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Impact of overnight information on MEM
volatility prediction

C. F. Chu and K. P. Lam

Overnight return in stock market is one kind of infor-
mation that can reflect the volatility of the corresponding
financial instrument. However, some volatility estimators,
either based on range-based or high-frequency data, do not
include this information in their formulations. In this study,
we investigate the impact of overnight return on Engle’s
Multiplicative Error Model (MEM). Garman’s and Hansen’s
whole-day-based estimators are studied to demonstrate the
effects under minimum-variance situations. Besides, a gen-
eral framework for incorporating overnight information is
proposed and the results are discussed. Our findings demon-
strate that overnight return gives a non-monotonic influence
and it does contain useful information for predicting the
CBOE volatility indexes under specific combinations.

Keywords and phrases: Volatility forecast, Multiplica-
tive Error Model, MEM, Overnight return.

1. INTRODUCTION

Overnight return, the return results from the price differ-
ence between last market close and current market open, is
one kind of information that can reflect the volatility of the
corresponding financial instrument. However, not all volatil-
ity estimators make use of this information in their for-
mulation. For example, the estimators proposed by Parkin-
son [19], Garman & Klass (σ2

4) [10], Rogers & Satchell [21]
and even the standard realized variance [1] do not incorpo-
rate overnight return whereas estimators proposed by Gar-
man & Klass (σ2

6) [10], Yang & Zhang [22] and Hansen
& Lunde [12] do. There is no consensus on which kind of
estimators, with and without overnight return, can better
capture the underlying volatility in stock market. Further-
more, some estimators are based on daily range quotes while
some are based on high frequency quotes and this further
complicates the problem about the appropriateness of in-
corporating overnight return in the formulation of volatility
estimators.

One practical usage of volatility estimators is to set
them as the information sources for volatility prediction.
Popular volatility prediction models such as variants of
ARCH/GARCH [4, 6, 13] and RiskMetrics [25] are shown to
satisfactorily capture the dynamics of stock returns. How-
ever, most of their variants are not suitable to handle non-
negative time series as the information source. To properly

handle the non-negativity, Engle proposed to model the er-
ror in the series as the multiple of the conditional mean
estimates, adopting it as the mean equation in the GARCH
framework [7]. This model is known as Multiplicative Error
Model (MEM) and it can provide consistent results for var-
ious distributions of error terms under its quasi maximum
likelihood estimation method, making it robust to ambigu-
ous error assumptions [8, 16].

Besides using econometric models to measure future
volatility, there is another way to indicate the level of fluc-
tuation in the future. The Chicago Board of Options Ex-
change (CBOE), the world’s largest options exchange, has
compiled volatility indexes by averaging the weighted prices
of put and call options to measure the market expectation
on future volatility [24]. The CBOE market-based volatil-
ity index has been related to the model-based conditional
volatility in recent literature. Blair et al. investigated the
information content of VIX for the prediction of GARCH
volatility and found out the current VIX value contains the
richest information content for 1-step-ahead predicted real-
ized volatility [3]. Besides, Engle & Gallo studied the pos-
sibility of using MEM volatilities to improve the prediction
of VIX in 2006. They demonstrated that multi-step average
volatilities can be incorporated as statistically significant re-
gressors in the auto-regression of VIX [8].

In this study, the impact of overnight information on
volatility prediction is explored. We investigate the charac-
teristics of MEM volatilities resulting from various degrees
of overnight components and assess their incremental in-
formation content accordingly. Our study aims to address
the following issues: 1) To what extent overnight informa-
tion affects MEM outcomes; 2) Whether range-based and
high-frequency estimators behave differently; 3) Whether
the inclusion of overnight information provides additional
information for predicting market-based volatilities. This
study is divided into two phases to tackle these issues
systematically. In the first phase, the relationships among
the predicted conditional volatilities from range-based and
high-frequency estimators with and without overnight in-
formation are studied. In addition to the defined minimum-
variance situations [10, 12], a generalized framework is pro-
posed to broaden the investigation. Afterward, the incre-
mental information content of the predicted volatilities is
assessed by the improvements on the auto-regression of
market-based volatility indexes in the second phase.
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This paper is organized as follows. Specifications of vari-
ous volatility estimators are in Section 2. A brief introduc-
tion of Multiplicative Error Model (MEM) and the model
settings for our study are in Section 3. Empirical investiga-
tions of impacts of overnight information are discussed in
Section 4 and Section 5 states the conclusion.

2. VOLATILITY ESTIMATORS

Estimating volatility has long been a major issue in the fi-
nancial literature. Classical estimation method assumes un-
derlying stock price follows a simple Brownian motion and
takes squared log daily return as an unbiased variance es-
timator. However, this simple estimator cannot satisfacto-
rily capture the underlying dynamics and was shown to be
not efficient [10]. In 1980, Parkinson formulated a way to
use high and low price to better capture the underlying
dynamics [19]. In the same year, Garman and Klass pro-
posed a minimum-variance unbiased variance estimator for
a simple Brownian motion [10]. Ten years later, an estima-
tor for a drifted Brownian motion was proposed by Rogers
and Satchell. It was a drift-independent variance estimator
that was proved to be unbiased for Brownian motion with
drift [21]. Besides, Yang and Zhang formulated a multiple-
day-averaged drift independent minimum-variance unbiased
variance estimator in 2000 [22]. These volatility estimators
are called range-based estimators as they are calculated by
using open, high, low and close information.

Another stream of volatility estimators is called high-
frequency estimators as they are based on the high-
frequency intraday return information. The most well-
known estimator is the standard realized variance proposed
by Andersen and Bollerslev in 1998 [1]. This estimator is for-
mulated as the sum of squared high-frequency intraday re-
turns. However, studies showed that this estimator becomes
biased with the increase of sampling frequency [2, 11, 17].
The bias is caused by the autocorrelation effect resulting
from non-synchronous trading, bid-ask spread and data ex-
trapolation in the real market and the influence is collec-
tively regarded as a market microstructure noise. The noise
may bias the results and various ways have been proposed
to tackle this problem [2, 17]. Usually, higher sampling fre-
quency will lead to a more significant noise problem. One
practical work-around is to select a sampling frequency that
is not too high to avoid the autocorrelation problem. On the
contrary, range-based estimators do not suffer from the mi-
crostructure noise problem and they have been shown to be
robust under a simulation experiment [23]. It is still a contro-
versial issue to decide which type of estimators, range-based
or high-frequency, can express the volatility best.

Four estimators are selected as input sources for MEM
models in our study. Garman and Klass’s estimators are se-
lected as range-based estimators to measure the volatility in
an active trading period (σ̂2

4) and a whole day period (σ̂2
6)

Figure 1. Illustration of the scope of four estimators.

respectively. For high frequency estimators, Newey-West re-
alized variance (σ̂2

NW ) and Hansen and Lunde’s whole-day-
based minimum-variance realized variance (σ̂2

wholeRV ) are
chosen. Figure 1 illustrates the time spans of these estima-
tors. Overnight information is embedded in both whole-day-
based estimators, σ̂2

6 and σ̂2
wholeRV .

2.1 Garman & Klass’s volatility estimators

Garman and Klass proposed a number of estimators in
their seminal paper in 1980 [10]. Among the few estimators,
there is one for estimating the volatility in an active trading
period and one for a whole day period. The estimator for an
active trading period is formulated as follows.

(1) σ̂2
4 = 0.511(u − d)2 − 0.019[c(u + d) − 2ud] − 0.383c2

where Ct = log of the closing price of day t
Ot = log of the opening price of day t
Ht = log of the highest price of day t
Lt = log of the lowest price of day t
u = Ht − Ot (normalized high)
d = Lt − Ot (normalized low)
c = Ct − Ot (normalized close).

The whole day version is formulated as:

(2) σ̂2
6 =

a

f
(Ot − Ct−1)2 +

1 − a

1 − f
σ̂2

4

where f is the fraction of that day that trading is closed and
it is set to 1050/1440 in our study. a is a weight parameter
and it is set to 0.12 to achieve minimum-variance property
regardless of the value of f .

2.2 Realized variance and Hansen & Lunde’s
whole-day-based variance estimator

Standard Realized variance is the most well-known high
frequency estimator to measure the volatility in an active
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trading period. Its formulation for day t is:

(3) σ̂2
RV =

m∑
i=1

{p(xi) − p(xi − Δ)}2

where xi denotes the time, p(xi) is the price at time xi, Δ
is the sampling interval, m is the total number of intraday
prices recorded (excluding the opening price) in a day and
p(x0) is the opening price of day t.

An important concern about the estimation of realized
variance is whether the return series is autocorrelated or
not [18]. The standard realized variance becomes biased
when the returns are autocorrelated and the result should
then be adjusted accordingly. The autocorrelation phe-
nomenon always happens in high-frequency data and there
are various ways to offset the bias. Hansen & Lunde sug-
gested an estimation method to handle the bias and re-
garded it as the Newey-West modified realized variance [11].
This method is based on Bartlett kernel and is guaranteed
to be nonnegative. The Newey-West modified variance for
day t is defined as:

σ̂2
NW =

m∑
i=1

y2
i + 2

q∑
h=1

(
1 − h

q + 1

) m−h∑
i=1

yiyi+h

yi = p(xi) − p(xi − Δ)(4)

the variable q represents the lag-length and it is set to q =
ceil(mw

d ) where w is the desired length of lag window and
d is the total length of sampling period (trading period) in
minutes [11].

For the whole day period, Hansen and Lunde defined
an optimally combined whole day variance estimator in
2005 [12]. It is a minimum-variance estimate constructed
by a weighted squared overnight return and Newey-West
modified realized variance. The following equations show the
settings for Hansen and Lunde’s minimum-variance whole-
day-based estimator (σ̂2

wholeRV ).

σ̂2
wholeRV = ω∗

1r2
1,t + ω∗

2 σ̂2
NW,t(5)

ω∗
1 = (1 − ϕ)

μ0

μ1
(6)

ω∗
2 = ϕ

μ0

μ2
(7)

ϕ =
μ2

2η
2
1 − μ1μ2η12

μ2
2η

2
1 + μ2

1η
2
2 − 2μ1μ2η12

(8)

where ω∗
1 and ω∗

2 are the optimal weight for the min-variance
estimator. r2

1,t is the squared overnight return. μ0, μ1 and
μ2 are the expected value of integrated variance, overnight
variance and Newey-West realized variance respectively. η1,
η2 and η12 are the variance of overnight variance and Newey-
West realized variance and their covariance respectively.

3. MODELS SPECIFICATIONS

3.1 MEM specification

The way to employ volatility estimators as input series
for GARCH type models is different from those for treat-
ing returns as input series. Due to the non-negative nature
of the volatility estimators, it is difficult to use traditional
GARCH type models, which is based on linear formulation
on a return process, to estimate the model parameters as
the variance and higher moments of error distribution are
unlikely to be constant [7]. Engle proposed an efficient way
(MEM-GARCH) to model non-negative series in GARCH
framework by treating the series as a composition of its con-
ditional mean multiplied by a unit-mean error term. This
multiplicative error structure is able to provide consistent
results for error terms that belong to a family of gamma
distribution as the corresponding first order optimality con-
ditions on the log-likelihood functions is the same.

The MEM (1,1) model is defined by the following two
equations.

xt = μtεt Mean eqt.(9)
μt = ω + αxt−1 + βμt−1 + c′zt−1 Variance eqt.(10)

In the mean equation, xt is the non-negative time series, μt

is the conditional mean estimates and εt represents a unit-
mean gamma-distributed i.i.d. error process. The variance
equation is similar as that in the GARCH framework by
replacing the error squared term with xt in the ARCH term.
Furthermore, exogenous variables are treated by including
zt in the variance equation.

With the restriction of a unit-mean on the distribution of
εt, the corresponding log-likelihood function for the model
is defined as L(θ).

(11) L(θ) = constant − a

T∑
t=1

[
−log(μt(θ)) −

xt

μt(θ)

]

where a controls the shape of the gamma distribution, θ is
the parameter set {α, β and c′} to be estimated and T is
the size of the training sample. The first order optimality
condition for maximum likelihood estimation is:

(12)
T∑

t=1

[
−log(μt(θ)) −

xt

μt(θ)

]

Noticing that the shape variable a does not affect the first
order condition and its value is irreverent and does not have
any influence on θ and their standard errors [7, 8].

Without the justification of the underlying error distribu-
tion, it is suggested to derive the parameters in equation 10
by traditional GARCH framework as the maximizer of equa-
tion 11, which is a quasi maximum likelihood estimator. Lee
& Hansen demonstrated the Gaussian likelihood estimation
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method for GARCH(1,1) can provide consistently estimated
parameters for input series which is neither Gaussian nor
independent [16]. Referring to Engle’s procedure, the pa-
rameters can be obtained by taking the positive square root
of the non-negative variable of interest

√
xt as the depen-

dent variable and setting the mean value to zero with the
assumption of normally distributed errors [7, 8].

In this paper, we employ the MEM(1,1) framework to
predict the future volatility based on the most up-to-date
volatility estimates. This framework has been successfully
modeled the dynamics of non-negative volatility series, in-
cluding range-based and high-frequency estimates, in some
applications [8, 14, 15] and has been extended to multivari-
ate cases recently [5]. We treat xt in equations 9, 10 as a
proxy to represent the input series (volatility estimates) for
the model.

3.2 Correlation analysis among models with
and without overnight information

Correlation analysis on the predicted conditional volatili-
ties from MEM with and without overnight information are
used to study the overnight impact. As stated in Section 2,
σ̂2

4 and σ̂2
NW are estimators without the consideration of

overnight return in their formulation while σ̂2
6 and σ̂2

wholeRV

are estimators with overnight return.
To model the MEM 1-step-ahead conditional variances,

we leave the exogenous term in equation 10 empty and
replace the xt in equation 9 by the estimators defined in
equations 1–5 correspondingly. Since the estimators repre-
sent variance for different time spans as stated in Figure 1,
their magnitudes are naturally different. Therefore, we em-
ploy correlation coefficient as a scale-independent measure
to evaluate the impact of overnight information. For in-
stance, if all overnight returns equal to zero, the correlation
will be 1. A small correlation demonstrates a large impact
from overnight returns. The predicted conditional volatil-
ities (i.e. square root of the conditional mean estimates)
are named as MEM-σ4, MEM-σ6, MEM-σNW , and MEM-
σwholeRV respectively for the rest of this paper for clarity.

3.3 Generalized whole-day-based variance
formulation

Observing that the minimum-variance estimators in
equations 2 and 5 can be formulated as:

(13) Var t = w1On2
t + w2Actt

where Var t and Act t represent variance estimates of whole
day period and active trading period on day t respectively.
w1 and w2 are weight factors and Ont is the overnight re-
turn. Var t can then be considered as a linear combination
of squared overnight return and a variance estimate of an
active trading period.

The minimum-variance estimators, σ̂2
6 and σ̂2

wholeRV , can
be considered as a particular weight combination. Scholars

may use weights other than the minimum-variance weights
to construct whole-day-based variance estimators. For ex-
ample, Blair [3] and Gallo [9] use weights with w1 : w2 =
1 : 1 to construct their estimators for whole day period.
Sometimes, people may simply set w1 = 0 as it is supposed
that the magnitude of overnight variance is comparatively
small and cannot give significant influence on the outcomes.
To broaden our investigation of impact from overnight in-
formation, we try to consider all the possible combinations
of positive w1 and w2 and formulate the estimator for whole
day period as:

Var t = (w1 + w2)
[

w1

w1 + w2
On2

t +
w2

w1 + w2
Act t

]
(14)

= (w1 + w2)(λOn2
t + (1 − λ)Act t)

where λ is some positive scalar and 0 ≤ λ ≤ 1. λ can be
considered as a variable that governs the composition and
its value indicates the influence of overnight information on
a whole-day-based estimator. The portion λOn2

t +(1−λ)Act t

represents a scaled version of Var t.
As our MEM models do not have any exogenous vari-

able, the scaling factor, w1 +w2, only adds a constant term,
T log(w1 + w2), to the likelihood function in equation 12.
The optimal conditional variances for the original series
therefore only differs with the scaled version in a factor of
w1 + w2. In other words, the value of conditional volatili-
ties for the original series is equal to those from scaled se-
ries multiply

√
w1 + w2. Since we use correlation to compare

the overnight impact and linear regression to reflect the in-
cremental information content of the predicted conditional
volatilities, the properties of scaled form λOn2

t +(1−λ)Act t

can therefore demonstrate the corresponding properties of
the original series. Our generalized whole-day-based formu-
lations are as follows.

general σ̂2
4,t = λOn2

t + (1 − λ)σ̂2
4,t(15)

general σ̂2
RV,t = λOn2

t + (1 − λ)σ̂2
NW,t(16)

where general σ̂2
4,t and general σ̂2

RV,t represent generalized
variance estimators based on range information and high-
frequency information respectively. Our refined study will
use these two estimators to substitute the xt in equations 9
and 10 for evaluating the impact of overnight return. Their
corresponding predicted conditional volatilities are labeled
as MEM-general σ4 and MEM-general σRV .

3.4 Regression models for VIX/VXD
prediction

The information content of MEM predicted volatilities is
assessed by their influence on the prediction of market-based
volatility indexes (VIX and VXD). The indexes involved
are constructed by the Chicago Board Options Exchange
(CBOE), the world largest options exchange, to capture
market expectation of the next 30 calendar days (22 trading
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days). They are compiled by averaging the weighted prices
of put and call options in the market to reflect the option
implied volatilities, which in turn, represent the market’s
expectation of future fluctuation and hence they are called
market-based volatility [20]. VIX aims to capture the volatil-
ity of S&P 500 index while VXD aims at Dow Jones Indus-
trial Average (DJIA) [24]. The CBOE index has been related
to the model-based predicted volatility in recent literature.
Blair et al. investigated the information content of VIX for
the prediction of GARCH volatility and found out the cur-
rent VIX value contains the richest information content for
1-step-ahead predicted realized volatility [3]. Besides, Engle
& Gallo studied the possibility of using MEM volatilities to
improve the prediction of VIX in 2006. They demonstrated
that multi-step average volatilities can be incorporated as
statistically significant regressors in the auto-regression of
VIX [8].

Under ideal efficient market hypothesis, risk neutral as-
sumptions and the absence of insider information leakage,
the model-based predicted volatility and the market-based
volatility index should contain the same information con-
tent. However, these ideal situations are not valid for the real
case and the information content of the two volatilities are
usually different. Furthermore, their coverage on time hori-
zon are different. The options used to compute the indexes
last for around 30 calendar days covering both trading and
non-trading overnight period [24] while the model-based pre-
diction may be based on estimators without any overnight
component. As the market-based volatility indexes cover the
volatility for both overnight and active trading period, it
is interesting to know whether the inclusion of overnight
information in model-based volatility can provide any ad-
ditional predictive value. For the simplicity, the existence
of incremental information content of overnight return is
checked by simple linear regression models based on ordi-
nary least squares method. The general regression model is
as follows:

MIt = κ + γMIt−1 + δMemRanget(17)

+ ζMemHighFreqt

MI is the market based index, such as VIX and
VXD. κ, γ, δ and ζ are the regression coefficients,
MemRanget and MemHighFreqt are the proxies that rep-
resent the MEM predicted volatilities for day t with various
weight on overnight composition. The estimators in equa-
tions 1, 2 and 15 are substituted as the range-based proxies
(MemRanget) while 4, 5 and 16 are as high-frequency prox-
ies (MemHighFreqt) respectively.

By placing restrictions on certain parameters, we can de-
fine four different models.

1. Base model of AR(1) for the prediction of market based
index by setting δ = ζ = 0

2. Model with the use of range-based information as an
additional regressor: ζ = 0

3. Model with the use of high-frequency information as an
additional regressor: δ = 0

4. Unrestricted model that incorporates both range-based
and high-frequency information

The regression results are compared relatively to the base
specification (i.e. simple AR(1) model). Adjusted R-square
and F statistics are used as performance measures. Although
the value of market indexes constructed by CBOE represents
volatilities in an annual basis, the regression models are still
valid as the model coefficients can absorb the scaling effect.

4. EMPIRICAL INVESTIGATION OF THE
IMPACT OF OVERNIGHT INFORMATION

Two index data sets, S&P 500 and Dow Jones Industrial
Average (DJIA), in the period of 13 March 2006 to 11 Jan-
uary 2008 (458 trading days) are used in our study. The in-
dex values are sampled every 10 minutes starting from 9:30
to 16:00 inclusively. In addition, the daily close of their cor-
responding volatility indexes, VIX and VXD, are used for
the regression analysis to investigate the information con-
tent of the predicted volatilities.

Our data selection scheme for model training is based on
a rolling sample approach. For instance, if the sample size
is m, the first sample for model training will be the 1 to m
data points, the second sample will be the 2 to m + 1 data
points and so on. For MEM volatility forecasts, the size of
an input sample is 3/5 of the total available data. The set
of input samples are used to produce their corresponding 1-
step-ahead predicted conditional volatilities. The empirical
results are summarized in the subsequent sub-sections.

4.1 Preliminary study on the empirical data

An important concern about the calculation of realized
variance is whether the return series is autocorrelated or
not. If the return series is autocorrelated, the calculated
result should be adjusted to offset the bias caused by the
autocorrelation. In our study, the realized variance is esti-
mated with the use of 10 minute intraday returns. Figure 2
contains the autocorrelation plots of two return series, S&P
500 and DJIA, with 95% confidence bounds. It indicates
that the first serial correlation coefficients of both series are
nonzeros and the series of DJIA has some other nonzero co-
efficients in lag 3, 5, 9 and 10. To tackle the autocorrelation
problem, we apply the Newey-West method in equation 4
to estimate the realized variances for this study. Following
Hansen & Lunde’s practice, we select a fixed value for the
desired length of lag window for bias adjustment [12]. The
autocorrelation plot (Figure 3) for 30 minute intraday re-
turns shows the series do not suffer from the autocorrelation
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Figure 2. Autocorrelation of the 10 minute intraday NASDAQ
data (with 95% confidence level bounds).

Figure 3. Autocorrelation of the 30 minute intraday NASDAQ
data (with 95% confidence level bounds).

problem and therefore we choose the length of lag window
to cover 30 minutes (w = 30).

The descriptive statistics and correlation coefficients
among squared overnight return (On2), squared sigma 4
(σ̂2

4) and Newey-West realized variance (σ̂2
NW ), are reported

in Table 1.
The mean of On2

t is much smaller and its magnitude is
less than 1/100 of those of σ̂2

4 or σ̂2
NW for both S&P 500 and

DJIA cases. Furthermore, the distribution of On2 is more
asymmetric and has thicker tails than the two variance se-
ries. Observations of a few large On2

t accounts for the high

Table 1. Descriptive statistics of squared overnight return
(On2

t ), squared sigma 4 (σ̂2
4) and Newey-West realized

variance (σ̂2
NW )

S&P 500

On2 σ̂2
4 σ̂2

NW

Mean 6.74E−07 4.55E−05 5.21E−05
Median 1.18E−09 2.58E−05 2.78E−05
Max 4.49E−05 5.33E−04 6.29E−04
Min 0 2.00E−06 3.13E−06
S.D. 3.49E−06 5.97E−05 6.54E−05
Skewness 9.07 3.86 3.31
Kurtosis 97.65 23.28 19.85

Correlation

with On2 0.245 0.207
with σ̂2

4 0.847

DJIA

On2 σ̂2
4 σ̂2

NW

Mean 7.69E−07 1.31E−04 5.23E−05
Median 9.20E−09 1.04E−04 3.00E−05
Max 5.75E−05 9.09E−04 5.45E−04
Min 0 4.90E−06 2.79E−06
S.D. 3.86E−06 9.96E−05 6.10E−05
Skewness 9.24 2.86 3.10
Kurtosis 115.10 15.69 16.99

Correlation

with On2 −0.147 −0.009
with σ̂2

4 0.794

values of kurtosis. The low correlations of On2 to either σ̂2
4 or

σ̂2
NW indicate that it contains information other than those

in the two variance series. Besides, the correlation between
σ̂2

4 and σ̂2
NW is not very high (less than 0.8) and this in-

dicates the two estimated variance series are different from
each other.

4.2 Forecast from models with and without
overnight information under
minimum-variance assumptions

As mentioned in Section 3, the estimators σ̂2
6 and

σ̂2
wholeRV consider overnight information in their formula-

tion while σ̂2
4 and σ̂2

NW do not. It is interesting to know
whether the inclusion of overnight information in the esti-
mators gives noticeable impacts on the predicted volatilities.
MEM volatilities without overnight information (MEM-σ4,
MEM-σNW ) are considered as the corresponding base series
for comparison purpose. The correlation (ρ) between the
base series and the testing series, which contains overnight
information, are calculated to reflect the impact. The value
of ρ will be 1 if the overnight returns are zeros and as a
result, a large correlation demonstrates a small impact.

The model fitness is checked by ARCH test on the stan-
dardized residuals and Ljung-Box test on the squared stan-
dardized residuals. Since a rolling sample approach is used
in this study, there are 184 MEM structures for a single
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Table 2. Diagnostics information for the MEM models

ARCH(2) Q(12)
S&P 500 mean mean

MEM-σ4 0.476 8.529
MEM-σ6 0.476 8.545
MEM-σNW 0.885 7.139
MEM-σwholeRV 0.885 7.139

ARCH(2) Q(12)
DJIA mean mean

MEM-σ4 0.368 13.415
MEM-σ6 0.368 13.439
MEM-σNW 0.994 7.095
MEM-σwholeRV 0.994 7.095

input estimator and we propose to access them by the av-
erage values of the test statistics to avoid the abnormality
caused by few specific samples with highly fluctuating val-
ues. The results of ARCH(2) test (5% critical value = 5.99)
and Q(12) (5% critical value = 21.03), are reported in Ta-
ble 2 and no major specification problems are signaled by
the diagnostics.

The impact of overnight information is assessed by the
correlation coefficient between models with and without
overnight variance. For range-based estimators, the corre-
lation coefficients between MEM-σ4 and MEM-σ6 are 1.000
for both S&P 500 and DJIA. It can be explained by the
highly contrasting weight ratio in the formulation σ̂2

6 . Un-
der the minimum-variance situation, σ̂2

6 is calculated as
0.165∗On2

t +3.249∗ σ̂2
4 and the ratios of the mean of On2 to

σ̂2
6 are 1 : 68 for S&P 500 and 1 : 170 for DJIA. As a result,

including On2 in the formulation gives extremely small im-
pact to σ̂2

6 and thus the MEM-σ6 should be highly correlated
to MEM-σ4. On the other hand, for both S&P 500 and DJIA
dataset, the correlation coefficients between MEM-σNW and
MEM-σwholeRV are also equal to 1.000. The weight ratios
between the mean of On2 to σ̂2

NW are 1 : 77 and 1 : 68
for S&P 500 and DJIA respectively and these results are
different from Hansen & Lunde’s finding [12] as the magni-
tude of overnight variance of market index is much smaller
than those appeared in individual listed stocks. With such
high correlation among the MEM volatilities, it is concluded
that the effect of overnight information in either Garman’s
or Hansen’s whole-day-based variance is minimal under the
minimum-variance situation.

4.3 Impact of overnight return under a
generalized weighted approach

The empirical results in the previous section show that
overnight return square (On2) cannot give a significant im-
pact on the MEM. However, the composition of the involved
estimators, σ̂2

6 and σ̂2
wholeRV , are constrained by the mini-

mum variance situation and therefore other possible combi-
nations have not yet been studied. The minimum variance

Figure 4. ARCH(2) model fit measure under the generalized
weighted approach.

Figure 5. Ljung-Box(12) model fit measure under the
generalized weighted approach.

assumption is relaxed and an investigation under the gen-
eral situation specified in equations 15 and 16 is carried out.
An experiment has been conducted by adjusting λ from 0 to
1 with 0.001 for each increment and the results are recorded
accordingly.

The model diagnostic information is visualized by Fig-
ures 4 and 5. In general, MEM-general σ4 tends to have
smaller ARCH(2) values, which can be interpreted as a bet-
ter model fit, than MEM-general σRV over a large range of
λ. However, Ljung-Box test gives an opposite result indicat-
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Figure 6. Comparison of correlation coefficient under the
generalized weighted approach.

ing MEM-general σRV always has a better fit. So, there is
no consensus to differentiate which type of estimator has a
better model fit. For the validation of MEM, all the mean
values of ARCH(2) statistics for either MEM-general σ4 or
MEM-general σRV are smaller than the critical value (5.99)
for all possible λ. For Ljung-Box(12) test, the means of
MEM-general σ4 and MEM-general σRV is larger than the
critical value when λ ≥ 0.999 for S&P dataset. For DJIA
data, the no autocorrelation hypotheses are rejected when
λ ≥ 0.987 and λ ≥ 0.982 for the cases in MEM-general σ4

and MEM-general σRV respectively. As a result, we con-
clude that the MEM models are valid for S&P 500 dataset
under 0 ≤ λ ≤ 0.998 and DJIA under 0 ≤ λ ≤ 0.981.

The impact of overnight return is reflected by the cor-
relation graphs. Figure 6 depicts the correlation among the
predicted volatilities for λ from 0 to 1 inclusively. To im-
prove the visibility, the plot is zoomed to give the view for
ρ ≥ 0.9 in Figure 7.

For S&P 500, MEM-general σ4 and MEM-general σRV

give similar behaviors. The correlation coefficients stay
nearly constant (almost equal to 1) until λ reaches around
0.4 and decrease sharply to the local minimum. The ρ then
bounds back to a high value and oscillates until λ attains a
high value. Specifically, the ρ of MEM-general σ4 decreases
sharply from around λ = 0.39 to the local minimum at
λ = 0.437 with ρ = 0.917. The ρ increases and rebounds
to the original level at λ = 0.51. A similar U-shape pat-
tern is also observed in MEM-general σNW but the region
is shifted to 0.40 ≤ λ ≤ 0.52 with the local minimum at
λ = 0.433 with ρ = 0.927.

For DJIA, the U-shape of MEM-general σ4 appears
around the range of 0.81 ≤ λ ≤ 0.88. The range for MEM-
general σRV is around 0.48 ≤ λ ≤ 0.59. Their local min-

Figure 7. Correlation coefficient under the generalized
weighted approach (ρ ≥ 0.9).

ima are at λ = 0.835 with ρ = 0.765 and λ = 0.517 with
ρ = 0.845 respectively. The shift of the U-shape can be ex-
plained by the difference of the magnitudes between the σ̂2

4

and σ̂2
NW .

To summarize, the appearance of a U-shape portion in
every curve demonstrates that the inclusion of overnight in-
formation can influence the characteristics of MEM volatil-
ity. However, the influence is not monotonic as an increase of
overnight proportion does not necessarily produce a larger
change in correlation.

4.4 Incremental information content of
model-based volatility

Observing that overnight information gives noticeable im-
pact in specific ranges, it is interesting to know whether
the impact contains useful information or not. We assess
the incremental information content by treating the MEM
predicted conditional volatilities as exogenous variables to
predict the market-based volatility indexes (VIX and VXD).
For the simplicity, simple linear AR(1) OLS regression mod-
els are used in this study. The base model defined in equa-
tion 17 is used as the baseline for comparison purpose. MEM
volatilities which help to increase the adjusted R-square and
pass the join zero coefficient test with 95% confidence (indi-
cation of the coefficients are non-zeros with 95% confidence)
are considered to contain incremental information content in
this study. The results of adjusted R-square and F statistics
are plotted in Figures 8, 9 and 10.

For both VIX and VXD regressions, models with com-
bination λ = 0 are checked and none of them can produce
a regression result with larger adjusted R-square than the
base model and pass the F test at the same time. There-
fore, we regard that the MEM predicted volatilities without
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Figure 8. Adjusted R-square among the regression models.

Figure 9. F statistics for testing zero coefficient.

overnight information do not contain incremental informa-
tion for market-based indexes.

On the other hand, there are cases that give better
R-square and pass the F test when overnight informa-
tion is embedded. Table 3 lists the combinations that con-
tain incremental information for the regression. The results
for VIX and VXD regressions are consistent. The inclu-
sion of MemRanget cannot improve the prediction whereas
MemHighFreqt can give favorable results for some combina-
tions. In additional, the information content of MemRanget

is not complementary to MemHighFreqt as models with the
use of both range-based and high-frequency information are
always not as good as models that use MemHighFreqt alone.

Figure 10. F statistics for testing join zero coefficients.

Table 3. Combinations (λ) that give larger adjusted R-square
than the base model and with F statistics larger than 95%

confidence critical value

VIX regression

Model 2 Model 3 Model 4

0.381 0.413
0.382 0.469
0.389 0.473
0.399
0.401
0.407
0.412

Nil 0.413
0.419
0.424
0.469
0.473
0.502
0.509
0.526

VXD regression

Model 2 Model 3 Model 4

0.480 0.487
0.487 0.841
0.490
0.578

Nil 0.583
0.874
0.880
0.881
0.885

Our empirical results exemplify that overnight information
can improve the prediction of the CBOE volatility indexes
under specific combinations.
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5. CONCLUSION

The impact of overnight return on Engle’s Multiplica-
tive Error Model (MEM) is investigated in this study.
Under minimum-variance situations, overnight return has
nearly no impact on models based on either Garman’s or
Hansen’s whole-day-based estimators for both S&P 500 and
DJIA data. When the minimum-variance conditions are re-
laxed, our general formulations demonstrate U-shape pat-
terns in the correlation graphs among the predicted condi-
tional volatilities with and without overnight information.
However, the influence is not monotonic as an increase of
overnight proportion does not necessary produce a larger
change in correlation.

On the other hand, our empirical results show that the
inclusion of overnight information can improve the predic-
tion of market-based volatility indexes, VIX and VXD, un-
der specific combinations. We demonstrate MEM volatili-
ties resulted from linearly combined overnight variance and
high frequency realized variance can help to improve the
prediction of CBOE indexes under a simple linear AR(1)
OLS regression. More sophisticated regression models may
further exploit the hidden value from overnight informa-
tion. The above findings contradict the common perception
that overnight return does not contain useful information
for volatility prediction.
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