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The Basel II Accord is a financial risk management stan-
dard recently adopted by many financial institutions and
regulators around the world. The general spirit of the ac-
cord is to develop a systematic approach to evaluating and
controlling risks based on timely data and their analysis
and interpretation. The interface between statistical mod-
eling and the financial application is of pivotal importance
in the development of the internal ratings-based (IRB) ap-
proach recommended by the Basel II Accord. This article
reviews the IRB requirements and develops new empirical
Bayes models for modeling probability of default and loss
given default, which are the key ingredients in the IRB ap-
proach to credit risk analysis of retail exposures.
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1. INTRODUCTION

The Basel Committee on Banking Supervision (BCBS)
is an institution founded by the central bank governors of
the G-10 nations (Belgium, Canada, France, Germany, Italy,
Japan, the Netherlands, Sweden, Switzerland, the United
Kingdom, and the United States) in 1974. Its current mem-
bership is composed of senior representatives of banking su-
pervisory authorities and central banks not only from the G-
10 countries but also from Luxembourg and Spain. BCBS
meets four times a year, usually at the Bank for Interna-
tional Settlements (BIS) in Basel, and proposes supervi-
sory standards and guidelines in banking with the expecta-
tion that members’ banks and regulatory agencies and those
of other nations will implement them. These international
standards are referred to as the Basel Accords. The Basel
I Accord was proposed by BCBS in 1988 and was legally
enforced in the G-10 countries in 1992. Basel I focused on
the risk caused by loans or interest not being paid back to
the banks by the obligors. Such risk is called credit risk.
∗Research sponsored by NSF grant DMS-0305749.
†Research sponsored by RGC of Hong Kong.

In 2001, BCBS proposed a new accord, which is known
as the Basel II Accord and was finalized in 2005, for more
comprehensive risk evaluation. In Section 2 we give a brief
review of the Basel II Accord, and in particular the IRB
(internal ratings-based) approach and the decomposition of
the expected credit loss E(Lc) for a loan:

E[Lc] = EAD × LGD × PD,

where PD is the probability of default, LGD is the ex-
pected loss given default, which is expressed as a rate be-
tween 0 and 1, and EAD is the exposure at default. There
are many statistical issues concerning how PD and LGD
should be estimated. In this paper we consider retail loans
(e.g., mortgages, automobile loans and personal loans) and
propose new statistical models to address these issues. Since
the baseline data of these loans are typically credit scores,
we give in Section 3 an overview of the statistical methods
used in credit scoring. The obligor’s record of payments on
the loan and the interest provides longitudinal data, which
we combine with the baseline data to build a Markov chain
model in Section 4 for estimating an obligor’s default prob-
ability. We use an empirical Bayes approach to make use of
the data from other obligors while allowing for inter-subject
variability. Moreover, the Bayesian model can readily incor-
porate macroeconomic variables and their forecasts that are
important exogenous variables in estimating next period’s
default probabilities. The empirical Bayes approach is also
used in Section 5 to estimate a loan’s LGD for the next
period. Some concluding remarks are given in Section 6.

2. BASEL II AND ITS IRB REQUIREMENTS

We begin by reviewing how Basel I measured credit risk.
Under Basel I, the assets of banks were classified into five
categories, with corresponding risk weights 0, 10%, 20%,
50% and 100%. For example, G-10 government debt had
zero weight, G-10 bank debt had weight 20%, and other
debts (which include corporate debt and the debt of non-G-
10 governments) had weight 100%. Basel I required banks to
put aside at least 8% of the total weighted credit exposure
to guard against various financial risks. Thus the capital
requirement of a particular debt under Basel I was EAD ×
RW × 0.08, where EAD is the exposure at default of the
debt and RW is the risk weight.
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Unlike Basel I which focuses on credit risk exposures,
Basel II also requires banks to measure market risk and op-
erational risk. Operational risk is the risk of financial loss
caused by inadequate or failed internal processes, people and
systems, or external events. Market risk is the risk of loss
arising from changes in the value of tradable or traded as-
sets. While allowing banks to build their internal models for
measuring market risks, Basel II imposes certain regulatory
requirements on these models. One requirement is the inde-
pendence of the risk management group, which is in charge
of the development and execution of these models, and the
business units it monitors. Another requirement is that these
models should be fully integrated into the banks’ risk mea-
surement and management, and backtesting and stress test-
ing should be performed on their performance on a regular
basis. As pointed out by Dowd [1], work on internal models
for risk measurement and management had already started
at several major financial institutions in the late 1970s. In
particular, J.P. Morgan developed a RiskMetrics system to
measure risks of all trading positions and to aggregate the
market risks into a single risk measure, called Value at Risk
(VaR), and made it public and the necessary data freely
available on the internet in 1994. This led to widespread
adoption of VaR systems by financial institutions and sub-
sequent development of VaR models and other risk mea-
sures by using econometric and statistical approaches; see
[2–7].

As noted by Jorion [3, Chapter 18], credit risk is much
more difficult to quantify than market risk. For many com-
mercial banks, credit risk, which is the focus of this paper,
is the major component of the risk exposures. Basel II rec-
ommends each bank to measure its credit risk progressively,
first by the standardized approach and then changing to the
IRB approach. The standardized approach is very similar to
the Basel I risk weighting scheme except that RW can now
be determined by using external ratings (Moody’s KMV,
or Standard & Poor, or other rating agencies acceptable
to the regulators). Basel II recommends the IRB approach
to proceed in two stages, starting with the foundation IRB
approach (FIRB) and then switching to the advanced IRB
approach (AIRB). BCBS provides EAD and LGD for cor-
porate loans to FIRB banks and requires their internal rat-
ing systems to compute PD for corporate loans and EAD,
LGD and PD for all retail loans. AIRB banks have to esti-
mate EAD, PD and LGD for all loans and use them in the
minimum capital requirement formulas of BCBS [8].

As an example, consider the FIRB formula RW = k×12.5
in BCBS [8, §§328–330] for the risk weight of retail loans,
where 12.5 is the reciprocal of 8% and

k =
(

Φ
[

1√
1 − ρ

Φ−1(PD) +
√

ρ

1 − ρ
Φ−1(0.999)

]
(1)

− PD

)
× LGD,

in which Φ is the standard normal distribution function and
ρ is related to the pairwise correlation of the asset levels of
obligors belonging to the same risk class. This formula is
derived from the following one-factor model of the obligors’
asset values proposed by Schonbucher; see [9–13]. Let Vi be
the standardized asset level of the ith obligor in a given risk
class and assume that

(2) Vi =
√

ρZ +
√

1 − ρεi

where ρ > 0, Z and εi are i.i.d. standard normal for i =
1, . . . , M . Default is assumed to occur when Vi falls below
a threshold K. Let Ii = 1{Vi<K} and note that E(Ii) is the
same for all obligors in the same risk class. Moreover, since
Z is the common hidden factor, Vi and Vj are correlated and
so are Ii and Ij for i �= j. For a large number M of obligors,
Schonbucher [9] has shown that
(3)

lim
M→∞

Pr
{∑M

i=1 Ii

M
≤ x

}
= Φ

(√
1 − ρΦ−1(x) − Φ−1(p)

√
ρ

)
,

where p = E(Ii). Setting (3) equal to 0.999 gives x = x0.999,
the 99.9th percentile of the limiting distribution in (3),
which can be expressed as

x0.999 = Φ
[ √

ρ√
1 − ρ

Φ−1(0.999) +
1√

1 − ρ
Φ−1(p)

]
.

This is the first term inside the parentheses of (1). The sec-
ond term inside the parentheses of (1) has a minus sign
attached because the interest on each loan should be able
to cover the expected credit loss; see the discussion in [14,
p. 1461]. Although the above argument assumes the PDi to
be equal for the M obligors, Vasicek [11] has shown that if
the magnitudes of EADi and LGDi are similar for all M
obligors and M is large, formula (1) still provides adequate
capital requirement to cover the portfolio credit loss 99.9%
of the time.

For retail loans, estimating ρ from some observed “asset-
type” levels is difficult and impractical. This led BCBS [10,
p. 13] to “reverse engineer” the asset correlations from (i)
economic capital figures from large international banks and
(ii) historical loss data from supervisory databases of the G-
10 countries. Based on these studies, [8] recommends choos-
ing ρ = 0.15 for mortgage loans, ρ = 0.04 for revolving un-
secured exposures to individuals up to 100,000 Euros, and

ρ = 0.03 × 1 − exp(−35 × PD)
1 − exp(−35)

(4)

+ 0.16 ×
[
1 − 1 − exp(−35 × PD)

1 − exp(−35)

]

for other retail exposures. In Section 6, we comment on these
recommendations of BCBS.
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3. CREDIT SCORING

Credit scoring has been used in the banking industry
since the 1940s. Durand’s [15] seminal paper uses Fisher’s
linear discriminant analysis to distinguish bad loans from
the good ones. The basic idea is to assign scores to the
loan applicants based upon their attributes such as gen-
der, education level, income level, profession, marital status
and credit history. Such scoring systems, called scorecards,
are usually developed by in-house credit risk departments
and/or consulting firms.

The training sample for building a credit scorecard con-
sists of (xi, Ii), 1 ≤ i ≤ n, from n loans, where xi a d-
dimensional vector of predictor variables (attributes) of the
ith loan, and Ii is a binary response variable defined by
Ii = 1 (or 0) if the ith loan defaults (or stays clean) within
the last 12 or 18 or 24 months after at least one year since the
loan was offered [16, p. 153]. Regarding (x1, I1), . . . , (xn, In)
as a training sample of independent replicates of (X, I), the
statistical problem is to estimate P (I = 1|X = x) and the
methods commonly used in credit scoring include linear or
quadratic discriminant analysis, logistic or probit regression,
neural networks, classification and regression trees, and sup-
port vector machines. These methods are summarized be-
low. They estimate P (I = 1|X = x) by some function of
β̂T x, in which β̂ is estimated from the training sample. The
linear combination β̂T x therefore provides the “score” of an
obligor with attribute vector x.

Linear discriminant analysis (LDA) assumes that there
is a prior probability π of default, i.e., Pr{I = 1} = π, and
that the conditional distribution of X given I = i (i = 0, 1)
is N(μi, Σ). Then by Bayes’ theorem,

Pr{I = 1|X = x}

=
π exp{−1

2d1(x)}
π exp{−1

2d1(x)} + (1 − π) exp{−1
2d0(x)}

=
1

1 + e−s(x)
,

where dj(x) = (x − μj)T Σ−1(x − μj) is the Mahalanobis
distance from x to μj (j = 0, 1) and s(x) = βT x + γ with
β = Σ−1(μ1−μ0) and γ = log π

1−π−
1
2μT

1 Σ−1μ1+ 1
2μT

0 Σ−1μ0,
which can be estimated from the data. The assumption of
equal covariance matrices conditional on I = 1 or on I = 0
can be relaxed, resulting in quadratic discriminant analysis
(QDA); see [17, pp. 88–90].

Logistic regression assumes that Pr{I = 1|X = x} =
ψ(βT x + γ) with ψ(t) = 1/(1 + e−t), where β and γ are
unknown parameters that can be estimated by maximum
likelihood. Probit regression uses ψ = Φ, the standard nor-
mal distribution instead of the logistic function.

Letting Y = 1 − 2I so that default corresponds to Y =
−1, a support vector machine (SVM) considers the model
Pr(I = 1|X = x) = βT x + γ and estimates the unknown

parameters β and γ by solving the quadratic programming
problem of minimizing

‖β‖2
/2 + λ

n∑
i=1

ξi subject to ξi ≥ 0,(5)

yi(βT xi + γ) ≥ 1 − ξi for all 1 ≤ i ≤ n,

where λ > 0 controls how much overlap in the x-space is
allowed between the classes corresponding to yi = −1 and
yi = 1; see [17, pp. 372–375] for the separating hyperplane
background (in the case λ → ∞) of SVM classifiers and the
computational algorithms that can be used to minimize (5).

Instead of a single score β̂T x, a neural network with
J hidden units involves J scores β̂T

j x and assumes that
P (I = 1|X = 1) = α0 +

∑J
j=1 αjψ(βT

j x + γj), in which
α0, αj , βj and γj are unknown parameters that can be es-
timated by maximum likelihood, similar to logistic regres-
sion. We can use BIC to estimate J ; see [17, p. 206]. An-
other variant is to replace x by a transformed variate vector
h(x) = (h1(x), . . . , hm(x))T , as in the case of a classifica-
tion and regression tree (CART) that assumes the model
P (I = 1|X = x) = βT h(x) with hj(x) = 1{x∈Rj}, where
Rj is a rectangle in R

d that is determined from the train-
ing sample by using a minimization algorithm to choose the
“splitting variables” and “split points”; see [17, pp. 267–
271]. Such transformations have also been used to achieve
better class separation of SVMs, with xi in (5) replaced by
h(xi); see [17, pp. 377–379].

One of the most widely used credit scoring systems was
developed by Fair Isaac & Company (FICO), which created
credit scoring systems for U.S. banks and retail stores in
the 1960s and 1970s and then expanded to meet the needs
of other industries and to evaluate the credit of borrow-
ers. It assesses credit reports and credit history to deter-
mine a score that ranges between 300 and 850, but it ig-
nores salary and occupation and other characteristics such
as race, gender and marital status that may bias a lender.
In the 1980s the success of credit scoring in credit cards led
banks to use scoring for different loan-related tasks. Applica-
tion scoring systems are used to distinguish the “bad” from
the “good” borrowers. A borrower is classified as “bad” if
P (I = 1|X = x) exceeds some cut-off value. After the loan is
offered, the borrower’s payment record provides additional
information, and “behavioral scoring” systems can be used
for making decisions to manage existing accounts, such as
what credit limits to set, whether to market new products
to these clients and how to manage recovery if the account
should turn bad; see [16, pp. 161–163].

4. A MARKOV CHAIN APPROACH TO
MODELING PD

4.1 Baseline and time-varying covariates

We first consider the data available and the statistical
issues in building models to estimate the probability of de-
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fault (PDi) of the ith obligor in the next year, which we de-
noted by t+1 and use t to denote the current year. The ith
obligor’s credit score at the time of loan application summa-
rizes the baseline information, and his/her payment history
represents time-varying information. The Basel II Accord
recommends using at least 5 years of past data [8, §463].
Because of the possibility of changes in the model parame-
ters and in the bank itself over time, it is unwise to go back
in time for substantially more than 5 years. In the sequel, we
assume for definiteness that 5 years of past data are used.
For the ith obligor, we use credit score xi as the baseline
covariate and the time series Ii(t), Ii(t − 1), . . . as the out-
come variable and time-varying covariates to build a model
for estimating the default probabilities PDi = E[Ii(t + 1)],
where Ii(s) is 1 if the ith obligor has a default (i.e., over-
due payment for longer than 90 days in the case of retail
products) in year s, and 0 otherwise.

Although many statistical methods for modeling P (I =
1|X = x) have been used in credit scoring, as reviewed in
Section 3, there are two difficulties in applying them to the
present problem of estimating E[Ii(t + 1)]. First, obligors
may begin (or pay back) their loans any time during the
previous 5-year period. Second, most of the obligors do not
default, i.e., most Ii(t) are 0, and therefore the well-known
difficulty of using maximum likelihood to estimate the prob-
abilities of rare events also applies to logistic regression,
which is essentially maximum likelihood estimation of prob-
abilities as a function of the covariates. Whereas this is not
an important issue in loan application scoring, the goal of
which is to identify the “bad” borrowers whose probability
of default exceeds some cut-off value, more precision is re-
quired for the estimation of PDi in evaluating the overall
capital requirement covering all these loans.

The first difficulty can be resolved by using a Markov
chain model to accommodate the different information sets
of obligors. To address the difficulty caused by the relative
sparsity of defaults, we use a Bayesian approach to modify
the maximum likelihood estimates of the transition proba-
bilities of the Markov chain model, which also incorporates
macroeconomic factors for forecasting default in the next
period. Details are given in the next section.

4.2 A Markov chain model for PDi

Based on the credit scores, the applicants are grouped
into various classes called risk buckets, within which the
obligors can be regarded as having the same risk (or more
precisely, the same prior probability of default); see [18,
p. 311] for an example. According to BCBS [8, p. 91], each
bank has to use at least seven risk buckets for borrowers
who have not defaulted and at least one for those who have
defaulted previously at the time of their loan application.
Risk bucketing is tantamount to stratifying the obligors into
classes so that the baseline covariate (credit score) of an
individual obligor can be replaced by the class member-
ship. Therefore, instead of considering the ith obligor whose

credit score is xi, we now use (i, j) to label the ith obligor
in the jth class, j = 1, . . . , J . Using the past 5 years of
data, the bank has the record of the obligor’s time series
Iij(t), Iij(t − 1), . . . . However, as noted in Section 4.1, not
all obligors have all 5 years of data, depending on the year
tij that the loan started. Let C

(s)
j be the set of the jth-class

obligors who have available credit histories in year s with
s = t, t − 1, . . . , t − 4, where t is the current year. We begin
by considering a simple model for this time series, namely,
a 2-state Markov chain Iij(s) (taking values 1 and 0) with
initial state 0 and transition probabilities

P{Iij(s) = 1|Iij(s − 1) = 0} = pj ,(6)

P{Iij(s) = 1|Iij(s − 1) = 1} = p̃j ,(7)

for i ∈ C
(s)
j ∩C

(s−1)
j . The likelihood function of the Markov

chain model (6)–(7) can be expressed as

(8)
J∏

j=1

{
p

N01,j

j (1 − pj)N00,j

}{
p̃j

N11,j (1 − p̃j)N10,j
}

,

where Nii′,j =
∑t

s=t−4 Nii′,j(s) for i, i′ ∈ {0, 1} and

N00,j(s) =
∑

i∈C
(s)
j

∩C
(s−1)
j

{1 − Iij(s − 1)}{1 − Iij(s)}

N01,j(s) =
∑

i∈C
(s)
j

∩C
(s−1)
j

{1 − Iij(s − 1)}Iij(s)

N10,j(s) =
∑

i∈C
(s)
j

∩C
(s−1)
j

Iij(s − 1){1 − Iij(s)}(9)

N11,j(s) =
∑

i∈C
(s)
j

∩C
(s−1)
j

Iij(s − 1)Iij(s).

The likelihood function (8) has the same form
as that based on independent Binomial(nj , pj) and
Binomial(ñj , p̃j) observations N01,j and Ñ01,j , 1 ≤ j ≤ J,
where nj = N00,j + N01,j and ñj = N10,j + N11,j . When
N01,j is small (in particular, when N01,j = 0), the maxi-
mum likelihood estimate (MLE) p̂j = N01,j/nj is an un-
reliable estimate of pj . A commonly used method to deal
with such “data-poor” situations is to introduce a Beta(a, b)
prior on pj and a Beta(ã, b̃) prior on p̃j . These are con-
jugate families and the posterior distributions of pj and
p̃j are also beta; in particular, the posterior distribution
of pj is Beta(a + N01,j , b + N00,j). When nj is large rela-
tive to a + b and N01,j is substantially larger than a, the
posterior distribution is concentrated at p̂j and there is
little difference between the MLE and the Bayes estimate
(N01,j+a)/(nj+a+b). To choose the “best fitting” Bayesian
model in the sense of Kullback-Leibler divergence, we deter-
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mine θ := (a, b) and θ̃ := (ã, b̃) by maximizing the likelihood

J∏
j=1

{∫
pN01,j (1 − p)N00,j gθ(p)dp

}

×
{∫

p̃N11,j (1 − p̃)N10,j gθ̃(p̃)dp̃

}
,

in which gθ and gθ̃ are the Beta density functions. This is
similar to the approach of Breslow and Clayton [19] that
will be discussed below.

The Markov chain (6)–(7) assumes stationary transition
probabilities, which is reasonable when the economic envi-
ronment is relatively stable in the past 5 years and is ex-
pected to continue in the coming year. However, if a major
shift in macroeconomic variables like unemployment rate or
GDP has occurred in the past 5 years or is expected to oc-
cur in the coming year, the transition probabilities of the
Markov chain should accommodate these changes over cal-
endar time, instead of being treated as stationary. Incorpo-
rating macroeconomic variables in a factor model yields the
following modification of (6)–(7) for i ∈ C

(s)
j ∩ C

(s−1)
j :

logit(P{Iij(s) = 1|Iij(s − 1) = 0}) = λj + αT f(s),(10)

logit(P{Iij(s) = 1|Iij(s − 1) = 1}) = λ̃j + βT f(s),(11)

where logit(p) = log(p/(1−p)) and f(s) is a low-dimensional
vector of macroeconomic factors in year s. A standard ap-
proach to estimating the parameters λ1, . . . , λJ , λ̃1, . . . , λ̃J ,
α and β is to use logistic regression, which is essentially
maximum likelihood. Because most of the obligors do not
default, i.e., most Iij(s) are equal to 0, it is desirable to use
a Bayesian approach that puts a prior distribution on λj

with density function gθ which has a parameter vector θ,
and a prior distribution on λ̃j with density function gθ̃, as
we have done earlier for the simple model (6)–(7). This is
tantamount to regarding λj and λ̃j as “random effects” (in-
stead of as fixed parameters) in the generalized linear mixed
models introduced by Breslow and Clayton [19], who pro-
pose to estimate θ, θ̃, α and β by maximizing the likelihood

L =
J∏

j=1

{∫ (
t∏

s=t−4

[1 − ψ(λ + αT f(s))]N00,j(s)

(12)

× [ψ(λ + αT f(s))]N01,j(s)

)
gθ(λ)dλ

×
∫ (

t∏
s=t−4

[1 − ψ(λ̃ + βT f(s))]N10,j(s)

× [ψ(λ̃ + βT f(s))]N11,j(s)

)
gθ̃(λ̃)dλ̃

}
,

where ψ(u) = 1/(1 + e−u) and we use the same notation as
in (9).

Note that (12) involves terms of the form F (α, θ) =∫
Hα(λ)gθ(λ)dλ. Following [19], we can evaluate such in-

tegrals by using the Laplace approximation

(13) F (α, θ) ≈ Hα(λ̂)gθ(λ̂)
√

2π/V ,

where λ̂ = arg maxλ Hα(λ)gθ(λ) and V = −[(d2/dλ2)
log(Hα(λ)gθ(λ))]λ=λ̂. The accuracy of Laplace’s approxima-
tion depends on the magnitude of V ; see [20]. If V is suffi-
ciently large, (13) provides good approximation. When V is
not large, we can compute the integral by Gaussian quadra-
ture:

F (α, θ) =
∫

Hα(λ)gθ(λ)dλ

(14)

=
∫

exp{−λ2/2} exp{λ2/2}Hα(λ)gθ(λ)dλ

=
∫

exp{−λ2/2}h(λ)dλ ≈
√

2
K∑

k=1

akh(
√

2sk),

where h(λ) = exp(λ2/2)Hα(λ)gθ(λ), K is a positive integer
and sk, ak (1 ≤ k ≤ K) are constants such that the approx-
imation is exact if h is a polynomial of degree less than 2K.
Note that Monte Carlo is used in [20] because a multivari-
ate integral is involved. Using (13) or (14) to evaluate the
integrals in (12), we propose following procedure to evaluate
the MLE of Θ = (α, θ, β, θ̃). Let ψ̄ = 1 − ψ.

Step 1. Set r = 0 and Θ̂(0) as a random starting value.
Step 2. Set Θ = Θ̂(r) and compute for j = 1, . . . , J ,

λ̂j = arg max
λ

(
t∏

s=t−4

[ψ̄(λ + αT f(s))]N00,j(s)

× [ψ(λ + αT f(s))]N01,j(s)

)
gθ(λ),

ˆ̂
λj = arg max

λ

(
t∏

s=t−4

[ψ̄(λ + βT f(s))]N10,j(s)

× [ψ(λ + βT f(s))]N11,j(s)

)
gθ̃(λ).

Step 3. For each j, compute

Vj = −
[

d2

dλ2
log

(
t∏

s=t−4

[ψ̄(λ + αT f(s))]N00,j(s)

× [ψ(λ + αT f(s))]N01,j(s)gθ(λ)

)]
λ=λ̂j

and
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Ṽj = −
[

d2

dλ2
log

(
t∏

s=t−4

[ψ̄(λ + βT f(s))]N10,j(s)

× [ψ(λ + βT f(s))]N11,j(s)gθ̃(λ)

)]
λ=

ˆ̂
λj

.

If Vj > c, use Laplace’s approximation (13) to evaluate the
first integral in (12), which will be denoted by Ij(α, θ). Oth-
erwise, use (14) to evaluate Ij(α, θ). Similarly, by comparing
Ṽj with the predetermined threshold c, we can evaluate the
second integral of (12), denoted by Ĩj(β, θ̃).

Step 4. Compute Θ̂(r+1) = arg maxΘ

∏J
j=1 Ij(α, θ)×

Ĩj(β, θ̃).
Step 5. If ‖Θ̂(r+1) − Θ̂(r)‖ < tolerance, stop and output

Θ̂(r+1) as the MLE upon stopping. Otherwise, update r by
r + 1, Θ̂(r) by Θ̂(r+1), and go to Step 2.

Note that the preceding algorithm not only computes the
MLE of the parameters α, β, θ and θ̃ of the Bayesian Markov
chain model, but it also provides estimates of the random
effects λj and λ̃j in (10) and (11) as posterior modes in
Step 2 when the algorithm stops. We use this algorithm,
with c = 5 and tolerance = 0.0001, in the simulation study
below, following the suggestion in [20]. A maximum number
of 1000 iterations is imposed in Step 5 of the algorithm.

4.3 A simulation study

We study the performance of the parameter estimates in
the following model on the probabilities of default of 22,210
obligors. There are J = 5 risk buckets, with the following
initial bucket sizes (in year 0) and the number of obligors
who default in year 0 given in parentheses:

10000(10), 5000(20), 3000(30), 3000(50), 1000(100)

The first number (from left to right) corresponds to the low-
est risk bucket, labeled j = 1, and the last one corresponds
to the highest risk bucket, labeled j = 5. This study involves
a 6-year period, with the data from the first 5 years being
used as a training sample to estimate the model parameters
and the probability of default in year 6.

Inspired by [21, p. 282] and data from the second author’s
consulting work with a bank in Hong Kong, we choose the
baseline default probabilities pj , for those obligors in risk
bucket j who have not defaulted in the previous year, to
belong to the following intervals for j = 1, . . . , 5:

(15)

[10−6, 1.7×10−4], [4×10−4, 8.9×10−4], [1.86× 10−3, 5.7× 10−3],
[0.01, 0.027], [0.05, 0.11]

in which the first interval corresponds to j = 1 (lowest risk
bucket), and the last to j = 5 (highest risk bucket). The
baseline default probabilities p̃j for those obligors who have

defaulted in the previous year to belong to the following
intervals are listed for j = 1, . . . , 5 from left to right:

(16) [0.001, 0.01], [0.05, 0.1], [0.2, 0.3], [0.35, 0.4], [0.45, 0.5]

Besides the baseline default propensities of the obligors, we
also incorporate changes in a key macroeconomic variable
that affects default during the period by assuming that the
unemployment rates during the 6-year period are

f(1) = 9%, f(2) = 12%, f(3) = 10%,

f(4) = 8%, f(5) = 7%, f(6) = 6%,

in which f(6) for the future year 6 should be regarded as the
unemployment rate forecast for year 6, while f(1), . . . , f(5)
are the actual unemployment rates.

With these choices of f(s), pj and p̃j , we generate data
from the model that has the form of

P{Iij(s) = 1|Iij(s − 1) = 0} =
pj

pj + (1 − pj)e−3f(s)
,(17)

P{Iij(s) = 1|Iij(s − 1) = 1} =
p̃j

p̃j + (1 − p̃j)e−40f(s)
,(18)

in which pj and p̃j are chosen from the intervals in (15) and
(16), respectively. Note that (17) can be rewritten as

logit(P{Iij(s) = 1|Iij(s − 1) = 0}) = logit(pj) + 3f(s),

and (18) can also be expressed similarly. Thus, λj in (10)
corresponds to logit(pj) and λ̃j in (11) corresponds to
logit(p̃j). On the other hand, the working model (10)–(11)
assumes the λj and λ̃j to be independent normal and
therefore may be near each other with positive prob-
ability, whereas in the actual model, p1 < · · · < p5 and
p̃1 < · · · < p̃5, with clear separations between the adjacent
intervals to show that the buckets indeed have different risks.
After fitting the working model (10)–(11) to 5 years of data
simulated from the actual model, we use it to calculate the
predicted default probabilities p̂ij(6) of the obligor (i, j) in
year 6.

A commonly used approach to PD modeling is logistic
regression, “pooling many obligors across many years” [21,
p. 273]. This yields p̃ij(6), which is obtained by fitting the
logistic regression model with time-varying covariates Iij(s−
1) and f(s):

(19) logit(pij(s)) = λj + γIij(s − 1) + ξf(s).

The model (19) is a special case of “point-in-time” (PIT)
regression models for PD with explanatory variables that
track the state of the credit cycle [21, p. 273]. As pointed out
in Section 4.1, different obligors may have different informa-
tion sets because of drop-in and drop-out during the 5-year
training period. To avoid such difficulties in fitting (19) to
compare the predicted p̃ij(6) with p̂ij(6), we assume that no
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Figure 1. Box-plots of divergence (20) for pEST
ij (6), in which

the estimate (EST ) is point-in-time (PIT) logistic regression
p̃ij(6), or MLE or Bayes modeling of (10)–(11) that yields

p∗ij(6) or p̂ij(6).

obligor drops out or drops in during the 6-year period. Be-
sides p̃ij(6) and p̂ij(6), we also consider p∗ij(6) obtained by
fitting logistic regression to (17) and (18) with λj =logit(pj)
and λ̃j =logit(p̃j), which is tantamount to treating λj and
λ̃j as fixed parameters (estimated by MLE) rather than ran-
dom effects (estimated by Bayesian methods).

Our simulation study first considers the following choice
of pj and p̃j in (15) and (16):

p1 = 1.4 × 10−5, p2 = 4.5 × 10−4 ,

p3 = 3.5 × 10−3, p4 = 0.027, p5 = 0.058,

p̃1 = 0.008, p̃2 = 0.0995, p̃3 = 0.26, p̃4 = 0.38, p̃5 = 0.466.

We use two measures to evaluate the performance of the
estimate pEST

ij (6). The first measures the “divergence” from
the actual probability pij(6) and is defined by the Kullback-
Leibler loss function

D =
5∑

j=1

nj∑
i=1

[
pij(6) log

pij(6)
pEST

ij (6)
(20)

+ (1 − pij(6)) log
1 − pij(6)

1 − pEST
ij (6)

]
,

where nj is the size of the jth risk bucket. The second is the
L1-loss

(21) L =
5∑

j=1

nj∑
i=1

|pij(6) − pEST
ij (6)|.

Figure 2. Box-plots of L1-loss (21) for pEST
ij (6), in which the

estimate (EST ) is point-in-time (PIT) logistic regression
p̃ij(6), or MLE or Bayes modeling of (10)–(11) that yields

p∗ij(6) or p̂ij(6).

Figures 1 and 2 give the box-plots of D and L for the es-
timators p̂ij(6), p∗ij(6) and p̃ij(6) based on 50 simulations
from the above model. The box-plot of D for p∗ij(6) only
involves 32 simulated data sets as the remaining 18 simula-
tions have p∗i1(6) = 0 (for the lowest risk bucket j = 1) and
therefore D = ∞. The means of the L1-loss for p̂ij(6), p∗ij(6)
and p̃ij(6) are 22.45(±1.19), 23.31(±1.22) and 99.78(±0.65),
respectively, in which the standard errors are given in paren-
theses.

We next generate 50 simulated samples in which pj and
p̃j are sampled from the uniform distributions over the re-
spective intervals in (15) and (16). Figures 3 and 4 give the
box-plots of D and L for the estimators p̂ij(6), p∗ij(6) and
p̃ij(6) based on these 50 simulated samples. The box-plot
D of p∗ij(6) involves 46 of these simulations, with the other
four giving unacceptably large values of D. The means of
the L1-loss for p̂ij(6), p∗ij(6) and p̃ij(6) are 22.37(±1.17),
23.60(±1.25) and 89.66(±1.63), respectively, in which the
standard errors are given in parentheses. The preceding
simulation results show that the Bayesian approach gives
somewhat smaller L1-loss in estimating pij(6) than the like-
lihood approach and avoids difficulties of the latter when
there are relatively few observed defaults. Moreover, using
the Markov chain model (10)–(11) gives substantially better
estimates of pij(6) than fitting the logistic regression model
(19) with time-varying covariates as in the standard PIT
approach.

Statistical models for the Basel II internal ratings-based approach to measuring credit risk of retail products 235



Figure 3. Box-plots of divergence (20) in the case of
randomly generated pj and p̃j (1 ≤ j ≤ J).

4.4 Embedding PDi in a more informative
Markov chain

Because the Markovian structure only involves one-step
transition probabilities, the above Markov chain models are
able to circumvent the difficulty that different obligors have
different information sets which involve from less than one
to more than five years of past data. However, the Marko-
vian structure imposes the restriction that the conditional
distribution of Iij(s) given Iij(s − 1), Iij(s − 2), . . ., can
only depend on Iij(s − 1). Although one can remove this
restriction by using a Kth-order Markov chain as in [14,
p. 1451], one has to further divide the obligors according
to their information sets into sub-classes for which (a) only
the baseline covariate is available, or (b) only Iij(s − 1) is
available as the time-varying covariate, or (c) Iij(s− 1) and
Iij(s − 2) are available as time-varying covariates, etc., so
that different K’s can be used for different sub-classes.

Instead of using a Kth-order Markov chain for Iij(s), we
propose to augment the 0-1 state (encoding whether the
loan has been overdue for more than 90 days in that year,
as in (6)–(7) or (10)–(11)) by incorporating how long the
loan payment has been overdue in year s. Specifically, letting
τij(s) denote the duration of the longest overdue payment of
obligor (i, j) in year s, we divide the possible values of τij(s)
into K groups, e.g. (i) less than 3 months (corresponding to
Iij(s) = 0), (ii) 3–12 months, (iii) 12–24 months and (iv)
over 24 months. Letting Xij(s) = k if τij(s) belongs to the
kth group (0 ≤ k < K), we model Xij(s) as a finite-state
Markov chain with K states so that state 0 corresponds to no
default (i.e., Iij(s) = 0). This is tantamount to subdividing
{Iij(s) = 1} into K−1 states, representing the “severity” of
the delinquency (“default”). It is straightforward to extend

Figure 4. Box-plots of L1-loss (21) in the case of randomly
generated pj and p̃j (1 ≤ j ≤ J).

(10)–(11) for the 2-state case to the K-state model that has
more parameters. Choosing the states appropriately in the
K-state model is important to keep K reasonably small (and
the number of parameters manageable) while incorporating
the severity of the previous delinquency as a predictor of
PD in the next period.

5. A GENERALIZED LINEAR MIXED
MODEL FOR LGD

5.1 Regression model in LossCalc

A commonly used method to estimate LGD is to combine
historical averages with expert opinions in a look-up table;
see [22]. A shortcoming of this method is that it does not
adapt to changing macroeconomic conditions. More sophis-
ticated statistical modeling is needed to better predict LGD
for the next period. A difficulty with modeling LGD lies in
the complexity of the recovery process. For corporate loans,
Moody’s KMV has developed a software package LossCalc
to calculate the LGD. After a review of how LossCalc uses
recovery data of corporate loans to model LGD, we intro-
duce new models for the LGD of retail products.

According to [22], LossCalc is built from a global
database of 3,026 recovery observations that include de-
faulted corporate loans, bonds and preferred stock from 1981
to 2004. This training sample is used to construct a regres-
sion model for the recovery rate (RR) that is implied by the
market value of the loan (bid-side market quote) one month
after default ; 1−RR is called the economic LGD. The re-
gression model can be used to predict the economic LGD of
a defaulted loan and is based on the following simplification
of the actual recovery process. The loans are usually most
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liquid 15 to 60 days after default and the prices reflect how
much the market anticipates recoveries. Approximately 50%
of the defaults are expected to be charged off the account-
ing books some time (with an average of 1.75 years) after
default, with ultimate court-ordered resolution payments in
the form of cash, assets, new debt extensions, etc. Because
of the complexity of the recovery process and its duration,
which ranges from 1.25 to 5 years, it is prohibitively difficult
to predict such accounting LGD.

The regression model in LossCalc is a linear regression
model of a transformed recovery rate y on nine predictors
chosen from the following five group of variables:

(i) collateral, which includes cash, assets, property plant
and equipment, and support from subsidiaries;

(ii) debt type/seniority class, with corporate loan, corpo-
rate bond or preferred stock as the debt type, and
secured, senior unsecured, subordinate as seniority
classes;

(iii) the firm’s business-cycle-adjusted leverage, relative se-
niority standing and (for public companies) Moody’s
KMV “distance-to-default”;

(iv) historical average of recoveries aggregated across many
firms;

(v) industry-level distance-to-default within countries and
geographical regions.

Letting Fα,β denote the distribution function of the
Beta(α, β) distribution, the response variable y in the re-
gression model of LossCalc is y = Φ−1(Fα,β(RR)), where Φ
is the standard normal distribution function. The method
of least squares is used to estimate α, β and the regression
parameters. A year-by-year out-of-sample prediction error
criterion is used to select the regressors; see Appendix B of
[22].

The assumption underlying the Box-Cox-type transfor-
mation Φ−1(Fα,β(RR)) in LossCalc is that RR, which takes
values in the unit interval (0, 1), has a beta distribution
whose parameters depend on the predictors. The transfor-
mation is used to convert the beta random variable into one
whose support is the entire real line so that ordinary linear
regression can be applied. A better approach to regression
with beta-distributed responses involves generalized linear
models, as illustrated in the following.

Example 1. Suppose one has a sample of n = 100 inde-
pendent random variables yi having the beta distribution
with density function

(22)
Γ(φ)

Γ(μiφ)Γ((1 − μi)φ)
yμiφ−1(1 − y)(1−μi)φ−1, 0 < y < 1,

in which μi is a function of a predictor xi. Beta regression
[23], which is a special case of generalized linear models,
uses the logit link function to relate μi to a linear func-
tion of xi, i.e., logit(μi)= a + bxi. We first consider this

Figure 5. Box-plots of cumulative squared errors of two
methods.

model and generate a sample (xi, yi), i = 1, . . . , 100, from
this model with a = 0.1, b = 0.5, φ = 30 and with xi

evenly spaced in [0, 5]. The MLEs based on this sample are
â = 0.12, b̂ = 0.502, φ̂ = 35.6, which can be used to esti-
mate μi by μ̂i = â + b̂xi, yielding

∑100
i=1(μi − μ̂i)2 = 0.0017.

If we apply least squares to the transformed Φ−1(Fα,β(yi))
as in LossCalc, we obtain

∑100
i=1(μi − μ̃i)2 = 0.01, where μ̃i

is the estimate of μi based on the least squares estimate
of the transformed model. Figure 5 gives the box-plots of
the cumulative squared errors of the two methods based
on 50 simulated samples. The p-value of the pairwise t-test
comparing

∑100
i=1(μi− μ̂i)2 and

∑100
i=1(μi− μ̃i)2, with respec-

tive mean values 0.0093 and 0.0158, for these 50 simulated
samples, is 4.176×10−6, showing that beta regression per-
forms substantially better than the LossCalc transforma-
tion.

We next consider the model μi = Φ(F1,1(a + bxi))
as assumed by LossCalc. Since F1,1 is the distribution of
the Beta(1,1)(=uniform over [0,1]) distribution, this cor-
responds to using the probit link (instead of the logit
link) in the beta regression model. Figure 6 gives the
box-plots of

∑100
i=1(μi − μ̂i)2 and

∑100
i=1(μi − μ̃i)2 based

on 50 simulated samples, in which μ̃i and μ̂i are the
same as before, with μ̂i still using the logit link. The
means of

∑100
i=1(μi − μ̂i)2 and

∑100
i=1(μi − μ̃i)2 are 0.0149

and 0.0179, respectively, and the p-value of the pairwise
t-test comparing these two cumulative squared errors is
0.0047, showing that beta regression still performs better
than the LossCalc transformation model even though the
data are generated from μi = Φ(a + bxi) that is con-
sistent with LossCalc which, however, does not use the
MLE.
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Figure 6. Box-plots of cumulative squared errors under probit
link.

5.2 Modeling LGDi using Bernoulli and
Beta mixed models

Unlike corporate loans which are still quite liquid after
default, personal loans, auto loans and mortgage loans lack
such liquidity and the usual recovery process involves (a)
in-house departments, (b) selling off the debt at some frac-
tion of the face value, and (c) collection or foreclosure agen-
cies which take a fixed percentage of the recovered loan as
commission. In a simplified description of the recovery pro-

cess, the bank first tries (a) and then switches to (b) or
(c) if (a) is unsuccessful after, say, 3 months. In the case
of mortgage loans, (b) means selling the mortgage to an-
other mortgage company (e.g., Fannie Mae or Freddie Mac
in the U.S.), while (c) means foreclosure of the mortgage
and repossession and sale of the property. The shortfall is
the residual loan value plus planned interest minus the sales
price of the mortgage or the repossessed property. For occa-
sional missed payments, the “defaulted” obligors who have
forgotten to pay or have been away usually pay within one
month after they are contacted by the in-house department.
Such a scenario corresponds to complete recovery and leads
to an atom at 0 in the marginal distribution of the economic
LGD.

Example 2. To illustrate the importance of including the
atom at 0, consider the following model. For i = 1, . . . , n,
let Ii be independent Bernoulli(πi), where πi = 1/{1 +
exp(0.1 + 0.2xi)}. Let Yi be independent beta random vari-
ables having density functions (22) with φi = 30 and
μi = 1/{1 + exp(0.1 + 0.5xi)} which are the same as in Ex-
ample 1. Let μ̂i and μ̃i be the same as in Example 1, ignoring
the atom of LGDi at 0. It is more appropriate to use logistic
regression to estimate πi by π̌i and beta regression to esti-
mate the mean μi of Yi|Yi > 0 by μ̌i, so that π̌iμ̌i is used to
estimate E(LGDi|xi) = πiμi. Figure 7 gives the box-plots of∑100

i=1(πiμi−μ̂i)2,
∑100

i=1(πiμi−μ̃i)2 and
∑100

i=1(πiμi−π̌iμ̌i)2,
based on 50 simulations from the Bernoulli-beta model.
The means of

∑100
i=1(πiμi − μ̂i)2,

∑100
i=1(πiμi − μ̃i)2 and∑100

i=1(πiμi − π̌iμ̌i)2 are 0.1061,0.0561 and 0.0231, respec-
tively, showing that π̌iμ̌i gives a substantially smaller mean
squared error than the other two estimates.

Figure 7. Box-plots of cumulative squared errors under the Bernoulli-Beta model.
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BCBS [8] requires LGD estimates to be “grounded in his-
torical recoveries and, where applicable, must not be solely
based on the collateral’s estimated market values.” Busi-
ness cycles should also be taken into account since at times
of economic downturn both PD and LGD tend to increase;
the database should ideally cover at least one business cycle
and must not be shorter than 5 years. In addition, other
attributes of the obligor’s creditworthiness and collateral
should also be included. We propose the following general-
ized linear mixed model to estimate LGD using these data.

Let Ds denote the set of obligors who default in year s
or before and who have available credit and collateral infor-
mation in year s− 1, with s = t, t− 1, . . . , t− 4. For i ∈ Ds,
let Yi(s) be the economic LGD in year s. As noted above,
Yi(s) has an atom at 0. Let πi(s) = P{Yi(s) > 0}, which we
model by

(23) logit(πi(s)) = ξi + ηT xi(s − 1) + γT f(s),

where xi(s − 1) is a vector of attributes of the obligor’s
creditworthiness and collateral in year s − 1 and f(s) is a
vector of macroeconomic factors in year s. Note that our goal
is to predict LGDi(t+1) of the ith obligor for year t+1 using
xi(t) and the forecast of f(t + 1), and that LGDi(t + 1) =
πi(t + 1)E(Yi(t + 1)|Yi(t + 1) > 0). The conditional density
of Yi(s)|Yi(s) > 0 is assumed to belong to the exponential
family

f(y|μi(s), φ) =
Γ(φ)

Γ(μi(s)φ)Γ((1 − μi(s))φ)
(24)

× yμi(s)φ−1(1 − y)(1−μi(s))φ−1

for 0 < y < 1, where

μi(s) = E(Yi(s)|Yi(s) > 0),(25)

logit(μi(s)) = ζi + κT xi(s − 1) + νT f(s),

(26) Var(Yi(s)|Yi(s) > 0) =
μi(s)(1 − μi(s))

1 + φ
,

and ξi are i.i.d. having density function hθ and are inde-
pendent of ζi which are i.i.d having density function kθ̃. As
in (10)–(11), we introduce inter-subject random effects ξi

and ζi in (23) and (25), yielding a generalized linear mixed
model of the type introduced by Breslow and Clayton [19].
Hamerle, Knapp and Wildenauer [24, pp. 129–130] have also
used mixed effects models to analyze the recovery rates of
corporate loans. They assume the one-factor model (2), in
which Vi is replaced by {logit(RR) −μi,s}/σ for the ith
obligor and Z is replaced by Zs. Then μi,s is like logit(μi(s))
in (25) but uses a constant ζ instead of the subject-specific
ζi. The random effects in their linear mixed effects model
arise from the unobservable factors Zs.

Generalized linear mixed models are marginal regression
models. Because time-varying covariates are used in the
Bernoulli mixed model for 1{Yi(s)>0} in (23) and the beta

mixed model (24)–(25) for Yi(s)|Yi(s) > 0, we use the work-
ing assumption of independence among Yi(s), Yi(s − 1), . . .,
as in [19] and [20]; see also [25]. Let D = ∪t−4≤s≤tDs. The
likelihood function for the beta mixed model (24)–(25) is

(27)
∏
i∈D

∫ ∏
t−4≤s≤t;i∈Ds

f(Yi(s)|μi(s; ζ, κ, ν))hθ(ζ)dζ,

in which we write μi(s; ζ, κ, ν), instead of μi(s), that
depends on the parameter κ and ν besides the ran-
dom effect ζi with density function hθ. Similarly, letting
Ii(s) = 1{Yi(s)>0}, the likelihood function for the Bernoulli
mixed model (23) is

∏
i∈C

∫ ∏
t−4≤s≤t;

i∈Cs

(πi(s; ξ, η, γ))Ii(s)(1 − πi(s; ξ, η, γ))1−Ii(s)kθ̃(ξ)dξ,

(28)

where Cs denotes the set of obligors who have available
credit and collateral information in year (s − 1), similar to
the C

(s)
j in (9), and C = ∪t−4≤s≤tCs. The integral in (27)

or (28) can be evaluated by Gaussian quadrature as in (14).

6. DISCUSSION

This paper studies modeling PD and LGD for retail loans,
for which “default” means delinquency. There is a much
more extensive literature on credit risk of corporate loans,
for which default means bankruptcy (an absorbing state)
and requires hazard modeling. In particular, as indicated in
Section 2, factor models have been developed to incorporate
“default correlations” and extended to retail products in
an unnatural and somewhat arbitrary way. Difficulties with
multivariate hazard modeling can be circumvented for retail
products by modeling PDi directly as the transition prob-
ability of a non-homogeneous Markov chain. This Markov
chain formulation also circumvents difficulties with drop-in
and drop-out of obligors in the training sample, which cor-
respond to staggered entry and censoring for hazard mod-
eling in survival analysis and which would require stratifi-
cation of the obligors according to their information sets if
one should use logistic regression with baseline and time-
varying covariates, as pointed out in Section 4.2. We use
an empirical Bayes model for the transition probabilities of
the Markov chain to handle the relatively small number of
defaults in the training sample, especially for low-risk buck-
ets, and to incorporate macroeconomic factors. Note that
the macroeconomic factors provide some linkage among the
obligors, similar to the factor models (2) for corporate loans.
However, unlike (2) that uses the factor Z and idiosyncratic
risk εi to model the obligor’s standardized asset level whose
drop below some theoretical threshold triggers default, the
macroeconomic factors f(s) relate directly to the default
probabilities (10) and (11) of all obligors, making the model
much easier to estimate than (2). Moreover, econometric
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forecasts of these factors, such as unemployment rate and
GDP, for the next period are easily accessible, unlike the
abstract unobservable factor Z in [24]. In this connection,
we comment that the choice (4) or 0.15, 0.04 of ρ for re-
tail loans by BCBS is unnecessarily fettered by the inher-
ent difficulties of multivariate default (bankruptcy) model-
ing of corporate loans, and that a more direct statistical
approach can be used to set capital requirement for retail
products.

Note that we have used (10)–(11) with random effects
for λj and λ̃j only as a working model. As explained in the
second paragraph of Section 4.2 and illustrated in the sim-
ulation study in Section 4.3, these random effects are used
to circumvent difficulties, particularly from the regulatory
perspective, caused by relatively few observed defaults for
those obligors in low risk buckets when one uses maximum
likelihood that treats λj and λ̃j as fixed parameters instead
of the Bayesian approach that imposes prior distributions
on them. On the other hand, we have only put convenient
marginal prior distributions on λj (and λ̃j) and have com-
bined them by a working independence assumption, instead
of using a joint prior distribution that incorporates the order
constraint λ1 < · · · < λJ for the risk buckets. The indepen-
dence assumption results in one-dimensional integrals for
the algorithm in Section 4.2, and it suffices for modifying
the MLE of λj (or λ̃j) with a Bayes estimator when N01,j

(or N11,j) is small, whereas using a joint prior distribution
that incorporates the order constraint will lead to a consider-
ably more complicated algorithm that involves multivariate
integrals.

The empirical Bayes approach is also used to model LGD,
in the form of generalized linear mixed models, with a
Bernoulli component to model the probability that LGD=0
and a Beta component to model LGD given that it is posi-
tive. Since its focus is on these empirical Bayes models for
PD and LGD, this paper does not address other important
issues concerning statistical models for the IRB approach
to measuring credit risk of retail loans. One such issue is
the performance assessment of a bank’s internal models. As
noted by Oung in BCBS [10, p. 96], “At the current stage of
knowledge, unambiguous and complete statistical tests en-
abling a formal acceptance or rejection of an IRB system do
not appear to be available. Difficulties mainly relate to the
effect of default correlation, data constraints, and the defi-
nition of meaningful and robust target criteria for validating
IRB systems.” Compounding the difficulties in coming up
with “meaningful and robust” performance measures to as-
sess the internal models, banks and their regulators have
obviously different objectives which need to be reconciled in
the development and assessment of the internal models. We
are currently studying backtesting of the models proposed
herein and exploring new performance measures to assess
these and other models in practice.
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