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Spot volatility estimation for high-frequency data∗

Jianqing Fan and Yazhen Wang

The availability of high-frequency intraday data allows
us to accurately estimate stock volatility. This paper em-
ploys a bivariate diffusion to model the price and volatility
of an asset and investigates kernel type estimators of spot
volatility based on high-frequency return data. We establish
both pointwise and global asymptotic distributions for the
estimators.

Keywords and phrases: Asymptotic normality, CIR
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1. INTRODUCTION

Volatilities of asset returns are pivotal for many issues
in financial economics. For example, market participants
need to estimate volatility for the purpose of hedging, op-
tion pricing, risk analysis and portfolio management. With
the advance of computer technology, data availability is be-
coming less and less a problem. Nowadays it is relatively
easy to obtain high frequency financial data such as com-
plete records of quotes or transaction prices for stocks. The
high-frequency financial data provide an incredible exper-
iment for understanding market microstructure and more
generally for analyzing financial markets. In particular we
expect to estimate volatilities better using high-frequency
returns directly. The field of high-frequency finance has
evolved rapidly. Current main interests of volatility esti-
mation are on instantaneous volatility (or spot volatility)
and integrated volatility over a period of time, say, a day.
Estimation methods for univariate integrated volatility in-
clude realized volatility (RV) [Andersen et al. (2003)], bi-
power realized variation (BPRV) [Barndorff-Nielsen and
Shephard (2006)], two-time scale realized volatility (TSRV)
[Zhang et al. (2005)], multiple-time scale realized volatility
(MSRV) [Zhang (2006)], wavelet realized volatility (WRV)
[Fan and Wang (2007)], kernel realized volatility (KRV)
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[Barndorff-Nielsen et al. (2004)], and Fourier realized volatil-
ity (FRV) [Mancino and Sanfelici (2008)]. For the case of
multiple assets, estimation approaches of multivariate inte-
grated volatility consist of realized co-volatility for synchro-
nized high-frequency data [Barndorff-Nielsen and Shephard
(2004)] and realized co-volatility based on overlap intervals
and previous ticks for non-synchronized high-frequency data
[Hayashi and Kusuoka (2005) and Zhang (2005)]. Wang,
Yao, Li and Zou (2007) has proposed a matrix factor model
to achieve dimension reduction and facilitate the estimation
of integrated co-volatility in very high dimensions for non-
synchronized high-frequency data. For spot volatility esti-
mation, Foster and Nelson (1996) first showed that spot
volatility can be estimated from high-frequency data by
rolling and block sampling filters. For a general class of
price and volatility processes, under a number of stringent
conditions, they established pointwise asymptotic normal-
ity for rolling regression estimators of the spot volatility
and establish the efficiency of different weighting schemes.
The conditions and results are in quite abstract sense. For
given examples, the conditions are hard to verify and asymp-
totic normality is difficult to evaluate as well. Andreou and
Ghysels (2002) further investigated theoretical properties of
rolling-sample volatility estimator and check its finite sam-
ple performance with simulation and empirical studies. In
this paper, we assume price and volatility to follow a bi-
variate diffusion process and investigate asymptotic behav-
iors of the kernel type estimators of spot volatility for high-
frequency data. Under the general but verifiable conditions,
we derive explicit expressions for their pointwise and global
asymptotic distributions. We show that these conditions are
met by diffusion based volatility models often used in liter-
ature.

The paper is organized as follows. Section 2 presents the
main results. Section 3 illustrates the common models and
verifies the conditions for these models. Section 4 features
key technical propositions about strong approximation for
the spot volatility estimator.

2. ESTIMATION OF SPOT VOLATILITY

Consider d assets and let Xt = (X1t, . . . , Xdt)T be the
vector of the log prices of d assets. Assume that Xt follows
a continuous-time diffusion model,

(1) dXt = μt dt + σt dWt, t ∈ [0, T ],
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where T is a positive constant, Wt is a d-dimensional Brow-
nian motion, μt is a drift, and σt is a d by d matrix. We
define instantaneous or spot volatility as

Γt = σt σ†
t = (γij

t )1≤i,j≤d.

The quadratic variation of Xt has expression

[X, X]t =
∫ t

0

Γs ds, t ∈ [0, T ].

Suppose that we observe Xt at n discrete time points
ti = i T/n, i = 1, . . . , n. Our goal is to estimate

Γt =
d[X, X]t

dt
= σt σ†

t = (γkj
t )1≤k,j≤d.

Suppose K(x) is a kernel with support on [−1, 1]. We define
the kernel type estimator

(2)

Γ̂t =
1
b

t+b∑
ti=t−b

K

(
ti − t

b

)
(Xti − Xti−1) (Xti − Xti−1)

†

=
1
b

t+b∑
ti=t−b

K

(
s − t

b

)
ΔδXti (ΔδXti)

†

=
1
b

∫ t+b

t−b

K

(
s − t

b

)
d ̂[X, X]s,

where b is bandwidth, δ = T/n, ΔδXt is the increment of
Xt over [t − δ, t] defined by

ΔδXt = Xt − Xt−δ,

and ̂[X, X]t is the realized volatility given by

̂[X, X]t =
∑
ti≤t

ΔδXti(ΔδXti)
†.

For example, if K = 1, then the estimator results in a rolling
average

Γ̂t =
1
b

∑
|ti−t|≤b

ΔδXti (ΔδXti)
†
.

One side kernel K with support on [−1, 0] yields an estima-
tor that uses the immediate past data, and one side expo-
nential kernel K(x) = ex 1(x ≤ 0) results in an exponential
smoothing in the RiskMetric [Fan et al. (2003)].

Below we will establish asymptotic theory for Γ̂. First we
list some technical conditions. Let ‖ ·‖ denote the Euclidean
norm for vectors and maximum norm for matrices.

A1 sup {‖σs − σt‖, s, t ∈ [0, T ], |s − t| ≤ a}
= OP (a1/2 | log a|1/2), sup

0≤t≤T
‖σ2

t ‖ = Op(1),

and for j = 1, . . . , d,

A2 sup

⎧⎨⎩
∥∥∥∥∥
∫ ti

ti−1

{σ(s) − σ(ti−1)} dW j
s

∥∥∥∥∥
2

, i = 1, . . . , n

⎫⎬⎭
= OP (n−2+η),

where η > 0 is an arbitrarily small number. The drift μt in
(1) satisfies

A3 sup{‖μt − μs‖, |t − s| ≤ a} = OP (a1/2 | log a|1/2).

Bandwidth b and kernel K satisfy

A4 b ∼ n−1/2/ log n, K(·) is twice differentiable with

support [−1, 1] and
∫ 1

−1

K(x) dx = 1.

We will show that Assumptions A1–A2 are very general
and satisfied for common volatility processes in Section 3.
Assumption A3 is about the mean drift in price processes
and is often met by price models. We may select kernel and
bandwidth to meet Assumption A4. Now we state the two
main theorems whose proofs rely on technical propositions
given in Section 4.

Theorem 1. Under Assumptions A1–A4, we have that

√
n b
{

Γ̂t − Γt

}
→ σ2(t)Z,

where the convergence is in distribution, and Z is a ran-
dom matrix whose elements are independent and have
normal distributions with mean zero and variance 2 λ(K)
for diagonal elements and λ(K) for off-diagonal elements,
where

λ(K) =
∫ 1

−1

K2(x) dx.

Proof. It is a direct consequence of Propositions 2 and 3 in
Section 4.

Remark 1. Theorem 1 provides pointwise asymptotic dis-
tribution for Γ̂. The limiting distribution is normal with ex-
plicit covariance matrix. The convergence rate in Theorem 1
matches up with the orders of convergence in Mykland and
Zhang (2008) in terms of bandwidth and sample size.

Theorem 2. Suppose that Assumptions A1–A4 are satisfied
and that σt, t ∈ [0, T ], is stationary. Let

Mn = sup
0≤t≤T

√
n b
∥∥Γ̂t − Γt

∥∥.
Then

(2 log n)1/2

(
Mn√
λ(K)

− dn

)
→ exp(−2 e−x),
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where the convergence is in distribution, and λ(K) is defined
in Theorem 1,

dn = (2 log n)1/2 +
1

(2 log n)1/2

× {log λ1(K) − 0.5 log π − 0.5 log log n} ,

λ1(K) =
K2(−1) + K2(1)

2 λ(K)
,

if λ1(K) > 0, and otherwise

dn = (2 log n)1/2 +
1

(2 log n)1/2
{log λ2(K) − log (2 π)}

λ2(K) =
1

2 λ(K)

∫
[K ′(x)]2 dx.

Proof. Mn has the same asymptotic distribution as

sup
0≤t≤T

|Vn(t)|,

where Vn(t) is defined by (7) in Section 4. The representation
for Vn(t) given by Propositions 2 and 3 in Section 4 allows
us to establish the asymptotic distribution for the maximum
of |Vn(t)| by an application of Theorem A1 in Bickel and
Rosenblatt (1973, section 5).

Remark 2. Theorem 2 gives the global asymptotic dis-
tribution for Γ̂. The extreme limiting distribution may be
used to construct confidence band for Γt over whole interval
t ∈ [0, T ].

3. COMMON VOLATILITY MODELS

Common volatility processes in literature include geomet-
ric Ornstein-Uhlenbeck (OU) process, Nelson GARCH diffu-
sion process (Nelson, 1990), the CIR diffusion process (Cox,
Ingersoll and Ross, 1985), and long-memory volatility pro-
cess (Comte and Renault, 1998). We show below that As-
sumptions A1–A2 are satisfied for these volatility processes
as well as their superpositions. Below we will examine the
examples for which Assumptions A1–A2 are met.

Example 1. Geometric OU model,

(3) d log σ2(t) = −λ log σ2(t) dt + dWv(t),

where Wv is a standard Brownian motion, λ is a parameter,
and the initial value σ2(0) is finite and independent of Wv.

Example 2. Nelson GARCH diffusion model,

(4) dσ2(t) = −λ {σ2(t) − ξ} dt + ω σ2(t) dWv(λ t),

where Wv is a standard Brownian motion, (λ, ξ, ω) are pa-
rameters, and the initial value σ2(0) is finite and indepen-
dent of Wv.

Example 3. The CIR model,

(5) dσ2(t) = −λ {σ2(t) − ξ} dt + ω σ(t) dWv(λ t),

where Wv is a standard Brownian motion, (λ, ξ, ω) are pa-
rameters, and the initial value σ2(0) is finite and indepen-
dent of Wv.

Example 4. The Long-memory model,

(6) d log σt = −κ log σ2
t dt + γ dWv,α(t),

where Wv,α is a fractional Brownian motion with memory
index α ∈ (1/2, 1), (κ, γ) are parameters, and the initial
value σ2(0) is finite and independent of Wv,α.

We first check Assumption A1 for each example. For Ex-
ample 1, (3) has an explicit solution

log σ2(t) = e−λ t log σ2(0) +
∫ t

0

e−λ (t−s) dWv(s).

From the sample path property of Brownian motion Wv, we
immediately show that

sup
t

| log σ2(t)| = OP (1),

which implies

sup
t

σ2(t) = OP (1).

This is the second condition in Assumption A1. For the first
condition of Assumption A1, note that

log σ2(t) − log σ2(s)

=
(
e−λ t − e−λ s

)
log σ2(0) +

∫ t

0

e−λ (t−u) dWv(u)

−
∫ s

0

e−λ (s−u) dWv(u)

=
(
e−λ t − e−λ s

) {
log σ2(0) +

∫ s

0

eλ u dWv(u)
}

+ e−λ t

∫ t

s

eλ u dWv(u).

Since e−λ t − e−λ s = O(t − s), the first term in the above
equation is OP (t− s), and due to the increment property of
Brownian motion Wv, the second term is OP (|(t−s) log |t−
s||1/2). Since

σ(t) − σ(s) = σ(s) {exp (log σ(t) − log σ(s)) − 1} ,

so the first condition in Assumption A1 is satisfied for Ex-
ample 1.

The equation (4) in Example 2 has solution

σ2
t = exp

{
β1 t + β2 Wv(t) − β2

2 t/2
}

High-frequency volatility 281



×
{

σ2
0 + β0

∫ t

0

exp
(
−β1 s − β2 Wv(s) + β2

2 s/2
)

ds

}
where β0 = λ ξ, β1 = −λ, β2 =

√
λω. Again the sample

path property of Wv shows that

sup
t

σ2
t = OP (1),

which is the second condition of Assumption A1. For the
first condition note that

|σt − σs| =
∣∣ exp

{
β1 (t − s)/2 + β2 (Wv(t)

− Wv(s))/2 − β2
2 (t − s)/4

}
− 1
∣∣

× exp
{
β1 s/2 + β2 Wv(s)/2 − β2

2 s/4
}

×
(

σ2
0 + β0

∫ s

0

exp
(
− β1 u − β2 Wv(u)

+ β2
2 u/2

)
du

)1/2

+ exp
{
β1 t/2 + β2 Wv(t)/2 − β2

2 t/4
}
|β0/2|

×
∫ t

s

exp
(
− β1 u − β2 Wv(u) + β2

2 u/2
)
du

×
(

σ2
0 + β0

∫ s

0

exp
(
− β1 u − β2 Wv(u)

+ β2
2 u/2

)
du

)−1/2

.

Due to the property for the order of increments of Brownian
motion, the first term in above equation is OP (|(t−s) log |t−
s||1/2), and the second term is OP (|t − s|). Thus, the first
condition in Assumption A1 is satisfied.

For Example 3, (5) has no explicit solution. However, it
is well known that σ2(t) is a Gamma process with

sup
t

σ2(t) = OP (1), sup
t

σ−2(t) = OP (1).

So the second condition of Assumption A1 is met. For the
first condition we have that

dσ(t) = 0.5 λ {−σ(t) + (ξ − 0.25 ω)/σ(t)} dt

+ 0.5 ω dWv(λ t),

σ(t) − σ(s) = 0.5 λ

∫ t

s

{−σ(u) + (ξ − 0.25 ω)/σ(u)} du

+ 0.5 ω [Wv(λ t) − Wv(λ s)].

The first term is OP (t − s) and the second term has order
|(t−s) log |t−s||1/2 in probability. Thus, the first condition
in Assumption A1 is met.

The equation (6) in Example 4 has solution

log σ2(t) = e−κ t log σ2(0) + γ

∫ t

0

e−κ (t−s) dWv,α(s).

The maximum of sample paths of Wv,α in a bounded interval
is OP (1), thus the

max
t

| log σ2(t)| = OP (1),

which implies the second condition of Assumption 1. For the
first condition, we have

log σ2(t) − log σ2(s)

=
(
e−κ t − e−κ s

)
log σ2(0) + γ

∫ t

0

e−κ (t−u) dWv,α(u)

− γ

∫ s

0

e−κ (s−u) dWv,α(u)

=
(
e−κ t − e−κ s

) {
log σ2(0) + γ

∫ s

0

eκ u dWv,α(u)
}

+ e−κ t γ

∫ t

s

eκ u dWv,α(u).

Again the first term in the above equation is OP (t−s). The
second term is OP (|(t−s) log |t−s||α), due to the increment
property of fractional Brownian motion Wv,α.

Remark 3. If volatility processes satisfy Assumption 1,
their superpositions also meet Assumption 1. This shows
in particular that a two factor volatility model, which is a
superposition of two geometric OU processes, satisfies As-
sumption 1.

Now we consider Assumption 2. We have the following
general result for models without leverage effect, where no
leverage effect means that Brownian motion W in (1) driv-
ing price processes and Brownian motion Wv (or fractional
Brownian motion Wv,α) in (3)–(6) are independent.

Proposition 1. Suppose that there is independence between
Brownian motion in (1) for price process and Brownian mo-
tion (or fractional Brownian motion) in (3)–(6) for volatil-
ity processes. If Assumption A1 is satisfied, then Assump-
tion A2 is automatically met.

Proof. Conditional on whole paths of σ2
t ,∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

are independent Gaussian random variables with mean zero
and covariance∫ ti

ti−1

{σ(s) − σ(ti−1)} {σ(s) − σ(ti−1)}† ds.

Hence, with probability tending to one, the maximum of∥∥∥∥∥
∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

∥∥∥∥∥
2

, i = 1, . . . , n,
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is bounded by

2 log n sup

{∫ ti

ti−1

‖σ(s) − σ(ti−1)‖2 ds, i = 1, . . . , n

}
,

which, by Assumption 1, has order n−2 log2 n. This gives
Assumption A2.

For price and volatility models with leverage effect, that
is, W and Wv are dependent, Assumption A2 needs to check
case by case. Below we illustrate the check of Assumption 2
for the geometric OU model. Note that we have

log σ2(s) − log σ2(ti−1)

=
(
e−λ s − e−λ ti−1

) {
log σ2(0) +

∫ ti−1

0

eλ u dWv(u)
}

+ e−λ s

∫ s

ti−1

eλ u dWv(u),

∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

= σ(ti−1)
∫ ti

ti−1

{elog σ(s)−log σ(ti−1) − 1} dWs,

and thus∫ ti

ti−1

{elog σ(s)−log σ(ti−1) − 1} dWs

=
∫ ti

ti−1

{
elog σ(s)−log σ(ti−1)

− exp

(
e−λ s

∫ s

ti−1

eλ u dWv(u)

)}
dWs

+
∫ ti

ti−1

{
exp

(
e−λ s

∫ s

ti−1

eλ u dWv(u)

)
− 1

}
dWs

≡ Ii + Ji.

We need to show that for both Ii and Ji, their maximum
over i = 1, . . . , n are of order n−1+η/2 log n.

Ii is a stochastic integral over [ti−1, ti], and its integrand
is of order n−1. As

∑i
�=1 Ii is a discrete martingale, and its

quadratic variation [I, I] is of order of the sum of squares of
the integrand of Ii, which has order n−2. Hence,

P

(
max

1≤i≤n
|Ii| ≥ 2 M

)
≤ 2 P

(
max

1≤i≤n
|

i∑
�=1

I�| ≥ M

)

≤ 2 M2
1

M2
+ 2 P ([I, I] > M2

1 ) → 0,

where the last equality is due to Nuglart inequality (Ja-
cod and Shiryaev, 2002), and M1 = n−1 log1/2 n and

M = n−1 log n. We derive that the maximum of Ii is of
order n−1 log n.

Also Ji is a stochastic integral over [ti−1, ti], but its inte-
grand is of order n−1/2 log1/2 n. However, Ji are indepen-
dent. Applying BDG inequality (Jacod and Shiryaev, 2002)
to each Ji, we obtain(
|Ji|2 p

)
≤ C E

⎛⎝∫ ti

ti−1

{
exp

(
e−λ s

∫ s

ti−1

eλ u dWv(u)

)
− 1

}2

ds

⎞⎠p

≤ C n−p

∫ ti

ti−1

E

{
exp

(
e−λ s

∫ s

ti−1

eλ u dWv(u)

)
− 1

}2 p

ds

≤ C n−2 p,

where C is a generic constant and p > 0 is a constant and
will be chosen later. With M = n1/(2 p)−1 log n we obtain

P

(
max

1≤i≤n
|Ji| ≤ M

)
=
∏

i

P (|Ji| ≤ M) ≥
∏

i

(1 − C n−2 p/M2 p)

= (1 − C n−2 p/M2 p)n ∼ 1 − C n1−2 p/M2 p

= 1 − C log−2 p n → 1.

For large enough p ≥ 1/η we conclude that the maximum
of Ji is of order n−1+η/2 log n.

4. STRONG APPROXIMATION FOR SPOT
VOLATILITY ESTIMATOR

Define

(7) Vn(t) =
√

n b
{

Γ̂t − Γ∗
t

}
,

where

(8) Γ∗
t =

1
b

t+b∑
ti=t−b

K

(
ti − t

b

) ∫ ti

ti−1

Γs ds.

We establish the following strong approximation result for
Vn. Strong approximation constructed on some probability
spaces are held for versions of Vn, σ, Γ on the new prob-
ability spaces, which have identical distributions as Vn, σ,
Γ, respectively. For simplicity, we use the same notations to
denote their versions on the constructed probability spaces.

Proposition 2. Suppose that Assumptions A1–A4 are sat-
isfied. Then there exist matrix processes Bn(t) on some
probability spaces such that Bn(t) = Bn(t)† = {(1 +
1(k = j))1/2 Bkj

n (t)}d×d with Bkj
n (t) = Bjk

n (t) being inde-
pendent standard Brownian motions, and independent of
(μt, σt, Wt), and

Vn(t) = σ(t)
1√
b

∫ t+b

t−b

K

(
s − t

b

)
dBn(s)σ(t)†
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+ OP (n−1/4+η/2 log n)

= σ(t)
∫ t/b+1

t/b−1

K

(
u − t

b

)
dB̃n(u)σ(t)†

+ OP (n−1/4+η/2 log n),

where B̃n(·) = b−1/2 Bn(b ·) are the rescaled of Bn, and the
error order is uniformly over t ∈ [0, T ].

Proof. Note that

Xti − Xti−1 =
∫ ti

ti−1

μs ds +
∫ ti

ti−1

σs dWs,

Assumptions A1–A3 implies that
∫ ti

ti−1
μs ds is dominated

by
∫ ti

ti−1
σs dWs, so the drift term μt in (1) has no effect on

asymptotic results (such as limiting distributions and con-
vergence orders) for the estimator Γ̂t. Therefore, for simplic-
ity we set μt = 0 in the rest of proofs.

The second equality results from change variable and
rescaling property of Brownian motion. We prove the first
equality only. Let δ = ti − ti−1 = T/n. Then

(9)

Γ̂t − Γ∗
t =

1
b

t+b∑
ti=t−b

K

(
ti − t

b

) {(∫ ti

ti−1

σ(s) dWs

)

×
(∫ ti

ti−1

σ(s) dWs

)†

−
∫ ti

ti−1

Γs ds

}

=
1
b

t+b∑
ti=t−b

K

(
ti − t

b

) {
σ(ti−1) (Wti − Wti−1)

× (Wti − Wti−1)
† σ(ti−1)† − Γti−1 (ti − ti−1)

}
+

1
b

t+b∑
ti=t−b

K

(
ti − t

b

) {
σ(ti−1) (Wti − Wti−1)

×
(∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

)†

+
∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs{σ(ti−1)

× (Wti − Wti−1)}† −
∫ ti

ti−1

{Γ(s) − Γ(ti−1)} ds

+
∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

×
(∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

)†}
= H1 + H2 + H3 + H4.

Lemmas 2–4 below will derive the orders for H2, H3 and
H4. Simple algebra shows

(10)

H1 =
1
b

t+b∑
ti=t−b

K

(
s − t

b

)
σ(ti−1)

×
{(

Wti − Wti−1

) (
Wti − Wti−1

)† − δ Id

}
σ(ti−1)†

=
δ
√

n

b

t+b∑
ti=t−b

K

(
ti − t

b

)
σ(ti−1)n−1/2 Ui σ(ti−1)†,

where Id denotes the d × d identity matrix,

Ui =
(
Wti − Wti−1

) (
Wti − Wti−1

)†
/δ − Id.

As matrix random variables Ui are i.i.d., E(Ui) = 0, and
the entries of Ui are uncorrelated and have variance 2 at
diagonal and 1 off diagonal, then

n−1/2

[i t]∑
j=1

Uj

weakly converges to B(t) = B(t)† = {(1 +
1(k = j))1/2 Bkj(t)}d×d with Bkj(t) = Bjk(t) being
independent standard Brownian motions, and indepen-
dent of (μt, σt, Wt). By KMT strong approximation
(Komlós, Major, and Tusnády, 1975, 1976), there exists
Bn(t) = Bn(t)† on some probability spaces with Bn(t)
being versions of B such that

Cov(Bn, W ) = 0,(11)

max
1≤i≤n

∣∣∣∣n−1/2
i∑

j=1

Uj − Bn(ti)
∣∣∣∣ = OP (n−1/2 log n).

Then from (10) we get

(12)

H1 −
δ
√

n

b

t+b∑
ti=t−b

K

(
ti − t

b

)
σ(ti−1)ΔBn(ti)σ(ti−1)†

=
δ
√

n

b

t+b∑
ti=t−b

K

(
ti − t

b

)
σ(ti−1)

×
{

n−1/2 Ui − ΔBn(ti)
}

σ(ti−1)†

=
δ
√

n

b

t+b−δ∑
ti=t−b+δ

{
K

(
ti − t

b

)
σ(ti−1)

×

⎛⎝n−1/2
i∑

j=1

Uj − Bn(ti)

⎞⎠ σ(ti−1)†

− K

(
ti+1 − t

b

)
σ(ti)

⎛⎝n−1/2
i∑

j=1

Uj − Bn(ti)

⎞⎠
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× σ(ti)†
}

± δ
√

n

b
K

(
b ± δ

b

)
σ(t ± (b − δ))

×

⎛⎝n−1/2

n (t±b)∑
j=1

Uj − Bn(t ± b)

⎞⎠ σ(t ± (b − δ))†

≡ G1 + G2.

Because of (11) and order of b in Assumption A4, G2 is of
order

δ
√

n

b
n−1/2 log n = n−1/2 log2 n.

The term in the bracket of G1 is equal to

(13)

K

(
ti − t

b

)
σ(ti−1)

⎛⎝n−1/2
i∑

j=1

Uj − Bn(ti)

⎞⎠
×{σ(ti−1) − σ(ti)}† + K

(
ti − t

b

)
{σ(ti−1) − σ(ti)}

×

⎛⎝n−1/2
i∑

j=1

Uj − Bn(ti)

⎞⎠ σ(ti)†

+
{

K

(
ti − t

b

)
− K

(
ti+1 − t

b

)}
σ(ti)

×

⎛⎝n−1/2
i∑

j=1

Uj − Bn(ti)

⎞⎠ σ(ti)†.

By Assumption A1, σ(ti−1) − σ(ti) is of order n−1/2 log n,
and Assumption A4 implies

K

(
ti − t

b

)
− K

(
ti+1 − t

b

)
is of order n−1/2 log n. These two results together with
(11) show that each of the three terms in (13) is of order
n−1 log2 n. Substituting above orders for (13) into G1 given
by (12) and using the order of b in Assumption A4, we derive
the order for G1

δ
√

n

b
n b n−1 log2 n = n−1/2 log2 n.

Using above obtained order n−1/2 log2 n for both G1 and
G2 and from (12) we have

H1 =
δ
√

n

b

t+b∑
ti=t−b

K

(
ti − t

b

)
σ(ti−1)ΔBn(ti)σ(ti−1)†

+ O(n−1/2 log2 n)

=
δ
√

n

b

t+b∑
ti=t−b

K

(
ti − t

b

)
σ(ti−1) {Bn(ti)

− Bn(ti−1)}σ(ti−1)† + O(n−1/2 log2 n)

=
δ
√

n

b

t+b∑
ti=t−b

∫ ti

ti−1

K

(
ti − t

b

)
σ(ti−1) dBn(s)σ(ti−1)†

+ O(n−1/2 log2 n)

=
δ
√

n

b

∫ t+b

t−b

K

(
s − t

b

)
σ(s) dBn(s)σ(s)†

+ O(n−1/2 log2 n),

where the last equality is due to Lemma 1 below. Collecting
together above result for H1 and the orders for H2, H3 and
H4 given by Lemmas 2–4 below, and using equation (9) we
arrive at

Vn =
√

n b (Γ̂t − Γ∗
t )(14)

=
1√
b

∫ t+b

t−b

K

(
s − t

b

)
σ(s) dBn(s)σ(s)†

+ Op(n−1/4+η/2 log n).

Finally we complete the proof by using the order of b in
Assumption A4 and showing that σ(s) in the stochastic in-
tegral on the right hand side of (14) can replaced by σ(t)
with an error of order n−1/4 log n. In deed, note that

1√
b

∫ t+b

t−b

K

(
s − t

b

)
σ(s) dBn(s)σ(s)†

(15)

=
1√
b

∫ t+b

t−b

K

(
s − t

b

)
σ(t) dBn(s)σ(s)†

+
1√
b

∫ t+b

t−b

K

(
s − t

b

)
[σ(s) − σ(t)] dBn(s)σ(s)†.

The second stochastic integral on the right hand side of (15)
has is of order n−1/4 log n, because its quadratic variation
is equal to

1
b

∫ t+b

t−b

K2

(
s − t

b

)
[σ(s) − σ(t)]2 ds σ2(s)†

=
∫ 1

−1

K2(u)[σ(t + u b) − σ(t)]2 du σ2(t + u b)†

= OP (n−1/2 log2 n),

where the second equality is from the fact that by Assump-
tion A1, the maximum of |σ(t+u b)−σ(t)|2 over u ∈ [−1, 1]
is of order n−1/2 log2 n. Similarly, σ(s) in the first stochastic
integral on the right hand side of (15) can be replaced by
σ(t) with a resulting error of order n−1/4 log n.

Lemma 1. Suppose that Assumptions A1–A4 are satisfied.
Then

t+b∑
ti=t−b

∫ ti

ti−1

K

(
ti − t

b

)
σ(ti−1) dBn(s)σ(ti−1)†
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=
∫ t+b

t−b

K

(
s − t

b

)
σ(s) dBn(s)σ(s)† + OP (n−1/2 log n).

Proof. Define

(16)

Di =
∫ ti

ti−1

K

(
ti − t

b

)
σ(ti−1) dBn(s)σ(ti−1)†

−
∫ ti

ti−1

K

(
s − t

b

)
σ(s) dBn(s)σ(s)†

=
∫ ti

ti−1

[
K

(
ti − t

b

)
− K

(
s − t

b

)]
× σ(ti−1) dBn(s)σ(ti−1)†

+
∫ ti

ti−1

K

(
s − t

b

)
[σ(ti−1) − σ(s)] dBn(s)σ(ti−1)†

+
∫ ti

ti−1

K

(
s − t

b

)
σ(s) dBn(s) [σ(ti−1) − σ(s)]†.

Bn are independent of volatility process σ, and the entries of
Bn are independent Brownian motions, then conditional on
σ, the entries of D1, . . . , Dn are independent normal random
variables with mean zero. We work on each entry of matrix
σ dBn σ†. Denote by ‖Di‖ the maximum over all entries of
Di. Since Di defined by (16) is equal to a sum of three
stochastic integral with respect to Brownian motion, which
have explicit quadratic variations, we have that conditional
on σ,

(17)
E
[
‖Di‖2|σ

]
≤ C1 sup

0≤s≤T
‖σ(s)‖4

∫ ti

ti−1

∣∣∣∣K ( ti − t

b

)
−K

(
s− t

b

)∣∣∣∣2 ds

+ C2

∫ ti

ti−1

(
‖σ(s)‖2 + ‖σ(ti−1)‖2

)
‖σ(s)−σ(ti−1)‖2 ds,

where C1 and C2 are generic constants. By Assumption A1,
we have that for s ∈ [ti−1, ti], σ(s) − σ(ti−1) is of order
n−1/2 log n uniformly over 1 ≤ i ≤ n, and Assumption A4
implies that

K

(
ti − t

b

)
− K

(
s − t

b

)
is of order n−1/2 log n. Hence, the right hand side of (17)
is of order n−2 log2 n, and so is the conditional variance of
Di. Since the entries of all Di are independent normal ran-
dom variables with conditional variances uniformly bounded
by a quantity of order n−2 log2 n. Conditional on σ, with
probability tending to one,

max
1≤i≤n

‖Di‖ ≤
√

log (nd2) max
1≤i≤n

E [‖Di‖2|σ].

Hence we have

max
1≤i≤n

‖Di‖ = OP (n−1 log3/2 n),

and

t+b∑
ti=t−b

Di = OP (n bn−1 log3/2 n) = OP (n−1/2 log1/2 n).

This completes the proof of Lemma 1.

Lemma 2. Suppose that Assumptions A1–A4 are satisfied.
Then

1
b

t+b∑
ti=t−b

K

(
ti − t

b

) ∫ ti

ti−1

(Γs − Γti−1) ds

= OP (n−1/2 log1/2 n).

Proof. Note that

(18)∣∣∣∣∣1b
t+b∑

ti=t−b

K

(
ti − t

b

) ∫ ti

ti−1

(Γs − Γti−1) ds

∣∣∣∣∣
≤ 1

b

t+b∑
ti=t−b

K

(
ti − t

b

) ∫ ti

ti−1

|Γs − Γti−1 | ds

≤ C

b

t+b∑
ti=t−b

∫ ti

ti−1

|Γs − Γi−1| ds

≤ C sup
{

n

∫ ti

ti−1

|Γs − Γti−1 | ds, i = 1, . . . , n

}
≤ C sup{|Γs − Γti−1 |, s ∈ [ti−1, ti], i = 1, . . . , n},

where C is generic constant depending on kernel only. Since

|Γt − Γs| = |σt σ†
t − σs σ†

s|
≤ |(σt − σs)σ†

t | + |σs (σt − σs)†|
≤ |σt − σs| |σt| + |σs| |σt − σs|,

from Assumption A1, we immediately have

sup{|Γs − Γti−1 |, s ∈ [ti−1, ti], i = 1, . . . , n}
= OP (n−1/2 log1/2 n).

Combining it with (18) we prove the lemma.

Lemma 3. Suppose that Assumptions A1–A4 are satisfied.
Then

1
b

t+b∑
ti=t−b

K

(
ti − t

b

)∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

×
(∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

)†

= OP (n−1+η log2 n).
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Proof. Note that

1
b

t+b∑
ti=t−b

K

(
ti − t

b

)∥∥∥∥∥
∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

×
(∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

)† ∥∥∥∥∥
≤ C

b

t+b∑
ti=t−b

d∑
j=1

(∫ ti

ti−1

{σ(s) − σ(ti−1)} dW j
s

)2

≤ C sup

{
n

d∑
j=1

(∫ ti

ti−1

{σ(s) − σ(ti−1)} dW j
s

)2

,

i = 1, . . . , n

}
.

Now the lemma is a consequence of Assumption A2.

Lemma 4. Suppose that Assumptions A1–A4 are satisfied.
Then both of

1
b

t+b∑
ti=t−b

K

(
ti − t

b

)
σ(ti−1) (Wti − Wti−1)

×
(∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

)†

,

and

1
b

t+b∑
ti=t−b

K

(
ti − t

b

)

×
∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs{σ(ti−1) (Wti − Wti−1)}†

are equal to OP (n−1/2+η/2 log3/2 n).

Proof. Because of simplicity we need to prove the first one
only. For Brownian motion W , we have

sup
{
‖Wti − Wti−1‖, i = 1, . . . , n

}
= OP (n−1/2 log1/2 n),

and Assumption A2 implies

sup

{∥∥∥∥∥
∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

∥∥∥∥∥ , i = 1, . . . , n

}
= Op((n−1+η/2 log n).

Thus,

sup

{∥∥∥∥∥(Wti − Wti−1)

(∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

)† ∥∥∥∥∥,
i = 1, . . . , n

}
= Op(n−3/2+η/2 log3/2 n),

from which we conclude

1
b

∥∥∥∥∥
t+b∑

ti=t−b

K

(
ti − t

b

)
σ(ti−1) (Wti − Wti−1)

×
(∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

)† ∥∥∥∥∥
≤ n

∥∥∥∥∥∥(Wti − Wti−1)

(∫ ti

ti−1

{σ(s) − σ(ti−1)} dWs

)†
∥∥∥∥∥∥

= Op(n−1/2+η/2 log3/2 n).

Proposition 3. Suppose that Assumptions A1–A4 are sat-
isfied. Then

√
n b {Γ∗

t − Γt} = oP (1),

where Γ∗
t is defined in (8).

Proof. Note that

|Γt − Γs| = |σt σ†
t − σs σ†

s|
≤ |(σt − σs)σ†

t | + |σs (σt − σs)†|
≤ |σt − σs| |σt| + |σs| |σt − σs|.

From Assumption A1 and A4, we immediately have

sup{|Γs − Γt|, s ∈ [t − b, t + b]} = OP (
√

b | log b|).

Hence with δ = ti − ti−1 = T/n, we obtain∫ ti

ti−1

Γs ds = Γt δ +
∫ ti

ti−1

(Γs − Γt) ds(19)

= δ
[
Γt + OP (

√
b | log b|)

]
.

On the other hand, Assumption A4 and simple calculus show
that

δ

b

t+b∑
ti=t−b

K

(
ti − t

b

)
=
∫ 1

−1

K(u) du + O(n−1/2 log n)

(20)

= 1 + O(n−1/2 log n).

Plugging (19) and (20) into (8), we have

E
(
Γ̂t|Γt

)
=
[
1 + O(n−1/2 log n)

] [
Γt + OP (

√
b | log b|)

]
= Γt + OP (

√
b | log b|).

Thus,
√

n b (Γ∗
t − Γt) =

√
n bOP (

√
b | log b|)

= OP (
√

n b2 | log b|) = oP (1),
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where the last equality is from the order of b in Assump-
tion 4.
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