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Are there speculative bubbles in stock markets?
Evidence from an alternative approach”

GuoJuN WU AND ZHIJIE XIAO

Monte Carlo evidence [Evans (1991)] indicates that when
speculative bubbles are collapsible, the traditional cointe-
gration approach based on unit root tests has some seri-
ous drawbacks. We propose in this paper an alternative ap-
proach to test such bubbles. We demonstrate that the sug-
gested test has some advantages over the traditional unit
root based tests, especially for bubbles that are collapsible.
Properties of the proposed procedure are investigated. Ex-
tensions and generalizations of this procedure are also stud-
ied. The testing procedure is applied to market indexes in
the U.S. and Hong Kong. The proposed procedures provide
useful complements to existing bubble tests.

1. INTRODUCTION

There is a large collection of literature on the empiri-
cal tests of asset price behavior [see, e.g., Flood and Gar-
ber (1980), Shiller (1981), Blanchard and Watson (1982),
Campbell and Shiller (1988), West (1988), Froot and Obst-
feld (1991), and McQueen and Thorley (1994)]. Researchers
have argued that stock prices are not consistent with the
fundamentals that the prices are supposed to represent, i.e.,
with the discounted stream of future dividends [See, for ex-
ample, Cochrane (1991)].

One possible remedy of this problem is to improve the
model of fundamentals so that they more closely reflect ob-
served asset prices. Yet, this approach has yielded limited
success principally because stock prices exhibit much higher
volatility than what can be explained by movements in fun-
damental variables such as earnings, dividends and inter-
est rates [see, e.g., Shiller (1981)]. Moreover, dividend-based
models seem to be ill-equipped to explain some of the styl-
ized facts about stock returns. [see Cox and Ross (1976),
and Bekaert and Wu (2000)].

An alternative approach to explaining this phenomenon
is to introduce speculative bubbles into asset pricing models.
Bubbles could explain the empirical features of stock returns
[see, inter alia, Flood and Hodrick (1986), and Camerer
(1989)]. Time-varying volatility would be a natural conse-
quence of the presence of bubbles. Stock volatility may be
high or low, as the size of the bubble grows or shrinks. As the
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bubble grows, the chances of it collapsing increases. The col-
lapsing of bubbles leads to large negative returns and may
therefore to negative skewness of returns since large posi-
tive returns are less likely. Finally, the time-varying prob-
ability of collapse may be linked to asymmetric volatility.
To see this, note that rational investors may still invest in
a stock even if they are aware that its price contains a col-
lapsible bubble, as long as the bubble grows at a certain
expected rate and they are able to sell at any time. If in-
vestors suddenly revise upward their subjective probability
of a collapse, the conditional volatility of the stock return
will increase, inducing asymmetric volatility.

Are there bubbles in stock prices? In the last two decades,
there have been a number of studies on testing for spec-
ulative bubbles in stock prices, and different results have
been obtained. For example, West (1987) and Rappoport
and White (1993) found evidence of bubbles, while Diba
and Grossman (1988) and Dezhbakhsh and Demirguckunt
(1990) obtained results supporting the conclusion that stock
prices do not contain bubbles. Of course, the presence of
absence of bubbles has important implications for modeling
stock prices and may have a serious impact on asset and risk
management practices that use these models.

A popular approach in testing bubbles is to examine the
stationarity (or non-stationarity) of the residuals between
asset prices and market fundamentals [usually dividends,
see Campbell and Shiller (1987), Diba and Grossman (1984,
1988), Hamilton and Whiteman (1985), among others, for
applications based on this approach|. Traditionally this ap-
proach uses unit root tests on the residuals. By treating
the nonstationary bubble process as a unit-root process, the
conventional unit root based procedures test the null hy-
pothesis that the stock price contains a bubble. If the unit
root hypothesis is rejected, they reject the hypothesis of a
bubble.

However, by conducting a Monte Carlo simulation, Evans
(1991) showed that an important class of rational bubbles
cannot be detected by the conventional unit root tests. In
particular, he considered a time series of bubbles with a pos-
itive probability of collapse and found that the conventional
unit root test over-reject the hypothesis of a bubble, except
in the case where the probability of collapse is very close to
Zero.

One reason for this result is that collapsible bubbles are
not conventional unit-root processes, so that the hypothe-
sis of a bubble is not equivalent to the hypothesis of a unit
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root. If a bubble is collapsible, even when the market price
contains a bubble, the conventional unit root based tests
will still reject the null of a bubble, leading to the incor-
rect conclusion that there is no bubble in market prices. For
this reason, the traditional unit-root tests have some serious
drawbacks in detecting bubbles.

In this paper, we propose an alternative test for bubbles
by looking at the fluctuations in the partial sum process of
residuals from regressing asset prices on market fundamen-
tals. In contrast to the conventional unit root based tests,
the proposed test has its advantage in dealing with collapsi-
ble bubbles. Suppose that we consider the simple rational ex-
pectations model characterized by the Gordon model, then,
intuitively, if there is no bubble, the stock price and the
fundamentals move together in the long run. Therefore the
residuals should be stationary, and the order of magnitude
of the fluctuation in the cumulated sum process of residuals
should be proportional to the square root of the number of
observations. Otherwise, if there is a bubble, then the fluc-
tuation in the cumulated bubble process should have much
larger order of magnitude, regardless of the probability of
collapse.

As noted by some researchers, since bubbles are not ob-
servable, no one can be absolutely certain they exist. At
least at a casual level, evidence of excessive fluctuation of
residuals between prices and fundamentals could result from
sources other than bubbles. For example, time varying risk-
premiums effects might be an alternative source of excessive
fluctuation. In addition, covariance stationary time series
with structural breaks may result in a sample path similar
to that of a nonstationary time series. Flood and Hodrick
(1986), Hamilton and Whiteman (1985) pointed out that
bubbles may be observationally similar to regime changes in
market fundamentals which are unobserved by researchers.
Thus, evidence of nonstationarity do not necessarily estab-
lish the existence of bubbles. However, these tests can be
used for converse inference. In particular, covariance sta-
tionarity in the residual process would be evidence against
the existence of bubbles. As pointed out by Diba and Gross-
man (1988), except by extremely unlikely coincidence, other
sources of nonstationarity could not exactly offset the effect
of a nonstationary bubble.

The test statistic is constructed based on residuals from
a cointegrating regression. In practice, the behavior of as-
set prices may be more complicated than that described by
the Gordon model. To (at least partially) capture additional
sources of fluctuation, we also augment the cointegrating
regression of Campbell and Shiller (1987) (based the orig-
inal Gordon model) by including additional covariates to
take into account the time-varying discount rates and risk-
premiums effects. Properties of the proposed tests are stud-
ied and some Monte Carlo experiments are conducted to in-
vestigate its performance. We believe that the test provides
additional information on the behavior of the stock price
that can not be fully explained by the underlying value of
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the firm. It also provides a useful alternative to the existing
bubble tests and models of stock price dynamics.

This paper is organized as follows. Section 2 reviews the
conventional testing procedure for rational bubbles based
on the unit-root/cointegration approach. Section 3 develops
the proposed test. Section 4 extends our analysis in the pre-
vious section to more general cases by including variables re-
flecting time-varying discount rates and risk-premiums. We
conduct a simulation study in Section 5 and provide em-
pirical application of the test to U.S. and Hong Kong stock
indexes in Section 6. Some technical details are included in
the Appendix.

2. CONVENTIONAL TESTING
PROCEDURES FOR BUBBLES

In this paper, we consider a standard rational expecta-
tions model for stock prices

(1)

where P, is the real stock price at ¢, v is the real rate of
return and thus (1 ++)~! is the discount factor, and D; is
the dividend paid to the owner of the stock between ¢ and
t + 1. Equation (1) is a first-order expectational difference
equation. A forward-looking solution to this equation can
be obtained by straightforward calculation, and a test for
the presence of bubbles can be constructed based on a re-
gression of P; on D, (plus a constant) (see, inter alia, Diba
and Grossman (1988), Evans (1991)).

However, there has been concern about the above spec-
ification: violation of limited liability. For instance, if the
conditional distribution of the prices is normal, then there
will always be a positive probability of obtaining a negative
price (see, e.g., Campbell, Lo and MacKinlay (1997, p. 32)).
For this reason, many researchers consider the above ratio-
nal expectations model in terms of logarithms of price and
dividend. Following Campbell and Shiller (1988), we write
the log linear approximation of (1) as

(2)

where p; and d; are logarithms of P; and Dy, ¢ is the log
gross return rate, ¢ is the average ratio of the stock price to
the sum of the stock price and the dividend (0 < § < 1),
and k is a function of § (see Wu (1997) for a discussion of
this model). Under the transversality condition that

(3)

Py = (1479 "Ef(Pry1 + Dyya),

P+ q=rK+0Ep1+ (1 —0)Edi1y

lim 6" Eypy i = 0,
k—oo

the unique forward-looking market fundamental solution
to (2), ft, is given by

(4) ft =n+ (1 - 6) Z6jEtdt+1+j-

=0



If the transversality condition (3) does not hold, the gen-
eral solution to (2) has the following form

(5)

where f; is the market fundamental given by (4) and b; is a
rational speculative bubble generated by extraneous events
or rumors and satisfies

Dt :ft+bt7

1
Etbt+1 = —bt.

(6) :

By definition, this bubble grows over time, driven by self-
fulfilling expectations. However, the bubble must eventually
collapse in order for the model to be plausible.

Remark 1. Notice that there is a literature on the debate
of whether rational bubbles can exist. For example, Diba
and Grossman (1988) argue that any rational bubble that
starts after the first date of trading has an expected initial
value of zero. The fact that rational bubbles have explosive
conditional expectations implies that a negative-bubble can-
not exist on an asset with limited liability, thus the expected
initial value can equal zero only if any initial realization of
a rational bubble after the first date of trading equals zero
with probability one. Also see Tirole (1982, 1985) for study
of bubbles in general equilibrium models and overlapping-
generations models, and Cambell, Lo and MacKinlay (1997,
Section 7.1.2) for an excellent literature review on this topic.
This is a continuing debate and is not the focus of the cur-
rent paper.

Since d; appears to be nonstationary in empirical analy-
ses, it is usually characterized as an integrated process with
drift:

(7)

where ¢, is an I(0) process of innovations with E(e;) = 0.
Combining (4) and (7), we have

(8)

and (5) can be written as

9)

diy1 = p+dy + &,

fi = a+ Bdy,

Py = o + Bd; + by.

If there is no bubble, p; = f;, which can be expressed
as (8), thus p; is also an integrated process with drift. Al-
though both p; and d; are nonstationary, there exists a long
run equilibrium relationship between p; and d;, and the lin-
ear combination of p; and d; (pr — o — fd;) is I(0). Fluctu-
ations in the residual process p; — a — Gd; are simply equi-
librium errors and thus are covariance stationary. In other
words, p; and d; are cointegrated in the absence of bubbles.
Otherwise, if the stock price contains a bubble, p; and d; are
no longer cointegrated since the bubble process is not covari-
ance stationary given that E;b;yq = 6 1b; and §—1 > 1.

Much of the literature on testing for bubbles uses the
residual-based tests for cointegration of Engle and Granger
(1987) and Phillips and Ouliaris (1991). These tests con-
sider the null hypothesis of no cointegration and apply the
traditional unit-root tests to the least square residuals from
a regression of the stock prices on the dividends. Thus, the
procedures test the null hypothesis that the residual process
of (9) contains a unit-root. By treating the bubble process
as a unit-root process, they test the null hypothesis that the
stock price contains a bubble.

The approach is typically done by first applying unit-
root tests to p; and d; to verify their nonstationarity. Then,
a cointegrating regression between p; and dy,

(10) pr =@+ Py + T,

is performed to obtain the residual process u; = py —a — Bdt.
The existence of a bubble is then tested by applying the unit-
root tests on the residuals 4. If the residual process contains
a unit-root, then p; and d; are not cointegrated, and thus the
conclusion that the stock prices contain a bubble is obtained.
If u; does not have a unit-root, we reject the null hypothesis
and conclude that there is no bubble in the price series.

These testing procedures rely on unit-root tests (usually
ADF or PP tests) which were designed for detecting whether
or not a time series contains an autoregressive unit-root.
However, the capability of these procedures to detect bub-
bles depends on the assumption that the bubble process
can be characterized by an autoregressive process with a
constant coefficient around unity (or larger than unity). If
a bubble collapses and restarts with a certain probability,
then this assumption no longer holds. For example, if the
representation of bubbles is characterized by an autoregres-
sive (AR) process as

(11)

where u; is stationary, then the residual based tests for the
null hypothesis of no cointegration are effective for testing
bubbles. However, it is not necessary that a bubble should
be characterized by the AR process (11). In fact, it should be
able to collapse after reaching high levels and then restart.
For example, a simple model of periodically collapsing bub-
bles may be characterized as follows,

biy1 = aby +upyq, o =1/9,

(12) biy1 = apy1by + Ugg1,
where u; is a mean zero stationary residual process and asy1
is an exogenous independently and identically distributed
(i.i.d.) Bernoulli process which takes value a with probabil-
ity 7 and value 0 with probability 1 — 7. When a = 1/(d7),
Ey(bsy1) = 07 'by, then b; is a rational bubble [see Tirole
(1982)].

The process {b;} determined by (12) is a doubly stochas-
tic process (for studies on stationarity property of this type
process, see, e.g., Nicholls and Quinn (1982), Pourahmadi
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(1988)). In particular, a process defined by (12) is covari-
ance stationary if Var(a;) + [Fa:]? < 1. In the case that b,
is a rational bubble, Ea; > 1 and thus Var(a;) + [Fa;]? > 1.
The process is no longer covariance stationary and the vari-
ance of by diverges to infinity exponentially as ¢ increases.

However, although this process is not covariance station-
ary, it is not a conventional unit-root process. Rather, it
is a random coefficient process. As a result, the commonly
used unit-root tests are not valid procedures for detecting
the existence of such a process.

Other types of collapsible bubbles can be designed. Al-
though difference exists among different types of bubbles, as
long as they are rational bubbles, they satisfy the property
that Ei(biy1) = 5~ 1b, and thus are not covariance station-
ary. In addition, if they collapse, they are not conventional
unit root process and can not be detected by traditional
unit root tests. A good example of reporting that conven-
tional unit root tests are unable to detect collapsible bub-
bles is in Evans (1991, page 926, right column, first complete
paragraph onwards). In particular, Evans (1991) considered
a multiplicative process with periodical collapsible bubbles
and found that the unit root tests can hardly detect a col-
lapsible bubble.

3. A TEST FOR SPECULATIVE BUBBLES

In this section, we suggest an alternative way to test the
null hypothesis of no bubble in p;. Again, we start with the
model given by (5) and (8) in Section 2, and consider the
residual process from the following regression
(13) pr =+ Bdp + ug.

As discussed in Section 2, if there is no bubble in the stock
price, the residual term u; in (13) should be covariance sta-
tionary, and fluctuations in this process are just equilibrium
errors. In particular, the order of magnitude of the partial
sum process 3y, u; should be proportional to (k'/2). Un-

der mild conditions n~'/2 Ezl} up (0 < r < 1) satisfies an
invariance principle.

On the other hand, if there is a bubble in the stock price,
then the residual term wu; includes a bubble process {b:}.
Even though in each period there is a positive probabil-
ity that b; will collapse (and the bubble will eventually ex-
plode), by the defining property of a rational bubble that
|Ebiy1| > |by|, the variance of b, (and thus the residual
term u; of regression (13)) is increasing with ¢ exponentially!
Consequently b; is not I(0). In particular, the fluctuation in
the residuals is dominated by the bubble component and
the cumulated sums of u; will have a much larger order of
magnitude than the no bubble case. In fact, Zle uy di-
verges to oo exponentially. This observation suggests that it
is possible to design a bubble test by looking at the order of
magnitude of the fluctuation in the residual process.

We consider the following quantity as a measurement
of fluctuation in the residual process u; [Sen (1980), Xiao
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(2001)], where @y is the estimated residual process from a
cointegrating regression of (13),

(14)

This is the recursive-estimates statistic for testing fluc-
tuation. As discussed above, in the case with no bub-
bles, the order of magnitude of maxy Ele ug is Op(yv/n).
Standardized by +/n, maxg—i, . n ﬁ| Zle ug| converge
to a Brownian motion. In the presence with bubble,
Maxk=1,.. n ﬁ| Zle ut| diverge to oo, providing a poten-
tial test. Notice that property that a Brownian motion al-
ways has very small variance close to the origin and large
variance when r is close to 1, we tie down the process by
subtracting it by ﬁ(% >, ), giving a Brownian bridge
limit. Similar statistics can also be used to test the structural
stability in linear regression models (e.g., Ploberger, Kramer
and Koutrus (1989)). While the structural stability litera-
ture focuses on the constancy of the regression parameter,
we focus on the residuals and consider a test for the null hy-
pothesis of no bubbles against the alternative of bubbles. As
will be clear in later analysis, these two models (structural
break in parameters and collapsing bubbles) have similar
behavior under the null hypotheses but are different under
the alternatives (see the Appendix for analysis under the
alternative). In particular, these two models have different
fluctuations under the alternatives, although (14) diverges
in both models. In the structural break models, the station-
arity property of the true residuals does not change, and the
fluctuation comes from the break in regression parameter.
In our model, the residual process is no longer covariance
stationary under the alternative and has an increasing (ex-
plosive) variance.

Notice that d; is nonstationary (I(1)) and d; and u; may
be correlated. As a result, the limiting distribution of the
recursive-estimates statistic is dependent on nuisance pa-
rameters coming from the serial correlation of d; and wy
and on the correlation between these two series. Thus, this
statistic cannot be directly used in testing. To get rid of the
nuisance parameters, we construct the fully modified resid-
ual process u; based on nonparametric estimation of the
nuisance parameters as follows:

at

~ [e% . -~
’U,j :p:—(:hdt) ( ﬁ“‘ ) :p?—a""_ﬂ""dt,

where &t and E‘i are the fully modified estimators of a,
B, pi = pi — Ad;ﬂ;dedu are the fully modified prices, and
f\ldd and ﬁdu are nonparametric estimators of the long-run
variance of d; and of the long-run covariance between d;
and wu;. The definition of the fully modified estimators and
the construction of nonparametric estimators can be found

in Phillips and Hansen (1990), Phillips (1995), and Xiao



and Phillips (2002), and we give them in the Appendix for
completeness.

Based on the fully modified residual process u;", we con-
struct the test statistic as follows,
(15) R= m

1 k
T k= ax on Wy d\/_- E EE;

where @Z 4 is the nonparametric long-run variance estimator
[We give the formula of this estimator and related discus-
sions in the Appendix]. As the sample size n goes to infinity,
the test statistic (15) has the classical Kolmogoroff-Smirnoff
type limiting distribution

1 n
-

t=1

)

(16) sup ‘17(7‘)

0<r<1
where V(r) = Wd( ) — rW, (1), Wylr) = Wi(r) —
L dwa S fESS7Y [T S, S(r) = (1, Wa(r)), and Wi (r)

and Wa(r) are standard Brownian motions that are indepen-
dent of each other. The limiting distribution of this test is
free of nuisance parameter. We computed the relevant upper
tail critical values for the asymptotic null distribution of R
based on a direct simulation using a sample of size 2,000 and
20,000 replications and report them in the following table:

Critical 0.5% 1% 1.5% 2% 25% 3% 3.5% 4%
Level
Critical 1.544 1.448 1.363 1.325 1.295 1.267 1.242 1.218
Value
Critical  4.5% 5% 6% 7% 8% 9% 10% 15%
Level
Critical 1.198 1.176 1.141 1.115 1.085 1.065 1.047 0.974
Value

Remark 2. The proposed test has power against bub-
bles not because of the “breaks” (collapses) of bubbles (at
least asymptotically), but because of the explosive behavior
determined by the defining property (6) of rational bub-
bles! The proposed test has power against both collapsible
bubbles and non-collapsible (if there is any) bubbles. The
“breaks” (collapse) in the bubble processes in this paper is
different from the conventional structural breaks. Actually,
for the process {b;} defined as (12), if Var(a;) + [Eas)? were
strictly less than 1, even in the presence of collapse, the pro-
cess b; would still be covariance stationary and the proposed
test will not detect it in large sample.

To be effective, a statistical test must discriminate be-
tween the null and the alternative in large samples. This is
a nontrivial matter for the proposed test because both the
numerator and the denominator of the test statistic diverge
under the alternative. The order of magnitude of the pro-
posed test statistic is determined by the partial sum process

1 n
2l

— u

Vi

(17)

and the nonparametric long-run variance estimator @, q
that enters the denominator. Under the alternative hypoth-
esis that there is a bubble in the stock price, both of these
two quantities will diverge to infinity. In particular, it can
be shown that (17) diverges to oo exponentially at rate
VA" /n, where A = o2 +1/6%> > 1, and o2 is the vari-
ance of the random coefficient in the bubble process (if the
bubble does not collapse, 02 = 0 and A = 1/§2, which is
still greater than 1). Under Hj, the nonparametric kernel
estimator @, 4, constructed from the residuals, diverges as
well. The divergence rate of &, 4 is dependent on the sample
size that used in the calculation of &, g4, and the bandwidth
(lag truncation) choice. In order to preserve consistency, we
need to construct the long-run variance estimator appropri-
ately so that the denominator (&, 4) diverges at a slower
rate than (17). In particular, if we use a subsample of size
m and a bandwidth M to estimate ©&,_q, (both M and m go
to infinity with n), it can be shown that, in the presence of
a bubble, the order of magnitude is O, (y/MA™ /m). Under
the conditions that n—m — oo, and M — oo at a lower rate
than m, it is easy to verify that under H;, the test statistic
diverge to oo, giving a consistent test (see the Appendix for
more discussion on this).

As mentioned before, similar statistics can be used in
testing structural stability in linear regression models and
the test (15) also has power against structural break (or
breaks). However, we also note that these two types of mod-
els have different types of fluctuation under the alternatives.
In particular, in the structural break model, the fluctuation
comes from the break in regression parameter. Such breaks
only happen in finite times (usually assumed once in many
typical models). If the location of a break point is known,
this maybe the case if there are known interventions or pol-
icy changes, the structural break can be characterized using
appropriate dummy variables. Given the types of bubbles
that we consider in this paper, it is possible to construct a
test for the null hypothesis of no bubble (but with poten-
tial structural breaks) against the alternative of bubbles. Of
course, we need to specify the model in this case to obtain
a valid test. For example, we may consider the following
model that, under the null hypothesis, there is a possible
structural break at time ¢t = ng = ™n, where 0 < 7 < 1, and
the null model with a structural break is characterized as

Pt = o+ Bdy + uy,

B, = pr,
B2,
and u; is a covariance stationary time series. Under the al-

ternative, the asset price, and thus u;, contains a bubble
and

t=1,2,...,n

where

t:1,2,...,n0
t=no+1,...,n,

pt:a+ﬂtdt+bta t:1,2,...,7’l
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Then, defining a dummy variable

0,
ht = {1

we may write the model as

t:1,2,...,n0
t=no+1,...,n,

P =a+ [Bdy + 0hidy +ug, t=1,2,...,n.

Noticing the difference between the bubbles and the struc-
tural break that we consider in this paper, the dummy vari-
ables can capture the property of a structural break, but not
bubbles. If we regress p; on a constant term, the dividend dy,
and h;dy, a residual based test can still be constructed as be-

fore. In particular, the partial sum process au.i NG :[5751] uf

will now converge to a limiting process V;(r) defined on an
underlying Wiener process that will be dependent on the
number of regressors (which is 2 here) and 7. The asymp-
totic distribution of the test then has a similar form as (16).
We may compute the critical values of the test for differ-
ent values of 7 by simulating empirical approximations to
Brownian motion with a large sample size and replications.
As 7 — 0, or 1, the limiting distribution and critical values
will approach to those with no break. As anticipated, intro-
ducing a structural break reduces the power of the test.

Notice that to distinguish the bubbles from structural
breaks, it is necessary to specify the bubble and breaks.
Without enough specification about the bubble and breaks,
or, with incorrect specification of the structural break, it is
very difficult to distinguish between structural breaks and
bubbles.

4. GENERALIZATIONS

In Section 3 we used the model of Campbell and Shiller
(1987) [also see, e.g., Gordon (1962), Evans (1991), among
others, for the use of this type models] where the market
fundamental price is characterized by (4). Indeed, to our
knowledge, the cointegration based approach of testing bub-
bles has been exclusively focused on this type of models
with a constant rate of return. Relaxing the assumption of
a constant rate of return will substantially complicate the
forward-looking solution to the rational expectation model.
In general, there is no simple analytical solution to the mar-
ket fundamental price unless we impose additional assump-
tions on the associated conditional expectation.

Besides dividends, other sources of stock price fluctua-
tions may be accounted for. As mentioned in the introduc-
tion, time-varying discount rates and risk-premium effects
may all be possible sources of excessive fluctuations. Conse-
quently, covariates that can help explain market fundamen-
tals may also be included in regression (13). However, it is
not easy to construct a general model that fits all the stylized
facts given in the literature. The above mentioned gener-
alizations substantially complicate the market fundamental
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solution, appropriate simplification of the market fundamen-
tal solution has to be introduced. In this section, we attempt
to provide a first step toward incorporating other market
fundamental sources into the cointegration based approach.

4.1 Time-varying discount rate

As an alternative of (1), we may consider a more general
model which allows v change over time:

Piy1+Di }

18
( ) T4+

Pt:Et{

Solving Equation (18) recursively and denoting the growth
rate of real dividend as g;, we obtain the following expression
for the fundamental value of asset prices:

S J
1+ gy
sztEIOIhjng D..

j=0 \i=0

(19)
Gordon (1962) assumes that v and g are constant and

thus (19) reduces to
1
ﬂzmﬁi%,

(20) =g

which delivers the regression model we considered in Sec-
tion 3. In the general case, if we denote the price-dividend
ratio as

¢r =log B, Y (H (T +ge4a) /(1 + ’Yt+i)]> ;

=0 \i=0

then f; can be expressed as a linear function of d; and ¢,. If
¢, were known, we could consider the residual process from
the following regression

Pt = oo + Body + Mody + uy

and construct a residual based test for bubbles as in Sec-
tion 3. However, ¢; is unknown and appropriate approxima-
tion of ¢; has to be used. Giving assumptions about g; and
¢, we may approximate this time-varying parameter. For
example, Barsky and DeLong (1993) considered the rela-
tionship (20) and assume that g in (20) is nonconstant and
replace it by a (geometrically averaged) function of g;—;,
j=0,1,...,k Donaldson and Kamstra (1996) use a simi-
lar idea in estimating market fundamental and conduct an
empirical analysis of bubbles by using unit root tests on the
difference between the asset price and the estimated market
fundamental.

Notice that ¢; is the expectation of the price-dividend
ratio conditional on the information set at time ¢. If certain
variables, say z;, contain past information about v and g,
¢y is also a function of z; and we may consider using z; (or
functions of z;) as an instrument of ¢;. For example, the



Capital Asset Pricing Model (CAPM) shows that the total
return to equity (the sum of capital gains and the dividend
yield) as linearly related to the interest rate. Based on the
CAPM, a reasonable instrument for the price-dividend ratio
(which is the inverse of the dividend yield) might be the
inverse of the short term interest rate r;. We denote the
inverse of the short term interest rate r; as z;. For simplicity,
if we assume that ¢, is a linear function of z;, say ¢; =
(1 + B2z¢, then we obtain

Pt = (Ozo + )\oﬂ1) + Bods + Aofoze + uy.

The above representation suggests that if we consider the
following regression

(21) Dt :aJrBdt JFXZtJFata

we may test the existence of bubbles by looking at the fluc-
tuation in the residual process u;, and thus a test similar
to (15) can be constructed. Denote

O=[a, B XN]|, and wi=[1 dy 2 ],

and for the same reason as in Section 3, we construct the
fully modified residual process

ot — ot Tt
uy =p; — M wy,

where o signifies fully modification (thus II* is the fully
modified estimate of II). A test for the null hypothesis of
no bubbles can be constructed by replacing u; in (15) by
4. Under the null hypothesis of no bubble, as n — oo,
the corresponding test statistic has a limiting distribution
similar to (16), but with S(r) = (1, Wa(r)"), Wi(r) and
Wo(r) are 1 and 2-dimensional standard Brownian motions
that are independent of each other.

4.2 Time-varying risk-premiums

Time-varying risk premium provides another source of
fluctuation in stock prices. Campbell and Cochrane (1999)
considered a simple model with a representative agent whose
utility displays habit-formation. Such a utility function
makes the agent more risk-averse in bad times, when con-
sumption is low relative to its past history, than in good
times, when consumption is high relatively to its past his-
tory. Campbell and Cochrane find that a good account of
fluctuations in stock prices is a time varying (countercycli-
cal) risk premium. Their finding suggests that variables mea-
suring time-varying risk premium are useful covariates to ex-
plain the behavior of prices. For this reason, we augment the
cointegrating regression (21) with a covariate AAA; — BBB;
(the difference of the yields-to-maturity on high-grade and
low-grade bonds) and consider the following regression!

(22) Pt :a+3dt+3\\zlt+8\22t+at =@$t+at7

IWe thank a referee for this helpful suggestion.

where z1; is the inverse of the short term interest rate and
Zot = AAAt — BBBt, and

9, = (a76’A75)'

x; = (1,dt72’1t722t);

The test can be constructed in a similar way to (15).
Under the null hypothesis of no bubble, as n — oo, the cor-
responding test statistic has a limiting distribution similar
to (16), but with S(r)" = (1, Wa(r)’"), where Wa(r) is a 3-
dimensional standard Brownian motion and is independent
of Wi(r).

It is well-known that conditional heteroskedasticity (such
as ARCH (Engle (1982)) or GARCH (Bollerslev (1987)) ef-
fects) can bring excess fluctuation to the residuals. However,
the fluctuation brought by ARCH or GARCH effects is dif-
ferent from the fluctuation brought by bubbles in order of
magnitude. These two types of fluctuations can be distin-
guished by the proposed tests. In particular, although the
conditional heteroskedastic residuals brings fluctuation to
the prices, the order of magnitude of the cumulated sums
is still proportional to the square root of the number of ob-
servations, while the fluctuation in the cumulated bubble
process have larger order of magnitude.

Consequently, in the case that the residual term w; is con-
ditional heteroskedastic, the limiting null distribution of the
test statistic is still given by (16), and the result of our previ-
ous analysis are asymptotically robust to ARCH or GARCH
effects. The proposed tests can not discriminate between the
hypotheses “bubble-free with constant” and “bubble-free
with conditional heteroskedasticity”, but can discriminate
between the hypotheses “bubble-free with conditional het-
eroskedasticity” and “process with bubble”. This is because
that the invariance principle (of the partial sum process)
are robust to heteroskedasticity (see, Pantula (1986, 1988),
Peters and Veloce (1988), Phillips (1987), Kim and Schmidt
(1993) for related studies). For this reason, the proposed test
in Section 4.1 can also be used in testing the null hypothesis
of “bubble-free with conditional heteroskedasticity” against
the alternative of “bubble”. The test proposed in Section 4.2
can also be used in testing the null hypothesis of “bubble-
free with time-varying risk premiums and conditional het-
eroskedasticity” against the alternative of “bubble”.

Remark 3. If we could impose the restriction of “no bub-
ble” in our estimation procedure, we could generate (by
Mounte Carlo experiment) the critical values using the esti-
mated parameters. Unfortunately, we do not know whether
or not there is a bubble in the data and it is difficult to
restrict the model to be “no bubble” in estimation. Conse-
quently, if we generate the critical values by, say, bootstrap-
ping the data, the test will be inconsistent because it would
also capture the behavior under the alternative.

5. A SIMULATION STUDY

In this section, we conduct a simulation study to evaluate
the proposed test and provide a comparison with the tradi-
tional unit root test-based procedures. As we mentioned in
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the previous sections, both the proposed procedure and the
unit root test based procedures can also be used for other in-
ference problems than bubble tests. Our model differs from
the previous models under the alternative hypothesis with
bubbles. Under the hypothesis of no bubbles, the model that
we study in this paper will be the same as other models (on
structural stability and unit roots) that have been examined
in the previous literature. For this reason, the Monte Carlo
study in this section focuses on the behavior of the tests
in the presence of bubbles, although we also present some
results of the empirical size for completeness. For more dis-
cussion on their behavior under the hypothesis of no bub-
bles, see, for example, Schwert (1989); and Xiao and Phillips
(2002).

In generating time series data, we try to calibrate the real-
world data. In particular, we resample the dividend series
from the weekly Standard and Poor 500 Index from Jan-
uary 1974 to September 1998 in each iteration. Notice that
the dividend data are temporally dependent and nonstation-
ary. To preserve these properties in the generated data, we
consider a sieve bootstrap for the differenced dividend series.
The idea of sieve resampling for a time series is as follows:
a weakly dependent time series can be approximated by a
sequence of autoregressive process of order p = p(n), where
p(n) increases with the sample size. In practice, we may
use criteria such as BIC or AIC for the selection of p. In
our simulation, we use the BIC criterion in selecting p. We
resample the dividend series based on the following steps:
Denoting the original dividend time series as {D;}_; and
let w; = ADy, we fit the approximated autoregression

Wy = P1W—1 + -+ + PpWi—p + €t

by the usual OLS regression. We center &; and denote the
centered innovations as & and then draw an i.i.d. sample
{er} from {&;}. Generate {w;} from {e;} by

wi =prw;_q +- o+ ppwi_, +ef, t=k+1,....T,

with w} = wy, for j =1,...
dend resample {D;} by

,p, and finally obtain the divi-

Df =D +w!, t=2...T,

with D} = D;. For asymptotic properties of the sieve boot-
strap procedures, see, inter alia, Buhlmann (1997), Bickel
and Buhlmann (1998), Chang and Park (2000).

Next, we generate data for prices. In the presence of bub-
bles, prices are determined by market fundamentals and
bubbles. However, since we don’t know if bubbles exist, we
can not just simply resample the real-world price series. In-
stead, we have to simulate bubbles. The generated price se-
ries is then the sum of the simulated bubble and the gener-
ated market fundamental.

We generate the bubble process based on (12) where the
residual terms wu; in the bubble process are taken from in-
dependent student-t distributions with 4 degrees of free-
dom. The initial value of b; is set at by = 0 and we choose
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0 = 0.9090, since the sample average market return in the
past 10 years is about 10%. For probability m, we consider
7 =0.9,0.93, 0.95, 0.96, 0.98, corresponding to a probability
of collapse of 0.1, 0.07, 0.05, 0.04, and 0.02.

Based on the dividend series { D} }, we generate the mar-
ket fundamental process using the Gordon fundamental pric-
ing formula (20).2 Again, we need to choose the values of
parameters v and g. In our Monte Carlo experiment, we
choose v to be 0.1 and g to be 0.04. These are the long run
discount rate and dividend growth rate. Finally, the prices
(with bubbles) are obtained by adding the generated bubble
processes to the generated market fundamentals.

To examine the size of the test R, we generate the prices
by adding a stationary component to the generated market
fundamentals. In our Monte Carlo experiment, we consider
three simple cases: an i.i.d. process of N(0,1) random vari-
ables and two AR(1) processes with different values of AR
coefficients u; = pus_1 + €, with p = 0.2 and 0.8 respec-
tively.

We compare the proposed test R with the traditional
unit root based procedures (the augmented Dickey-Fuller
and Phillips-Perron t-ratio tests) that have been used in
bubble testing. The lag length in the ADF test is chosen
based on the BIC criterion. For the proposed test R, since
it is based on nonparametric estimators we need to choose
bandwidth parameters, we calculate the test statistics for a
number of representative values of the bandwidth parameter
M and the subsample parameter m. In particular, we con-
sider the following bandwidth choices: M1 = [4(m/100)/4],
M2 = [6(m/100)*/4], and M3 = [8(m/100)'/4]. For the sub-
sample size in the nonparametric estimation, we consider
m = [n%9], [n98]. All tests are conducted at the 5% critical
level. Four different sample sizes are examined. The sample
sizes in each iteration are n = 200, 300, 500, and 900. The
number of iterations is 400 in each case of data generation.
Table 1 and Table 2 report the empirical size and power of
the proposed test R, and Table 3 provides the simulation
results of the traditional unit root based procedures.

From Table 1, we can see that the test has reasonable
size if the bandwidth is appropriately chosen. In the case
with i.i.d. residuals, a short bandwidth is appropriate. The
test under-rejects when the bandwidth value is large. For
the case of AR residuals with p = 0.8, the bandwidth choice
M3 works best since the serial correlation in the residuals is
pretty high and thus a large bandwidth is needed to capture
the dependence in the residuals.

The Monte Carlo results contained in Table 3 indicate
that the ability of the unit root tests to detect violations of
the null of a bubble is low when it is collapsible. Both the
ADF test and the Phillips-Perron test tend to over-reject the
null hypothesis of a bubble when the bubble is collapsible,
leading to the incorrect conclusion that there are no bubbles.

2For simplicity, we make use of the Gordon model in our experiment
as an approximation here. A more realistic series would be generated
by using a serially correlated process of growth rates.



Table 1. Empirical size of the test R
L.I.D. residuals

n=200 n=300 n=>500 n=0900
M1  0.032 0.037 0.041 0.045
m=n"% M2 0.025 0.031 0.036 0.041
M3 0.016 0.024 0.026 0.033
M1  0.031 0.035 0.040 0.045
m=n" M2 0.024 0.031 0.035 0.040
M3  0.016 0.022 0.026 0.032
AR(1) residuals with p = 0.2
n=200 n=300 n=>500 n=900
M1  0.045 0.046 0.049 0.053
m=n"% M2 0038 0.043 0.045 0.048
M3 0.027 0.036 0.042 0.044
M1  0.044 0.045 0.048 0.052
m=n"" M2  0.036 0.042 0.044 0.047
M3 0.025 0.035 0.040 0.042
AR(1) residuals with p = 0.8
n=200 n=300 n=>500 n=900
M1  0.255 0.232 0.206 0.195
m=n"% M2  0.158 0.141 0.129 0.121
M3 0.056 0.056 0.055 0.054
M1  0.235 0.215 0.194 0.188
m=n"% M2  0.152 0.145 0.128 0.119
M3 0.055 0.057 0.059 0.057

This table shows the empirical size of the test. n is the simulation
sample size and m is the subsample used in the test. M is the
bandwidth parameter. p is the coefficient in the AR(1) process.

Only when the sample size is relatively small (e.g., n = 200
in our Monte Carlo experiment), the unit root based tests
have reasonably low rates of rejecting the hypothesis of a
bubble. But even in this case, if the probability of collapse
is high (say, 1 — 7 = 0.1), the unit root tests still reject
the hypothesis of a bubble frequently. As the sample size
increases, it is clear from the table that when a bubble pro-

cess has the collapsing property, the conventional unit root
tests mistakenly reject the null of a bubble in favor of the
false alternative of no bubble. The rejection rate is increas-
ing with the sample sizes, indicating asymptotic invalidity
of these tests.

On the contrary, as shown in Table 2, the proposed test
has much better performance in dealing with a collapsible
bubble. As the probability of collapse increases, the power
of the proposed test falls only slightly. However, the conven-
tional tests, the ADF and PP tests, have sharply increasing
probabilities of falsely rejecting their null of a bubble as the
probability of a collapse increases. In addition, the rejection
rate of the proposed test increases as the sample size in-
creases, corroborating the asymptotic theory. Both choices
of subsamples provide qualitatively similar results.

6. EMPIRICAL APPLICATIONS

In this section, we apply the above testing procedure to
stock index data from the U.S. and Hong Kong. The sample
period covers some of the most conspicuous episodes of stock
market crashes.

6.1 Data description

We collected weekly price and dividend yield data for the
Standard and Poor (S&P) 500 Index and the Hang Seng
Index (Hong Kong) from January 4, 1974 to September 18,
1998 (Friday close to Friday close). The source of the data
is the on-line service of Datastream. These markets expe-
rienced both crashes as well as relative stability over the
sample period. We use the 1-year T-bill yield as the risk
free rate for the U.S. market and the Hong Kong market.
The yield spread is used as an instrument for the time vary-
ing risk premium.

If we define stock market crash as a drop in a major
stock index of 10% or more during a single day, then the

Table 2. Empirical rate of rejecting the null of no bubble (the R test)

Prob. of Collapse 0.02 0.04 0.05 0.07 0.1 0.02 004 0.05 0.07 0.1
n = 200 n = 300
m=n"% M1 079 078 077 074 072 089 087 087 0.865 0.855
m=n"% M2 077 076 075 0.73 069 0875 0.86 0.84 086 0.82
m=n"% M3 073 070 072 070 067 084 0.83 0.835 0.825 0.79
m=n"% M1 079 072 070 076 077 087 088 085 0.82  0.77
m=n"% M2 075 073 068 071 070 086 0.82 0.815 0.79 0.76
m=n"% M3 074 070 064 068 073 082 078 080 0.78 0.75
n = 500 n =900
m=n"% M1 0.88 0.8 0.87 0.85 0.865 0.95 0.95 092 0915 0.90
m =n"% M2 086 08 086 085 08 091 092 089 0.905 0.88
m=n"% M3 0.86 087 087 0.85 085 0.88 0.87 087 0.88  0.87
m=n"" M1 0.87 0875 0.87 0.84 0.825 092 091 091 0.89 0.9
m =n"% M2 0.86 0.875 0.86 0.855 0.815 0.8 0.85 085 0.81 0.80
m=n"% M3 08 087 08 08 081 085 084 084 081 0.79

This table shows the empirical rate of rejecting the null of no bubble. n is the simulation sample size
and m is the subsample used in the test. M is the bandwidth parameter.
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Table 3. Empirical rate of rejecting the null of a bubble (ADF and PP)

Prob. of Collapse  0.02 0.04 0.05 0.07 0.1 0.02 0.04 0.05 0.07 0.1
n = 200 n = 300
ADF test 0.39 0.59 0.65 0.805 0.91 0.795 0.89 0.895 0.91 0.935
PP t test 0.73 0.79 0.85 0.89 0.945 0.835 0.91 0.919 0945 0.945
n = 500 n =900
ADF test 0.865 0.93 0.945 0.955 0.97 0.935 0975 0.985 0.995 0.995
PP t test 0.875 0.93 0.955 0.97 0.975 094 0.975 0.985 0.995 0.995

This table reports the empirical rates of rejecting the null hypothesis of a bubble based on the Aug-
mented Dickey-Fuller test and the Phillips-Perron test. n is the simulation sample size.

U.S. stock market has experienced only two crashes in the
20th Century, one in October 1929 and the other in October
1987. Over our sample period, the S&P 500 Index, which
consists of 500 large capitalization stocks on the New York
Stock Exchange, increased 10-fold from 100 to 1,020, with
an average annual return of 9.5%. From August 1995 to
September 1998, the index produced a 20% annual rate of
return. Expectations on future returns were high at the end
of our sample period. However, there were signs that this
high level of return might not be sustainable.

The Hong Kong stock market had more than its share
of ups and downs. The market crash in 1973 prompted the
government to unify the territory’s four exchanges to form
the Stock Exchange of Hong Kong (SEHK). It is now among
the leading stock exchanges in the world and, in terms of
market capitalization, the second largest in Asia after the
Tokyo Stock Exchange. Over our sample period, the Hang
Seng Index increased 17-fold from 425 to 7,446, with an
average annual return of 11.7%. It experienced crashes in
October 1987, June 1989, November 1994 and October 1997.
The last crash was preceded by a climactic upward surge
on the stock and property markets ahead of the transfer of
sovereignty from Britain to China. It was associated with the
Asian financial market crises that affected the entire Asia
Pacific region. During this dramatic market downturn, the
Hang Seng Index dropped from its peak of about 16,700 in
August 1997 to about 7,400 in September 1998, a whopping
55% decline.

6.2 Testing procedures

To examine various specifications in modeling market
fundamentals, we apply the following two tests to the data
sets. The prices and dividends are in logarithms. The upper
tail critical values for these tests are calculated based on
simulations using a sample of size 2,000 and 20,000 replica-
tions.

Test 1: The first test is based on model (21). We assume
that market fundamental is not only affected by the divi-
dend series d;, but also by the short term interest rate ;.
We consider the fully modified residuals from the following
regressions:

Pt = 5+ Bldt + BZZt + Uy,
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where z; is the inverse interest rate. In this case, the limit-
ing null distributions of the corresponding tests are given
by (16) with S(r)" = (1,Wa(r)), where Wh(r) is a 2-
dimensional standard Brownian motion and independent of
Wi(r) in (16). The corresponding 1% and 5% level critical
values for this test are 1.285 and 1.041. The test will reject
the null when the calculated test statistic is larger than the
corresponding critical value.

Test 2: The second test augments the model in Test 1 by
adding an additional variable (AAA; — BBB;) to capture the
time-varying risk-premium effect and consider the following
cointegrating regression

P = a+ Bdt + :\\th + 5\321: + Uy,

where z1; is the inverse of the short term interest rate and
2ot = AAAt — BBBt

The test statistic can be constructed in the same way as
the previous tests according to formula (15). Under the null
hypothesis of no bubble, as n — oo, the corresponding test
statistic has a limiting distribution similar to (16), but with
W (r) being a 3-dimensional standard Brownian motion in-
dependent with W1 (r). Asymptotic 1% and 5% level critical
values are 1.146 and 0.941 respectively.

6.3 Stationarity of stock prices and
dividends

To detect the existence of bubbles, we first test the
(non)stationarity properties of the stock price and the div-
idend. According to the model described in Section 2, the
dividend process and the stock price process are all nonsta-
tionary. If there is no bubble in the stock price, the resid-
uals from the cointegrating regression should be station-
ary (1(0)). If, however, the stock price contains a bubble,
then the residuals are not stationary (I(0)), although it is
not a traditional unit-root process because the bubble col-
lapses.

A statistic similar to (15) can be used to test for sta-
tionarity (or trend stationarity) in the stock and dividend
series by simply substituting %" by the detrended stock
prices and the dividends in formula (15) and by replac-
ing @,.q by the corresponding long-run variance estimates



for these series. See the Appendix for a description of this
test. We test the stationarity properties of our data us-
ing this procedure, and the results are reported in Ta-
ble 5. (Alternative procedures for testing stationarity were
also considered and qualitatively similar results have been
obtained.) Since the test is semiparametric and involves
a bandwidth choice, we calculate the test statistics for a
number of representative values of the bandwidth param-
eter M. Specifically, we calculate the statistics for band-
width choices M1 = [4(n/100)'/4], M2 = [6(n/100)'/4],
M3 = [8(n/100)*/4], and M4 = [12(n/100)/4]. The
tests reject stationarity for statistics larger than a critical
value.

We first look at these tests applied to stock prices. The
evidence of nonstationarity in the stock prices is very strong.
Similar results can also be found using the dividends data.
All the calculated statistics (for all bandwidth choices) are
much larger than the 5% level critical values, and thus sta-
tionarity should be rejected. Next, we test the stationarity
of the first differences of the dividends. It is found that the
statistics for all bandwidth choices are less than the 5% crit-
ical values, indicating stationarity. These results support the
assumptions of the model and are consistent with the exist-
ing empirical results on the nonstationarity of stock prices
and dividends. (For more details, see Table 5 in an earlier
version of this paper.)

6.4 Empirical test for bubbles

We now test the existence of bubbles in stock prices
using both Test 1 and Test 2 described in Section 6.2.
Since the bandwidth M is an important parameter in the
construction of the tests, we examined the tests based on
a range of different choices of bandwidth values: M1 =
[4(m/100)'/4], M2 = [6(m/100)'/4], M3 = [8(m/100)'/4],
M4 = [12(m/100)*/4], and M5 = [14(m/100)*/4], where m
is the subsample size which is chosen as m = n%? in our
empirical analysis. These lag truncation parameters were
chosen because the variance estimates of each time series
become reasonably stable by the time we reach M5.

The empirical results are reported in Table 4. In partic-
ular, Panel A of Table 4 reports the calculated test statis-
tics for the Hong Kong Hang Seng Index weekly data. Note
that the test statistics decline monotonically as M increases.
Considering the fact that there is substantial serial correla-
tion in the stock price time series, we are particularly inter-
ested in the results when M is large. In the first test (i.e.
Test 1), the null hypothesis that there is no bubble is re-
jected at the 5% level for all bandwidth choices. Even the
minimum statistics (when M = M5) is larger than the 5%
critical values. In fact, we reject the null hypothesis even at
1% level of significance in many cases with Test 1. When we
add the time-varying risk premium covariate, the values of
the calculated statistics of Test 2 decrease, when we choose
M = M5, the null hypothesis can not be rejected at the 5%

Table 4. Bubble tests for stock prices

Hong Kong Data

M1 M2 M3 M4 M5
Test 1 2.0081 1.7549 1.5461 1.3606 1.2266
p-values 0.01% 0.1% 0.5% 1.7% 3%
The level of k leading to the statistic: k™ = 451
Test 2 1.6943 1.3806 1.1247 1.0075 0.9366
p-values 0.2% 1% 1.5% 2.4% 5.1%
The level of k leading to the statistic: k™ = 447
US Data
M1 M2 M3 M4 M5
Test 1 1.81563 1.5026 1.2522 1.1448 0.9996
p-value 0.07% 0.6% 1.5% 2.5% 5.2%
The level of k leading to the statistic: k* = 993
Test 2 1.3303 1.0954 0.9029 0.8244 0.7823
p-value 0.5% 2% 5.2% 8% 14%

The level of k leading to the statistic: k™ = 924

This table reports the test results on bubbles in the Hong Kong
and U.S. markets. The sample size is 1290. M is the bandwidth
parameter.

level of significance. However, for all other cases, the null
hypothesis is rejected at 5% level. In summary, the tests
rejects the null of no bubble for almost all (but one) cases,
indicating the possibility of bubbles in the Hong Kong stock
market.

Panel B of Table 4 reports the calculated test statistics
for the US weekly data. The results of US market turns out
to be somewhat different than the Hong Kong market. Again
the test statistics decline monotonically as M increases. As
shown in these tables, most test statistics are smaller than
those for Hong Kong. When we apply Test 1 to the US data,
4 out of 5 statistics are larger than the 5% critical value.
The only case not rejecting bubble at 5% level is the one
using M5. But when we go to 1% level, three out of the five
cases could not reject the null. Such a result is strengthened
when we add the time-varying risk premium covariate in
the regression, the results of Test 2 indicate that for cases
M = M3, M4, and M5, the null of no bubble could not be
rejected at the 5% level and only the case M = M1 rejects
the null at 1% level. Giving the fact that there is substantial
serial correlation in the data and thus a large bandwidth is
needed, the evidence of bubbles in the US market is weak
and we can not reject the null of no bubble in the second
test.

Our tests delivered different results on the US and Hong
Kong market. Based on these tests, we conclude that there
is some evidence that there were bubbles in the Hong Kong
stock market. As discussed in the data section above, the
Hong Kong stock market experienced three crashes over the
sample period. Our tests can not reject the hypothesis of
no bubbles in the US market for some choices of bandwidth
values.
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APPENDIX

6.5 The fully modified and the
nonparametric estimators

The FM (fully-modified) estimation and related nonpara-
metric estimates have been studied by Phillips and Hansen
(1990) and Phillips (1995). For a detailed analysis of these
procedures, the readers are referred to these papers. We pro-
vide a brief description of them here for convenience.

Under the null hypothesis of no bubble, the partial sum
of the residuals in (13) has the following limit

{/ By(s)dBu(s )+Aud]
xuémwﬁi[&@m

where B, is a Brownian motion, B, is a demeaned Brown-
ian motion, and A,q = E (3, uod;) is the one-sided long
run covariance between u; and d;. If the error term u; were
known, the limiting distribution of its partial sum process
would be By (r). The second term on the right-hand side
of (23) comes from the estimation error of @;. Consequently,
the limit of the partial sums of u; is a functional of B,,, B,
and depends on A,4. These are nuisance parameters. To
get rid of the nuisance parameters, we construct the fully
modified residual process as

[nr]

(23) n_l/QZu = B,(

uzr_pt +_ﬂ+dt7

where (a™, B"’) is the fully modified estimator of (c, 3) de-

fined as

(5] (St (S -3 0]),

we = (Lde)s pf = pe = AL Qay A, = Agu —
Added Qdu, and Adu Add, Qdu, and Qdd are nonparamet-
ric kernel estimates (Phillips, 1995) constructed based on a
subsample of size m and defined as

Agu = Zk( )C’du Add_Zk( )cdd)

a2, = _ZM: k(%)@zu(h)’ Qaa = i k(%)cdd(h)v

h=—M

k(-) is the lag window defined on [—1,1] with £(0) = 1,
Cuu(h) = m’lzl Uty Where Z/ signifies summation
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over 1 < t,t4+ h <m, and M is the bandwidth parameter
satisfying the property that M,m — oo and M/m — 0,
n—m — oo as the sample size n — oco. Cyq, Cy, are defined
in the same way. Candidate kernel functions can be found
in standard texts (e.g. Hannan, 1970; Brillinger, 1980; and
Priestley, 1981). Similarly, we can construct the nonpara-
metric long-run variance parameter &2 ; as

~2 ~2 o-10
wu d= w Quded Qdu,

where @2 = %271” k(£)Cyu(h). The bubble test can then

be constructed based on ;"

1 + 1 n ~+
EZ — o2

t=1

k
E kma n wud\/_

It can be shown that under the null, R = supy<,<; ‘17(7“)

where V(r) = Wy(r) = rW,(1), Wy(r) = Wi(r) -
—1

[ awis'] [JEss] " Iy S, Sr) = (LWa(r), and Wi (r)

and Wa(r) are standard Brownian motions that are inde-
pendent of each other.

6.6 Asymptotic behavior of the test under
the alternative

Under the alternative hypothesis, there is a bubble in
the stock prices and thus, as shown below, no cointegration
between d; and P;. Notice that b; = asb;_1 + u¢, thus, by
substitution we have

t

by = pt,0bo + Z Ot,1UL,
=1

where

t
I

j=i+1

Assuming that the initial value of bubble by =
Sy Pt

In the presence of a bubble, the partial sum of ;" has dif-
ferent order of magnitude than before. In particular it can

- Zt 1 di-
verge as n — oo. However, under Hp, the nonparametrlc
estimators @2, Ag,, and Qg,, diverge as well. In order to
preserve the consistency, we need to show that the denomi-
nator diverges at a slower rate.

07 bt:

be shown that maxg—1,.. » % ‘% Zle 17

To verify the order of magnitude of the numerator, it
suffices to look at



[or]
% Sal = \} Z [0 = A0 D

[nr

-5t

_ Z{ — A 00, — (@1 — )
— (5" - 0]
- [fjbt f[m' 1 Qa + (@ - )
+ (B = B)d]

By straightforward calculations, we can verify the order of
magnitude of each component. For example, for the first
term,

[nr]

tha

we calculate its second moment. In particular,

(24)

[nr]

o0

[nr]

Z Eb? +

[n'r [nr]

ZZEbm,

t 1 s=t+1
by a direct calculation of expectations we have

Bbf = op (A" =1)/(A - 1),

and for s > t,
Ebib, = o2(A' — 1) /[(A — 1)1,
where
A = B(a}) = Var(aj) + 1/6* = 02 +1/6% > 1.
Thus

2
Alnrl
o2,
n
and (24) is of order OP(W

order of magnitude of

). We can verify that the

[n7]
1 A1 ~ a
T 2 [ MR+ @ =)+ (5 - )i,
t=1

A[nr]

is also Op(
For the nonparametric estimator, we consider

G-y (7 )€t

h=—M

where

Cuu(h) = Cuu(h) =m™" Y Gyl
1<t,t+h<m
Again, by direct calculations, it can be veri-
fied that m_lzlgt,t+h§matat+h = Oy(5-) and

02 = O0,(MA™/m). Other nonparametric estimates

can be verified similarly (also see Xiao and Phillips (1998)
for related discussions on periodogram averages of inte-
grated processes). Consequently, the testing statistic is of
order O,(AM=™)/2/\/M), which diverges to co under our
assumptions.

6.7 Stationarity test

The testing procedure can also be used to detect station-
arity. Suppose that we want to test the hypothesis that a
time series z; is stationary around a deterministic trend x;.
We detrend z; by least squares regression
(25) 2t =72+ s
and denote the detrended time series as 7j; = 2; —7'x;, where
7=0D2 apa)] [>; :2¢]. The following statistic can then
be used in testing (trend) stationarity in time series

T . 1<
=Y == 7
k;tn;t

Under stationarity, as n — oo,

k
2 = —
(26) S, = max =—m

S, = sup ‘Wx(’l") ,
0<r<1
where Wi (r) = W (r) = [fy dW (s)X (s)'][f, X(s)X (s)'ds]~
Jy X(s)ds.

The critical values of §,, for the leading case of a linear
trend are calculated by a direct simulation using a sample
size of 3,000 and 50,000 replications and the 10%, 5%, and
1% level upper tail critical values are 0.827, 0.901, 1.041,
respectively.
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