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Semiparametric latent covariate mixed-effects
models with application to a colon carcinogenesis

study

ZONGHUI HU AND NAISYIN WANG

We study a mixed-effects model in which the response and
the main covariate are linked by position. While the covari-
ate corresponding to the observed response is not directly
observable, there exists a latent covariate process that rep-
resents the underlying positional features of the covariate.
When the positional features and the underlying distribu-
tions are parametric, the expectation-maximization (EM) is
the most commonly used procedure. Though without the
parametric assumptions, the practical feasibility of a semi-
parametric EM algorithm and the corresponding inference
procedures remain to be investigated. In this paper, we pro-
pose a semiparametric approach, and identify the conditions
under which the semiparametric estimators share the same
asymptotic properties as the unachievable estimators using
the true values of the latent covariate; that is, the oracle
property is achieved. We propose a Monte Carlo graphical
evaluation tool to assess the adequacy of the sample size for
achieving the oracle property. The semiparametric approach
is later applied to data from a colon carcinogenesis study on
the effects of cell DNA damage on the expression level of
oncogene bcl-2. The graphical evaluation shows that, with
moderate size of subunits, the numerical performance of the
semiparametric estimator is very close to the asymptotic
limit. It indicates that a complex EM-based implementa-
tion may at most achieve minimal improvement and is thus
unnecessary.

KEYWORDS AND PHRASES: Carcinogenesis, Consistency,
Generalized estimating equation, Local linear smoothing,
Mixed-effects model.

1. INTRODUCTION

1.1 Colon carcinogenesis study

Recent researches on colon cancer have been focusing on
linking colon tumor development to the inhibition of apop-
tosis (cell death; see Heemels et al. 2000). When the body is
affected by carcinogen, apoptosis causes termination of the
cells with irreparable genetic damages, and thus prevents
them from proliferating to cancer cells. It consequently re-
duces the risk of cancer. Any inhibition of apoptosis, on the
other hand, induces cancer development.

An oncogene closely linked to, but adversely affecting,
apoptosis is bel-2. Over-expression of bel-2 gene leads to sup-
pression of apoptosis, thus allows tumor cells to survive and
proliferate. During the initial stage of colon carcinogenesis,
few apoptotic cells are formed and the main information
about apoptosis is carried by apoptosis related gene, e.g.,
bel-2. For the purpose of cancer prevention, it would be
beneficial that the level of bcl-2 gene expression decreases
as cell DNA damage increases. Therefore, in this study, we
focus on investigating the relationship between the cell DNA
damage and bcl-2 gene expression during the initial stage of
colon cancer. Our primary interest is how the diet affects
this relationship at different time post carcinogen exposure.

We now briefly describe the experiment. Thirty rats were
divided evenly into two groups. Each group was fed with one
of the two diets, fish oil supplemented or corn oil supple-
mented, for two weeks. After this, all 30 rats were injected
with azoxymethane (AOM), a carcinogen to induce colon
cancer. Three rats from each diet group were then eutha-
nized at 0, 3, 6, 9, and 12 hours post injection to measure
the cell DNA damage and bcl-2 gene expression. In labs, the
cell DNA damage is measured by the DNA adduct level.
For each rat, 20 crypts were selected to measure bcl-2, and
another group of 15 to 25 crypts were selected to measure
the DNA adduct level. These two measurements were taken
at each cell within the selected crypts. There are about 14
to 56 cells in each crypt.

Colon crypts are discrete units within the colon where
colonic cells replicate. At the bottom of each crypt, there are
the stem cells that generate all the cells within the crypt.
Daughter cells are formed from stem cells, move up along
the crypt and exfoliate into lumen as more cells are cre-
ated. Thus, a cell’s relative position within a crypt is an
indicator of its age: cells at the bottom are younger, and
cells near the top are older. In this study, the position of the
cell was recorded by the relative cell position, as in Morris
et al. (2001). The relative cell positions range from 0 at the
bottom to 1 at the top.

Our goal is to understand the relationship between the
response (bcl-2 gene expression) and the covariate (cell DNA
adduct level), as well as how this relationship changes with
the diet. More precisely, we want to investigate, in compar-
ison to the corn oil supplemented diet, whether the fish oil
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Table 1. Colon Carcinogenesis Data within One Rat and Under One Treatment Condition: the Left Four Columns Are bcl-2
Observations from 20 Crypts, and the Right Four Columns Are DNA Adduct Observations from 23 Crypts; Crypt j Is the j-th
Crypt for Observing bcl-2 and j' Is the j'-th Crypt for Observing DNA Adduct, These Are Two Different Sets of Crypts in the

Same Rat.
bcl-2 observations DNA adduct observations
crypt (j)  cell cell bcl-2 crypt (5)  cell cell DNA adduct
position  reading position reading

1 1 0 Y1,1 1 1 0 wi,1

1 2 1/31 y1,2 1 2 1/39 ’11)1’2

1 3 2/31 Y1,3 1 3 2/39 w1,3
1 32 1 Y1,32 1 32 31/39 W1,32
1 40 1 wW1,40

20 1 0 Y20,1 20 1 0 w20,1
20 2 1/28 Y20,2 20 2 1/35 w20,2
20 3 2/28 Y20,3 20 3 2/35 w20,3
20 29 1 Y20,29 20 29 29/35 wW20,29
20 36 1 W20,36

23 1 1/30 w23,1
23 31 1 W23,31

supplemented diet helps to suppress the increasing trend of
bcl-2 gene expression when DNA damage increases. We need
a mixed-effects model to accommodate the diet and time
treatment effects, and also the random effects for rat and
crypt. The special aspect about this study is: DNA adduct
level and bcl-2 gene expression were not measured in the
same crypts, though from the same rats. This is because
in this study, once a crypt was euthanized to take DNA
adduct measurement, it could not be used again to measure
bcl-2. Instead, a different crypt from the same rat was used.
Since the number of cells varied from crypt to crypt, cells
within different crypts had different relative positions. Con-
sequently, the two measurements, bcl-2 gene expression and
DNA adduct level, were observed at different relative crypt
depths (i.e., the relative cell positions) in addition to be-
ing from different crypts. It formed a problem of misaligned
measurements. Conventional regression methods are not ap-
propriate.

To illustrate the data structure, Table 1 lists the portion
of data from one rat under one treatment condition (i.e.,
combination of diet and time post carcinogen exposure).
It shows that, within this rat, bcl-2 was observed from 20
crypts while DNA adduct observed from 23 crypts. These
are two different groups of crypts; that is, crypt j for observ-
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ing bcl-2 is different from crypt j' for observing adduct, for
all j and j'. Within the first crypt (j = 1) for bel-2 observa-
tion, bcl-2 was measured over 32 cells, while within the first
crypt (j° = 1) for DNA adduct observation, DNA adduct
was measured over 40 cells.

1.2 Statistical background

When the covariate values are not directly available, im-
putation is the traditional practice, like the nearest neigh-
bor method (NN; Pielou, 1961; Huang and Zhu, 2002) or
the last observation carry-forward method(LOCF; Carroll,
2004). In the colon carcinogenesis study, these two methods
are, within each rat, to use the DNA adduct values observed
nearest to or immediately in front of the positions of the bcl-
2 measurement, respectively, as the matching DNA adduct
measurement. The pitfall of the naive imputation approach
is the attenuation effects as discussed in Carroll (2004).

Another possible approach is to assume a subject-level
latent process X;(+) for the positional feature behind the ob-
served covariate from subject ¢ and apply the maximum like-
lihood method through an expectation-maximization algo-
rithm (EM; Dempster, Laird, and Rubin, 1977). The draw-
back of EM is two-fold. First, maximum likelihood is sen-
sitive to model assumption; Second, due to the complexity



of the colon carcinogenesis data, the derivation of EM is
not straightforward and the computational implementation
is extremely intensive.

In this paper, we propose a semiparametric method. As in
EM algorithm, we consider a latent covariate process X;(-)
for the DNA adduct versus the relative cell position within
each rat. Unlike EM, we directly “estimate” the rat-level
latent covariate by nonparametric regression and use the
estimated DNA adduct for the estimation of the primary
model. This semiparametric approach and the NN, LOCF
methods are all “plug-in” based methods, which are often
unfavorably considered. However, we prove that, under ade-
quate within-subject sample sizes, the estimators from this
semiparametric approach are asymptotically consistent and
achieve the oracle property. An EM estimator, depending
on its construction, may at most share the same asymptotic
properties. We later propose a graphical tool to check the
adequacy of the “effective” sample sizes.

Our semiparametric approach is basically to model the
primary relationship between bcl-2 and DNA adduct, and
meanwhile, the positional feature of DNA adduct level. Joint
modeling of parametric longitudinal features and a primary
endpoint has been studied extensively, see Tsiatis and Da-
vidian (2001), Li, Zhang, and Davidian (2004) and the works
therein. However, identifying a parametric structure for lon-
gitudinal biomarkers is not always feasible. In this paper, the
joint modeling is extended to accommodate nonparametric
longitudinal covariate features and longitudinal response.

The semiparametric approach can also be considered as
an extension of Carroll and Wand (1991) and Pepe and
Fleming (1991) in that a nonparametric estimation is used
to obtain the estimates of the unobserved covariate. How-
ever, there are three major differences. First, in these pre-
vious works, true covariate values were available for a por-
tion of the subjects, but in our example, there were abso-
lutely no matched measurements. Second, the DNA adduct
measurement alone was from a nonparametric mixed-effects
model with the marginal mean as a function of the rela-
tive cell position. Meanwhile, the response bcl-2 was also
measured repeatedly from the same crypt within the same
subject. Therefore, the observations in our example were
correlated while the previous works focused on independent
cases. Third, the issue of “effective” sample size and the
corresponding diagnostic tool had never been investigated
in the previous papers.

The rest of this paper is organized as follows. § 2 for-
mulates the mixed-effects models for the study and de-
scribes the proposed semiparametric method. We present
the asymptotic properties of the semiparametric estimators
and the conditions to reach the oracle property. § 3 gives the
numerical results which include a simulation study, the ap-
plication to the colon carcinogenesis, and a sensitivity anal-
ysis on the “effective” sample size. Finally, § 4 contains the
concluding remarks.

2. THE MODEL, THE METHOD AND THE
ASYMPTOTICS

2.1 Model specification

Let X (-) denote a latent covariate process. For the colon
carcinogenesis study, X;(t) is the realization of the rat-level
process for DNA adduct in rat ¢ at cell position ¢. Hereafter,
the cell position refers to the relative crypt depth of the cell
within a colon crypt, thus t € [0, 1].

The following mixed-effects model describes a general re-
lationship between the response Y and the latent covari-
ate X,

(1)

For better understanding of the notations, we associate them
with the terminologies in the colon carcinogenesis example.
That is, Y is the bcl-2 gene expression, X is the DNA adduct
latent covariate, ¢ is the subject index of the rat, j is the sub-
unit index of the crypt selected to measure bel-2, k is the
index of the cell in the selected crypt, and the sup-index “tr”
is the treatment indicator for the diet and the time. The cell-
level bcl-2 gene expression Y;Brk is linked to the rat-level co-
variate process X!*(-) through the cell position ¢;;. 3 is the
unknown fixed effect parameter vector and H is the known
link function. The zero mean and bounded variance random
effect b'*, coupled with the rat- and the crypt-level observed
covariate Z', lays out the hierarchical rat- and crypt-level
dependency. Finally, 7% denotes the vector of variance pa-
rameters in the distribution of b and the additive error €*.
For simplicity, we hereafter suppress the sup-index “tr” in
the text.

The latent covariate X;(t) is completely unobservable but
can be considered as the rat-level mean at cell position ¢. Let
Wik be the DNA adduct observed from cell k" of crypt
j' in rat i. What follows is a natural model that links the
observed W;;/is to the rat-level latent covariate,

(2)

In this nonparametric mixed-effects model, d;;+ denotes the
crypt-level variation and e;;/;» the additive error. Condi-
tional on X;(t), we assume that measurements from differ-
ent crypts are independent. We let 7}V denote the vector
of variance parameters in model (2) for the covariate obser-
vation within rat 7. Note that j denotes the index of the
crypt selected for measuring the DNA adduct, and %’ is the
index of the cell within that crypt. Due to the nature of
this experiment, in no situation does j' = j in (1) and (2).
Throughout this paper, we use “’ ” for the indices of co-
variate observations to distinguish them from the indices of
response observations.

Since crypts are randomly selected from the same rat to
measure the bel-2 and DNA adduct, the two groups of crypts
should be biologically similar. As pointed out in Morris et al.

Vi = H(X[" (tijr), B) + Zi5b55 + €y

Wijrir = Xi(tijowr) + dijr (tijrr) + €ijonr -
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2001, the cells at the same positions of different crypts share
the common characteristics. Therefore, it is reasonable to
assume that the rat-level latent process for DNA adduct is
the same for the two groups of crypts. This suggests that
we can estimate the latent covariate X;(-) in model (1) from
the nonparametric model (2). In fact, the latent covariate
process can only be assumed at rat level to link the ob-
served surrogate covariate to the underlying covariate that
corresponds to the response. This is because no covariate
was observed from the same sub-unit (crypt) of response
observation, consequently, no crypt-level process can be ob-
tained.

2.2 Method description

Our semiparametric approach can be implemented in two
steps. In step 1, we nonparametrically estimate the latent
covariate X; for each subject i based on model (2). In step
2, we use the nonparametrically estimated X;(t;;x) in the
primary model (1) to estimate 8 and +.

For the nonparametric estimation of X;(-), we use local
linear smoothing (Fan and Gijbels, 1996) with the working
independence correlation (Lin and Carroll, 2000), and es-
timate within each rat separately. Other smoothing proce-
dures can also be used. The choice of working independence
approach is appropriate here because we intend to show that
the simplest approach would still work here. For the para-
metric estimation of the primary model, we use the gener-
alized estimating equation (GEE) with working covariance
matrix. We introduce the semiparametric estimation in the
case that H is quadratic. The approach which is designed
for the generalized linear mixed-effects model and its associ-
ated properties have also been developed in the dissertation
of the first author. We focus on presenting the more complex
quadratic scenario here because it was the model used for
analyzing the data.

Let n be the total Y; =

(}Q,lT,...’}/i7JiT)T is the vector of crypt by cry;t bel-

number of rats.

2 observations in rat i, with Y; ;7 as the bcl-2 observations
from crypt j of rat i, for« = 1,...,n and 5 = 1,...,J;.
T = (Ti71T, ... ,Ti’J,iT)T denotes the vector of cell positions
for observing bel-2. X;(T;) is the realization of X;(-) at T;.

For the mixed-effects quadratic model, the semiparamet-
ric estimator for 3 is,

(3)
. { S KT, KA TE L zm),fcﬂm}

i=1

{n1 Zn:[l, )Z'i@),)?f(g)]Tii—lg},

i=1

where X;(T}) is the nonparametrically estimated X;(7}) and

Y; is the estimated covariance matrix in primary model (1).
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To account for the nested experimental design in the
colon carcinogenesis study for cells within a crypt and crypts
within a rat, we consider a dependent covariance struc-
ture (4) as the working covariance for the primary model,

(4)

where 02 and ¢? are the variance components for the rat-
and crypt- level random effects, respectively, and o2 is that
for the random error. J is matrix of entry 1 and I is the
identity matrix. All indices here refer to the bcl-2 observation
in rat ¢: IV; is the total number of bcl-2 observations; J; is
the number of crypts selected for bel-2 observation and K ;
is the number of cells in crypt j.

When this assumed structure is true, it is known that the
covariance parameters can be consistently estimated under
the assumption of normal random effects even if the distri-
butions of the random effects are not normal (see Verbeke
and Lesaffre, 1997, for a reference). Consequently, there is no
need of distributional assumptions on these random effects.
For estimation efficiency, we also assume the same variance
parameters across all treatment groups as well as at different
cell position. Thus v = (02,02, 02), together with (4), de-
scribes the covariance in the primary model. 3, is calculated
by replacing vy with 4.

Note that there are possible choices of ¥; to allow for
correlation within crypts. For example, instead of the term
Iy, in (4), we could have a Markov-structured matrix such
that the correlation between two cells in the logarithm scale
is inversely proportional to the distance between the two
cells. We checked and found that the correlations between
two adjacent cells within a crypt are low on average, it is
thus reasonable to assume the covariance structure (4) for
this study.

For the estimation of the variance components repre-
sented by ~, we focus on a simple regression-based method
that uses the transformed response and covariates. The ex-
act formulae are given in the Appendix. This is not a max-
imum likelihood method but it shares the same consistency
property and performs numerically better for small sample
sizes. An “equivalent” method was proposed in Henderson
(1953) and was studied extensively by Fuller and Battese
(1973) for nested designs. We choose this estimator for vari-
ance components not only because the role played by the
latent covariate can be explicitly reflected, but also that the
estimated parameters provide a summary of the variations
at different levels even if the assumed variance structure is
not exact.

Y= O'EJN@' + Ugdiag(JKi,u cee 7']Ki‘Ji) + O.EZINi’

2.3 Asymptotic properties of the
semiparametric estimators

In this subsection, to simplify the notation, we assume
that all rats have the same number of crypts J' and the
same number of cells K’ within each crypt for observing the
covariate. Due to the structure of the colon, the number of



cells within each crypt is limited, while the number of crypts
within a colon is nearly unbounded. This is because, com-
pared with the dimension of a crypt, the colon is of nearly
infinite length. Therefor, in this subsection, we focus on the
asymptotic scenario that J’ goes to co and K’ is bounded.
We derive the asymptotic properties of the semiparametric
estimator and identify the conditions under which the oracle
property can be reached. Later in § 3.3, a bootstrap-based
graphical tool will be used to evaluate the adequacy of crypt
size J'.

For simplicity, we denote X;(7;) as X; in the following.
Recall that v = (02,02,02) is the vector of the variance
components of the primary model (1), and let YV = (y}V,
it = 1,...,n) be the variance parameters in the nonpara-
metric model (2) for the subject—Ilevel latent covariate pro-
cesses.

For the mixed-effects quadratic model, we obtain the fol-
lowing properties:

Proposition 1. Asn and J' — oo, h — 0 and J'K'h — oo,
Vn(B — 8 — Bg) — N(0,V3), with
Bg =V Y {h? - Cp+ (JK'h)™ - Crgrn + (J) - Cr},
Vs =Vy '+ Vo Hh? - Dy, + (J'K'h) ™ - Dy,
+ (I Dy Ve

where

Vo=Vo(X,y) = lim o™t Y [L X5, X178 [L X, X7,
1=1

Ch, Cyxmn, Cy, Dn, Dygrmn,
(X, 7,74V, B) and of order O(1).

When nh* — 0, n(J'’K'h)~2 — 0, and n(J')"2 — 0, 3
is v/n-consistent. The exact expressions of C}, Cy xrp, Cyr,
Dy, Djygmn, and Dj:, as well as a sketch of proof, are in the
Appendix.

Dy are functions of

Remarks.

1. The variance of B* has two parts. n_lV(f1 is the asymp-
totic variance from the regular GEE if X were ob-
served. The second term of Vj represents the extra
variation due to the nonparametric estimation of the
latent covariate. As h — 0, J' — oo, and J'K'h — oo,
this term diminishes and the asymptotic variance of G*
is 1V, '. That is, the estimator achieves the oracle
property.

2. Both the bias Bg and the second term of the asymp-
totic variance V3 go to 0 as (J'K’h)~! and h go to 0,
and J’ goes to co. So, instead of requiring K'h — oo,
the bandwidth selection for this semiparametric estima-
tion is determined by J'K’h — oco. That is, we do not
require that the observations (over cells) within each
subunit (crypt) for observing the covariate to be dense
enough, but only that the observations pooled over the

subunits within each subject (rat) are dense. This is
because the latent covariate process is assumed at sub-
ject instead of the sub-unit level. Therefore, in addition
to the facts that the same positional feature is shared
across the sub-units of a subject, latent covariate pro-
cess assumed at subject level also allows feasible band-
width selection for attaining the oracle property.
In the colon carcinogenesis example, DNA adduct was
measured within each selected crypt over all the cells,
with the number of cells ranging from 14 to 56 per
crypt. With about 20 crypts selected to observe the
DNA adduct, the total number of cells within each rat
ranged from several hundreds to one thousand. Thus, it
is J'K'h instead of K'h that could be sufficiently large,
which enables reasonable bandwidth selection.
Due to the colon structure, the number of cells (K’)
within a crypt is limited while the number of crypts
(J') within a colon is nearly infinite. Therefore, the only
within-subject sample size that could be large enough
is that of the crypt. It also indicates that, for the ap-
plication of this semiparametric method, the major as-
sumption to check is that the sub-unit number within
each subject is sufficiently large. We describe a graphi-
cal diagnostic tool to check this assumption in § 3.3.
3. In Proposition 1, the bias and variance of the semi-
parametric estimators are determined by the variance
parameters v and ¥V from both models, the underlying
true covariate, and the parameter (3.
We assumed that the variance components v of the pri-
mary model are the same for all treatment groups and
irrelevant to the cell positions. This assumption can be
evaluated and further relaxed through a known para-
metric variance structure, as stated in § 2.2. In the non-
parametric mixed-effects model for the latent covariate,
we allow each rat to have its own variance parameters;
in addition, the variance parameters can be functions
of the cell position. Though in the proof, for presenta-
tion simplicity, we consider the case that o ,(-) = 07,
the consistency remains true for general scenarios, pro-
vided that either each o ,(-) or their sum over the n
rats divided by n are bounded.

For the estimation of the variance components in (4), we
obtain the following consistency.

Proposition 2. For the latent covariate X; satisfying the
conditions in Lemma 1, estimators of variance components
o2, 0% and o? with the nonparametric estimate of X; are
consistent as h — 0, J' — oo and J'K'h — oc.

3. NUMERICAL STUDY

We study the numerical performance of the semiparamet-
ric estimation by a simulation study in § 3.1, then present
the application to the colon carcinogenesis example in § 3.2.
Though the results developed in § 2.3 regard the asymptotic
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performance in the case of J' — oo, we show graphically
in § 3.3 that the moderate crypt numbers observed in the
colon carcinogenesis example seem to be sufficiently large to
achieve the oracle property; that is, the estimates and their
variances remain roughly the same even when we artificially
increase the crypt number.

3.1 Simulation results

Here, we investigate the finite sample performance of
semiparametric estimators for a quadratic mixed-effects
model with a latent covariate.

We simulate the data to mimic that of the colon carcino-
genesis study. Thirty (n = 30) subjects are considered. For
each subject, we generate K = 15 observations of response
(Y') within each of the J = 20 crypts. Also, in the same
subject, we generate the observed covariate (W) in J' = 20
crypts at K’ = 40 positions. The positions for observing
W are evenly spaced, and those for observing Y follow a
uniform distribution, both in [0, 1].

The underlying covariate process is X;(t) = 5 — 5sin(3t -
ril) + rio, with 757 ~ unif[0.9,1.1] and r;y ~ N(O,l).
We generate the observed covariate W; by model (2) with
dij(-) = dijr; dijr and e;jp are independent with mean 0
and variance 03 and o2, respectively. In this simulation, we
let 04 = 0.3 and o, = 0.7. We generate the observed re-
sponse Y by a quadratic mixed-effects model with Gy = 1,
81 = —2, B2 = 1, and the covariance structure (4) with
variance components o, = 1, 0. = 1, and o. = 3. The data
generation and the semiparametric estimation are repeated
for 1000 times.

We estimate the above mixed-effects model with latent
covariate by three methods: (1) GEE with the true covari-
ate values (True); (2) the semiparametric method (Semip):
though the optimal bandwidth for nonparametric smooth-
ing can be obtained through the “leave-one-subject-out”
cross validation, we present the estimates over three dif-
ferent bandwidths around the optimal to show the influence
of bandwidth; and (3) the last observation carry-forward
method (LOCF), which sets the covariate value at the po-
sition of response, say t;;, to be the observed covariate at
a position immediately in front of the target position; that
is Wij(’]k(’) with tijk — tijék() = min(j/yk/){tijk =t i <
tijk }. Since NN estimates are similar to LOCF, only LOCF
estimates are presented. Simulation results are in Table 2.

In Table 2, we observe that the LOCF estimates are bi-
ased toward zero, due to the attenuation effect (Carroll,
Ruppert, and Stefanski, 1995). For the semiparametric es-
timators, the performance depends on the bandwidth h. At
h = 0.06, the semiparametric estimates show negligible bi-
ases, and the coverage probabilities of the 95% Wald confi-
dence intervals are very close to the nominal. In addition,
the estimated standard errors based on the asymptotic nor-
mality in Proposition 1 are close to the Monte Carlo stan-
dard deviations. Though the semiparametric estimates have
larger variation compared to the estimates using the true
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Table 2. Simulation Results Based on 1000 Repetitions:
Primary Mixed-Effects Quadratic Model with By =1,

01 = —2, B2 =1, and the Latent Covariate Process
X;(t) =5 —>5sin(3t - r;1) + 12 with r;; ~ unif[0.9, 1.1] and
ri2 ~ N(0,1); RB (%): Relative Bias, SD: Monte Carlo
Standard Deviation, SE: Average of the Estimated Standard
Error from the Asymptotic Distribution, CP: Monte Carlo
Coverage Probability of the 95% Wald Confidence Interval

Method 5o 51 B2

True RB 1.024 0.056 0.020
SD 0.192 0.047 0.009
SE 0.194 0.046 0.009
CcpP 94.8 94.7 94.3

Semip

h =0.03 RB —0.521 —2.421 —1.406
SD 0.199 0.073 0.015
SE 0.193 0.065 0.013
CcpP 95.7 91.1 92.8

h = 0.06 RB 2.071 —0.208 —0.238
SD 0.199 0.073 0.015
SE 0.195 0.065 0.013
CcpP 95.5 94.4 95.1

h =0.09 RB 5.217 1.920 0.483
SD 0.200 0.074 0.015
SE 0.196 0.066 0.013
CcpP 95.0 93.6 93.7

LOCF RB —20.948 60.280 —37.085
SD 0.241 0.121 0.028

covariate values, which is unattainable in practice, this ex-
tra variation originates from the nonparametric estimation
of the latent covariate and would diminish as the within-
subject sample size J' increases. Overall, the simulation re-
sults indicate how close the proposed semiparametric esti-
mators could approach the oracle property.

For the estimation of the variance components in primary
model (1), by semiparametric approach in (A.3) to (A.5),
the estimates at h = 0.06 are &, = 0.999, 6. = 1.022, and
e = 3.003, with the corresponding Monte Carlo standard
deviation being 0.064, 0.03, and 0.019, respectively.

3.2 Analysis of colon carcinogenesis data

Here, we summarize the analysis of the colon carcinogen-
esis data. The goal of the study was to investigate whether
bcl-2 gene expression increases with the DNA adduct level,
and whether the trend varies with diet. Recall that the re-
sponse, bcl-2, and the covariate, the DNA adduct, were not
observed from the same crypts within a rat. We assume the
rat-level latent covariate process for the DNA adduct level
as X;(+).

Several features of this study should be noted. First, as
discussed earlier, the relative crypt depth of a cell repre-
sents its physiologic function. If we divide the crypt into
three sections—the bottom 1/3, the middle 1/3, and the
top 1/3 section—these three sections roughly contain the



Table 3. Estimates of the Linear Mixed-Effects Model of bcl-2 Versus DNA Adduct: SE Is the Standard Error and the p-Value
Is for the Comparison Between the Two Diets at Each Time Point

Time Diet Semip estimates Comparison p-values LOCF
intercept (SE) slope (SE) intercept slope slope
0 fish 33.54 (2.79) 2.32 (0.53) 0.38 < 0.01 0.05
corn 37.08 (2.94) 0.83 (0.43) —0.08
3 fish 25.13 (2.79) —0.79 (0.28) 0.04 < 0.01 —0.09
corn 33.08 (2.80) 0.35 (0.28) 0.05
6 fish 25.57 (2.81) 0.18 (0.25) 0.43 < 0.01 0.08
corn 28.51 (2.81) 2.25 (0.37) 0.12
9 fish 19.48 (2.88) —1.28 (0.27) 0.54 < 0.01 —0.02
corn 22.38 (2.89) 0.92 (0.36) —0.02
12 fish 24.99 (2.72) —0.52 (0.30) 0.72 < 0.01 0.07
corn 26.42 (3.04) 0.42 (0.27) 0.09

stem cells, the proliferating cells and the differentiated cells,
respectively. We accordingly carry out the analysis with re-
spect to each section separately. Secondly, in the analysis
of each section, we use the “centered” DNA adduct level
around the section mean of each rat. The reason for center-
ing is as follows: the rat to rat variation is fairly large in
DNA adduct measurements, but the range of bel-2 is about
the same for almost all rats. If we perform regression anal-
ysis rat by rat, we can see that the regression pattern is
roughly shared by the rats within the same treatment group.
Through “centering” in the DNA adduct, we can easily sum-
marize the within-rat bcl-2 versus DNA adduct relationship
over all rats in the same treatment group. One the other
hand, the regression that uses uncentered DNA adduct es-
sentially models the trend between the rat-level averages of
bcl-2 and the rat-level averages of the DNA adduct, which
is not the interest of this study.

Analysis is performed in all the three sections of the
crypt. The results in Hong et al. (2000) indicated that the
top section is where the proportions of apoptosis differ be-
tween fish oil enhanced and corn oil enhanced diets in the
later stages of carcinogenesis. Therefore, we only report the
results for the top section here. The results for the other two
sections are either non-significant or similar to the findings
for the top section.

For the semiparametric method, bandwidth selection is
carried out by the “leave-one-subject-out” cross validation
(Rice and Silverman, 1991). This method has been success-
fully applied by Hu, Wang, and Carroll (2004) and sev-
eral other authors in semiparametric modeling of corre-
lated data. For this study, the selected bandwidth is about
h = 0.05. The values of the generalized cross validation
function change little over bandwidths around 0.05, and the
semiparametric estimates are very close with bandwidths in
that neighborhood.

We report the results from linear mixed-effects model.
Though a quadratic mixed-effects regression was conducted,
we discovered that for all but one treatment groups, the
quadratic trend was insignificant (with p values > 0.2). More

importantly, a linear model allows easier interpretation of
the diet effect on the bcl-2 versus DNA adduct relationship.
Therefore, we use the linear mixed-effects model as the pri-
mary model, and the properties in § 2.3 also apply here.

In Table 3, we report the estimated intercepts and slopes
and their standard errors, as well as the p-values for the con-
trast between the two diets at each of the five time points.
Both the standard errors and the p-values are obtained by
the method of bootstrap, where the observed covariate is
bootstrapped from model (2) with the underlying latent co-
variate as the rat-level smoothing estimate, and the response
is bootstrapped from the primary model (1) with the semi-
parametrically estimated parameters. For comparison, we
report the estimated slopes from the LOCF method. We
can see that these estimated slopes shrink towards zero, as
is the case in the simulation study.

From Table 3, we can see that, in the bcl-2 versus DNA
adduct relationship, the fish oil fed rats have significantly
smaller slopes than the corn oil fed rats during the initial
stage of colon carcinogenesis except at time 0. More specif-
ically, as cell DNA damage increases, the bcl-2 gene expres-
sion level always increases in the corn oil fed rats, while it
either decreases as at time 3, 9, and 12 or remains relatively
stable as at 6 in the fish oil fed rats.

As we know, the main function of bcl-2 is to suppress
apoptosis activity. It can consequently prevent premature
cell death when the DNA damage is within a normal range,
but leads to less active self-termination of the cancer-prone
cells where the DNA damage is genetically irreparable. Our
findings in Table 3 suggest that during the first 12 hours post
carcinogen exposure, the fish oil diet, compared with the
corn oil diet, suppresses the increment in the gene expression
level of bcl-2 when the DNA damage increases. Therefore,
the fish oil supplemented diet is more advantageous in pro-
moting apoptosis and potentially reducing the risk of colon
cancer. On the other hand, since there is no cell DNA dam-
age caused by the carcinogen at time 0, the positive slope of
the fish oil diet at this time suggests that the fish oil diet is
also good at preventing premature cell death in case of no
abnormal cell damage.
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Figure 1. Fitted Regression Lines for bcl-2 vs. the Centered Smooth Estimates of DNA Adduct. Observations Are from the Top
1/3 Section at 0, 3, 6, 9, 12 Hours Post Carcinogen Exposure; Box Plots Are Produced for 25 Equal-Distance Regions for Corn
Oil (Red) and Fish Oil (Blue) Observations, Respectively. The Plot in the Right-Lower Corner Provides Regression Slopes for
All Groups; a Color of Dark Red (Blue) Indicates that the Slope Significantly Differs from 0 (at Significance Level o« = 0.05).

The variance component estimates of the primary linear
mixed-effects model are the rat-level variation 6,, = 4.89, the
crypt-level variation 6. = 1.80, and the cell-level error 6. =
12.48. It shows that the crypt-level variation is relatively
small compared with the other two sources of variations.

Figure 1 illustrates the fitted lines from semiparametric
regression at bandwidth A = 0.05 in the top section; the
Y axis indicates the observed bcl-2 gene expression and the
X axis indicates the centered nonparametrically estimated
cell DNA adduct level. Because the data points within each
time group are extremely dense, we present the data in the
following way. That is, for each time group, we divide the
range of the centered DNA adduct values into 25 segments
of equal length. Then for the centered DNA adduct values
within each segment, we produce the box plot of the corre-
sponding bcl-2 observations.

3.3 A graphical assumption-checking tool

The key point of this work is that for a hierarchical mixed-
effects model with subject-level process for latent covariate,
a simple semiparametric estimation can replace the com-
plicated EM computation. This is often the case when the
number of total observations per subject is sufficiently large.
Coupling the proposed semiparametric estimation with a
graphical assumption-checking tool can be very useful in
practice.
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In Proposition 1, the asymptotics for the semiparamet-
ric estimators are built upon the condition that the crypt
number for covariate observation within each rat is big, i.e.,
J' — oo. That is, we expect both the estimates and the
corresponding variation to stabilize when J' is sufficiently
large. Next, we investigate how the crypt number J’ affects
the semiparametric estimates, and roughly check whether
the crypt number is large enough in the colon carcinogenesis
example. We do this by the following bootstrap procedure,
where the first two steps are to estimate the crypt effects
and the random errors in model (2).

1. Within each subject, subtract the covariate values ob-
served at ¢ by its nonparametric estimate X;(¢) and ob-
tain the best linear unbiased predictor (BLUP) of the
crypt-level random effects d;;/(-). Here, we focus on the
scenario that the crypt effect does not change with the
cell position; that is, d;;(-) = d;j7. We then construct
the kernel estimate of the crypt effect density fy.

2. Denote the corresponding residual process at crypt j’
by rijr(-).

3. Let J* denote the crypt size of consideration, which
is the number of crypts within each rat for covari-
ate observation. Sample independent crypt-level ran-
dom effects d;*>, ¢ = 1,...,J*, from the estimated
crypt effect density fy. This can be achieved by let-
ting d;?> = d;"”* + haU"”, where d5;">* is sampled
with replacement from the original set of BLUP’s of the



crypt-level random effects; hg is the bandwidth; K(-) is
the kernel density function in the estimation of f;, and
U is a randomly generated number from K ().

4. Create bootstrapped surrogate covariates by letting

Wi () = Xi() +dg"> + 5> (), where r5?*()
is sampled with replacement from the original residual
processes of {r;;:(-)}.
Though, in step 1, we did not take the cell position into
account in the estimation of the crypt effect, the effect
of cell position is absorbed into the residuals and con-
tributes to the generation of the bootstrapped W <b>
at this step.

5. Create parametrically the corresponding bootstrapped
responses Yi<b> from the primary model with the esti-
mated parameter 3 and X; ().

6. Obtain semiparametric estimate 3<*> from Y;<*> and
Witz e=1,...,J},i=1,...,n.

The above procedure (step 3 to step 6) is repeated for
b=1,...,B.

Based on the semiparametric estimates in Table 3, we
obtain a sequence of the bootstrap estimates {ﬁ<b>,b =
1,..., B} for each desired crypt size J*, with J* ranging
from 3 to 50. We keep all other setups the same as the orig-
inal data and let B = 1000. Figure 2 presents the bootstrap
estimates for the intercepts and the slopes under both diets
at 9 hours post carcinogen exposure. For all plots, the X-
axis indicates the crypt sizes J*. In the top two panels, the
Y-axis corresponds to the estimated intercepts, and in the
bottom two are the estimated slopes. The fish oil diet plots
are on the left, and the corn oil diet plots are on the right.

In Figure 2, it appears that the estimated fish oil diet
slope is the most sensitive to the crypt size among the four
estimates, whose bootstrap estimated standard errors de-
crease about 8.2% from J* = 5 to J* = 50. At crypt size
J* = 24, which is the “typical” crypt number per rat for
DNA adduct observation in this example, the correspond-
ing estimates and standard errors are within 1.01% of those
obtained at J* = 50, respectively, and are apparently close
to the asymptotic limits. This implies that, in this example,
the semiparametric estimates are close to the asymptotic
results. While the bias and variation of the semiparamet-
ric estimates could be further reduced by having a larger
number of crypts, the improvement would be very limited.

4. CONCLUDING REMARKS

We propose a semiparametric approach for estimating a
hierarchical mixed-effects model with an unobservable latent
functional covariate. Compare to a parametric approach,
like the maximum likelihood, semiparametric approach is
computationally easier to implement for applications with
hierarchical structure; meanwhile, it avoids the problem of
model misspecification for the latent covariate. When the
“effective” sample size is large enough, the semiparametric
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Figure 2. Diagnostic Plots of the Semiparametrically
Estimated Parameters Versus the Crypt Sizes at 9 Hours Post
Carcinogen Exposure. Left Panel Plots: Fish Oil; Right Panel

Plots: Corn Oil; Top Panel Plots: Intercepts; Bottom Panel
Plots: Slopes. The Center, Top and Bottom Curves in Each
Plot Correspond to the Bootstrap Averages and the 95%
Confidence Limits, Respectively.

estimator attains the oracle property, which is the best a
maximum likelihood estimator can do.

In the colon carcinogenesis study, the interest is on the
relationship between bcl-2 gene expression level and DNA
adduct, while the latent covariate functional—the positional
feature of DNA adduct—is not the interest. This research
objective makes the semiparametric approach, parametric
modeling for the primary relationship and nonparametric
modeling for the positional feature, appropriate. It obvi-
ates model specification for the positional feature of DNA
adduct, yet leads to consistent estimation of the primary
model.

Due to the long-standing belief that within a rat, cells at
the same position of different crypts share the same biolog-
ical characteristics, we propose the estimation of the posi-
tional feature of DNA adduct at rat-level. This is done by
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nonparametric estimation of the positional feature over all
the adduct observation crypts within each rat. The advan-
tage of this nonparametric estimation scheme is two-fold.
First, it makes possible to relate the response bcl-2 to the
covariate DNA adduct, which were observed over two dif-
ferent groups of colon crypts in each rat. Second, the ba-
sic observation units—the cells were of fixed number within
each crypt, while the subunits—the crypts were randomly
selected from the rat and technically of infinite number. If
we lump the crypts within each rat to estimate the rat-
level DNA adduct positional feature, the total number of
observation cells can be sufficiently large and the relative
cell positions are densely distributed in [0, 1], which allows
for a reasonable bandwidth selection in the nonparametric
estimation. Based on this pooling-over-subunit nonparamet-
ric estimation scheme, the consistency of the estimators for
both the primary parameters and the latent covariate func-
tional requires only the number of the crypts to be suffi-
ciently large. We also propose a bootstrap based diagnostic
tool to check on the sufficiency of this “effective” sample
size—the number of crypts within each rat.

Though the method developed here is motivated by the
colon carcinogenesis study, it has potentially wider applica-
tions. In biological studies, it is common that two measure-
ments of interest can not be taken from the same subunit
of a subject due to the constructive nature of the experi-
ment. It is even more common that true covariates are not
directly observable but can only be postulated as coefficients
or functions of another regression model (see Li, Zhang, and
Davidian, 2004, for a parametric example). However, it is
not always feasible to identify a parametric model for the
covariate, therefore, the semiparametric approach is of more
flexibility.
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APPENDIX
1 Lemma and definitions for Proposition 1

We assume a common marginal distribution of the cell po-
sitions for the covariate observation cells, i.e., density fr(¢)
for cell position ¢. Similar to T;, T denotes the vector of
cell positions for covariate observation. Based on the mixed-
effects nonparametric model (2), the local linear smoothing
estimator X;(-) at ¢ has the following expression, with the
subscript 7 suppressed.
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Lemma 1. For X(-) € C%(0,1) and a kernel density func-
tion K satisfying [ sK(s)ds =0, [ s*K(s)ds =1,

J K’
(A1) X(0)=X(0)+ Wi ()3 30 D KT — g

j'=1k'=1
+C()h2 )24 0p{h* + (J'K'h + J)~ Y2}

where Kj,(v) = h='K(v/h) and h is the smoothing band-
width. Wy (t) = K' fr(t) and (t) = X @ (t)+ fr(t) 71 X (t) x
7(12)(75), where X () and fg)(-) denote the second deriva-
tives of X(-) and fr(-), respectively, and nj = dj + ejrgs .
The above expression (A.1) can be derived similarly as
done in Lin and Carroll (2000).
For the nonparametric estimate )A(:(L), it is the realiza-
tion of (A.1) at the response observation positions T;. Thus

the second term of (A.1) at t = T; is the random error
W;(T;), and the third term is the bias h?/2¢((T;).

The covariance of Z(Z) is
cov{Xi(T;)} = cor{Wy(T)} = (J'K'R) T 4 (7)1

In E}Nl, the I-th diagonal entry corresponding to position
2 2
tis WK(O)ECicE,Z)+UE,i)
responding to paired position (¢, t,,) is
o i frr(tt)
2@
. In the following, denote Tl/vl as the

, and the (I, m)-th off-diagonal entry cor-
(03, +02 ) K (ti—tm)

fr(t) fr(tm) )
and the off-diagonal

In Z}%, the diagonal entry is

Ug’ifTT(thtm)
fr () fr(tm)
vector of diagonal entries of ZZVI and T}Nz as the vector of

entry is

diagonal entries of El%.

With the notations above, in Proposition 1, Cy, = C10,
Crrm = Ca1f, Cyr = Co2B, Dy, = C1 + CY, Dy, =
C21+C31 +Cs1, Dyr = Cap+ CF 5 + Cs 5, where

Cu(X, By7) = lim 0™t 3710, ((Ty) /2, X+ ((Ty))T
=1
x 7ML X, X7,

Cao(X,8,7,9") = lim n="> (0,0, 0] 5711, X3, Xi7),
i=1

Cs.+(X, 8,774
n |0 0 0
= lim n*lz 0 pi "= p; 2p "' 5}* diag(Xi)pi
T i=1 |0 Q&Txrvsdiag(&)& 4&Tdiag(&)2r\}sdiag(&)&
0 0 0
+ lim n~'|0 tr(2;1Es) 2tr{2; 'diag(X,)T)V* }
e 0 2te{%; 'diag(X,)n)V*} dtr{diag(X,)TS;  diag(X,) 2V }

for s = 1,2, pi = 7ML X6, X768, and diag(X;) as the
N; x N; diagonal matrix of Xj.



2 Proof of Proposition 1

Following (A.1) and suppressing subject index ¢,

X2(t) = [X2(t) + 2X (W(E) + X ()R + W2 (1)
+ Op{(Jl)il/QH {1 + Op(l)}

Denote X; = Z(E) as the nonparametric estimate of

X; and W; as W;(T;). Since E(W;) = 0 and cov(W;) =
(J'K'h)'S™ 4 (J)7I8)Y?, each entry in Wi s
Op{(J'K'h)~/2} 4+ O,{(J")~*/?}, and each entry in W,
is O{(J'K'h)~ 1} + O{(J) "'}

For the semiparametric estimator 4* in (3), B* = A1_1A2,
where

n

~ ~2 —~ ~2
Ay =n"" YL X XS X X,
=1
Ap=n~' Y L X X )T
=1
Denote
—~2

—~r—1

then, A} is the matrix with entry (A4%),, = (X, )T x
—~s—1
7'X, L forrs=1,2,3.

(A2) (A, — (X" HTe x5 fori=1,...,n.
in probability, as J' — oo, h — 0 and J'K'h — oo. Conse-

quently, A; — Vj in probability.

Write

Ag = Agy + Ags + Aoz + Agy + Ags,  where

Ay =n"" Z[L&, XATEL X, X768,
i=1
n

A22 = 7171 Z[l7 &7 XE}TE'L_lﬂ’
i1

Aoy =7 [0, C(T)N? /2, X, = C(T)W) 57 (L Xi X215,
i=1

Aps =01 Y0, C(TR/2, Xi + ((TOR)TS ey,
i=1

Note that As; and Ass correspond to the mean and variance
terms for the quadratic regression if X were observed. The
bias of §* originates from Aoz and Aoy, the extra variance is

from As4 and Ass and their covariance with Aso. Therefore,
the bias terms are as following,

E(Ag3) = C1,
BE(Ags) =n~" Y (0,0, EWA)'S ML X, X071

i=1

and

= (J'K'h)™" - ConB+ (J') - Capap.
The additional variance is as following,

cov(Aag) 4 cov(Aas) + cov(Agg, Aag) + cov’ (Aga, Asyg)
+ cov( Aoz + Asa, Ass) + cov’ (Aza + Aos, Ass)

where,
cov(Ags) =n~? i cov ([0, Wi, 2X; + W, + Wi?]"
X Z;T[l Xi, 42]5)
YD B0 WL 2K, ¢ W+ W
1=1
x 2710, Wi, 2X5 + Wi + W),
with

n

1st term = n 2 Z (J'K'n)~!

i=1
I 0 0 7
x |0 pi "=V pi 2p; TSV diag(X;)ps + ()t
[0 2p, T2V diag(Xi)pi 4pi T diag(X;)S)"! diag(X; )p |
I 0 0 7
x [0 &TEI/\}Q& QETEENQdiag(Xi)&
10 2p, T2 diag(Xi)pi 4pi T diag(X;)) 2 diag(X;)p; |
+ higher order term
2nd term:n_ZZ (J'K'n)~*
i=1
[0 0 0 T
x |0 tr(S; s 2tr(S; ' diag(X:)EM) + ()7t

0 2tr(=;  diag(X:)T)M) dtr(diag(X:)T D] diag(X:)n)") |
[0 0 0 T
x |0 tr(S; 122 2tr(S; ' diag(X:)E)*?)

0 2tr(S;  diag(X:)T)"?) dtr(diag(X;)T D] ' diag(X:)D)"?) |

+ higher order term
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Thus, cov(Ass) =n Y (J'K'h)~' - Cs1+ (J')~1 - Cs2}.
cov{(Azz + A24), A2s}

=n"2 zn: E{[L&‘F C(E)hz/Q,&g + X, * C(E)hz]T
i=1
X B0, Wi, 25+ Wi+ Wi}
= n_l{(J/K/h)_l . 02)1 + (J/>—1 . 0272}
+nHO{h/(J'K')} + O{h*/J'}].

Since cov(Aga, Azq) =n~th? - Oy and cov(Agy) = O(h?),
Proposition 1 follows from the above derivations.

3 Proof of Proposition 2

Fuller and Battese (1973) gave the variance compo-
nents estimators for nested design. The estimator of v =
(02,02, 02) has the following expression, should the true co-

variate is known:

(A3)  62=7T%/(Ny— N1 —p+ A2)
T4 — (Ny —n—p—+ M\ )32

A2
(Ad) o= Ny — tr(Hy)
(A 5) ¢ 2 _ '[JTQA/ - (NQ _p)‘f€2 - {N2 B tr(Hal)}dCQ
’ " N2 — tI‘(Ha2)

Denote X as the design matrix with the true covariates.
Hy,, H,,, and H,, are the hat matrices in the estimation of
variance components. Here the notations are the same as in
Fuller and Battese (1973).

The semiparametric variance component estimators <fT2,
7.2, and 6.2 are of the same expression as in (A.5), (A.4),
and (A.3), except that X is replaced by X, which is the de-
sign matrix of the nonparametrically estimated covariates.
To study these semiparametric variance components esti-
mators, we need only to focus on the effects from the non-
parametric estimation of the covariates, which are contained
in the following terms Q,=X7X and H, = X(XTX)"1X7,
where ), appears in hat matrices Hy, Hy1, Hqo; H, appears
in the estimated sum of squared errors 777, 474, and 97 0.

It is easy to see that n='Q, — n~'XTX in probability
as J' — oo, h — 0 and J'K'h — oo. Similarly, n™'H, —
n~IX(XTX)"!XT in probability. Thus, the semiparamet-
ric variance components estimators (0}2, a}z, 562) converge
to ((sz,dCQ,dez) in probability. Since (drz, 7.2, 0}2) is unbi-
ased estimator for (02,02,02), the semiparametric variance
components estimators are thus consistent.
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