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Inference for volatility-type objects and
implications for hedging∗

Per A. Mykland and Lan Zhang

The paper studies inference for volatility type objects and
its implications for the hedging of options. It considers the
nonparametric estimation of volatilities and instantaneous
covariations between diffusion type processes. This is then
linked to options trading, where we show that our estimates
can be used to trade options without reference to the spe-
cific model. The new options “delta” becomes an additive
modification of the (implied volatility) Black-Scholes delta.
The modification, in our example, is both substantial and
statistically significant. In the inference problem, explicit ex-
pressions are found for asymptotic error distributions, and it
is explained why one does not in this case encounter a bias-
variance tradeoff, but rather a variance-variance tradeoff.
Observation times can be irregular. A non-rigorous exten-
sion to estimation under microstructure is provided.

Keywords and phrases: Volatility estimation, Implied
volatility, Realized volatility, Small interval asymptotics,
Stable convergence, Option hedging.

1. INTRODUCTION

Volatility has become a popular topic in the statistics and
the econometrics literature. However, most of these stud-
ies remain at the stage of estimating volatility and only a
few mention both volatility estimation and option hedging.
In contrast to the existing literature, we do not focus on
issues like option mispricing with different volatility esti-
mates. Rather, this paper seeks to investigate the instanta-
neous association between two volatility estimates, realized
volatility and option-implied volatility, and investigate its
impact on interval inference for the delta in options hedg-
ing. In the process, we state general theorems about the
estimation of instantaneous covariations.

The literature on estimation of realized volatility mainly
consists of parametric and non-parametric schemes. Early
investigators have adopted parametric assumptions on the
data generating process. ARCH (Engle (1982)), GARCH
(Bollerslev (1986)), and various stochastic volatility mod-
els (Hull and White (1987); Wiggins (1987); Polson et al.
(1994)) are just a few examples among the vast literature.

∗This research was supported in part by National Science Foundation
grants DMS 06-04758 and SES 06-31605.

The apparent evolution of volatility modeling reflects the
need for reconciling the model and the features of the data.
For example, the extension of ARCH to GARCH intends to
incorporate the heteroscedasticity in the data, and stochas-
tic volatility models are developed to account for the volatil-
ity smile, skewness and kurtosis.

In addition to the rich parametric literature in volatil-
ity estimation, the attention to non-parametric approaches
has also risen in the recent decade. The most popular sub-
ject of investigation has been the integrated volatility, where
results are based on the possibility of consistently esti-
mating volatility in fixed time intervals, going back to the
stochastic calculus literature, see also (Merton (1980)) on
finance side. The study of this kind of estimation was intro-
duced by Andersen and Bollerslev (1998), Andersen et al.
(2001, 2003), and their co-authors. Asymptotic normality
was studied by Jacod and Protter (1998), Zhang (2001),
Barndorff-Nielsen and Shephard (2002, 2004), and Mykland
and Zhang (2006). Newer developments include the ques-
tion of estimation under microstructure, see, for example,
Zhang et al. (2005), Zhang (2006), Fan and Wang (2007),
Barndorff-Nielsen et al. (2008), Jacod et al. (2008), and the
papers cited therein. This has now evolved into a substantial
research area.

Instantaneous volatility can be estimated by non-
parametric methods similar to those used for integrated
volatility. Such estimation was introduced by Foster and
Nelson (1996) and rigorous conditions were developed by
Zhang (2001). Subsequently, there has been less attention
to this area in the literature, the main contributions being,
to our knowledge, Fan et al. (2007), Zhao and Wu (2008),
as well as Fan and Wang (2008).

Implied volatility, on the other hand, is based on invert-
ing the Black and Scholes (1973) – Merton (1973) options
pricing formula. Early work in this direction was concerned
with simultaneous equations estimators, weighted average
estimators and others (see Latané and Rendleman (1976);
Beckers (1981), for example). A big boost to connecting im-
plied volatility to its realized counterpart came with the
variance swaps, see, for example, Carr and Madan (1998).
The VIX index is built on this connection. An interesting
recent development is Bondarenko (2004). Meanwhile, our
earlier work in Mykland (2000, 2003a,b, 2005) discussed how
to trade options with realized volatility measures.
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While this literature has strenghtened both implied and
realized volatility as relevant to pricing and trading of op-
tions, it does not mean that one can necessarily use ei-
ther measure uncritically in connection with options. On
the empirical side, investigators have considered the im-
pact of volatility estimation on option pricing. For example,
deRoon and Veld (1996) looked at the mispricing of Dutch
index warrants, using the historical standard deviation and
implied volatility of the previous day, respectively, as the in-
put to the option valuation model; Chu and Freund (1996),
and more recently Hardle and Hafner (2000), considered the
volatility estimate based on GARCH model, and found that
the use of GARCH model for volatility can reduce mispricing
of an option, also Karolyi (1993) used a Bayesian approach
to model volatility for option valuation. All these studies
focused on comparing the mispricing with the Black and
Scholes model when different volatility estimates are used.

The purpose of the current work is twofold. We propose,
on the one hand, to give a self contained treatment to the
estimation of instantaneous volatility, covariances and re-
gression coefficients. On the other hand, we shall use this
technology to develop a correction factor to implied volatil-
ity when trading options on this basis.

The inferential part of our results, which use a rolling
sample scheme, permit unequal observation times, and has
explicit forms for asymptotic variances. We also focus on
the case where the underlying (unobserved) process is con-
tinuous. This permits a transparent handling of proofs using
stochastic calculus. In particular, we present a natural de-
composition for the estimation error of the volatility-type
objects. This decomposition appears to fall into the tradi-
tional bias-variance trade-off, however, it becomes instead
a variance-variance trade-off, cf. the discussion after Theo-
rem 1. The inference problem studied is related to that of
Foster and Nelson (1996), though our scope and results are
different (see also the note after Corollary 1). The treatment
is an updated version of the development in Zhang (2001).

The organization is as follows. Section 2 describes the
general inferential problem for volatility-style objects, for
example, instantaneous covariation between returns and im-
plied volatility. Section 3 discusses the application to op-
tions and how this leads to a regression problem. Section 4
presents the limiting distributions of the relevant estimation
errors in Theorems 1–2. Section 5 focuses on the implication
of our estimation results, in particular, the implications for
pointwise and joint confidence intervals for the delta in a
hedging situation. A brief, non-rigorous, discussion of esti-
mation under microstructure is provided in Section 6. Fi-
nally, proofs are in the Appendix.

2. GENERAL SETUP

2.1 Ito processes

We shall be concerned with Ito processes, and their in-
stantaneous variations and covariations.

By saying that X is an Ito process, we mean that X can
be represented as a smooth process plus a local martingale,

Xt =
∫ t

0

vudu +
∫ t

0

σudWu,

where W is a standard Brownian Motion. Note that W is
typically different for different Ito processes. If WX is the
Brownian Motion appearing in the above equation, then the
relationship between WX and WY can be arbitrary.

We are interested in the volatility and instantaneous co-
variation of Ito processes. To study this, one would start
with the cumulative quadratic variation 〈X, X〉t or covari-
ation 〈X, Y 〉t, as defined by Jacod and Shiryaev (1987) or
Karatzas and Shreve (1991).

The volatility of the process X is then σ2
t = 〈X, X〉′t =

d〈X, X〉t/dt. The more general object is the instantaneous
covariation 〈X, Y 〉′t, so we shall mostly state general theo-
rems about the latter. Note that the existence of the volatil-
ity follows from the Ito process assumption. Similarly, the
absolute continuity of 〈X, Y 〉t follows from the Ito process
assumption and from the Kunita-Watanabe Inequality (see,
for example, p. 51 of Protter (1995)).

2.2 The inference problem

Considering now the general problem of finding 〈X, Y 〉′t,
note first that if the two processes X and Y were observed
continuously, there would be no need for inference. The in-
stantaneous covariation could be calculated exactly.

As it is, however, observations on diffusion process data
are almost necessarily discrete. We suppose that there is an
interval of observation [0, T ], and our processes are observed
at a non-random partition 0 ≤ t

(n)
1 ≤ t

(n)
2 ≤ · · · ≤ t

(n)
n = T .

To mimic the continuous time 〈X, Y 〉t, we let [X, Y ]t rep-
resent the quadratic covariation of X and Y at the discrete-
time scale. In other words, if

ΔX
t
(n)
i

�
= X

t
(n)
i+1

− X
t
(n)
i

, ΔY
t
(n)
i

�
= Y

t
(n)
i+1

− Y
t
(n)
i

,

then
[X, Y ]t =

∑
t
(n)
i+1≤t

(ΔX
t
(n)
i

)(ΔY
t
(n)
i

).

Recall that 〈X, Y 〉t = limn→∞[X, Y ]t, where the con-
vergence is uniform in probability (UCP), see Jacod and
Shiryaev (1987) and Protter (1995) for details.

The limit is taken as the number of observation points
n → ∞, with the mesh δ(n) = maxi Δt

(n)
i → 0. Most of the

time, we omit, for simplicity, the partition number n. Here
and in the sequel, Δt

(n)
i = t

(n)
i − t

(n)
i−1.

To estimate the continuous quantity 〈X, Y 〉′t, we use an
approximation similar to the above, namely

̂〈X, Y 〉
′
t

�
=

1
h

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

ΔX
t
(n)
i

ΔY
t
(n)
i

,
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in other words, ̂〈X, Y 〉
′
t = ([X, Y ]t − [X, Y ]t−h)/h. As n →

∞, h = hn → 0. Further discussion of this procedure is
given is Section 4.

The approach of letting the observation points become
dense on [0, T ] is known as small interval asymptotics. We
shall also use this approach to find limit laws for statisti-
cal errors, when approximating 〈X, Y 〉′t by ̂〈X, Y 〉

′
t. This is

described in Section 4.1.
This type of asymptotics leads to mixed normal limit laws

jointly with the underlying data processes. Thus, we end this
section with a definition.

Definition (Mixing convergence). We let X be the (typ-
ically multidimensional) data generating process. We say
f (n),X L−→ N(0, M) (mixing) if there exists a standard
normal random vector W independent of X , such that
(X , f (n),X ) converge jointly in law to ((X ), M1/2W ), where
f

(n),X
t is a function of (Xs)s≤t, M1/2 is measurable with

respect to process X . M1/2 is the square root of the sym-
metric, semi-positive definite matrix M .

There are two types of mixing, mixing-past, where the
independence is of (Xs)s≤t only, and mixing-global, where
the independence is of (Xs)s≤T .

Interchangeably, we write f (n),X L.mixing−→ N(0, M), or
f (n),X L−→ M1/2W , where W is standard normal random
vector.

Remark 1. Our definition of mixing convergence is almost
the same as the usual one for stable convergence (Rényi
(1963), Aldous and Eagleson (1978), Chapter 3 (p. 56) of
Hall and Heyde (1980), Rootzén (1980)). We have here pre-
ferred the joint convergence definition since it seems more
intuitive. Since all our processes are continuous, our results
on mixing convergence also yields stable convergence, cf. the
beginning of Section 2 (p. 269–270) of Jacod and Protter
(1998). See also Section 2.2 of Mykland and Zhang (2007)
for a recent summary of the usefulness of this mode of con-
vergence in high frequency data situations.

3. REGRESSION

3.1 A generalized one factor model for
options

Following the findings in Mykland and Zhang (2001),
and in Zhang (2001), we shall particularly be interested
in the relationship between the price {Vt} of an option,
the price of the underlying stock {St}, and the cumula-
tive implied volatility {Ξt} of the option. Note that Vt =
C(St, r(T − t), Ξt), where C is the Black-Scholes (1973) –
Merton (1973) formula expressed in cumulative terms. A re-
gression relationship that accounts for the extent to which
implied volatility can be hedged in the underlying stock is
given by

dΞt = ρtdSt + dZt,(3.1)
dZt = −ζtdt.

This is a generalization of the usual one-factor model.
Further discussion of its trading aspect can be found in
Mykland and Zhang (2001). We here, however, are mainly
concerned with the question of inference for ρt. The connec-
tion to instantaneous covariation is as follows

(3.2) ρt =
〈Ξ, S〉′t
〈S, S〉′t

.

Given this generalized one-factor setup in Equation (3.1),
we have shown in Mykland and Zhang (2001) and Zhang
(2001) that under the no-arbitrage rule, the delta hedge ra-
tio can be written as

(3.3) Δ = CS + ρCΞ

where C is as defined as above and subscript refers to deriva-
tives.

3.2 Estimation

When the scheme from Section 2 is used for the situa-
tion described in Section 3.1, it becomes what is known as
rolling regression. This approach has been used frequently
by econometricians since the 60’s (see Fama and MacBeth
(1973), also see Foster and Nelson (1996)) when dealing
with time-varying parameters.

The estimator for ρ is

(3.4) ρ̂t =
̂〈Ξ, S〉

′
t̂〈S, S〉
′
t

=

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(ΔΞti)(ΔSti)∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(ΔSti)
2 .

As we shall see in the following sections, the estimation
error of ̂〈Ξ, S〉

′
t (as well as ̂〈S, S〉

′
t) can be decomposed into

two parts, which are of order Op(
√

h) and Op(
√

Δt
(n)

h ) re-
spectively, where

Δt
(n)

=
1
n

n∑
i=1

Δt
(n)
i =

T

n
.

By stochastic Taylor expansion, the estimation error of ρ
can be expressed as

ρ̂t − ρt =
1

〈S, S〉′t
[ ̂〈Ξ, S〉

′
t − 〈Ξ, S〉′t]

− ρt

〈S, S〉′t
[ ̂〈S, S〉

′
t − 〈S, S〉′t] + op

(
√

h +

√
Δt

(n)

h

)

Before we proceed to the asymptotic property of the es-
timation error associated with ̂〈Ξ, S〉

′
t and with ρ̂t, we first

review under what paradigm and under what assumptions
the asymptotics is considered.
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4. STATISTICAL PROPERTIES

4.1 Paradigm for asymptotic operations

For a sequence of partitions of [0, T ], 0 = t
(n)
0 ≤ t

(n)
1 ≤

· · · ≤ t
(n)
n = T , n = 1, 2, 3, . . . , we assume that as n → ∞,

(1) the number of observations n → ∞
(2) the mesh δ(n) → 0. The mesh is the maximum distance

between the ti’s,
(3) the bandwidth hn → 0,
(4) the number of observations between t − hn and t goes

to infinity,
(5) there is a trade-off between hn and Δt

(n)
= T

n , see the
coming theorems.

The above (1) and (2) suggest that, as n increases, we
can observe the underlying data process more and more
frequently. This observation refinement is not nested in a
sense that the set {t(n1)

0 , t
(n1)
1 , t

(n1)
2 , . . . , t

(n1)
kn1

} is not neces-

sarily contained in the set {t(n2)
0 , t

(n2)
1 , t

(n2)
2 , . . . , t

(n2)
kn2

} for
n1 < n2. It only means that with n increasing, the mesh
of our observation intervals decreases, in a way that the
number of observations in the estimation window increases,
as indicated by (4). The requirement (3) indicates that the
bandwidth hn also shrinks with n. We shall show in the
coming section that as n increases, how fast hn and Δt(n)

decay respectively has a trade-off in terms of the asymptotic
variance of the estimation error. From now on, we use h and
hn interchangeably.

4.2 Notations and assumptions

Assumption A (Homogenous partition). For each n ∈ N ,
we have a sequence of non-random partitions {t(n)

i }, Δt
(n)
i =

t
(n)
i+1 − t

(n)
i . Let maxi(Δt

(n)
i ) = δ(n).

(1) δ(n) −→ 0 as n −→ ∞, and δ(n)/Δt(n) = O(1).

(2) H
(2)
(n)(t) =

∑
t
(n)
i+1

≤t
(Δt

(n)
i

)2

Δt(n)
−→ H(2)(t) as n −→ ∞,

where H(2)(t) is continuously differentiable.
(3) [H(2)

(n)(t)−H
(2)
(n)(t−h)]/h −→ H(2)′(t) as h −→ 0, where

the convergence is uniform in t.

When the partitions are evenly spaced, H(2)(t) = t and
H(2)′(t) = 1. In the more general case, note that the left-
hand side of (2) is bounded by tδ(n)/Δt(n), while the left-
hand side of (3) is bounded by δ(n)2/(Δt(n)h)+δ(n)/Δt(n).
In all our results, h is bigger than Δt(n), and hence both the
left-hand sides are bounded because of (1). The assumptions
in (2) and (3) are, therefore, about a unique limit point, and
about interchanging limits and differentiation.

For continuous Ito processes X and Y , write dXt =
dXDR

t + dXMG
t = X̃tdt + dXMG

t , dYt = dY DR
t + dY MG

t =
Ỹtdt + dY MG

t , and

d〈X, Y 〉′t = dDXY
t + dRXY

t = D̃XY
t dt + dRXY

t .

Assumptions on the processes (B-D) are imposed on the pair
(X, Y ):

Assumption B (Smoothness). B(X, Y ): X, Y and 〈X, Y 〉′
are Ito processes. Also, the following items are in C1[0, T ]
almost surely

(i) the respective quadratic variations of X, Y and 〈X, Y 〉′
(ii) the drift part of 〈X, Y 〉′t (DXY

t )
(iii) the drift parts of X (XDR) and of Y (Y DR)

Note in (i) that the quadratic variation of 〈X, Y 〉′ is the
same as 〈RXY , RXY 〉. The same should be observed about
Assumption D below.

Assumption C (Integrability). C(X, Y ):

(i) E sups∈[0,T ] |〈X, X〉′s| < ∞, and similarly for 〈Y, Y 〉′.
(ii) E sups∈[0,T ] |D̃XX

s | < ∞, and similarly for D̃Y Y .

Assumption D (Non-vanishing volatility). D(X, Y ):
inft∈[0,T ] 〈RXY , RXY 〉′t > 0 almost surely

Assumption E (Structure of the filtration). The data (Xt)
is measurable with respect to a filtration generated by a finite
number of Brownian Motions.

Remark 2. In view of the development in Section 2.2 in
Mykland and Zhang (2007) (see also Zhang et al. (2005)),
Conditions B(X, X) and B(Y, Y ) make Condition C(X, Y )
redundant, by localization and our mode of mixing (stable)
convergence. This section also provides a trick to remove
drift from calculations, and this could have been used here.
We have not done so since the direct development provides
weaker conditions for results to hold.

4.3 Asymptotic distribution of the
estimation error: main theorem

Under the paradigm and assumptions listed in Section 4.1
and 4.2, we now consider the asymptotic property of the es-
timation errors ̂〈X, Y 〉

′
t−〈X, Y 〉′t and ρ̂t−ρt. We summarize

the results in two theorems, whose proofs are provided in the
Appendix. First, however, two quantities that constitute a
natural decomposition of the estimation error,

BXY
1,t =

1
h

(〈X, Y 〉t − 〈X, Y 〉t−h) −〈X, Y 〉′t

BXY
2,t =

[2]
h

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs − X
t
(n)
i

)dYs

where [2] indicates symmetric representation s.t. [2]∫
XdY =

∫
XdY +

∫
Y dX.

Theorem 1. Suppose that X, Y , Z, and V are continuous
Ito processes. Let B1 and B2 be defined as above. Also sup-
pose we decompose 〈X, Y 〉′t into a martingale part (RXY

t )
and a drift part (DXY

t ). Under Assumptions A, B(X, Y ),
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C(X, Y ) and D(X, Y ), we have (a)–(b). If the same condi-
tions are imposed on Z and V , (c)–(d) also hold.

(a) ̂〈X, Y 〉
′
t − 〈X, Y 〉′t = BXY

1,t + BXY
2,t , where BXY

1,t =

Op(
√

h), BXY
2,t = Op(

√
Δt

(n)

h ).
(b) In order for BXY

1,t and BXY
2,t to have the same order,

O(h) = O(
√

Δt
(n)

). In this case, BXY
1,t and BXY

2,t are

both of order Op((Δt
(n)

)
1
4 ) = Op(n−1/4).

(c) Jointly and mixing,

h−1/2

[
BXY

1,t

BZV
1,t

]
L−→ N(0, M1),

(
Δt

(n)

h

)−1/2
[

BXY
2,t

BZV
2,t

]
L−→ N(0, M2),

where M1 =
1
3

[ 〈RXY , RXY 〉′t 〈RXY , RZV 〉′t
〈RXY , RZV 〉′t 〈RZV , RZV 〉′t

]
,

and M2 = H(2)′(t)
[

a11 a12

a21 a22

]
where

a11 = 〈X, X〉′t〈Y, Y 〉′t + (〈X, Y 〉′t)2,
a12 = a21 = 〈X, Z〉′t〈Y, V 〉′t + 〈X, V 〉′t〈Y, Z〉′t,
a22 = 〈Z, Z〉′t〈V, V 〉′t + (〈Z, V 〉′t)2.

The convergence in law is mixing-past. Subject to As-
sumption E, it is also mixing-global.

(d) the asymptotic distributions of B1,t and B2,t are condi-
tionally independent, given the data either up to time t
or up to T , depending on whether Assumption E is used
in (c). Also, ∀t �= t′, BXY

i,t and BZV
i,t′ are conditionally

independent given the data, under Assumption E.

Under regularity conditions, Theorem 1(a) suggests that
we can decompose the estimation error of the instantaneous
quadratic covariation (〈X, Y 〉′t) into two parts: BXY

1 and
BXY

2 . From their mathematical expressions (see the begin-
ning of Section 4.3), one perhaps would guess that we had
a bias-variance trade-off regarding the estimation error of
〈X, Y 〉′t, with BXY

1 serving as a bias term, and BXY
2 serv-

ing as a variance term. This would indeed have been the
case in the traditional non-parametric estimation (e.g. den-
sity estimation). However, there is a difference between tra-
ditional and our nonparametrics: the former mainly deals
with a smooth quantity, whereas the latter deals with a non-
smooth quantity (namely 〈X, Y 〉′t).

It turns out that to first order both BXY
1 and BXY

2 are
variance terms. As shown in the proof in the Appendix, we
can express BXY

1 as

BXY
1,t =

1
h

∫ t

t−h

((t − h) − u)dRXY
u︸ ︷︷ ︸

martingale: variance term

+
1
h

∫ t

t−h

((t − h) − u)dDXY
u︸ ︷︷ ︸

bias term

where the variance term dominates when 〈X, Y 〉′t is not
smooth, and the bias term becomes the only term when
〈X, Y 〉′t is smooth (i.e. RXY

t = 0 when 〈X, Y 〉′t is smooth).
In Theorem 1, 〈X, Y 〉′t is an Ito process, hence the first-
order term of B1 is dominated by a martingale compo-
nent. Meanwhile, the first order of BXY

2 is also a martingale
term, which does not vanish even if 〈X, Y 〉′t is smooth (see
the proof in appendix for details). Therefore, we are faced
with a variance-variance trade-off in the estimation error of
〈X, Y 〉′t.

Theorem 1(b) says that the order of B1 is determined by
the smoothing bandwidth h alone, whereas the order of B2

depends on the number of observations used for estimation
purpose at each time t (i.e. the number of observations in (t−
h, t]). It is optimal to select h with the order of square root
of the average observation interval, optimal in the sense of
minimizing the asymptotic variance in the estimation error
in part (a).

The asymptotic distributions in (c) are normal mixtures,
after M1 and M2 are estimated from the data. A more ex-
plicit representation would be

h−1/2

[
BXY

1,t

BZV
1,t

]
L−→ M

1/2
1,t E1

and (
Δt

(n)

h

)−1/2
[

BXY
2,t

BZV
2,t

]
L−→ M

1/2
2,t E2

where E1 and E2 are bivariate normal independent of each
other. It is worth to point out that M1,t and M2,t depend
on the data, whereas the Es are independent of data.

One here encounters the issue of conditional distribu-
tion versus unconditional distribution. Conditional on data,
M1,t and M2,t are observable in a world of continuous
records or approximately observable in a discrete-record

world. Thus if h is proportional to
√

Δt
(n)

, and
√

Δt
(n)

h → c
as n increases, we can then, for example, construct an ap-
proximate 95% conditional confidence set for 〈X, Y 〉′t bŷ〈X, Y 〉

′
t ± 1.96h1/2

√
M̂

(1,1)
1,t + c2M̂

(1,1)
2,t , where M

(1,1)
i,t means

the (1,1) element in the matrix of Mi,t. Unconditionally, the
confidence set is generally different due to dependence be-
tween E and the data. Our findings on the independence
between E and the data make our unconditional confidence
set and conditional confidence set the same.
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Theorem 1(d) suggests that the quadratic covariation be-
tween B1,t and B2,t is of higher order, so is the covariation
between Bi,t and Bi,t′ for t �= t′. In the limit, B1,t and
B2,t (also Bi,t and Bi,t′ for t �= t′) become uncorrelated,
which is the same as independent given the Gaussian find-
ings in (c).

Remark 3. Notice that 〈X, Y 〉′t is a random quantity, NOT
a constant. The latter is the frequentist’s typical notation of
a parameter. In this paper, we borrow the terminology “es-
timation” and “confidence set”, and use them in a broader
way. The alternative would be to use “prediction” and “pre-
diction set”, but this tends to confuse because of the con-
notations of forecasting future data.

Remark 4. The results in Theorem 1 involve the following
order of operation: as a first step, the convergence is joint
with the underlying data processes (see the definition in Sec-
tion 2.2) {(Ξt, St)}; then, conditional on the observable (i.e.
the whole data processes), M1 and M2 can be estimated,
making the limit in Theorem 1(c) a mixture normal. Simi-
larly, we can discuss asymptotic bias, variance, and indepen-
dence after the joint convergence and then the conditioning
operations.

4.4 Estimation of volatility and of regression
coefficients

Suppose we set both X and Y equal to log(S), then Theo-
rem 1 tells us the asymptotic distribution of realized volatil-
ity 〈log S, log S〉′t.

Corollary 1. Suppose that the stock price S is a continuous
Ito process. Let Xt = logSt, σ2

t = 〈X, X〉′t, σ̂2
t = ̂〈X, X〉

′
t.

Under Assumptions A, B(X, X), C(X, X), D(X, X), and
the assumption about the order of h in Theorem 1(b),

σ̂2
t − σ2

t =
1
h

∫ t

t−h

(t − h − u)dRXX
u

+ [2]
1
h

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)dXMG
u

+ op((Δt
(n)

)
1
4 )

Furthermore, if
√

Δt
(n)

h → c (nonrandom), conditional

on data, (Δt
(n)

)−1/4(σ̂2
t − σ2

t ) is asymptotically distributed
N(0, V

σ̂2−σ2) (mixing), where

(4.1) V
σ̂2−σ2 =

1
3c

〈σ2, σ2〉′t + 2cH(2)′(t)σ4
t

The nature of the mixing depends on Assumption E about
the data filtration in Theorem 1(c).

Note that the connection of the first term in Equa-
tion (4.1) to Theorem 1 is that 〈RXX , RXX〉′t = 〈〈X, X〉′,

〈X, X〉′〉′t = 〈σ2, σ2〉′t. This corrects the expressions in The-
orem 2 in Foster and Nelson (1996), when considering the
continuous-time limit in their Equation (9) (p. 149).

Theorem 2. Suppose S and Ξ are continuous Ito processes.

Let ρ̂t = 〈̂Ξ,S〉
′
t

〈̂S,S〉
′
t

. Subject to the assumptions applied in Theo-

rem 1 with X =Ξ, Y = Z = V = S, and O(h)= O(
√

Δt
(n)

),
we have

(a) representation:

ρ̂t − ρt =
1

〈S, S〉′t
[BΞS

1 − ρtB
SS
1 ]

+
1

〈S, S〉′t
[BΞS

2 − ρtB
SS
2 ] + op((Δt

(n)
)1/4)

(b) asymptotic distribution:

if
√

Δt
(n)

h → c (nonrandom), conditional on data,

(Δt
(n)

)−1/4(ρ̂t − ρt) is asymptotically distributed
N(0, Vρ̂−ρ), where

(4.2) Vρ̂−ρ =
〈ρ, ρ〉′t

3c
+ cH(2)′(t)

(
〈Ξ, Ξ〉′t
〈S, S〉′t

− ρ2
t

)
The convergence in law is mixing, with the past or glob-
ally, depending on whether Assumption E is used.

According to Theorem 2, ρ̂t − ρt has the order of
(Δt

(n)
)1/4, where Δt

(n)
is the average length of sampling in-

terval. We can arrange the first-order term of ρ̂t−ρt into two
parts, one is related to the B1’s and the other related to the
B2’s. In the limit, conditional on the whole data process, the
estimation error of ρt follows a mixture normal distribution,
with mean 0 and variance equal to the Vρ̂−ρ. Equation (4.2)
indicates that under-smoothing (i.e. c is greater) or over-
smoothing would blow up the asymptotic variance. For ex-
ample, an under-smoothing would reduce 〈ρ, ρ〉′t/(3c) while
increasing cH(2)′(t)( 〈Ξ,Ξ〉′t

〈S,S〉′t
− ρ2

t ). This implies that an opti-
mal rate c can be reached in order to minimize the asymp-
totic variance of the estimation error of ρt. The same thing
goes for σ̂2

t.
Both for σ̂2 and ρ̂ an optimal choice of c can be found.

For example, for ρ̂, it would appear that the optimal rate is
given with

c2 = c2
t =

1
3

〈ρ, ρ〉′t
H(2)′(t)( 〈Ξ,Ξ〉′t

〈S,S〉′t
− ρ2

t )

which can then be estimated from the data. The optimal
asymptotic variance is then

Vρ̂−ρ = 2
[
〈ρ, ρ〉′t

3
H(2)′(t)(

〈Ξ, Ξ〉′t
〈S, S〉′t

− ρ2
t )
]1/2
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We have not investigated how a data-dependent choice of
c would affect our theoretical results, which assume nonran-
dom c.

Remarks.

1. The mixture normal result in Theorem 2 mainly comes
from our estimation mechanism, where we have used an
increasing number of data records in a finite amount of
time to deliver the estimator.

2. The convergence holds at each time t, but not as a
process. In other words, ρ̂ − ρ does not converge as a
process, because as n → ∞, ρ̂t−ρt and ρ̂t′ −ρt′ become
independent for t �= t′, and in the normal stochastic
process paradigm, there is no such process consisting
of independent elements at each time t. Such a process
would be continuous white noise, and the derivative of
(the non-differentiable) Brownian Motion.

3. When estimating 〈σ2, σ2〉′, 〈ρ, ρ〉′, or, in the broader
case of Theorem 1, 〈RXY , RZV 〉′ = 〈〈X, Y 〉′, 〈Z, V 〉′〉′,
a consistent estimate can be obtained by plugging in
the estimated quantities for σ2, ρ, or 〈X, Y 〉′. One can
no longer, however, use the original grid 0 = t0 < t1 <
· · · < tn = T when computing the “outer” 〈·, ·〉′, but
rather a sub-grid or some other partition that is coarser
than the original grid, and which permits consistent es-
timation at each point of the coarser partition. We have
not investigated the precise theoretical requirements in
this paper, but this is the procedure which lays behind
the error bounds in Figure 1 in next section.

5. IMPLICATIONS

5.1 Implications for the hedge ratio

Following Equation (3.3) in Section 3.1, Δ = CS + ρCΞ,
where Δ stands for the delta hedge (i.e. the number of stocks
to hold for offsetting the risk in option). This implies that
the estimation error of the hedge ratio is given by

(5.1) Δ̂ − Δ = CΞ(ρ̂ − ρ).

Hence, our asymptotic results on ρ can help setting a
confidence region for Δ. In addition, tests of hypothesis
H0 : ρ = 0 vs. Ha : ρ �= 0 tells us whether or not our hedge
ratio Δ is significantly different from the Black-Scholes
hedge CS . Finally, our result provides a way of hedging
without knowing the model for S. This is not affected by
the fact that we use the Black-Scholes-Merton functional
form. It does, however, assume the generalized one-factor
model in Equation (3.1).

Figure 1 is one example of applying Theorem 2 in option
hedging. Using the data from S&P 500 index and option,
we can investigate how relative hedge, as well as its 90%
confidence interval, evolves across one day. In this applica-
tion, the relative hedge denotes the ratio of our one-factor
delta relative to the Black-Scholes delta ( Δ

CS
). As we can see

from Figure 1, even the upper bound of the 90% CI of the
relative hedge is smaller than 1, indicating that the Black-
Scholes delta over-hedged, at least on February 17, 1994.
Notice that the confidence interval in Figure 1 is pointwise.

Figure 1. 90% Confidence Interval for Relative Hedge, S&P 500 on Feb. 17, 1994.
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5.2 Other considerations on confidence sets
for ρ

In the previous section, we considered how to make in-
ference on ρ and then on Δ at each time t. In a real mar-
ket, making decisions at each possible observation time is
too expensive (due to the transaction cost incurred by each
hedging action) and too dangerous (due to the uncertainty
coming from estimation error, data discreteness, and un-
expected news, for example). Therefore, it would be more
reasonable to make a hedging decision based on information
from several time periods.

Because the delta hedge is closely related to ρ (at least
in the generalized one-factor case as we have assumed in
this section), we concentrate on ρ at this moment. Instead
of focusing on the distribution of ρ at one time t, we now
consider simultaneous confidence set for ρsi at several times
i = 1, 2, . . . ,m.

Let Un(t) = (Δt(n))
− 1

4 1√
Vρ̂−ρ(t)

(ρ̂t − ρt), let 1−α be the

simultaneous coverage probability, and 1−γ be the coverage
probability at a specific time point, then

1 − α = P
[
∩m

i=1{|Un(si)| ≤ zγ/2}
]

≈
m∏

i=1

P{|Un(si)| ≤ zγ/2}(5.2)

≈ (1 − γ)m(5.3)

where (5.2) is because ρ̂si − ρsi and ρ̂sj − ρsj are asymptot-
ically independent for i �= j. Two issues are worth pointing
out: 1) for fixed α, bigger m leads to smaller γ. This may
lead to a true question of bias-variance tradeoff, and this
remains to be investigated. If one makes inference on more
time periods jointly while maintaining the acceptable total
uncertainty, one has to suffer from the wider estimation er-
ror at each individual time point; 2) for γ small, (5.3) is
close to the multiple comparison result given by Bonferroni
Inequality. An approach to simultaneous intervals based on
strong approximation can be found in Fan and Wang (2008)
and Zhao and Wu (2008).

Alternatively, we can consider the average coverage, that
is,

fraction of times that CI covers ρ

=
1
m

m∑
i=1

I
(
|Un(si)| ≤ zα/2

)
→ 1 − α

as m → ∞, n → ∞

This is a little like the false discovery rate approach of
Benjamini and Hochberg (1995).

Both approaches to constructing joint confidence sets can
be particularly useful from the viewpoint of risk manage-
ment.

6. ESTIMATION UNDER
MICROSTRUCTURE

As discussed in the introduction, the existence of mi-
crostructure substantially complicates the estimation of
volatility. We here present some heuristics on how mi-
crostructure can be incorporated into the framework in this
paper. We shall here only consider the estimation of volatil-
ity σ2

t = 〈X, X〉′t.
Suppose that ̂〈X, X〉t is an estimator of the integrated

volatility
∫ t

0
σ2

udu. We now consider an estimator of instan-
taneous volatility

(6.1) ̂〈X, X〉
′
t = ( ̂〈X, X〉t − ̂〈X, X〉t−h)/h

For simplicity, we shall suppose that ̂〈X, X〉
′
t is the two

scales realized volatility (TSRV) (Zhang et al. (2005)). Sim-
ilar treatment can be carried out, at the cost of greater com-
plication, for the other papers cited in the introduction.

As shown on p. 1394 (formula (59)) of Zhang et al.
(2005), for fixed h,

m1/6{( ̂〈X, X〉t − ̂〈X, X〉t−h) − (〈X, X〉t − 〈X, X〉t−h)}
L.mixing−→

(
8c−2

1 (Eε2)2 + c1h

∫ t

t−h

σ4
ug(u)du

)1/2

N(0, 1),

where g is a function related to the quadratic variation of
time; g(t) ≡ 4/3 for equidistant observations. m is the num-
ber of observations in the interval (t − h, t]. ε has the dis-
tribution of the microstructure noise; we here refer to the
earlier paper for further elaboration. c1 is a constant so that
the number of subgrids (in twoscales estimation) is approx-
imately c1m

2/3.
It is easy to see from the arguments in Zhang et al. (2005)

that the same type of result holds when h → 0, as long as
m still goes to infinity. In this case, the asymptotic variance
gets the form

8c−2
1 (Eε2)2 + c1h

∫ t

t−h

σ4
ug(u)du

= 8c−2
1 (Eε2)2 + c1h

2σ4
t g(t)(1 + op(1))

= h4/3
(
8c−2

2 (Eε2)2 + c2σ
4
t g(t)

)
(1 + op(1))

under the optimal order c1 = c2h
−2/3.

It follows that

m1/6h1/3{ ̂〈X, X〉
′
t − (〈X, X〉t − 〈X, X〉t−h)/h}(6.2)

= m1/6h−2/3{( ̂〈X, X〉t − ̂〈X, X〉t−h)
− (〈X, X〉t − 〈X, X〉t−h)}

L.mixing−→
(
8c−2

2 (Eε2)2 + c2σ
4
t g(t)

)1/2
N(0, 1).

Meanwhile, the limit in law of h−1/2{(〈X, X〉t −
〈X, X〉t−h)/h − 〈X, X〉′t} is, by Theorem 1(c),
(〈RXX , RXX〉′t/3)1/2N(0, 1), where this normal distri-
bution is independent of the one in (6.2).
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To find the order of m and h, note that if Δt is as in
earlier sections, m ∼ c3h/Δt, where c3 is proportional to
the asymptotic density of observations around t. Thus,

(6.3) m1/6h1/3 = h1/2c
1/6
3 Δt

−1/6
.

The optimal order is found by setting h−1/2 = c4h
1/2 ×

c
1/6
3 Δt

−1/6
, or h = c5Δt

1/6
, where c5 = c−1

4 c
−1/6
3 . The com-

bined asymptotics is therefore

Δt
−1/12{ ̂〈X, X〉

′
t − 〈X, X〉′t}(6.4)

L.mixing−→
{

c
1/2
5 c

1/6
3 (8c−2

2 (Eε2)2 + c2σ
4
t g(t))

+
1
3
c
−1/2
5 〈RXX , RXX〉′t

}1/2

N(0, 1).

The convergence rate is thus the square root of the one
(Δt

−1/6
) that holds for the TSRV as an estimator of inte-

grated volatility. This is analogous to our findings in the
non-microstructure case, where the Δt

−1/2
rate for inte-

grated volatility is reduced to Δt
−1/4

for the instantaneous
volatility.

It is conjectured that similar (and rate efficient) results
can be found when plugging into (6.1) the estimators (of
integrated volatility) from Zhang (2006), Barndorff-Nielsen
et al. (2008), and Jacod et al. (2008).

APPENDIX

A Supporting convergence theorems

It should be emphasized that the results in this sub-section are straightforward applications of standard limit theory
for stochastic processes, as discussed, for example, in the book by Jacod and Shiryaev (1987). Similar results to the ones
below exist in many forms in the literature. Because of our application, however, we needed rather specific formulations,
and this led us to state and prove the results below.

Theorem A.1 (Broad Framework Convergence Theorem). Suppose X and M (n), respectively, are a continuous multi-
dimensional martingale and a sequence of continuous martingales. The martingales are with respect to filtration Ft≤T ,
where Ft = σ(Xs, s ≤ t). Also M

(n)
s = 0,∀s ≤ t − hn. Let Ψ(n) be a sequence of time changes, where

Ψ(n)(s) =

⎧⎪⎪⎨⎪⎪⎩
s s ≤ t − hn

[s − (t − hn)]hn + (t − hn) t − hn < s ≤ t − hn + 1
t t − hn + 1 < s ≤ t + 1
s − 1 t + 1 < s ≤ T + 1

.

Let X̃
(n)
s = XΨ(n)(s), and let

Ỹ (n)
s =

⎧⎪⎨⎪⎩
0 s ≤ t − hn

h
−α

2
n (M (n)

[s−(t−hn)]hn+(t−hn) − M
(n)
t−hn

) t − hn < s ≤ t − hn + 1

h
−α

2
n (M (n)

t − M
(n)
t−hn

) t − hn + 1 < s ≤ T + 1

Assume

1) hn ↓ 0 as n ↑ ∞,
2) h−α

n (〈M (n), M (n)〉[s−(t−hn)]hn+(t−hn) −〈M (n), M (n)〉t−hn
) P−→ η2

t ft(s − t),∀s ≥ t,
3) ft(s) is nonrandom and continuously differentiable, with ft(0) = 0, and ηt is random variable measurable with respect

to Ft.

Then, (X̃(n)
t , Ỹ

(n)
t )0≤t≤T+1 is C-tight. Moreover, any limit (X̃, Ỹ )0≤t≤T+1 of a convergent subsequence of this sequence

satisfies

X̃s = XΨ(s)

Ỹs =

⎧⎨⎩
0 for s < t

ηt

∫ s∧(t+1)

t

(f ′
t(u − t))1/2

dW̃u for s ≥ t
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where

Ψ(s) =

⎧⎨⎩s s ≤ t
t t < s ≤ t + 1
s − 1 t + 1 < s ≤ T + 1

, and W̃ is a Brownian motion on [t, t + 1].

Proof (for simplicity, write h instead of hn in the next proof). As n → ∞, Ψ(n)(s) → Ψ(s), where Ψ is another time
change. By definition of X̃(n), we have

(A.1) X̃(n)
s −→ XΨ(s) = X̃s,∀s ≤ T + 1

As a matter of fact, X̃(n) converges to X̃ locally uniformly (a.s.) since for small h,

sup
s≤T+1

|X̃(n)
s − X̃s|

≤ sup
s≤t−h

|X̃(n)
s − X̃s| + sup

t−h<s≤t
|X̃(n)

s − X̃s| + sup
t<s≤t−h+1

|X̃(n)
s − X̃s|

+ sup
t−h+1<s≤t+1

|X̃(n)
s − X̃s| + sup

t+1<s≤T+1
|X̃(n)

s − X̃s|

= sup
t−h<s≤t

|X[s−(t−h)]h+(t−h) − Xs| + sup
t<s≤t−h+1

|X[s−(t−h)]h+(t−h) − Xt|

≤ sup
|u−v|≤2h

|Xu − Xv| + sup
|u−v|≤h

|Xu − Xv|

−→ 0 as X is continuous and u, v < T + 1

so X̃(n) → X̃ in D(R).
Similarly, sups≤T+1 |〈X̃(n), X̃(n)〉s − 〈X, X〉Ψ(s)| → 0, thus by Jacod and Shiryaev (1987) (abbreviated with J&S here-

after) VI proposition 1.17 (p. 292)

(A.2) 〈X̃(n), X̃(n)〉 → 〈X̃, X̃〉 in D(R)

By definition of Ỹ (n) and assumption 2),

(A.3) 〈Ỹ (n), Ỹ (n)〉s P−→

⎧⎨⎩
0 s ≤ t
η2

t ft(s − t) t ≤ s < t + 1 as n → ∞
η2

t ft(1) t + 1 ≤ s ≤ T + 1
.

(A.4) Jointly, 〈X̃(n), Ỹ (n)〉s P−→ 0

(A.3) is true for all s, hence true for a subset in [t, t + 1]. Since [Ỹ (n), Ỹ (n)] is nondecreasing and has contin-
uous limit, J&S Theorem VI 3.37 (p. 318) yields that the convergence is in law (D(R)). By using continuity and
equation (A.2), 〈X̃(n), X̃(n)〉 = [X̃(n), X̃(n)] is C-tight, and 〈Ỹ (n), Ỹ (n)〉 = [Ỹ (n), Ỹ (n)] is C-tight. So the sequence
{([X̃(n), X̃(n)], [Ỹ (n), Ỹ (n)])} is C-tight by J&S Corollary VI 3.33 (p. 317). Invoking J&S Theorem VI. 4.13 (p. 322),
we have the sequence (X̃(n), Ỹ (n)) is tight.

Now, given any subsequence, we can find further subsequence such that (X̃(n), Ỹ (n)) → (X̃, Ỹ ). (A.2)–(A.4) and J&S
corollary VI. 6.7 (p. 342) lead to

((X̃(n), Ỹ (n)), [X̃(n), X̃(n)], [Ỹ (n), Ỹ (n)], [X̃(n), Ỹ (n)])
L−→ ((X̃, Ỹ ), [X̃, X̃], [Ỹ , Ỹ ], [X̃, Ỹ ])

where

[X̃, X̃]s = [X, X]Ψ(s), [X̃, Ỹ ] = 0, [Ỹ , Ỹ ] =

⎧⎨⎩
0 s ≤ t
η2

t ft(s − t) t ≤ s < t + 1
η2

t ft(1) t + 1 ≤ s ≤ T + 1

264 P. A. Mykland and L. Zhang



This implies that X̃ and Ỹ are continuous local martingales. The latter follows from Proposition IX. 1.17 in J&S by using
continuity of M (n).

If f ′ > 0, let W̃s =

⎧⎪⎨⎪⎩
0 s ≤ t

1
ηt

∫ s

t

(
d

du
f(u − t)

)− 1
2

dỸu t ≤ s ≤ t + 1
(A.5)

If f ′ is not always positive, create W̃s as in Vol III of Gikhman and Skorokhod (1979). By definition (A.5), 〈W̃ , W̃ 〉 = s− t
for t ≤ s ≤ t + 1. By Levy’s Theorem (J&S II Theorem 4.4, p. 102), W̃ is a Brownian Motion on [t, t + 1], and it has
increments independent of F̃t, which is defined as σ(X̃u, u ≤ t). Since X̃s = Xs for s ≤ t and X̃s = Xt for t ≤ s ≤ t + 1,
it follows that W̃ is independent of X over [0, t + 1]. Hence the joint convergence to (X̃, Ỹ ) is uniquely defined, and is
independent of subsequence. By inverting equation (A.5), we obtain

(A.6) Ỹs =

⎧⎪⎨⎪⎩
0 for s < t

ηt

∫ s∧(t+1)

t

(f ′
t(u − t))1/2

dW̃u for s ≥ t

Theorem A.2 (Convergence Theorem with Independence of the Past). Following the same setup and assumptions as in
Theorem A.1, also assume T = t, we have

(Xu,0≤u≤t, h
−α

2
n (M (n)

t − M
(n)
t−hn

)) L−→ (Xu,0≤u≤t, ηt

√
ft(1)Z),

where Z is standard normal independent of the X-process.

Proof. In formula (A.6), f ′ is nonrandom and the Brownian Motion W̃ has the independent increment property, hence
˜̃Yt+1 =

∫ t+1

t
(f ′

t(u − t))1/2
dW̃u is Gaussian and independent of F̃t. Also 〈 ˜̃Y, ˜̃Y 〉t+1 =

∫ t+1

t
f ′

t(u−t)du =
∫ 1

0
f ′

t(u)du = ft(1).

So ˜̃Yt+1 ∼ N(0, ft(1)), independent of the X̃-process. Then Ỹt+1
L= ηt(ft(1))1/2

Z, where Z is standard normal, independent
of X̃-process. From definition (A.1), X̃s = Xs,∀0 ≤ s ≤ t, hence in the end,

(Xu,0≤u≤t, h
−α

2
n (M (n)

t − M
(n)
t−hn

)) L−→ (Xu,0≤u≤t, ηt(ft(1))1/2
Z),

where Z is independent of X-process.

In the case T > t, one needs additional regularity conditions, we here give one version. Also, this extra condition may
not be needed from the point of view of estimating σ2 or ρ at point t.

Theorem A.3 (Convergence Theorem with Independence of both Past and Future). Following the same setup and as-
sumptions as in Theorem A.1, also assume Ft is generated by (W (1)

t , W
(2)
t , . . . , W

(q)
t )0≤t≤T , where the W ’s are independent

Brownian Motions. Then we have

(Xu,0≤u≤t, h
−α

2
n (M (n)

t − M
(n)
t−hn

)) L−→ (Xu,0≤u≤T , ηt

√
ft(1)Z),

where Z is standard normal independent of the X-process.

Proof. Let F̃t = σ(W (i)
Ψ(t), i = 1, 2, . . . , q; W̃t) in Theorem A.1, and Xt = (W (1)

t , . . . , W
(q)
t ). Since [W̃ , W (i)]t = 0, W̃ is

independent of X. Therefore the results of Theorem A.3 hold.

B Supporting lemmas and corollaries

In the following proofs, we sometimes write 〈X, X〉t as 〈X〉t, and 〈X, X〉′t as 〈X〉′t for simplicity.
In analogy with the definition of H

(2)
(n)(t) in Assumption A, we also define H

(j)
(n)(t) for j ≥ 1:

H
(j)
(n)(t) =

∑
t
(n)
i+1≤t

(Δt
(n)
i )j

(Δt(n))j−1
.
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By the same argument given just after Assumption A, [H(j)
(n)(t)−H

(j)
(n)(t− hn)]/hn is bounded, and hence every sequence

(in n) has a convergent subsequence. For clarity of exposition, we shall act as if the sequence itself converges as n → ∞,
and call the limit H(j)′(t). Wherever this is used, it is easy to see that the relevant argument (which is always about
stochastic order) goes through without the existence of a limit.

Also, for convenience, we disaggregate Assumptions B and C as follows:

Assumption B (Smoothness).

B.1(X, Y ): 〈X, Y 〉t is in C1[0, T ].
B.2(X, Y ): the drift part of 〈X, Y 〉′t (DXY

t ) is in C1[0, T ].
B.3(X): the drift part of X (XDR) is in C1[0, T ].

Assumption C (Integrability).

C.1(X, Y ): E sups∈[0,T ] |〈X, Y 〉′s| < ∞.
C.2(X, Y ): E sups∈[0,T ] |D̃XY

s | < ∞.

Assumption B(X, Y ) is equivalent to B.1(X, X), B.1(Y, Y ), B.1(RXY , RXY ), B.2(X, Y ), B.3(X), and B.3(Y ). Sim-
ilarly, C(X, Y ) is equivalent to C.1(X, X), C.1(Y, Y ), C.2(X, X) and C.2(Y.Y ). Corresponding statements involving co-
variations of X and Y follow by the Kunita-Watanabe inequalities (Protter (1995), pp. 61–62).

Notice that we shall be using the following notations

ΥX(h) = sup
t−h≤u≤s≤t

|Xu − Xs|(B.1)

ΥXY (h) = sup
t−h≤u≤s≤t

|〈X, Y 〉′u − 〈X, Y 〉′s|(B.2)

Assumption B.1(X, Y ) implies ΥXY (h) → 0. Moreover, from condition C.1(XX) and C.2(XX), Burkholder’s Inequality
yields that EΥX(h) = o(1) in h.

Lemma 1. Suppose X, Y , and Z are Ito processes. Subject to assumptions A, B.1[(X, X), (Z, Z), (X, Z)], B.3[(X)(Z)]
and C.1[(X, X), (Z, Z)], we have the following for any constant k > 0,

(i)

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(〈X〉u − 〈X〉ti
)(u − ti)kYudu = Op

(
(Δt

(n)
)k+1

h

)

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − Xti)
2(u − ti)kYudu

=
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(〈X〉u − 〈X〉ti
)(u − ti)kYudu + op

(
(Δt

(n)
)k+1

h

)

(ii)

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)(Zu − Z
t
(n)
i

)(u − ti)kYudu = Op

(
(Δt

(n)
)k+1

h

)

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)(Zu − Z
t
(n)
i

)(u − ti)kYudu

=
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(〈X, Z〉u − 〈X, Z〉
t
(n)
i

)(u − ti)kYudu + op

(
(Δt

(n)
)k+1

h

)
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Proof of Lemma 1.
(i) By Itô’s Lemma,

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − Xti)
2(u − ti)kYudu

=
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
〈X〉u − 〈X〉ti + 2

∫ u

ti

(Xv − Xti)dXv

]
(u − ti)kYudu

=
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[〈X〉u − 〈X〉ti ](u − ti)kYudu

︸ ︷︷ ︸
I

+
2
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[∫ u

ti

(Xv − Xti)dXv

]
(u − ti)kYudu

︸ ︷︷ ︸
II

Now we show that both I and II are of order Op(
(Δt

(n)
)k+1

h ). First,

|I| ≤ 1
k + 2

sup
0≤u≤t

〈X〉′u sup
0≤u≤t

|Yu|
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)k+2(B.3)

assumption A∼ H(k+2)′(t)
k + 2

sup
0≤u≤t

〈X〉′u sup
0≤u≤t

|Yu|
(Δt

(n)
)k+1

h

= Op

(
(Δt

(n)
)k+1

h

)
where Equation (B.3) follows from assumption B.1(X, X) and the continuity of Y .

For II, we write X as the sum of XMG and XDR,

II =
2
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[∫ u

ti

(Xv − Xti)dXDR
v

]
(u − ti)kYudu

︸ ︷︷ ︸
II1

+
2
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[∫ u

ti

(XDR
v − XDR

ti
)dXMG

v

]
(u − ti)kYudu

︸ ︷︷ ︸
II2

+
2
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[∫ u

ti

(XMG
v − XMG

ti
)dXMG

v

]
(u − ti)kYudu

︸ ︷︷ ︸
II3

Recall that dXDR
v = X̃vdv,

|II1| ≤ 2
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[∫ u

ti

|(Xv − Xti)X̃v|dv

]
(u − ti)k|Yu|du(B.4)

≤ sup
0≤u≤t

|Yu| sup
0≤u≤t

|X̃u|ΥX(h)
2
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(u − ti)k+1du
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assumption A∼ 2
k + 2

sup
0≤u≤t

|Yu| sup
0≤u≤t

|X̃u|ΥX(h)H(k+2)′(t)
(Δt

(n)
)k+1

h

= op

(
(Δt

(n)
)k+1

h

)
where Equation (B.4) follows from assumption B.3(X) and the continuity of X and Y . Similar approach leads to II2 =

op(
(Δt

(n)
)k+1

h ).
Let

Lt =
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
k
∫ t

(n)
i+1

t
(n)
i

∣∣∣∣∫ u

ti

(XMG
v − XMG

ti
)dXMG

v

∣∣∣∣ du.

We have,

E|Lt| =
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
k
∫ t

(n)
i+1

t
(n)
i

E

∣∣∣∣∫ u

ti

(XMG
v − XMG

ti
)dXMG

v

∣∣∣∣ du

≤ c

h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
k
∫ t

(n)
i+1

t
(n)
i

E

(∫ u

ti

(XMG
v − XMG

ti
)
2
d〈XMG〉v

)1/2

du

≤ c

h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
k
∫ t

(n)
i+1

t
(n)
i

(
E

∫ u

ti

(XMG
v − XMG

ti
)
2
dv

)1/2(
E sup

u∈(0,t]

〈X〉′u
)1/2

du

=
c

h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
k
∫ t

(n)
i+1

t
(n)
i

(∫ u

ti

E(〈X〉v − 〈X〉ti)dv

)1/2(
E sup

u∈(0,t]

〈X〉′u
)1/2

du

≤ c∗

h2
E sup

u∈(0,t]

〈X〉′u
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

(Δti)
k+2

where the first two inequalities follow from Burkholder’s inequality and Hölder’s Inequality respectively, and the subsequent

equality follows from Fubini’s Theorem and the result E(XMG
v − XMG

ti
)2 = E(〈X〉v − 〈X〉ti

). Thus Lt = Op(
(Δt

(n)
)k+1

h )
by Markov’s inequality, under assumptions A and C.1(X, X).

Let

Nt =
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

Yti

∫ t
(n)
i+1

t
(n)
i

∫ u

ti

(XMG
v − XMG

ti
)dXMG

v (u − ti)
k
du

Applying integration by parts, we get

Nt =
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

Yti

∫ t
(n)
i+1

t
(n)
i

(XMG
v − XMG

ti
)dXMG

v

∫ t
(n)
i+1

t
(n)
i

(u − ti)kdu

− 1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

Yti

∫ t
(n)
i+1

t
(n)
i

[∫ u

ti

(v − ti)kdv

]
(XMG

u − XMG
ti

)dXMG
u

=
1

k + 1
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

Yti

∫ t
(n)
i+1

t
(n)
i

[(Δti)
k+1 − (u − ti)

k+1](XMG
u − XMG

ti
)dXMG

u
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therefore,

〈N〉t =
1

(k + 1)2
1
h4

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

Y 2
ti

∫ t
(n)
i+1

t
(n)
i

[(Δti)
k+1 − (u − ti)

k+1]
2
(XMG

u − XMG
ti

)
2
d〈X〉u(B.5)

≤ 1
(k + 1)2

sup
u∈(0,t]

Y 2
u sup

u∈(0,t]

〈X, X〉′u · 1
h4

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[(Δti)
k+1 − (u − ti)

k+1]2(XMG
u − XMG

ti
)
2
du

Using a similar approach as in Lt, we have

E
1
h4

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[(Δti)
k+1 − (u − ti)

k+1]
2
(XMG

u − XMG
ti

)
2
du

=
1
h4

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[(Δti)
k+1 − (u − ti)

k+1]
2
E(XMG

u − XMG
ti

)
2
du

≤ E sup
u∈(0,t]

〈X, X〉′u
a

h4

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
2k+4

= o

(
(Δt

(n)
)2k+2

h2

)

under assumption A and C.1(X, X), where a is some constant. Thus Equation (B.5) has order op(
(Δt

(n)
)2k+2

h2 ) by Markov’s

inequality, under assumptions A, B.1(X, X), C.1(X, X) and continuity of Y . And so Nt = op(
(Δt

(n)
)k+1

h ).
Hence,

(B.6) |II3| ≤ 2ΥY (h)|Lt| + 2|Nt| = op

(
(Δt

(n)
)k+1

h

)
therefore (i) follows from Equations (B.3), (B.4), and (B.6).

(ii) Using Itô’s Lemma,

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)(Zu − Z
t
(n)
i

)(u − ti)kYudu

=
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(〈X, Z〉u − 〈X, Z〉ti)(u − ti)kYudu

+
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[∫ u

ti

(Xv − Xti)dZv

]
(u − ti)kYudu

+
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[∫ u

ti

(Zv − Zti)dXv

]
(u − ti)kYudu

then the results can be derived by using the same argument as in part (i), under assumptions A, B.1(XX)(ZZ)(XZ),
C.1(XX)(ZZ), and B.3(X)(Z).

Lemma 2. Suppose {Xt}, {Yt} and {Zt} are Itô processes. Also suppose Zt ∈ C1[0, T ]. Let each Itô process be represented
as the sum of its martingale part and drift part (i.e. Xt = XDR

t + XMG
t , Yt = Y DR

t + Y MG
t ). Subject to assumptions A,

B.1[(X, X), (Y, Y )], B.3[(X)(Y )] and C.1(X, X), the following holds, for any nonnegative integer m:
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(i)

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)(Zu − Z
t
(n)
i

)m
dYu

=
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)(Zu − Z
t
(n)
i

)m
dY MG

u + op

(
(Δt(n))

m+1/2

h3/2

)

where

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)(Zu − Z
t
(n)
i

)dY MG
u = Op

(
(Δt(n))

m+1/2

h3/2

)

(ii)

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(ΔZ
t
(n)
i

)m
∫ t

(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)dYu

=
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(ΔZ
t
(n)
i

)m
∫ t

(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)dY MG
u + op

(
(Δt(n))

m+1/2

h3/2

)

where

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

ΔZ
t
(n)
i

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)dY MG
u = Op

(
(Δt(n))

m+1/2

h3/2

)

Proof of Lemma 2.
(i) treat the martingale part and the drift part separately.

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)(Zu − Z
t
(n)
i

)m
dYu

=
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)(Zu − Z
t
(n)
i

)m
dY MG

u ← I

+
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)(Zu − Z
t
(n)
i

)m
dY DR

u ← II

Write dZt = Z̃tdt, first we can obtain I = Op(
(Δt

(n)
)
m+1/2

h3/2 ) because of the following,

〈I〉 =
1
h4

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)2(Zu − Z
t
(n)
i

)2md〈Y MG〉u

≤ sup
u∈[0,t]

|〈Y 〉′u| sup
u∈[0,t]

{(Z̃u)
2m} 1

h4

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xu − X
t
(n)
i

)2(u − t
(n)
i )2mdu

= Op

(
(Δt

(n)
)2m+1

h3

)
by Zu ∈ C1[0, t], assumption B.1(Y, Y ), and by Lemma 1(i) following assumptions A, B.1(X, X), C.1(X, X), and B.3(X).
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Next we consider the order of the drift part, II. Recall the notation dY DR
u = Ỹudu and dXDR

u = X̃udu. Applying
Minkovski’s inequality, we get

|II| ≤
∣∣∣∣ 1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XDR
u − XDR

t
(n)
i

)(Zu − Z
t
(n)
i

)mdY DR
u

∣∣∣∣(B.7)

+
∣∣∣∣ 1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XMG
u − XMG

t
(n)
i

)(Zu − Z
t
(n)
i

)mdY DR
u

∣∣∣∣
≤ 1

m + 2
sup

u∈[0,t]

|Ỹu| sup
u∈[0,t]

|Z̃u|
m

sup
u∈[0,t]

|X̃u|
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
m+2

+ sup
u∈[0,t]

|Ỹu| sup
u∈[0,t]

|Z̃u|
m 1

h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
m
∫ t

(n)
i+1

t
(n)
i

|XMG
u − XMG

t
(n)
i

|du

now let

Gt =
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
m
∫ t

(n)
i+1

t
(n)
i

|XMG
u − XMG

t
(n)
i

|du,

by Fubini’s Theorem,

E|Gt| =
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

(Δti)
m

h2

∫ t
(n)
i+1

t
(n)
i

E|XMG
u − XMG

t
(n)
i

|du(B.8)

≤ c

h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
m
∫ t

(n)
i+1

t
(n)
i

E(〈XMG〉u − 〈XMG〉ti)
1/2

du

≤ E
√

sup
u∈[0,t]

〈XMG〉′u
c′

h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
m+3/2(B.9)

≤
√

E sup
u∈[0,t]

〈XMG〉′u
c′

h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
m+3/2

= O

(
(Δt(n))

m+1/2

h

)
under assumptions A and C.1(X, X). Equation (B.8) follows from Burkholder’s inequality with some constant c, Equa-

tion (B.9) follows from Jensen’s inequality. Then Gt = op(
(Δt

(n)
)m+1/2

h3/2 ) based on Markov’s inequality.

Therefore, Equation (B.7) is of order op(
(Δt

(n)
)m+1/2

h3/2 ) under the continuously differentiability condition of Z, and
the assumptions A, C.1(X, X), and B.3[(X)(Y )]. Hence the result follows, given A, B.1[(X, X)(Y, Y )], C.1(X, X), and
B.3[(X)(Y )].

(ii) Similar to (i).

Lemma 3. Suppose X, Y , and Z are Itô processes. Then under assumptions A and B.1[(X, X), (X, Z)],

(i)
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[〈X〉u − 〈X〉ti ](u − ti)kYudu ∼ 1
k + 2

Δt
(k+1)

h
H(k+2)′(t)〈X〉′tYt

(ii)
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[〈X, Z〉u − 〈X, Z〉ti ](u − ti)kYudu ∼ 1
k + 2

Δt
(k+1)

h
H(k+2)′(t)〈X, Z〉′tYt
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Proof of Lemma 3.
(i) Let

H1
�
=

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[
(〈X〉u − 〈X〉ti)(u − ti)k − 〈X〉′u(u − ti)k+1

]
Yudu

H2
�
=

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

[∫ t
(n)
i+1

t
(n)
i

〈X〉′u(u − ti)k+1Yudu − 〈X〉′ti
Yti

(Δti)
k+2

k + 2

]

H3
�
=

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(
〈X〉′ti

Yti − 〈X〉′tYt

) (Δti)
k+2

k + 2

Now we show that H1 = op(Δt
(k+1)

h ), H2 = op(Δt
(k+1)

h ), H3 = op(Δt
(k+1)

h ).
For ξ ∈ (ti, ti+1)

H1 =
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(〈X〉′ξ − 〈X〉′u)(u − ti)k+1Yudu

≤ 1
k + 2

1
h2

ΥXX(h) sup
0≤u≤t

|Yu|
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

(Δti)
k+2

= op

(
Δt

(k+1)

h

)
under assumptions A and B.1(X, X) and the continuity of Y . Recall that

ΥXY (h) = sup
t−h≤u≤s≤t

|〈X, Y 〉′u − 〈X, Y 〉′s|.

Again, Assumption B.1(X, Y ) implies ΥXY (h) → 0.

H2 =
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(
〈X〉′uYu − 〈X〉′ti

Yti

)︸ ︷︷ ︸
Vu−Vti

(u − ti)k+1du

≤ 1
k + 2

ΥV (h)
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
k+2

= op

(
Δt

(k+1)

h

)
under Assumption A and B.1(X, X). Notice that ΥV (h) = op(1), because that Yt is continuous, also 〈X〉′t is continuous
by assumption B.1(X, X), thus Vt = 〈X〉′tYt is continuous.

H3 =
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(
〈X〉′ti

Yti − 〈X〉′tYt

)︸ ︷︷ ︸
Vti

−Vt

(Δti)
k+2

k + 2

≤ 1
k + 2

ΥV (h)
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(Δti)
k+2

assumption A
= op

(
Δt

(k+1)

h

)
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by assumption A and B.1(X, X). Therefore,

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[〈X〉u − 〈X〉ti ](u − ti)kYudu

=
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

〈X〉′tYt
(Δti)

k+2

k + 2
+ H1 + H2 + H3

assumption A∼ 1
k + 2

Δt
(k+1)

h
H(k+2)′(t)〈X〉′tYt

(ii) follow from similar argument as part (i), with extra assumption B.1(X, Z).

Corollary 2. Suppose X, Y , Z, V are Itô processes. Let

H
(2)
n,〈X,Y 〉,〈Z,V 〉(t) =

1

Δt
(n)

∑
t
(n)
i+1≤t

Δ〈X, Y 〉
t
(n)
i

Δ〈Z, V 〉
t
(n)
i

Then under assumptions A and B.1[(X, Y ), (Z, V )],

(i) H
(2)
n,〈X,Y 〉,〈Z,V 〉(t) − H

(2)
n,〈X,Y 〉,〈Z,V 〉(t − h) =

1

Δt
(n)

〈X, Y 〉′t〈Z, V 〉′t
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

(Δt
(n)
i )2 + op(h)

(ii) H
(2)′

〈X,Y 〉,〈Z,V 〉(t) exists, and H
(2)′

〈X,Y 〉,〈Z,V 〉(t) = H(2)′(t)〈X, Y 〉′t〈Z, V 〉′t

Proof of Corollary 2.
(i)

H
(2)
n,〈X,Y 〉,〈Z,V 〉(t) − H

(2)
n,〈X,Y 〉,〈Z,V 〉(t − h)

=
1

Δt
(n)

〈X, Y 〉′t〈Z, V 〉′t
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

(Δti)2

+
1

Δt
(n)

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

Δ〈X, Y 〉ti [Δ〈Z, V 〉ti − 〈Z, V 〉′t(Δti)]

+
1

Δt
(n)

〈Z, V 〉′t
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

(Δti)[Δ〈X, Y 〉ti − 〈X, Y 〉′t(Δti)]

≤ 1

Δt
(n)

〈X, Y 〉′t〈Z, V 〉′t
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

(Δti)2

+
1

Δt
(n)

sup
u∈(0,t]

〈X, Y 〉′uΥZV (h)
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

(Δti)
2

+
1

Δt
(n)

〈Z, V 〉′tΥXY (h)
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

(Δti)
2

=
1

Δt
(n)

〈X, Y 〉′t〈Z, V 〉′t
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

(Δti)2 + op(h)

under assumptions A and B.1[(X, Y ), (Z, V )].

(ii) follows from assumption A directly.
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C Proof of theorems and corollary

Proof of Theorem 1.
(a)

̂〈X, Y 〉
′
t − 〈X, Y 〉′t

=
1
h

( ∑
t−h<t

(n)
i

<t
(n)
i+1≤t

ΔX
t
(n)
i

· ΔY
t
(n)
i

)
− 〈X, Y 〉′t

=
1
h

(〈X, Y 〉t − 〈X, Y 〉t−h + [2]
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs − X
t
(n)
i

)dYs) − 〈X, Y 〉′t

=
1
h

(〈X, Y 〉t − 〈X, Y 〉t−h) − 〈X, Y 〉′t︸ ︷︷ ︸
BXY

1,t

+
[2]
h

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs − X
t
(n)
i

)dYs

︸ ︷︷ ︸
BXY

2,t

where the second equality follows from Itô’s Lemma. We begin by considering the order of the BXY
2,t . By Lemma 2 (ii)

under assumptions A, B.1[(XX), (Y Y )], C.1(XX) and B.3[(X), (Y )], BXY
2,t = Op(

√
Δt

(n)

h ). We next consider the order
of BXY

1,t in the following.
Suppose we decompose 〈X, Y 〉′t into a martingale part (RXY

t ) and a drift part (DXY
t ) which is differentiable with

respect to t, then,

BXY
1,t =

1
h

∫ t

t−h

〈X, Y 〉′udu − 〈X, Y 〉′t

=
1
h

∫ t

t−h

(〈X, Y 〉′u − 〈X, Y 〉′t)du

=
1
h

∫ t

t−h

((t − h) − u)d〈X, Y 〉′u (integration by parts)

=
1
h

∫ t

t−h

((t − h) − u)dRXY
u︸ ︷︷ ︸

BXY,MG
1,t

+
1
h

∫ t

t−h

((t − h) − u)dDXY
u︸ ︷︷ ︸

BXY,DR
1,t

as shown, we refer to the first term as BXY,MG
1,t – the martingale part of BXY

1,t , and the second term as BXY,DR
1,t – the drift

part of BXY
1,t . Note that, naturally, BXY,DR

1,t = Op(h) under assumption B.2(X, Y ).

〈BXY,MG
1 , BZV,MG

1 〉t =
1
h2

∫ t

t−h

(t − h − u)2d〈RXY , RZV 〉u(C.1)

=
1
3
h〈RXY , RZV 〉′t + op(h)

Note that op(h) is from the following

1
h2

∫ t

t−h

(t − h − u)2(〈RXY , RZV 〉′t − 〈RXY , RZV 〉′u)du ≤ h

3
ΥRXY ,RZV

(h) = op(h)

by assumption B.1(RXY , RZV ). Hence BXY,MG
1 = Op(

√
h) by B.1(RXY , RXY ). Since BXY,DR

1,t = Op(h), it follows that
BXY

1,t = Op(
√

h).

(b) Equate Op(
√

h) = Op(
√

Δt
(n)

h ), it follows that Op(h) = Op(
√

Δt
(n)

).
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(c) The asymptotic distribution of BXY
1,t follows from (C.1) in (a) by Theorems A.2 or A.3 in Appendix A, depending on

assumption E. Now we consider the order of BXY
2,t .

BXY
2,t =

[2]
h

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs − X
t
(n)
i

)dY MG
s

︸ ︷︷ ︸
BXY,MG

2,t

+
[2]
h

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs − X
t
(n)
i

)dY DR
s

︸ ︷︷ ︸
BXY,DR

2,t

and then

〈BXY,MG
2 , BZV,MG

2 〉t =
[2]
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs − X
t
(n)
i

)(Zs − Z
t
(n)
i

)d〈Y MG, V MG〉s

+
[2]
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Xs − X
t
(n)
i

)(Vs − V
t
(n)
i

)d〈Y MG, ZMG〉s

∼ Δt
(n)

h
[H(2)′

〈X,Z〉,〈Y,V 〉(t) + H
(2)′

〈X,V 〉,〈Y,Z〉(t)] + op

(
Δt

(n)

h

)
by Lemma 1, Lemma 3 and Corollary 2.

In particular, 〈BXY
2 , BXY

2 〉t = Δt
(n)

h [H(2)′

〈X,X〉,〈Y,Y 〉(t) + H
(2)′

〈X,Y 〉,〈X,Y 〉(t)] in the limit. Hence the asymptotic distribution
of BXY

2 follows from Theorems A.1–A.3 in Appendix A.

(d) We here will show 〈BXY
1 , BXY

2 〉t = Op(Δt
(n)

√
h

)

〈BZV,MG
1 , BXY,MG

2 〉t =
〈

1
h

∫ t

t−h

((t − h) − s)dRZV
s ,

[2]
h

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XMG
s − XMG

t
(n)
i

)dY MG
s

〉

=
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XMG
s − XMG

t
(n)
i

)((t − h) − s)d〈RZV , Y MG〉s

+
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(Y MG
s − Y MG

t
(n)
i

)((t − h) − s)d〈RZV , XMG〉s

now suffice to consider one of the above two terms, we will examine the first one. Let dGs = [s − (t − h)]d〈RZV , Y MG〉s,
integration by parts yields,

1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XMG
s − XMG

t
(n)
i

)((t − h) − s)d〈RZV , Y MG〉s

= − 1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

(XMG
s − XMG

t
(n)
i

)dGu

= − 1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(ΔXMG
ti

)(ΔGti) +
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

GsdXMG
s
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= − 1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(ΔXMG
ti

)
[∫ t

(n)
i+1

t
(n)
i

(u − (t − h))d〈RZV , Y MG〉u
]

︸ ︷︷ ︸
I

+
1
h2

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[∫ s

ti

(u − (t − h))d〈RZV , Y MG〉u
]
dXMG

s

︸ ︷︷ ︸
II

= Op

(
Δt(n)

√
h

)
because

I ≤ 1
h2

√√√√√ ∑
t−h<t

(n)
i

<t
(n)
i+1≤t

(ΔXMG
ti

)2 ·
∑

t
(n)
i+1≤t

[∫ t
(n)
i+1

t
(n)
i

(u − (t − h))d〈RZV , Y MG〉u
]2

≤ sup
0≤u≤t

〈RZV , Y MG〉u
′ 1
h2

√
[XMG]t − [XMG]t−h

√√√√ ∑
t
(n)
i+1≤t

h2(Δti)
2

= Op

(√
Δt√
h

)

〈II〉 =
1
h4

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[∫ s

ti

(u − (t − h))d〈RZV , Y MG〉u
]2

d〈XMG〉s

≤
(

sup
0≤u≤t

〈RZV , Y MG〉′u
)2

sup
0≤u≤t

〈XMG〉′u

· 1
h4

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

∫ t
(n)
i+1

t
(n)
i

[∫ s

ti

(u − (t − h))du

]2
ds

=
(

sup
0≤u≤t

〈RZV , Y MG〉′u
)2

sup
0≤u≤t

〈XMG〉′u

· 1
h4

∑
t−h<t

(n)
i

<t
(n)
i+1≤t

{
1
20

(Δti)5 +
1
4
(Δti)4[ti − (t − h)] +

1
3
(Δti)3[ti − (t − h)]2

}

≤
(

sup
0≤u≤t

〈RZV , Y MG〉′u
)2

sup
0≤u≤t

〈XMG〉′u

·
∑

t−h<t
(n)
i

<t
(n)
i+1≤t

{
(Δti)5

20h4
+

(Δti)4

4h3
+

(Δti)3

3h2

}
Assumption A∼

(
sup

0≤u≤t
〈RZV , Y MG〉′u

)2

sup
0≤u≤t

〈XMG〉′u

·
{

(Δt(n))
4

20h3
H(5)′(t) +

(Δt(n))
3

4h2
H(4)′(t) +

(Δt(n))
2

3h2
H(3)′(t)

}
= Op

(
(Δt(n))

2

h

)
by assumption B.1[RZV , Y ), (X, X)], and the order selection of h2 = O(Δt(n)).

The independence for t �= t′ follows by the same methods as in Theorem A.1 and A.3.
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Proof of Corollary 1. The result follows directly from Theorem 1.

Proof of Theorem 2. By Taylor expansion on 1

〈̂S,S〉
and result in Theorem 1 (a),

ρ̂t − ρt =
̂〈Ξ, S〉

′
t̂〈S, S〉
′
t

− 〈Ξ, S〉′t
〈S, S〉′t

(C.2)

=
1

〈S, S〉′t
[ ̂〈Ξ, S〉

′
t − 〈Ξ, S〉′t] −

ρt

〈S, S〉′t
[ ̂〈S, S〉

′
t − 〈S, S〉′t] + op(

√
h)

=
1

〈S, S〉′t
[BΞS

1 − ρtB
SS
1 ] +

1
〈S, S〉′t

[BΞS
2 − ρtB

SS
2 ] + op(

√
h)

From Theorem 1, we also know that asymptotically,

h−1/2

⎡⎢⎢⎢⎣
BΞS

1,t

BSS
1,t

BΞS
2,t

BSS
2,t

⎤⎥⎥⎥⎦ L−→ N(0, M3)

where

M3 =

⎡⎢⎢⎢⎢⎣
1
3

[
〈RΞS〉′t 〈RΞS , RSS〉′t

〈RΞS , RSS〉′t 〈RSS〉′t

]
0

0 cH(2)′(t)

[
〈Ξ〉′t〈S〉′t + (〈Ξ, S〉′t)2 2〈Ξ, S〉′t〈S〉′t

2〈Ξ, S〉′t〈S〉′t 2(〈S〉′t)2

]
⎤⎥⎥⎥⎥⎦

Straightforward calculation following (C.2) and M3 gives,

Vρ̂t−ρt =
1

3(〈S〉′t)2
[〈RΞS〉′t + ρ2

t 〈RSS〉′t − 2ρt〈RΞS , RSS〉′t]

+
H(2)′(t)
(〈S〉′t)2

Δt
(n)

h2
[〈Ξ〉′t〈S〉′t + (〈Ξ, S〉′t)2 + 2ρ2

t (〈S〉′t)2 − 4ρt〈Ξ, S〉′t〈S〉′t]

=
1
3
〈ρ〉′t +

(
1

〈S〉′t

)2

H(2)′(t)
Δt

(n)

h2
[〈Ξ〉′t〈S〉′t − (〈Ξ, S〉′t)2]

=
1
3
〈ρ〉′t + cH(2)′(t)

[
〈Ξ〉′t
〈S〉′t

− ρ2
t

]
notice that we use 〈X〉 to represent 〈X, X〉 for simplicity, where X can be any process.
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