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Partially Bayesian variable selection
in classification trees∗

Douglas A. Noe and Xuming He

Tree-structured models for classification may be split
into two broad categories: those that are completely data-
driven and those that allow some direct user interaction
during model construction. Classifiers such as CART [3] and
QUEST [11] are members of the first category. In those data-
driven algorithms, all predictor variables compete equally
for a particular classification task. However, in many cases
a subject-area expert is likely to have some qualitative no-
tion about their relative importance. Interactive algorithms
such as RTREE [17] address this issue by allowing users
to select variables at various stages of tree construction. In
this paper, we introduce a more formal partially Bayesian
procedure for dynamically incorporating qualitative expert
opinions in the construction of classification trees.

An algorithm that dynamically incorporates expert opin-
ion in this way has two potential advantages, each improv-
ing with the quality of the expert. First, by de-emphasizing
certain subsets of variables during the estimation process,
machine-based computational activity can be reduced. Sec-
ond, by giving an expert’s preferred variables priority, we
reduce the chance that a spurious variable will appear in the
model. Hence, our resulting models are potentially more in-
terpretable and less unstable than those generated by purely
data-driven algorithms.

Keywords and phrases: Feature selection, Expert opin-
ion, Supervised learning.

1. INTRODUCTION

Given a data set for a particular application, a researcher
will typically build a statistical model with one or both of
the following objectives in mind: (1) to use information from
this data to make useful predictions about future obser-
vations, and (2) to gain some insights into the underlying
structure of the data. Tree-based classification models, in-
cluding CART [3], QUEST [11], C4.5 [15, 16], and many
others [4, 7–10, 12] are attractive because of their potential
to blend these two objectives quite effectively.

∗This material is based upon work supported by the National Science
Foundation Award DMS-0604229. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the NSF.

One potential drawback of these older tree-based classi-
fication models, however, is that they are completely data-
driven. In other words, the resulting tree model is completely
determined from the input data with no internal mechanism
to indicate the types of results that users might consider
“reasonable” or “more desirable” in a particular applica-
tion context. More recent programs, including RTREE [17]
address this problem by allowing direct user involvement
in the construction of the tree. Humans may interact with
these programs by selecting particular splitting variables at
each node as the tree is being constructed.

In this paper, we propose a more formal partially
Bayesian framework for dynamically involving qualitative
expert opinion in the construction of a classification tree,
thereby allowing the user’s preferences to compete with the
information contained in the data. In pursuit of this goal, we
are also mindful of two additional objectives. First, we seek
to avoid the variable selection bias inherent in many popu-
lar algorithms (including CART). Also, we aim to achieve
computational efficiency gains over CART for a large class
of problems.

1.1 Framing the problem

To meet these goals, we should more clearly define “ex-
pert opinion.” Given a particular classification problem,
subject-area experts will likely have at least a qualitative
notion about which variables are most important to the clas-
sification scheme under investigation.

To illustrate, consider Fisher’s [5] famous iris clas-
sification problem. Based on a learning sample of 150
irises, we wish to predict the categorical response Y ∈
{setosa, versicolor, virginica} from the four physical mea-
surements petal width (X1), petal length (X2), sepal width
(X3), and sepal length (X4). The tree in Figure 1 represents
a common fit based on a CART-like algorithm.

The flowers are first separated by their petal lengths, with
those smaller than 2.45 centimeters being correctly declared
setosa irises. The remaining 100 flowers are then separated
by their petal widths. In this case five virginicas with petal
widths under 1.75 centimeters are incorrectly classified as
versicolors, and one versicolor with a larger petal width is
incorrectly classified as a virginica iris. However, the appar-
ent misclassification rate of only 4% is quite reasonable.

Notice that in this problem, although all four variables
were equally considered by the classification algorithm, only
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Figure 1. A CART-Based Classification Tree for Fisher’s [5]
Iris Data. The Three Numbers Present at Each Terminal

Node Indicate the Number of Setosa, Versicolor, and
Virginica Cases, Respectively, Present in the Node.

two were eventually useful: petal length and petal width. In
some sense, the sepal width and sepal length information
was not even needed, because the same model could have
been generated without these variables.1

Quite possibly, a botanist with experience studying iris
characteristics might have already suspected that the petal
characteristics are more useful than the sepal characteristics
in distinguishing between the three species. Throughout our
discussion, “expert opinion” will refer to this qualitative no-
tion of the relative importance of the available variables to
the classification problem at hand.

Our aim is to develop a classification tree algorithm that
dynamically incorporates this expert opinion. Our approach
is to implement a partially Bayesian variable selection pro-
cess at each split in the tree, thereby giving full considera-
tion to variables the expert thinks are most important, and
lesser consideration to variables the expert thinks are less
important to the classification problem.

An algorithm that dynamically incorporates expert opin-
ion in this way has two potential advantages over other
single-tree classifiers, each improving with the quality of the
expert. First, by de-emphasizing certain subsets of variables
during the estimation process, we may reduce the required
machine-based computational activity. Moreover, by giving
an expert’s preferred variables priority, we reduce the chance
that a spurious variable will appear in the model. Hence, our
resulting models are potentially more interpretable and less
unstable than those generated by purely data-driven algo-
rithms.

We shall develop our partially Bayesian classification tree
algorithm in Sections 2 and 3. Section 4 explores the prop-
erties of our algorithm using a spam classification example.
Finally Section 5 concludes with some discussion.

1We do note that ensemble methods such as random forests [2], bag-
ging [1], and boosting [6], might capture additional information from
these otherwise unused variables. However, we focus our attention in
this paper on single-tree models for their simplicity and ease of inter-
pretation.

2. PARTIALLY BAYESIAN VARIABLE
SELECTION

Our new classification tree algorithm is loosely based
on the QUEST method developed by Loh and Shih [11].
QUEST, which stands for Quick, Unbiased, Efficient, Sta-
tistical Tree, is particularly well-suited for our purposes be-
cause it separates the tasks of variable selection and split
value selection. However, QUEST is completely data-driven;
expert opinion is not considered in the variable selection pro-
cess.

The primary innovation in our new tree-growing algo-
rithm lies in the variable selection procedure. As in the
QUEST algorithm, variable selection and split value selec-
tion are handled separately. Unlike QUEST, our procedure
provides expert opinion a dynamic influence on the selection
of the splitting variable at each node of the tree.

We shall build the general algorithm over the next two
sections. In the current section, we assume that each variable
is assigned a unique importance rank by the expert user.
We refer to this as the unblocked algorithm. In Section 3 we
relax this assumption, allowing the expert to provide equal
importance ranks within blocks of variables.

2.1 Expert variable ranks

Assume that at a particular node we have K potential
splitting variables, X1, . . . , XK . Suppose further that the ex-
pert provides unique “importance ranks” r0 = (r0

1, . . . , r
0
K)

corresponding to each of the splitting variables.2 Here we
assume that ranks decrease with the importance of the vari-
able.

This vector of expert variable ranks serves as a param-
eter describing a prior distribution π of candidate ranks
r ∈ Θ(r0),

(1) π(r) ∝
{

1 + τ(r, r0), if τ(r, r0) ≥ τ�;
ε1, otherwise,

where Θ(r0) represents the set of all permutations of the
vector r0, τ(x,y) denotes Kendall’s τb rank correlation be-
tween the vectors x and y, and τ� ∈ (−1 + ε1, 1] is a user-
defined threshold value designating the assumed quality of
the expert. The parameter ε1 is a small positive constant
used to ensure that all permutations of r0 receive at least
some positive prior probability; the support of π(·) should
be the entire set Θ(r0).

The prior distribution tells us that as the candidate vari-
able ranks, r, more closely agree with the expert-provided
ranks, r0, we consider them more likely to be descriptive of
the true relative importance of the predictor variables. We
use rank correlation to measure this level of agreement be-
tween r and r0. However, because probability distributions
are non-negatively-valued, we shift the correlation scale by
one unit from [−1, 1] to [0, 2] to arrive at equation (1).
2Note that since each variable has a unique rank, the vector r0 is a
permutation of the vector (1, 2, . . . , K).
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The threshold value τ� can be interpreted as a designa-
tion of the assumed “certainty” of our expert. A candidate
rank vector r only attains a significant positive prior dis-
tribution probability if it meets this pre-defined threshold
of agreement with the expert rank vector r0. If the expert
is very certain about the relative importance of the predic-
tor variables, then only those r that are very similar to r0

should be seriously considered as potential representations
of the “true” variable importance ranks. In this case, τ�

should take a value near 1. On the other hand, if the expert
is less certain, as might be the case in a purely exploratory
study, then very little restriction should be placed on r. In
this case, τ� should take a value close to −1.

Running example: Fisher’s iris classification problem

Suppose an expert approaches us to consult on Fisher’s
iris classification problem introduced in Section 1.1. Our ex-
pert declares that petal characteristics are preferred to sepal
characteristics for proper iris classification, and furthermore,
that lengths are preferred to widths. Thus, this expert would
rank the variables from most important to least important
as follows: {X2, X1, X4, X3}, resulting in r0 = (2, 1, 4, 3).

To form the prior distribution π of variable importance
ranks, we need to select our threshold value τ�. Here we
shall select τ� = .25, indicating that we have a moderately
certain expert. In this example, ε1 shall remain unspecified;
it suffices to consider ε1 a negligible positive constant. In
this case, our sample space Θ(r0) consists of the set of all
24 permutations of r0.

Nine of the 24 permutations are similar enough to the
expert’s variable importance rank vector r0 to receive non-
negligible consideration in the prior distribution π. That is,
these nine r ∈ Θ(r0) satisfy the condition τ(r, r0) ≥ .25. So,
our prior distribution of variable ranks r ∈ Θ(r0) is:

π(r) ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, if r = (2, 1, 4, 3);
5/3, if r ∈ {(1, 2, 4, 3), (3, 1, 4, 2), (2, 1, 3, 4)};
4/3, if r ∈ {(3, 2, 4, 1), (1, 3, 4, 2), (3, 1, 2, 4),

(1, 2, 3, 4), (4, 1, 3, 2)};
ε1, otherwise.

2.2 Posterior variable rank distribution

Following the Bayesian methodology, once our prior dis-
tribution of variable importance ranks is defined, we need to
update the expert-provided ranks based on observed data.
For this purpose, we borrow the QUEST method of using p-
values derived from appropriate statistical tests as a means
of ranking the predictor variables [11].

For each ordered or continuous variable, we conduct an
ANOVA F -test for equality of group means. Intuitively,
variables with greater departures from the null hypothesis
(mean equality across classes) should be more important
in classifying cases at a given node. Similarly, for each un-
ordered categorical variable, we conduct a chi-square test
of independence across categories. Again, those variables

with greater departures from the null hypothesis (identi-
cal categorical distributions across classes) should be more
important in classifying cases. Since the p-value measures
the departure from the null hypothesis in each case, we use
these p-values as a proxy for the importance of each vari-
able. Note that an inverse relationship exists between the
qualitative importance of a predictor and the p-value asso-
ciated with its statistical test; as a variable becomes more
important, its p-value tends to decrease.

2.2.1. Working distribution of the p-value ranks

To formulate the posterior distribution of the variable im-
portance ranks (given the p-values), we need to consider the
distribution of the data (p-values) given the true variable
importance ranks. Because the real distribution would de-
pend upon the unknown model in a way that is infeasible to
quantify, we instead consider a working distribution based
on the ranks of the p-values.

Intuitively, those vectors of p-values most closely resem-
bling the true variable importance ranks should be those
most likely generated by the data. Using logic similar to the
specification of the prior importance rank distribution, we
specify the working distribution of the vector of p-values, p,
given the true importance ranks, r, to be

(2) f(p|r) ∝
{

1 + ψ(p, r), if ψ(p, r) ≥ ψ�;
ε2, otherwise,

where ψ(x,y) is some measure of the correlation between
the vectors x and y, and ψ� ∈ (−1 + ε2, 1] is a user-defined
threshold value regulating the variance of this p-value distri-
bution. The parameter ε2 is a small positive constant that
ensures that all configurations of p-value ranks are assigned
a positive probability.

Again, the intuition behind this conditional distribution
is quite straightforward. Given repeated sampling from a
population with “true” variable importance ranks, r, we
would expect most of our samples to be in relatively close
agreement with r. Potential sample ranks, p, that are in
stark disagreement with the true variable importance ranks,
r, should be quite rare.

The threshold parameter ψ� allows the user to regulate
the spread of the distribution of observable vectors of p-value
ranks. If the set of observable vectors is tightly restricted
near the true importance rank vector r, then ψ� should take
a value near 1. On the other hand, if this set is less restricted,
ψ� should take a value near −1.

Because the working model considers p-value ranks, a
natural choice for the correlation measure ψ(·) is again
Kendall’s τb. Unfortunately, this quantity may be undefined
if either (1) all of the given variable importance ranks are
equal, or (2) the p-values are all so near zero that they are in-
distinguishable. In either case, we shall define ψ(p, r) = −1.
In this way, no variable importance rank vector r would
meet the ψ� threshold for agreement with the data, so our
working distribution for the p-values would have a discrete
uniform distribution.
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Table 1. Summary of Predictor Variable Means (in Centimeters) by Species for Fisher’s [5] Iris Data. Also Included Are the
ANOVA-Based p-Values for Testing Mean Equality Across Species

Species Petal Width Petal Length Sepal Width Sepal Length
(X1) (X2) (X3) (X4)

Setosa 0.246 1.462 3.428 5.006
Versicolor 1.326 4.260 2.770 5.936
Virginica 2.026 5.552 2.974 6.588

p-value 4 × 10−85 3 × 10−91 5 × 10−17 2 × 10−31

2.2.2. Deriving the posterior rank distribution

Now that we have specified the prior distribution, π(r), of
variable importance ranks and the conditional distribution,
f(p|r), of the data given the “true” variable importance
ranks, we have enough information to formulate the pos-
terior distribution of the variable importance ranks given
observed data. Using Bayes’ Theorem, we derive:

(3) π(r|p) ∝ f(p|r)π(r).

Substituting from equations (1) and (2), we obtain:

π(r|p) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + τ(r, r0))(1 + ψ(p, r)),
if τ(r, r0) ≥ τ� and ψ(p, r) ≥ ψ�;

ε1(1 + ψ(p, r)),
if τ(r, r0) < τ� and ψ(p, r) ≥ ψ�;

ε2(1 + τ(r, r0)),
if τ(r, r0) ≥ τ� and ψ(p, r) < ψ�;

ε1ε2, if τ(r, r0) < τ� and ψ(p, r) < ψ�.

(4)

For computational convenience, since the last three cases
are all of negligible magnitude, we may approximate this
expression by:

(5) π(r|p) ∝

⎧⎨
⎩

(1 + τ(r, r0))(1 + ψ(p, r)),
if τ(r, r0) ≥ τ� and ψ(p, r) ≥ ψ�;

ε, otherwise,

where ε > 0 is set to a negligible positive constant. In our
implementation, the default value of ε is 10−6.

The posterior distribution of the variable importance
ranks indicates that a candidate vector, r, of variable im-
portance ranks is deemed most likely to represent the “true”
variable importance ranks if it is simultaneously in agree-
ment with both the expert-defined ranks, r0, and the ob-
served p-value ranks, p. If the expert and the data agree,
then the posterior distribution is tightly packed around the
original prior variable importance ranks. On the other hand,
if the expert and the data are in stark disagreement, then
the posterior distribution approaches discrete uniformity.

Running example: Fisher’s iris classification problem

To determine the approximated posterior variable impor-
tance rank distribution π(r|p) (as expressed in equation (5))

we first must select values for the parameters ψ� and ε. In
this case, we shall select ψ� = 0, indicating that we require
importance ranks, r, to have non-negative rank association
with the observed p-value ranks, p, to receive non-negligible
consideration in the posterior distribution. Again, we shall
set the parameter ε to its default value, 10−6.

Next, we need to obtain p-values from the appropriate
statistical test for each variable. In this case, each of the
four predictor variables are continuous, so an ANOVA F -
test for mean equality across iris species is used. Table 1
summarizes the average values of each predictor variable by
species. (Recall that there are 50 members of each species in
the learning sample.) Here we see that each of the variables
exhibit significantly different class means by any reasonable
standard; our observed p-values are (2×10−31, 5×10−17, 3×
10−91, 4 × 10−85). Since the posterior distribution depends
only on the ranks of the observed p-values, these data may
be represented as p = (2, 1, 4, 3).

To obtain our final expression for the posterior rank dis-
tribution, π(r|p), we need only check the nine vectors r
that met the τ threshold to determine whether they also
meet the ψ threshold. In this case, p and r0 are equal, i.e.,
the observed data completely agree with the expert-assigned
variable importance ranks. Therefore, since the τ threshold
is less than the ψ threshold, all of these nine vectors shall
receive non-negligible weight in the posterior rank distribu-
tion. Our final expression for π [r|p = (2, 1, 4, 3)] is as fol-
lows:
(6)

π[r|p = (2, 1, 4, 3)]

∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4, if r = (2, 1, 4, 3);
25/9, if r ∈ {(1, 2, 4, 3), (3, 1, 4, 2), (2, 1, 3, 4)};
16/9, if r ∈ {(3, 2, 4, 1), (1, 3, 4, 2), (3, 1, 2, 4),

(1, 2, 3, 4), (4, 1, 3, 2)};
10−6, otherwise.

2.3 Splitting a node

Following our partially Bayesian framework, we shall use
the posterior mean, E[R|p], to prioritize the predictor vari-
ables. In our first major departure from QUEST, we will not
automatically split on the top-priority variable. Instead, we
sequentially audition each variable in order of posterior im-
portance (from lowest posterior mean rank to highest poste-
rior mean rank). If a split on an “auditioning” variable meets
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or exceeds a pre-designated improvement threshold, then the
variable is selected, and the split is enforced. However, if the
auditioning variable fails to meet the minimum improvement
threshold, the next-priority variable (the variable with the
next-lowest posterior mean rank) is auditioned.

The minimum improvement threshold at each node is reg-
ulated by a global minimum relative improvement parame-
ter. The user may specify a relative improvement threshold
r ∈ (0, 1). A split on node t meets this threshold if it repre-
sents a 100r% improvement on the original impurity level3

of the node. Letting it represent the impurity level at node
t prior to a split, we can convert r to a maximum post-split
impurity threshold i�t as follows:

i�t = (1 − r)it.

In our current program, the default relative improvement
threshold is set to 10%.

Implicit in this procedure is a potential stopping rule.
If no variable produces a sufficient improvement at node
t, then node t could be declared a terminal node. On the
other hand, if we wish to force a split, we would select the
highest-priority variable that achieves the greatest reduction
in impurity.

Algorithm 2.1 details the split variable (and split point)
selection procedure in the new algorithm.

Algorithm 2.1 (Variable Selection under the New Algo-
rithm). Let node t be given. Suppose E[R|p] is the poste-
rior mean vector of variable importance ranks, R, given the
observed ranks, p. Let X(k) denote the variable having the
kth-lowest posterior mean.

For k = 1, . . . , K,

1. Attempt to split node t using variable X(k).
2. If this split satisfies the minimum improvement require-

ment, then split on X(k), and break the loop.

If the loop is completed and no variable satisfies the min-
imum improvement requirement, then:

• if the user has elected to implement stopping rules, de-
clare node t a terminal node;

• otherwise, split on the variable X(i) that achieves the
greatest improvement in impurity. If two or more vari-
ables fit this criterion, select the variable of highest pri-
ority among them.

Running example: Fisher’s iris classification problem

Having derived (6), the posterior distribution of the vari-
able importance ranks given the sample data, we now wish
to select a splitting variable. To make our selection, we
need to calculate the posterior mean of the variable im-
portance ranks, E [R|p = (2, 1, 4, 3)]. Since the distribu-
tion is discrete, this is a relatively straightforward exer-
cise; our conditional mean is approximately proportional to
(46.0, 31.1, 75.0, 60.1), or (2, 1, 4, 3) in ranks.
3Common impurity measures include the deviance (cross-entropy) and
the Gini index. In this paper, we use the Gini index.

Petal Length

≤ 2.096

Setosa

Petal Length

≤ 4.886

Versicolor Virginica

Figure 2. Classification Tree for Fisher’s [5] Iris Data Using
Our Proposed Algorithm and a Minimum Relative

Improvement Threshold of 10%. Labels at Each Terminal
Node Indicated the Classification Species.

We prioritize these variables for splitting in order of their
posterior mean rank. Therefore, X2 (petal length) is our first
choice, followed by X1 (petal width), X4 (sepal length), and
X3 (sepal width).

Following Algorithm 2.1 using the Gini index as our mea-
sure of impurity, we first attempt to split the data on X1

(petal width), producing a splitting value of X1 = 2.095
centimeters. Because the data consist of 50 setosa, 50 ver-
sicolor, and 50 virginica irises, the starting Gini index is
1− (50/150)(50/150)(50/150) = 2/3. After the split, the 50
setosa irises are isolated in their own node (with a Gini in-
dex of 0), and the 50 versicolor and 50 virginica irises are
grouped into a second node (having a Gini index of 1/2).
The weighted Gini value resulting from the split is therefore
(50∗0+100∗.5)/150 = 1/3. Hence, this split results in a 50%
improvement in impurity. Since this meets any reasonable
threshold, we accept the split. Had an acceptable split not
been achieved, we would have tried to split on the remaining
variables in order of priority until either an acceptable split
was achieved or all the predictors were exhausted without
reaching the minimum improvement threshold.

In this example, we select the tree size based on the 1-SE
method of overfitting and pruning described in [3]. Figure 2
depicts the 1-SE tree generated by our partially Bayesian
algorithm with unblocked variable importance ranks and a
minimum relative improvement parameter of 10%.

The results from this new method are very similar to
those of CART and QUEST, with one exception. Our trees
split twice on petal lengths before other variables are con-
sidered; CART and QUEST split on petal length only once
before splitting on petal width. While this may seem a bit
strange at first, the partitioned sample space (see Figure 3)
illustrates that our split is quite reasonable; virginica irises
tend to have longer petals than versicolor irises, though
there is some overlap. The reason our method selected petal
length instead of petal width for the second split lies in
the use of expert variable importance weights. Our expert
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Figure 3. A Partitioned Variable Space for Fisher’s [5] Iris
Data, Based on Our Proposed Classification Algorithm.
Setosa Irises Are Depicted by Circles, Virginica Irises by
Pluses, and Versicolor Irises by Triangles. Labels in Each

Region Indicate the Model-Predicted Species.

indicated that petal length is more important to the classi-
fication of irises than petal width. Therefore, if petal length
provides a reasonable split, it should be selected in favor
of a competing variable that performs slightly better in the
learning sample. If our expert’s views represent the norma-
tive views in his field, then this tree should be more intu-
itive (and therefore more widely accepted) than either the
CART or QUEST trees. Moreover, an expert in this field
might consider our tree more generalizable to the problem
of classifying out-of-sample irises.

3. RANKING BLOCKS OF VARIABLES

The procedure outlined in Section 2 meets one of our
main objectives: expert opinion is dynamically incorporated
into the construction of the tree classifier. However, two key
problems arise:

1. For problems with large numbers of variables, produc-
ing the set of admissible variable importance ranks be-
comes intractable.

2. Experts cannot be expected to produce unique impor-
tance ranks for all variables, especially as the number
of variables, K, becomes large. Even for relatively small
problems, such a task may be unreasonable.

To address these issues, we propose that the expert provide
importance ranks for blocks of predictor variables.

This solution makes practical sense; faced with poten-
tially hundreds or more variables, a subject expert could

reasonably sort the variables into groups in order of impor-
tance. The following sections incorporate such blocking into
the methodology developed in Section 2.

3.1 Blocked expert variable ranks

Suppose that at node t we have K potential splitting
variables, X1, . . . , XK . Suppose that the expert provides a
vector of variable importance ranks, r0, which take on B ≤
K unique values. Then, we may view r0 as the result of a
transformation η : N

B → N
K defined by η(1, . . . , B) = r0.

Let Ω(r0) denote the set of all blocked permutations of
r0. More precisely, if Θ(r) is the set of all permutations of
a vector r, then

Ω(r0) = {η(θ)|θ ∈ Θ(1, . . . , B)}.

For example, suppose an expert has blocked five pre-
dictor variables into three importance groups: X1 and X2

are “most important,” X5 is “least important,” and the
remaining two variables form a group in between. In this
case, we have r0 = (1, 1, 2, 2, 3), so η : N

3 → N
5 is defined

by η(x, y, z) = (x, x, y, y, z). The set of all permutations of
unique weights is

Θ(1, 2, 3) = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2),
(3, 2, 1)}.

Therefore, the set Ω(r0) of blocked permutations of r0 is

Ω(r0) = {η(1, 2, 3), η(1, 3, 2), η(2, 1, 3), η(2, 3, 1), η(3, 1, 2),
η(3, 2, 1)}

= {(1, 1, 2, 2, 3), (1, 1, 3, 3, 2), (2, 2, 1, 1, 3),
(2, 2, 3, 3, 1), (3, 3, 1, 1, 2), (3, 3, 2, 2, 1)}.

As in the unblocked case, these expert ranks define a prior
distribution π of candidate ranks r ∈ Ω(r0),

(7) π(r) ∝
{

1 + τ(r, r0), if τ(r, r0) ≥ τ�;
ε1, otherwise,

where τ(x,y) denotes Kendall’s τb rank correlation between
the vectors x and y, and τ� ∈ (−1 + ε1, 1] is a user-defined
threshold value designating the assumed quality of the ex-
pert. As noted in Section 2.2.2, we must extend the defini-
tion of Kendall’s τb to include the case in which all variables
are assigned equal importance by the expert. In this case,
we shall define τ(r, r0) = −1. As a result, an expert who
assigns equal importance to all variables generates an unin-
formative (discrete uniform) prior distribution.

Running example: Fisher’s iris classification problem

Let us revisit the iris classification problem discussed in
the prior section. Suppose a second expert approaches us
with a different view of the problem. This expert believes
that petal characteristics (widths, X1 and lengths, X2) are
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more important than sepal characteristics (widths, X3, and
lengths, X4) for classifying irises, but opines that because
the lengths and widths of each are positively correlated, the
particular dimension measured is unimportant. In this way,
the expert has provided us two blocks of variables with dif-
ferent levels of importance in classification: {X1, X2} is a
more important set than {X3, X4}.

In the notation above, r0 = η(1, 2) = (1, 1, 2, 2). The set
Ω(r0) of all blocked permutations of r0 is given by

Ω(r0) = {η(θ) : θ ∈ Θ(1, 2)}
= {η(θ) : θ ∈ {(1, 2), (2, 1)}}
= {(1, 1, 2, 2), (2, 2, 1, 1)}

To obtain our prior distribution π of variable importance
ranks r ∈ Ω(r0), we must first declare a τ threshold value
designating the certainty of our expert. Taking the same
value, τ� = .25, as in the unblocked case, we obtain:

π(r) ∝
{

2, if r = (1, 1, 2, 2);
ε1, if r = (2, 2, 1, 1).

Again, ε1 is a negligible positive constant, which we shall
leave undeclared in this illustration.

Note that in this blocked example, there are only two el-
ements in the sample space (the unblocked case had 24).
Clearly, in addition to making life easier on the expert,
blocking offers the potential of significant computational
savings. This particular issue will be explored in greater de-
tail in later sections.

3.2 Posterior variable rank distribution

The form of the posterior variable importance rank dis-
tribution is identical to that from Section 2.2. The only crit-
ical change is in the set of candidate variable rank vectors,
Ω(r0), which consists of the set of blocked permutations of
the expert-provided importance ranks.

The working conditional distribution of the observed vari-
able ranks, p, given the true (blocked) variable importance
ranks, r ∈ Ω(r0) is

(8) f(p|r) ∝
{

1 + ψ(p, r), if ψ(p, r) ≥ ψ�;
ε2, otherwise,

where ψ(x,y) is some measure of the correlation between
the vectors x and y, and ψ� ∈ (−1 + ε2, 1] is a user-defined
threshold value regulating the variance of the conditional
p-value distribution.

Combining equations (7) and (8) as in the prior section,
we arrive at our approximate posterior distribution π(r|p)
of candidate variable weights r ∈ Ω(r0):

(9) π(r|p) ∝

⎧⎨
⎩

(1 + τ(r, r0))(1 + ψ(p, r)),
if τ(r, r0) ≥ τ� and ψ(p, r) ≥ ψ�;

ε, otherwise.

Running example: Fisher’s iris classification problem

Now we seek the blocked posterior variable weight dis-
tribution π(w|p) for the iris data. Again, we shall reuse
the parameters from the unblocked case, setting ψ� = 0 and
ε = 10−6. Recall from Table 1 that the observed p-values for
the iris data are (4× 10−85, 3× 10−91, 5× 10−17, 2× 10−31).
Again, since we only need the ranks of these p-values, we
may represent the data as p = (2, 1, 4, 3).

To form the posterior variable importance rank distribu-
tion, we must first check that the vector satisfying the τ
threshold also satisfies the ψ threshold. Calculating, we find
that ψ((2, 1, 4, 3), (1, 1, 2, 2)) = τb((2, 1, 4, 3), (1, 1, 2, 2)) ≈
.8165 ≥ τ� = 0. We thus obtain:

(10) π[r|p = (2, 1, 4, 3)] ∝
{

3.633, if r = (1, 1, 2, 2);
10−6, if r = (2, 2, 1, 1).

3.3 Splitting a node

As in the unblocked case, we shall use the posterior mean,
E[R|p], to prioritize the predictor variables for splitting.
However, by construction, all variables in a particular block,
b, will have equivalent posterior mean importance ranks.
Therefore, an additional criterion is required to distinguish
among variables belonging to the same block. We assign
higher within-block priority to variables having smaller p-
values.

In addition, we wish to take advantage of the block struc-
ture to avoid the computational cost of potentially audition-
ing every variable in a large list. To this end, we only desig-
nate one variable per block as a potential splitting variable.
In this way, at node t we only have the potential cost of
auditioning B variables instead of all K of them. For very
large data sets, this will constitute a significant savings.

The detailed procedure is described in Algorithm 3.1.

Algorithm 3.1 (Variable Selection with Blocked Impor-
tance Ranks). Let node t be given. Suppose E[R|p] is the
blocked posterior mean vector of variable ranks, R, given
the observed variable ranks, p. Let (b) represent the vari-
able block having the bth-lowest posterior mean rank, and let
X(b)(1) represent the variable in block (b) having the smallest
associated p-value.

For b = 1, . . . , B,

1. Attempt to split node t using variable X(b)(1) as in
QUEST.

2. If this split satisfies the minimum improvement require-
ment, then split on X(b)(1) , and break the loop.

If the loop is completed and no variable satisfies the mini-
mum improvement requirement, then:

• if the user has elected to implement stopping rules, de-
clare node t a terminal node;

• otherwise, split on the variable X(i)(1) that achieves the
greatest improvement in impurity. If two or more vari-
ables fit this criterion, select the variable of highest pri-
ority among them.
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Figure 4. Classification Tree for Fisher’s [5] Iris Data Using
Our Proposed Blocked Algorithm. Labels at Each Terminal

Node Indicate the Classification Species.

Running example: Fisher’s iris classification problem

Now we shall conclude the iris classification exam-
ple. Based on the blocked posterior variable importance
rank distribution (10), the posterior mean is easily deter-
mined: E[R|p = (2, 1, 4, 3)] ≈ (3.633, 3.633, 7.266, 7.266) ≡
(1, 1, 2, 2). Therefore, we prioritize groups of variables for
splitting as follows: {X1, X2} (petal characteristics) is our
first choice, followed by {X3, X4} (sepal characteristics).

Following Algorithm 3.1, we use the observed p-values
from our ANOVA F -tests of mean equality across species to
select from among the petal characteristic variables. Recall
from Table 1 that p1 = 4 × 10−85 while p2 = 3 × 10−91, so
X2—the petal length variable—is auditioned for splitting.
As in the unblocked case, the splitting value chosen is X2 =
2.096 cm, which achieves a relative improvement of 50%.

Again, we overfit and prune, accepting the 1-SE tree as
our solution.

Figure 4 depicts the classification tree generated by the
blocked procedure. In this model, we note that the data are
only split once on petal length before petal width enters
the model. This result is consistent with our new expert’s
prior opinion: petal characteristics are more important than
sepal characteristics, but petal lengths and petal widths are
equally valuable. In this model, since the second split per-
forms better using petal width than petal length, the width
variable is selected.

4. EXAMPLE AND PROPERTIES

Having presented the development of the blocked par-
tially Bayesian classification tree algorithm, we now evalu-
ate its performance and explore its properties. In this sec-
tion, we use a more complex data example—spam filtering—
to compare the predictive performance and computational
properties of our partially Bayesian tree algorithm and the
standard benchmarks: CART and QUEST.4

4We remain focused on single-tree methods for the basis of compari-
son. However, we do note that richer ensemble methods tend to outper-

4.1 Spam filtering trees

To examine each model’s performance, we consider the
task of designing an automatic spam (junk e-mail) filter.
The data for this task are publicly available from the UCI
Machine Learning Repository5 [13], and were donated by
George Foreman from Hewlett-Packard Laboratories in Palo
Alto, California.

The data consist of 58 variables describing 4601 electronic
mail messages. The dependent variable is categorical, indi-
cating whether or not a particular message is spam (1 =
spam, 0 = not spam). The 57 predictor variables are all
ordered, and may be split into three groups:

• Word frequency variables indicate the percentage of
words in a message that match the specified word.
For example, the variable WFaddress indicates the fre-
quency of the word “address” as a percentage of all
words in an e-mail. There are 48 word frequency vari-
ables in the data set.

• Character frequency variables indicate the percentage
of characters in a message that match the specified char-
acter. For example, the variable CFsemicolon indicates
the frequency of the “;” character as a percentage of
all characters in an e-mail. There are nine character
frequency variables in the data set.

• Capital run length variables provide information about
strings of consecutive capital letters in a message. The
three capital run length variables are defined as follows:

– CRLaverage is the average size of all strings of con-
secutive capital letters found in the message.

– CRLlongest is the longest string of consecutive
capital letters found in the message.

– CRLtotal is the total number of capital letters in
the message.

Of the 4601 messages described in the data set, 1813 (39.4%)
are spam.

Table 2 provides summary statistics for each of the pre-
dictor variables. The “%=Min” column indicates the per-
centage of observations that match each variable’s minimal
value. For each of the word frequency and character fre-
quency variables, the minimum value is 0; for each of the
capital run length variables, the minimum value is 1. For ex-
ample, the word “address” failed to appear in 80.5% of the
e-mail messages. On average, “address” comprised 0.213%
of the words in each message, and in at least one instance,
“address” accounted for 14% of the words in a message.

The contributors note that by the nature of this particu-
lar collection of e-mails, certain attributes should be impor-
tant indicators of non-spam. Most of the non-spam messages

form single-tree methods in terms of classification accuracy. A simple
random forest generated by the authors achieves a 5.43% out-of-bag
misclassification rate.
5http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 2. Summary Statistics for Predictor Variables in the Spam Classification Data

Variable %=Min Mean Max Variable %=Min Mean Max

Word Frequency Variables

WFaddress 80.5 0.213 14 WForiginal 91.8 0.046 4
WFaddresses 92.7 0.049 4 WFour 62.0 0.312 10
WFall 59.0 0.281 5 WFover 78.3 0.096 6
WFbusiness 79.1 0.143 7 WFparts 98.2 0.013 8
WFconference 95.6 0.032 10 WFpeople 81.5 0.094 6
WFcredit 90.8 0.086 18 WFpm 91.7 0.079 11
WFcs 96.8 0.044 7 WFproject 92.9 0.079 20
WFdata 91.2 0.097 18 WFre 71.5 0.301 21
WFdirect 90.2 0.065 5 WFreceive 84.6 0.060 3
WFedu 88.8 0.180 22 WFremove 82.5 0.114 7
WFemail 77.4 0.185 9 WFreport 92.2 0.059 10
WFfont 97.5 0.121 17 WFtable 98.6 0.005 2
WFfree 73.0 0.249 20 WFtechnology 87.0 0.097 8
WFgeorge 83.0 0.767 33 WFtelnet 93.6 0.065 13
WFhp 76.3 0.550 21 WFwill 49.5 0.542 10
WFhpl 82.4 0.265 17 WFyou 29.9 1.662 19
WFinternet 82.1 0.105 11 WFyour 47.3 0.810 11
WFlab 91.9 0.099 14 WF000 85.2 0.102 5
WFlabs 89.8 0.103 6 WF1999 82.0 0.137 7
WFmail 71.7 0.239 18 WF3d 99.0 0.065 43
WFmake 77.1 0.105 5 WF415 95.3 0.048 5
WFmeeting 92.6 0.132 14 WF650 89.9 0.125 9
WFmoney 84.0 0.094 13 WF85 89.5 0.105 20
WForder 83.2 0.090 5 WF857 95.5 0.047 5

Character Frequency Variables

CFbracket 88.5 0.017 4 CFparen 41.0 0.139 10
CFdollar 69.6 0.076 6 CFpound 83.7 0.044 20
CFexclam 50.9 0.269 32 CFsemicolon 82.8 0.039 4

Capital Run Length Variables

CRLaverage 7.6 5.192 1103 CRLtotal 0.2 283.289 15841
CRLlongest 7.6 52.173 9989

were gathered from filed business correspondence. There-
fore, the presence of the word “George” (the contributor’s
name) and the area code “650” suggest legitimacy.

In the rest of this subsection, we shall explore various
tree-based solutions to the spam filtering problem. In Sec-
tion 4.1.1, we present the CART-based exhaustive search
solution as a benchmark. Section 4.1.2 follows with the so-
lution from the QUEST algorithm. Finally, Section 4.1.3
explores a solution produced by the partially Bayesian algo-
rithm derived from a knowledgeable expert’s prior.

4.1.1. CART tree

In this section we examine the CART 1-SE solution to
the spam filtering problem. Figure 5 provides the CART
tree, which contains 23 terminal nodes. The CART algo-
rithm selects the frequency of the “$” character as the first
splitting variable; the split value is .0555%, which is near
the third quartile of its distribution. If the dollar character
appears frequently in a particular message, this case is sent
down the right branch of the tree, where the frequency of

the word “hp” is checked. If the word “hp” comprises at
least 0.4% of the message, then the e-mail is classified based
on the frequency of the word “remove.” Otherwise, the clas-
sification is further refined based on the relative frequencies
of the words “edu” and “george,” as well as the length of
the longest string of capital letters.

The above split is common of the structure of this tree:
typical indicators of spam are selected, and if one is found,
the classification is refined by examining indicators of legiti-
mate messages specific to this user at Hewlett-Packard. Con-
sider the left branch of the tree, where the dollar character
is infrequent. The frequency of the word “remove,” which is
commonly found at the end of bulk e-mail, is checked. If this
appears frequently, one might suspect the message is spam.
However, the frequency of the word “george” is checked to
see if the message might legitimately refer to company busi-
ness.

In general, the CART 1-SE tree makes sense for this spam
classification problem and presents a reasonable estimated
misclassification rate (8.63%).
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Figure 5. A CART-Based 1-SE Classification Tree for the Spam Classification Data. The CV-Estimated Misclassification Rate
Is 8.63%. Nodes Labelled “?” Are Non-Terminal, but Were Snipped for the Sake of Display. The Full Tree Has 23 Terminal

Nodes.

Figure 6. A QUEST-Based 1-SE Classification Tree for the Spam Classification Data. The CV-Estimated Misclassification
Rate Is 8.32%. Nodes Labelled “?” Are Non-Terminal, but Were Snipped for the Sake of Display. The Full Tree Has 46

Terminal Nodes.

4.1.2. QUEST tree

The 1-SE classification tree generated by the QUEST al-
gorithm is much larger than that produced by CART, con-
taining twice as many terminal nodes. This much larger tree
is somewhat more accurate than the CART example, with
an estimated misclassification rate of only 8.32%, compared
to 8.63% for the CART tree.

The initial splits in the QUEST tree (see Figure 6)
are much different than those in the CART example. The
QUEST algorithm splits the root node based on the fre-
quency of the word “your.” Messages in which “your” com-
prises more than 0.605% of all words are sent down the right
branch of the tree, where the frequencies of legitimacy in-
dicators (such as “hp” and “george”) and spam indicators
(such as “credit”) are checked. In the left branch of the

tree, where the word “your” seldom appears, the frequency
of other potential spam indicators (such as “000,” “remove”
and the dollar) are checked before legitimacy indicators are
again examined to refine the classification.

4.1.3. Partially Bayesian tree

We now examine the effect that applying informative
qualitative expert knowledge has on the performance of a
tree-structured classifier.

In this data set, we have two potentially useful groups of
variables: spam indicators and legitimacy indicators. The
spam indicators tend to be common to all e-mail users.
These include the frequencies of the words “remove” and
“free,” as well as all of the character frequency variables and
character run length variables. The legitimacy indicators are
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WFhp

≤ 0.12

WFremove
≤ 0.01

CFdollar
≤ 0.013

WFfree
≤ 0.305

CRLlongest

≤ 9.5

? ?

WFgeorge

≤ 0.19

? ?

WFedu
≤ 0.175

WFmeeting

≤ 0.46

? ?

No

Yes

CRLlongest

≤ 748.5

No Yes

Figure 7. A Partially Bayesian Classification Tree for the Spam Classification Data. In this Case, the Expert Incorporates
Situation-Specific Knowledge of Discriminatory Variables. The CV-Estimated Misclassification Rate Is 7.35%. Nodes Labelled

“?” Are Non-Terminal, but Were Snipped for the Sake of Display. The Full Tree Has 16 Terminal Nodes.

specific to this individual user’s e-mail account. Frequent
use of words related to his place of business, his name, or
his phone number would suggest (though not prove) that an
e-mail is legitimate. Hence, variables indicating the frequen-
cies of “hp,” “hpl,” “george,” and “650” shall be classified
as legitimacy indicators. None of the rest of the variables
are obviously spam or legitimacy indicators, so these will be
grouped into a third category. Hence, we have constructed
the following three “blocks” of variables:

• Typical Spam Variables—WFremove, WFfree, all of the
character variables and capital run length variables

• Situation-Specific Legitimacy Indicators—WFhp, WFhpl,
WFgeorge, WF650

• Others—all other variables

We shall construct our expert opinion to give top priority
to the user-specific legitimacy indicators, then next priority
to the common spam indicators. The remaining variables
will receive the lowest priority. In this way, we assign ex-
pert rank 2 to the typical spam variables and expert rank 1
to the situation-specific legitimacy indicator variables. The
remaining 42 variables are assigned expert rank 3.

Figure 7 depicts the top levels of the latest tree, which
takes advantage of this special knowledge. Here we see a
drastic change in the early structure of the tree. Rather than
splitting on the frequency of “your,” more common spam
indicators such as “remove” and “$” are used. Also, the
situation-specific legitimacy indicators (“george” and “hp”)
are more quickly introduced.

We also note that the special knowledge 1-SE tree is sig-
nificantly less complex yet more accurate than its less well-
informed counterparts. The tree contains only 16 terminal
nodes and achieves an estimated misclassification rate of
7.35%.

4.2 Computational comparisons

In this section, we assess the differences in machine-based
computational requirements for the CART, QUEST, and
partially Bayesian tree algorithms using the spam filtering
classification example. To compare computational complex-
ity, we shall focus on the number of splitting value calcu-
lations required under each model. Using terminology from
our discussion of the blocked partially Bayesian procedure
of Section 3, we examine the number of variables that are
“auditioned” for splitting in each tree.

Recall that to select a splitting variable at a particular
node, CART examines every potential variable-split point
combination. In essence, this means that every variable is
auditioned at each node in the tree. On the other end of
the spectrum, the QUEST algorithm auditions exactly one
variable per split. The splitting variable is selected based on
p-values from statistical tests prior to computing the split
point.

Our partially Bayesian procedure lies between these two
extremes. Like QUEST, the partially Bayesian algorithm
uses statistical tests; however, these tests merely prioritize
the splitting variables for auditioning. The variable having
the lowest p-value is not always selected. Our procedure will
audition up to B variables per split, where B is the number
of variable blocks designated by the expert. Therefore, at
a particular node the QUEST algorithm requires no more
computation than our procedure. An uninformative expert
(who places all variables in the same block) produces a tree
essentially the same as QUEST in terms of structure and
computational load. On the other hand, a partially Bayesian
tree directed by unblocked rankings (i.e., a distinct impor-
tance rank for each variable) has the potential to match the
number of auditions required by CART at a particular node.
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One should note that although the partially Bayesian al-
gorithm is more computationally expensive at a given node
than the QUEST algorithm, in certain cases the process of
constructing an entire partially Bayesian tree will be more
efficient than constructing a QUEST tree. As the quality
of the expert increases, splits near the root of a partially
Bayesian tree should be more reliable. This condition can
result in a smaller final tree than QUEST—potentially re-
quiring less overall computation.

Table 3 provides summary information for each of the
spam filtering trees we have considered. To facilitate mean-
ingful comparison, the basic tree construction parameters
have been standardized across algorithms. In each case, we
employ the overfit-then-prune strategy of estimation. The
Gini measure of impurity is used for growing each tree, while
the misclassification rate is used to guide pruning. The par-
tially Bayesian tree uses a minimum relative improvement
threshold of 10% for blocked variable selection. Each tree is
grown until all nodes contain fewer than 1% of the data or
splits on larger nodes are no longer possible.

For each overfit tree, the numbers of terminal nodes and
required variable auditions are listed. We use 10-fold cross-
validation for pruning and estimating misclassification er-
ror. The size and estimated error rate of the 1-SE trees are
provided for each method. In practice the 1-SE tree is com-
monly selected as an appropriately “generalizable” solution.

We note that the overfit CART, QUEST, and partially
Bayesian trees were of comparable size, ranging from 115 to
132 terminal nodes. However, because the CART algorithm
effectively auditions every variable at every node, it required
6,498 variable auditions, which was roughly 20 times as
many as the partially Bayesian algorithm, and 50 times as
many as QUEST. Moreover, for this particular application,
the 1-SE CART tree had the worst estimated misclassifica-
tion rate of the three, at 8.63%. Clearly, in this case, the
computational expense of the CART algorithm did not pay
dividends relative to the other two options.

The partially Bayesian algorithm required about 2.5
times as many variable auditions as the QUEST algorithm;
however, it produced a 1-SE tree that was about one-third
the size of QUEST’s. Moreover, the partially Bayesian tree
was more accurate than the QUEST tree, with a cross-
validation estimated misclassification rate of 7.35% com-
pared with 8.32% for QUEST.

Table 3. CART, QUEST, and Partially Bayesian
Computational Comparisons

Overfit Tree 1-SE Tree
Method # TNodes # Auditions # TNodes %Misclassa

CART 115 6498 23 8.63
QUEST 132 131 46 8.32
PB Tree 127 325 16 7.35

aMisclassification rates for the 0-SE and 1-SE trees are estimated

using 10-fold cross-validation.

We see that although there is a small machine-based com-
putational loss relative to QUEST, the partially Bayesian
algorithm in the hands of a knowledgeable expert has the
potential to produce smaller pruned trees that are more ac-
curate than those of the purely data-driven methods.

We do note, however, that the comparisons here only
involve machine-based computations. A pure comparison
would also need to include the extent of the unmeasured hu-
man resources required to evaluate the relative importance
of the predictor variables for blocking. Though the evalua-
tion would be a daunting task in most problems for a very
inexperienced user, a knowledgeable expert could perform
the task quite quickly based on prior experience, especially
with a two-block strategy: well-known important variables
versus all others.

4.3 Stability comparisons

In addition to improved predictive performance, one mo-
tivating factor for dynamically incorporating qualitative ex-
pert opinion in the construction of a tree-based classifier
is potential stability. By stability, we mean that the basic
structure of the model is unchanged by variations in the
sample data. That is, the early variables selected in a tree
should not be affected by small changes to the sample data.
A model lacking in stability is likely not generalizable to
new observations, and it often loses credibility with users.

To compare the stability of our partially Bayesian model
to that of CART, we generated 1000 random samples of size
4000 (each taken without replacement from the original data
set of size 4601). Hence, each data set was comprised of a
random 87% of the original data set. As a crude measure of
model stability, we examined the percentage of samples for
which each variable appeared as the top splitter in a tree.
The results are provided in Table 4.

The results are striking. We see that while the first split
in the CART tree is almost equally likely to be based on
either the frequency of the dollar sign or the frequency of
the exclamation point, the partially Bayesian tree is much
more consistent in its first splitting variable. Over 94% of
the time, the “hp” word frequency variable is selected, which
is consistent with the expert opinion used with the model.
While the CART initial split is quite sensitive to the partic-
ular set of data, the partially Bayesian split is more resilient.
As a result, users in an established application area may be
apt to place more trust in an expert-aided partially Bayesian
tree.

Table 4. Percentage of Samples for Each Variable to Be
Selected as the Top Splitter

CFdollar CFexclam WFhp WFremove

CART 54.9 45.1 0.0 0.0 100.0
PB Tree 1.5 0.7 94.1 3.7 100.0
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5. DISCUSSION

This paper has identified a potential area of improvement
for a large class of classification algorithms. By dynamically
incorporating potentially valuable qualitative expert opinion
in their feature selection mechanisms, we are led to models
that appear more sensible to users without losing fidelity to
data. We hypothesize that classification algorithms with this
characteristic might produce more interpretable and readily-
acceptable models in a manner computationally comparable
to or more efficient than related purely data-driven pro-
cedures. We tested this hypothesis using the special case
of classification trees, and our partially Bayesian algorithm
provides a “proof-of-concept” that such a modification is
possible.

Computationally, our partially Bayesian classification
tree algorithm borrows heavily from the QUEST algorithm.
The reasons are simple: since the QUEST algorithm sep-
arates the split variable selection process from the task of
selecting a splitting value, it avoids the variable selection
bias inherent to CART and other simultaneous search algo-
rithms, and it is computationally more efficient.

To retain as much of this computational saving as pos-
sible while still benefitting from expert opinion, we ask our
expert to arrange the predictor variables into broad impor-
tance blocks. With only a few blocks, the number of variable
auditions is kept at a reasonably low level, and the task is
made much easier for the expert.

In spite of our conceptual success, more refinement is
needed with the current algorithm. For example, the current
algorithm makes use of global variable importance ranks.
Of course, one can reasonably argue that after the first few
splits in a tree, the usefulness of the expert’s original opinion
wanes. Constructing hybrid algorithms that make heavy use
of the expert’s opinion in the early stages of the tree but be-
come more data-driven in the later splits appears promising.
In addition, the use of variable importance weights in place
of variable importance ranks could be useful, especially as
the partially Bayesian concept is applied to other classifi-
cation and prediction algorithms. Incorporating a sense of
scaled importance could add more richness to these models.
Implementation of our concept to more general trees such
as that of [17] has not been made, and additional work is
clearly called for in making the partially Bayesian approach
generally applicable.
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