th of a dollar) and nontrading.
A variety of models have been proposed to take account
of that including rounding and barrier models where some
underlying continuous time and continuous state price pro-
cess is censored. Early approaches to this are reviewed in
Campbell, Lo, and MacKinlay (1997). To obtain tractable
results quite simple processes have to be assumed for the la-
tent price process. More recent work includes Delattre and
Jacod (1997), Zheng (2003), and Li and Mykland (2006).

This phenomena is quite common for individual stocks
but it also occurs in large index series, like the S&P500 as
shown in Table 1 below. One possible explanation is that
the prices of individual stocks are discrete. However, in an
index that is the average of 500 stocks the effects of discrete
prices should wash out, and in any case the discreteness
is only at zero, there is no other value of returns that has
positive mass. So individual level price discreteness does not
seem to be a plausible explanation. Also, non trading of the
component stocks does not seem relevant because zeros are
found even in monthly data where there has clearly been a
lot of trading of these large capitalization stocks.
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We propose a flexible model for censoring of returns in
discrete time. Our framework allows for quite general nonlin-
ear dynamic processes and censoring function. We propose
an estimator of the censoring function and some features of
the model for the latent return. We obtain some pointwise
asymptotic distribution theory, which can be used to justify
inference procedures. We apply our methods to the S&P500
index data. We find that the pattern of censoring is consis-
tent with the fact that the S&P500 index is only computed
to two significant digits. There may be other reasons for
this discreteness but we did not find convincing evidence for
them.

What are the consequences of exact zeros in the data? It
will typically lead to (downward) biased estimates of volatil-
ity. Furthermore, it can cause some problems when logarith-
mic transforms are used, and usually some artificial device
is adopted to avoid this effect. In the dataset we consider
the consequences of censoring for volatility modelling seem
rather limited, and any effect has evidently declined over
time. In other cases, robust methods for measuring volatil-
ity can be used to mitigate the effects of censoring, Peng
and Yao (2003).

2. MODEL AND ESTIMATOR

The simplest model is that there is some process for latent
returns Y ∗

t but that this is censored at some fixed level δ so
we only observe a censored version of returns, Yt, where
Yt = Y ∗

t 1(|Y ∗
t | > δ). Thus we will observe some exact zeros

along with positive and negative returns, which is consistent
with the facts concerning index returns. Evidently, this will
mean estimates of the parameters of a model for Y ∗ based
on a sample of Y will be inconsistent. Given a sample of
observations {Yt, t = 1, . . . , T}, we can estimate the quantity
δ by

(1) δ̂ = min
t:Yt �=0

|Yt| = min
t:|Y ∗

t |>δ
|Y ∗

t |1 (|Y ∗
t | > δ) .

Suppose that Y ∗
t is a strongly stationary mixing process

whose marginal density has strictly positive density at δ, δ̂
will converge to δ in probability at rate T. The limiting dis-
tribution should be exponential following standard extreme
value theory, see for example Embrechts, Klüppellberg and
Mikosch (1998).

However, with regard to the S&P500 data, the above
model appears inadequate because the frequency of zeros
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appears to be declining over time, so that most of the zeros
occur early in the time period. This suggests that the ba-
sic censoring model is not appropriate. We propose instead
a more general model that can allow the frequency of ob-
served zeros to change over time. We suppose that latent
returns Y ∗

t are as before but we only observe Yt, where

(2) Yt = Y ∗
t 1 (|Y ∗

t | > g(t/T )) ,

where g(u), u ∈ [0, 1] is an unknown function. We shall
suppose that this function is smooth but one can allow also
a finite number of jumps. The objective is to estimate the
function g given a sample of observations {Yt, t = 1, . . . , T}.
One may also be interested in features of the model for latent
returns.

We propose an estimator for the function g. Let h be
some small number and let Nu = {t : t/T ∈ [u − h, u + h]}
for all u ∈ [h, 1 − h]. Then let

(3) ĝ(u) = min
t∈Nu:Yt �=0

|Yt|.

This is a localized extreme value, see Chernozhukhov
(1998).1

Provided Y ∗
t is stationary and mixing and has marginal

density that is strictly positive at g(u) this estimate should
converge to the true g(u) at rate Th provided h → 0 and
the function g is smooth. We consider a more general data
generating processes where

(4) Y ∗
t = μ(t/T ) + σ(t/T )εt

with εt a stationary mixing process with both εt and ε2
t − 1

martingale difference sequences. This model is consistent
with the multiplicative components model of Engle and
Rangel (2006) where εt = vtηt and ηt is i.i.d., while vt is
a unit GARCH process. See also Dahlhaus (1997). Then it
suffices for Th consistency of ĝ(u) that the marginal den-
sity of εt is strictly positive in some relevant (depending on
μ(u), σ(u)) neighborhood of zero. This assumption seems
quite reasonable in the application; indeed stock index re-
turns have very high density around zero.

3. DISTRIBUTION THEORY

Here we give the pointwise distribution theory of
our estimator under specific assumptions. Let N(T ) =∑T

t=1 1 (|Yt| > 0) be the number of uncensored observations
in a given sample and let

Nu(T, h) =
T∑

t=1

1 (|Yt| > 0) 1 (u − h ≤ t/T ≤ u + h)

1A more general estimator (treated in Chernozhukhov (1998)) would
be

θ̂ = arg min
θ

T∑
t=1

Kh(u − t/T )ραT (|Yt| − θ),

where ρα is the usual quantile check function and αT → 0 as T → ∞.
Here, K is a kernel function with Kh(.) = K(./h)/h.

be the number of uncensored observations in the time inter-
val [u−h, u + h]. Let Ft/T (y), ft/T (y) be the c.d.f., p.d.f. of
|Yt| (in sample of size T ) respectively, then for any u ∈ [0, 1]

Fu(y) = Fε

(
y − μ(u)

σ(u)

)
− Fε

(
−y − μ(u)

σ(u)

)
,

fu(y) =
1

σ(u)

[
fε

(
y − μ(u)

σ(u)

)
+ fε

(
−y − μ(u)

σ(u)

)]
,

where fε is the marginal density of εt, and let λu(y) =
fu(y)/(1 − Fu(y)). Let zτ

t denote a random variable drawn
from the truncated (from above) distribution of the random
variable zt at the point τ (so that zτ

t ≤ τ with probability
one).

Assumptions A.

1. The process Y ∗
t satisfies (4) where {εt} is stationary;

furthermore, εt and ε2
t − 1 are martingale difference

sequences.
2. The marginal density of εt, fε, is finite, continuous,

and strictly positive on a large enough neighborhood of
the origin that includes τ+(u) = (g(u)−μ(u))/σ(u) and
τ−(u) = −(g(u) + μ(u))/σ(u) for all u ∈ (0, 1).

3. The functions g, μ, σ2 are twice continuously differen-
tiable on [0, 1]; infu∈(0,1) g(u), σ(u) > 0.

4. For any integers p, q, T , 1 ≤ i1 < · · · < ip < j1 < · · · <
jq ≤ T , such that j1 − ip ≥ l we have for zt = ±ετ

t for
any τ ∈ [τ−(u)− ε, τ+(u)+ ε] with ε > 0 and a sequence
uT → τ∣∣∣∣Pr

(
max

t∈A1∪A2
zt ≤ uT

)
− Pr

(
max
t∈A1

zt ≤ uT

)
Pr

(
max
t∈A2

zt ≤ uT

)∣∣∣∣ ≤ αT,l,

where A1 = {i1, . . . , ip}, A2 = {j1, . . . , jq} and αT,l →
0 as T → ∞ for some sequence l = l(T ).

5. We have for zs = ±ετ
t for any [τ−(u) − ε, τ+(u) + ε]

with ε > 0 and a sequence uT → τ

lim
k→∞

lim sup
T→∞

T

[T/k]∑
s=2

Pr (z1 > uT , zs > uT ) = 0.

Theorem. Suppose that assumptions A1–A5 hold and that
h = h(T ) → 0 and Th2 → ∞ as T → ∞. Then for all
u ∈ (0, 1)

Nu(T, h)[ĝ(u) − g(u)] =⇒ Eu,

where for any z ≥ 0,

Pr [Eu ≤ z] = 1 − exp (−zλu(g(u))) .

Furthermore, for any u �= u′, ĝ(u), ĝ(u′) are asymptotically
independent.
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Suppose that f̂u(.) is a consistent estimator of fu(.). Then
for α ∈ (0, 1)

(5) Cα =

[
ĝ(u) +

ln(1 − α)

Nu(T, h)λ̂u(ĝ(u))
, ĝ(u)

]

is an asymptotic 1−α confidence interval. We take λ̂u(y) =
f̂u(y)/(1 − F̂u(y)) with

(6) F̂u(y) =
1

2Th

T∑
t=1

1 (Yt = 0) 1 (u − h ≤ t/T ≤ u + h) ,

(7)

f̂u(y) =
1

Nu(T, h)

×
T∑

t=1

Kb(y − |Yt|)1 (|Yt| > 0) 1 (u − h ≤ t/T ≤ u + h) ,

where Kb(y) = K(y/b)/b for some one-sided kernel func-
tion K and positive number b. We need to use a one-sided
kernel, that is K : [0, 1] → R with

∫ 1

0
K(u)du = 1 and∫ 1

0
K(u)udu = 0,2 because locally we only have observa-

tions on |Yt| greater than ĝ(u). Under some conditions we
expect that f̂u(y) consistently estimates fu(y) for y ≥ g(u).
See Chen (1999) for some discussion of similar estimation
problems.

What are the additional consequences of censoring? It
will typically lead to biased estimates of volatility. For sim-
plicity suppose that Y ∗

t is symmetric about zero, then

var(Yt) = E(Y 2
t ) = E[Y ∗2

t 1 (|Y ∗
t | > δ)]

= var(Y ∗
t ) − E[Y ∗2

t 1 (|Y ∗
t | ≤ δ)] < var(Y ∗

t ),

so that observed unconditional volatility is downward bi-
ased. However, note that

E[Y ∗2
t 1 (|Y ∗

t | ≤ δ)] ≤ δ2 Pr[|Y ∗
t | ≤ δ]

so the magnitude of the downward bias on volatility is lim-
ited by δ2 Pr[Yt = 0]. In some cases this can be small.

If one could consistently estimate the functions μ(.), σ(.)
everywhere, then one could estimate fu(y) better but this
does not seem to be generally possible in the presence of cen-
soring. One can certainly estimate μ(.), σ(.) up to constants
at points of little censoring using robust methods. For ex-
ample, we can estimate σ(·) by taking the local interquartile
range of Yt divided by 1.31, that is

(8) σ̂(u) =
1

1.31
[q0.75(Yt : t ∈ Nu) − q0.25(Yt : t ∈ Nu)] .

This estimator is robust to modest amounts of censoring and
consistently estimates σ(u) under normality. The short run
dynamics of the volatility process are harder to estimate.
2For example K(u) = 3 × 1(u < 1/2) − 1(u ≥ 1/2).

Table 1. Descriptive statistics by frequency

Daily Weekly Monthly

Mean 0.000293 0.001391 0.00606
St. Deviation 0.00901 0.01999 0.04203
Skewness −1.546 −0.375 −0.589
Excess Kurtosis 43.334 6.521 5.588
Minimum −25.422 −6.577 −5.984
Maximum 9.623 6.534 3.450
Sample Size 11893 2475 568
Number zeros 81 15 3

Note: Descriptive statistics for the returns on the S&P500 in-
dex for the period 1955–2002 for three different data frequencies.
Minimum and maximum are measured in standard deviations
and from the mean.

4. APPLICATION

We apply our methodology to S&P500 index returns.
This index is one of the main cited indexes on the NYSE. We
first present the data we use and their descriptive statistics.

For the daily data the unconditional estimates are δ̂ =
mint:Yt �=0 |Yt| = 9.436E − 06 (which is roughly 0.001s) and
T−1

∑T
t=1 1(Yt = 0) = 0.00681, so that the effect of censor-

ing on unconditional variance (for the daily data the sample
variance is 8.12E − 05) is limited. It is possible though that
this could have a bigger effect on estimation of conditional
volatility although it is hard to believe that the consequences
are that great, although it will make the usual estimators
inconsistent.3

As mentioned in the introduction, the frequency of zeros
in this dataset appears to decrease over time. This is evi-
denced in the following figure which displays the “c.d.f.” of
occurrence of zeros for the daily data plotted against time,
i.e., n−1

∑n
i=1 1(ti ≤ t), where ti is the time of the i′th zero,

with i = 1, . . . , n. In the same curve is shown the uniform
c.d.f., which would correspond to equally distributed zeros.

Over this time period, the tick size of individual stocks
have decreased from one eighth of a dollar to one cent. Al-
though this is relevant for discreteness of individual stocks,
the properties of a large index like the S&P500 are likely to
be little affected by this individual discreteness.

We now turn to our estimates for the model (2). Figure 1
below shows the estimated g function for the daily data com-
puted with Th = 500 so that a total of 1000 observations are
used to compute ĝ(u). The estimator shows a pronounced
downward trend. Similar results are obtained for the weekly
and monthly series.

The confidence intervals (5) were computed, but were
rather narrow especially in the earlier period and so are
not shown for clarity.

We now propose a simple obvious source for this effect
and show that it is corroborated by the data. The S&P500
3Lee (1999) proposes a simulation based method to estimate a cen-
sored GARCH model by maximum likelihood under a distributional
assumption on the error terms.
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Figure 1.

index is only reported to two significant digits! Suppose that
in fact the censoring rule arises from rounding of the index
level, that is,

(9) Pt = P ∗
t 1(|P ∗

t − P ∗
t−1| > δ) + P ∗

t−11(|P ∗
t − P ∗

t−1| ≤ δ)

for some fixed δ, e.g., δ = 0.005. Then the event that

|P ∗
t − P ∗

t−1| > δ

is equivalent to the event that

|Y ∗
t | ≡

∣∣∣∣P ∗
t − P ∗

t−1

P ∗
t−1

∣∣∣∣ >
δ

P ∗
t−1

.

Now suppose that P ∗
t = P ∗

t−1 exp(α), then by continued
substitution P ∗

t−1 = P ∗
0 exp(tα). This would imply our cen-

soring model with g(t) = (δ/P ∗
0 ) exp(−tα).4 This suggests

that a regression of ln g on a constant and time should yield
estimates of α, the logarithmic return. In fact, we find

ln ĝ(t/T ) = −8.649 − 0.000188 ∗ t

with an R2 of 0.824. The t-statistic on the slope coefficient
is over 200. Although we do not provide formal inference
here, it seems likely that this is statistically significant at
any conventional level. The slope parameter corresponds to
an annualized return of 4.7%, which is a bit on the low side

4The assumption that latent prices grow deterministically is obviously
unrealistic. If the latent prices were stochastic, this makes the calcu-
lations much more complicated. For example, suppose that ln(P ∗

t ) =
μ + ln(P ∗

t−1) + ηt with ηt a martingale difference sequence. In this
case one does not obtain exactly model (2). But perhaps one can still
expect something like what we obtain. However, since prices are (glob-
ally) nonstationary the statistical analysis of this model is more com-
plicated.

Figure 2.

but in the right ballpark. Figure 2 shows the graph of ln ĝ
against time showing the expected linearity.

This result can be replicated for weekly (α̂ = 0.000644)
and monthly data (α̂ = 0.005571) although the standard
errors are larger and the R2 lower (0.575 and 0.511). One can
also bound the consequence of censoring on unconditional
volatility estimation and find that it is a small effect.

Finally, we estimate the volatility function in model (4).
Specifically, we estimate σ(·) by (8). We also computed the
local standard deviation for comparison purposes. The lo-
cal standard deviation is always above the local IQR even
though under conditional normality and without censoring
they should estimate the same thing. However, the censoring
would be expected to downward bias the standard deviation
so the main source of difference is the non-normality of the
error.

If one wanted to estimate the parameters of a dynamic
GARCH process say vt then one would have to adopt some
strategy like Lee (1999), which can be very time consuming
and requires distributional assumptions for consistency.

5. CONCLUSION

We have proposed a nonparametric threshold model and
developed an estimator for the threshold function. One
can also allow the censoring function g to depend on co-
variates but we do not do that here. One can also al-
low different lower and upper censoring functions so that
Yt = Y ∗

t 1 (Y ∗
t /∈ [gL(t/T ), gU (t/T )]) but we do not do that

here. We applied our method to stock index returns. The em-
pirical conclusion is that the source of zeros in the S&P500
index is due to the reporting of only two significant digits
and that as the level of the index has risen the frequency
of zeros has reduced. Furthermore, for many purposes the
magnitudes of the biases caused by the censoring is small
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Figure 3.

enough to be ignored. However, for other datasets different
conclusions might be reached.

APPENDIX A

Proof of Theorem. First note that the probability of cen-
soring is

Pr [Yt = 0] = Fε

(
g(t/T ) − μ(t/T )

σ(t/T )

)
− Fε

(
−g(t/T ) − μ(t/T )

σ(t/T )

)
.

Let X̃t be the random variable with the truncated distribu-
tion of −|Yt|. The estimator ĝ(u) can be rewritten as

(10) max
t∈N+

u

X̃t,

where N+
u = {t ∈ Nu : Yt �= 0} with (random) cardinality

Nu(T, h). Then for any x ∈ (−∞,−g(t/T )]

Pr
(
X̃t ≤ x

)
=

Pr (−|Yt| ≤ x)
1 − Pr (Yt = 0)

=
1 − Fε

(
−x−μ(t/T )

σ(t/T )

)
+ Fε

(
x−μ(t/T )

σ(t/T )

)
1 − Fε

(
g(t/T )−μ(t/T )

σ(t/T )

)
+ Fε

(
−g(t/T )−μ(t/T )

σ(t/T )

)
= FX

t/T (x).

This can be approximated by

FX
u (x) =

1 − Fε

(
−x−μ(u)

σ(u)

)
+ Fε

(
x−μ(u)

σ(u)

)
1 − Fε

(
g(u)−μ(u)

σ(u)

)
+ Fε

(
−g(u)−μ(u)

σ(u)

)

Figure 4. The estimated local IQR in solid line and the local
standard deviation in dashed line.

in the region Nu = [u − h, u + h] in the sense that for some
C < ∞,

(11) sup
t∈Nu

sup
−∞<x≤0

∣∣∣FX
t/T (x) − FX

u (x)
∣∣∣ ≤ Ch,

by Assumptions A2 and A3.
Consider the problem of having N i.i.d. observations

from X̃u
t ∼ FX

u , that is, Y ∗u
t = μ(u) + σ(u)ε′t, where ε′t

is i.i.d. with the same marginal distribution as εt, Y u
t =

Y ∗u
t 1 (|Y ∗u

t | > g(u)), and X̃t be the random variable with
the truncated distribution of −|Y u

t |. Note that FX
u (x) → 1

as x → −g(u). In particular,

FX
u (x) = 1 +

(x + g(u))
σ(u)

×
fε

(
g(u)−μ(u)

σ(u)

)
+ fε

(
−g(u)−μ(u)

σ(u)

)
1 − Fε

(
g(u)−μ(u)

σ(u)

)
+ Fε

(
−g(u)−μ(u)

σ(u)

)
+ o(|x + g(u)|).

Suppose that for some τ ∈ (0,∞)

NF
X

u (xN ) → τ,

where F
X

u (x) = 1 − FX
u (x). Then,

Pr
(

max
1≤t≤N

X̃u
t ≤ xN

)
=

{
FX

u (xN )
}N

=
{

1 − F
X

u (xN )
}N

=
{

1 − τ

N
+ o(1/N)

}N

→ exp(−τ).
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Specifically, letting xN = −g(u) + x/N we have

NF
X

u (xN ) = N
(xN + g(u))

σ(u)

×
fε

(
g(u)−μ(u)

σ(u)

)
+ fε

(
−g(u)−μ(u)

σ(u)

)
1 − Fε

(
g(u)−μ(u)

σ(u)

)
+ Fε

(
−g(u)−μ(u)

σ(u)

)
→ x

σ(u)

fε

(
g(u)−μ(u)

σ(u)

)
+ fε

(
−g(u)−μ(u)

σ(u)

)
1 − Fε

(
g(u)−μ(u)

σ(u)

)
+ Fε

(
−g(u)−μ(u)

σ(u)

)
= xλu(g(u)) ≡ τ.

Now suppose that we have a random sample of size N from
FX

u with

N/2Th
p−→ 1 − Fε

(
g(u) − μ(u)

σ(u)

)
(12)

+ Fε

(
−g(u) − μ(u)

σ(u)

)
∈ (0, 1).

By the arguments of Barakat and El-Shandidy (1990), we
have

Pr
(

Nu(T, h)
[

max
t∈N+

u

X̃u
t − g(u)

]
≤ x

)
→ exp(−xλu(g(u)))

Pr
(

2Th

[
max
t∈N+

u

X̃u
t − g(u)

]
≤ x

)
→ exp(−xfu(g(u))).

We now consider the estimator itself drawn from a design
Y ∗

t = μ(t/T ) + σ(t/T )ε′t, where ε′t is i.i.d. with the same
marginal distribution as εt. In that case we have under the
i.i.d. error assumption

Pr
(

max
t∈Nu

X̃t ≤ x2Th

)
=

{ ∏
t∈Nu

FX
t/T (x2Th)

}
=

{ ∏
t∈Nu

(
1 − F

X

t/T (x2Th)
)}

=
{

1 − τ

2Th
+ O(h) + o(1/Th)

}2Th

→ exp(−τ),

provided h = o(1/Th), which is implied by Th2 → 0. Like-
wise, when the sample size is random

Pr
(

Nu(T, h)
[

max
t∈N+

u

X̃t − g(u)
]
≤ x

)
→ exp(−xλu(g(u)))

Pr
(

2Th

[
max
t∈N+

u

X̃t − g(u)
]
≤ x

)
→ exp(−xfu(g(u))).

Finally, we consider the case where the data is drawn from
(4) where εt is stationary and mixing and satisfies conditions
A1, A4 and A5. We can apply Proposition 4.4.3 of Em-
brechts, Klüppellberg and Mikosch (1998) to conclude that
the asymptotic properties continue to hold. The asymptotic
independence of ĝ(u) and ĝ(u′) follows from the weak de-
pendence assumptions and the assumption that h → 0.
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