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1. Introduction

In 1675, Isaac Newton (1643–1721) said that
If I have seen further, it is by standing on the shoulders
of giants.

Chern is a giant in geometry in the twentieth century whose shoulder
most of later geometers stood on. On the other hand, he also stood on
the shoulders of several great geometers before him. According to himself,
mathematicians who are most influential on him are Blaschke, Kähler, Car-
tan and Weil. Blaschke, Kähler, Cartan taught him projective differential
geometry, integral geometry, Kähler geometry, Cartan–Kähler system, the-
ory of connections, and Schubert calculus while Weil was his friend who
propose him to find an intrinsic proof of the Gauss–Bonnet formula and to
study characteristic classes.

I believe it is instructive to find out who were the giants in the nineteenth
century whose ideas inspired Chern and those great geometers in twentieth
century.

The study of differential invariants can be traced back to Riemann,
Christoffel, Ricci, Levi-Civita and Weyl. The theory of Cartan–Kähler has
direct bearing on most works of Chern. His works on Gauss–Bonnet formula,
constructions of Chern forms, Chern–Bott forms, Chern–Moser invariants
and Chern–Simons invariants are good examples. Integral geometry and ge-
ometry of line complexes and Grassmannians also played very important
roles for Chern’s construction of Chern classes in understanding the coho-
mology of the classifying space of vector bundles.

I shall therefore begin my talk by explaining some of these works done
by those giants before Chern.

2. Foundation of modern geometry in nineteenth century

2.1. Intrinsic geometry developed by Riemann based on equiv-
alence principle. After Newton introduced Calculus to study mechanics,
it was soon used by Leonhard Euler (1707–1783) to study geometry. Euler
confined his study to surfaces in Euclidean spaces. But his view was similar
to what Newton thought:

The universe is static and we have a global Cartesian co-
ordinate to measure everything.

This view was changed drastically by Riemann who was influenced by his
teacher Gauss who noted that Gauss curvature is intrinsic.
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I summarized here three important developments of geometry in addition
to the classical geometry developed by Euler and others.

The purpose of Bernhard Riemann (1826–1866) was to explore the foun-
dation of physics by studying geometry of space through equivalence prin-
ciple via metric tensor and their curvature tensor, and to understand global
meaning of space by linking metric geometry with topology.

Modern differential geometry was found by Riemann in 1854. His pur-
pose was to understand the physical world through geometry. His grand
picture was based on the equivalence principle that essential properties of
law of physics or geometry should be independent of the choice of coor-
dinate system (observer). The essence of geometric properties should be
independent of whether we use Cartesian coordinates or polar coordinates
to calculate them!

The principle of equivalence is also the same principle that built the
foundation of general relativity discovered by Einstein 60 years later. The
great work of Riemann was reported in his thesis: “The hypothesis on which
geometry is based”. The great desire to keep this equivalence principle in ge-
ometry drove Riemann to develop methods to decide under what conditions
that two differential quadratic forms can be shown to be equivalent to each
other by coordinate transformations.

Riemann introduced the curvature tensor, which was published in an
essay, written to give an answer to the prize question on heat distribution
posed by the Paris academy (Riemann did not receive the prize nor did any
people). It was submitted on 1, July, 1861. The motto, written in Latin,
was: these principles pave the way to higher things. In this essay, Riemann
wrote down the curvature tensor of the differential quadratic form to be
a necessary condition for two differential quadratic forms to be equivalent.
Both the concepts of tensor and the intrinsic curvature tensor were brand
new. Riemann had intended to develop it further, but was ill.

Heinrich Martin Weber (1842–1913) explained it in more detail based on
an unpublished paper of Richard Dedekind (1831–1916) in 1867. In 1869 to
1870, Elwin Bruno Christoffel (1829–1900) and Rudolf Lipschitz (1832–1903)
(Crelle journals) discussed the curvature tensor further and noted that they
provided sufficient condition for the equivalence of two differential quadratic
forms.

In 1901, Tullio Levi-Civita (1873–1941) and Ricci-Curbastro (1853–1925)
published the theory of tensors in “Methods de calcul differential absolute
et Keyes applications”, where they wrote down the Ricci tensor and in fact
what we call the Einstein tensor, and the conservation law associated to it.

This tensor appeared in the paper of Levi-Civita and Ricci was the same
tensor used by Einstein, Grossman and David Hilbert (1862–1943) from 1912
to 1915 to describe gravity of spacetime. The discovery of general relativity
due to Einstein–Hilbert can be considered as a major triumph for human
beings understanding of spacetime. The major contributions by geometers
should not have been ignored.
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In the other direction, Riemann initiated the point of view using topol-
ogy in complex analysis by the concept of Riemann surfaces. He realized
there is a deep relationship between analysis and global topology of the
Riemann surface, e.g., the Riemann–Roch formula showed how to calculate
dimension of meromorphic functions with prescribed poles in terms of some
topological data. Riemann started to develop the concept of “handle body
decomposition” which led to the works of Poincaré on topology and global
analysis on the manifold.

In his course of his investigations, Riemann mentioned:
In the course of our presentation, we have taken care to
separate the topological relations from the metric relations.
We found that different measurement systems are conceiv-
able for one and the same topological structure and we have
sought to find a simple system of measurements which al-
lows all the metric relations in this space to be fully deter-
mined and all metric theorems applying to this space to be
deduced as a necessary conditions.

Riemann was puzzled by geometry of immeasurably small versus geometry
of immeasurably large. The measurements of the former case will become
less and less precise, but not in the later case.

When we extend constructions in space to the immeasur-
ably large, a construction has to be made between the un-
limited and the infinite; the first applies to relations of a
topological nature, the second to metric nature.

From the discussions of Riemann at the beginning of the development of
modern geometry, we see the importance of the relationship of metric ge-
ometry with topology. This indeed the central theme of the development of
geometry in the 20th century.

2.2. Geometry based on the study of linear subspaces. In 1865,
Julius Plücker (1801–1868) studied line geometry which is the study of space
of projective lines in a three dimensional projective space. He introduced
the Plücker coordinates. This was soon generalized by Hermann Graßmann
(1809–1877) to study the space of all linear subspaces of a fixed vector space.
This space is later called Grassmannian. It is a universal space for the study
of bundles over a manifold. The global topology of Grassmanians played a
fundamental role in differential topology.

In 1879, Hermann Schubert (1848–1911) introduced a cell structure on
the Grassmanian spaces which gave the basic homology structures of the
Grassmanian manifold of space of linear spaces. The structure of their in-
teractions give rise to the product structures of the homology.

The important concept of exterior algebra was introduced by Hermann
Graßmann until 1844. But it was largely ignored until Henri Poincaré (1854–
1912) and Élie Cartan (1869–1951) introduced the concept of differential
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form and its calculus with exterior differentiation. In 1928, Cartan suggested
that the differential forms should be linked to topology of the manifold.
Georges de Rham (1903–1990) was inspired and proved in 1931 in his thesis
(under the guidance of Cartan) that the cohomology defined by differential
forms is isomorphic to singular cohomology by integrating differential forms
over singular chains.

In 1930’s, W.V.D. Hodge (1903–1975) then discovered the star operator
acting on forms which can be used to define concept of duality in de Rham
theory. Hodge then generalized the work of Hermann Weyl (1885–1955) in
1913 on Riemann surfaces to higher dimensional manifold using the star
operator.

He also found the (p, q) decomposition of the cohomology for algebraic
manifolds where he made the famous conjecture that algebraic cycles rep-
resent exactly those (p, p) classes of the manifold. This is perhaps the most
important conjecture in algebraic geometry that is still unsolved.

2.3. Symmetries in geometry. Motivated by the works of Niels H.
Abel (1802–1829) and Evariste Galois (1811–1832) in group theory, and So-
phus Lie (1842–1899) on contact transformations, Lie and others developed
theory of Lie group in late 1860’s.

In 1872, Felix Klein (1849–1925) initiated the Erlangen program of clar-
ifying geometry based on the continuous group of global symmetries. Exam-
ples include (a) Projective Geometry, (b) Affine Geometry and (c) Möbius
Geometry.

2.3.1. Symmetries in geometry - projective geometry. Projective geome-
try is one of the most classical and yet most influential subject in geometry.
The group of projective collineations is the most encompassing group, which
can transform “points at infinity” to finite points. The subject studies geo-
metric properties that are invariant of such transformations. They include
incidence relations between linear subspaces and the important concept of
duality that come out from such considerations. Such concepts form the
foundation of modern development of topology, geometry and algebraic ge-
ometry.

Major important contributors include: Papas of Alexandria (third cen-
tury), Gerard Desargues (1591–1661), Blaise Pascal (1623–1662), Joseph
Diez Gergonne (1771–1859), Jean Victor Poncelet (1788–1867), August Fer-
dinand Möbius (1790–1868), Jakob Steiner (1796–1863).

The subject of projective geometry was gradually developed into two
different directions:

• One is the rich theory of algebraic curves which was developed by
Abel (1802–1829), Riemann (1826–1866), Max Noether (1844–1921)
and others.

• Invariant theory was used extensively. Italian algebraic geometers
including Gino Fano (1871–1952), Federico Enriques (1871–1946),
Benimano Segre (1903–1971), and Francesco Severi (1879–1961)
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extended the subject of algebraic curves to higher dimensional al-
gebraic varieties.

In the other direction, projective differential geometers is developed as
a mixture of the approaches from Riemannian geometry to study local in-
variants with the Erlangen program of characterizing geometries according
to their group symmetries. Contributors include Ernest Julius Wilczynski
(1876–1932), Eduard Čech (1893–1960), Wilhelm Blaschke (1885–1962).

Many Japanese and Chinese geometers studied the subject of projec-
tive differential geometry. This includes Shiing-Shen Chern and Bu-chin Su
(1902–2003).

2.3.2. Symmetries in geometry - Möbius geometry. Möbius geometry is
also called conformal geometry which studies manifold properties invariant
under conformal group. The subject is very powerful in two dimension and
led to study discrete groups of the conformal group and conformally flat
manifolds of higher dimension.

Joseph Liouville (1802–1889) and Poincaré studied the equation that
transforms a metric conformally to one with constant scalar curvature.

Hermann Weyl identified the Weyl tensor that is part of the curvature
tensor that is responsible for conformal change of the metric.

2.3.3. Symmetries in geometry - affine geometry. Affine geometry was
studied by Guido Fubini (1879–1943), Wilhelm Blaschke (1885–1962), Eu-
genio Calabi (1923– ) and is related to study differential invariants of hyper-
surfaces that are invariant under the affine transformations of the ambient
linear space.

The invariants of the affine transformation group has given an important
tool to solve the Monge–Ampère equations.

3. The birth of modern differential geometry

3.1. Levi-Civita, Weyl, Cartan and Hodge. André Weil and Her-
mann Weyl were two giants in twentieth century mathematics. Weil said:

The psychological aspects of true geometric intuition will
perhaps never be cleared up · · · .

Whatever the truth of the matter, mathematics in our century would not
have made such impressive progress without the geometric sense of Cartan,
Hopf, Chern and a very few more. It seems safe to predict that such men
will always be needed if mathematics is to go on as before.

Besides the above mentioned three great geometers, we should mention
the great contributions due to Levi-Civita, Weyl, Weil, Whitney, Morse and
Hodge.

• Levi-Civita was the first one (1917) who introduced the concept of
parallel transport in Riemannian geometry.

• Soon afterwards, Weyl attempted to use connections to understand
electro magnetism similar to Einstein theory of gravity. He suc-
ceeded to do so in 1928 where he introduced the gauge principle.
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Weyl proposed that while equivalence principle dictates the law
of gravity, gauge principle dictates the law of matter. The natural
simplest action principle in general relativity is the Hilbert action
which is the integral of scalar curvature and the one in gauge the-
ory is the Weyl action integral which is the square integral of the
curvature tensor.

• Cartan completed the foundational works since Gauss–Riemann.
In the beginning of last century, he combined the Lie group theory
and invariant theory of differential system, to develop the concept of
generalized spaces which includes both Klein’s homogeneous spaces
and Riemann’s local geometry.

In modern terminology, he introduced the concept of principle
bundles and a connection in a fiber bundle. This is so called non-
Abelian gauge theory. It generalized the theory of parallelism due
to Levi-Civita.

In general, we have a fiber bundle π : E → M , whose fibers
π−1(x), x ∈ M , are homogeneous spaces acted on by a Lie group G.
A connection is an infinitesimal transport of the fibers compatible
with the group action by G.

While Graßmann introduced exterior forms, Cartan and Poin-
caré introduced the operation of exterior differentiation. Cartan’s
theory of Pfaffian system and theory of prolongation created invari-
ants for solving equivalence problem in geometry. Cartan’s view of
building invariants by moving frame had deep influence on Chern.

The works of Weyl on differential forms on Riemann surfaces
was generalized to high-dimensional manifolds by Hodge based on
potential theory. It builds a very important relationship between
linear analysis and topology.

3.2. Poincaré, Whitney and Hopf. Heinz Hopf (1894–1971) and
Poincaré initiated the study of differential topology by proving that sum
of indices of a vector field on a manifold can be used to calculate the Euler
number of the manifold.

Hopf did the hypersurface case of Gauss–Bonnet in 1925 in his thesis. In
1932, Hopf emphasized that the integrand can be written as a polynomial
of components of Riemann curvature tensor.

In 1935, Hopf’s student Eduard Stiefel (1909–1978) generalized this work
on vector fields to multi-vector fields of tangent bundle and defined Stiefel–
Whitney classes for tangent bundles. At around the same time, Hassler
Whitney (1907–1989) obtained the same characteristic class for a general
sphere bundle.

3.3. Chern: father of global intrinsic geometry. These works of
Hopf have deep influence on Chern’s later work.
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• Chern: Riemannian geometry and its generalization in differential
geometry are local in character. It seems a mystery to me that we
do need a whole space to piece the neighborhood together. This is
achieved by topology.

• Both Cartan and Chern saw the importance of fiber bundle on
problems in differential geometry.

• In 1934, Charles Ehresmann (1905–1979), a student of Cartan,
wrote a thesis on the cell structure of complex Grassmanian show-
ing that its cohomology has no torsion. This paper has deep influ-
ence of Chern’s later paper on Chern class. Ehresmann went on to
formulate the concept of connections in more modern terminology
initiated by Cartan.

4. Shiing-Shen Chern: a great geometer

4.1. Chern’s education. Shiing-Shen Chern was born on Oct. 26,
1911 in Jiaxing, and died on Dec. 3, 2004 in Tianjin, China. He studied
at home for elementary education and four years in high school.

4.1.1. Chern’s education: Tsinghua University. At age fifteen, he entered
Nankai University and then spent another four years (1930–1934) in Ts-
inghua University. In undergraduate days, he studied:

• Coolidge’s non-Euclidean geometry: “Geometry of the circle and
sphere”.

• Salmon’s book: “Conic sections and analytic geometry of three di-
mensions”.

• Castelnuovo’s book: “Analytic and projective geometry”.
• Otto Stande’s book: “Fadenkonstruktionen”.

His teacher Professor Dan Sun (1900–1979) studied projective differential
geometry (found by E.J. Wilczynski in 1901 and followed by Fubini, Čech).

Chern’s master thesis was on projective line geometry which studies
hypersurface in the space of all lines in three dimensional projective space.
He studied line congruences: two dimensional submanifold of lines and their
oscillation by quadratic line complex. At the end of his study, he wrote four
papers in projective differential geometry.

4.1.2. Chern’s education: with Blaschke. In 1932, Wilhelm Blaschke
(1885–1962) visited Peking. He lectured on “topological questions in differ-
ential geometry”. He discussed pseudo-group of diffeomorphism and their
local invariants.

Chern started to think about global differential geometry and realized
the importance of algebraic topology. He read Veblen’s book “Analysis Si-
tus”(1922).

The chairman of math dept in Tsinghua University was Prof. Cheng
(1887–1963) who later became father in law of Chern. He helped Chern to
get a fellowship to follow Blaschke to study in Hamburg in 1934.
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Chern wrote a doctoral thesis on web geometry under Blaschke. Emil
Artin (1898–1962), Erich Hecke (1887–1947) and Erich Kähler (1906–2000)
were also there.

Blaschke worked on web geometry and integral geometry at that time.
Chern started to read Seifert–Threlfall (1934) and Alexandroff–Hopf (1935).
He also started to learn integral geometry started by the formula of Morgan
Crofton (1826–1915) on calculating length of a plane curve by counting the
measure of a needle intersecting this curve. The other founder of integral
geometry was Johann Radon (1887–1956) who invented Radon transform
which is now used extensively in medical imaging: reconstruct a geometric
figure by slicing the figure by moving planes.

Chern was very much fond of integral geometry partially because of the
tradition created by Radon who was in Hamburg many years ago and had
created a tradition that inspired Blaschke. Both Chern and Luis Santaló
(1911–2001) were students of Blaschke around the same time. Santaló was a
major leader on the subject after Blaschke. Perhaps this education influenced
Chern’s famous paper in 1939 on integral geometry.

4.1.3. Chern’s education: with Kähler. In Hamburg, Erich Kähler (1906–
2000) lectured on Cartan–Kähler theory:“Einf ührung in die Theorie der
systeme von Differentialeichungen”.

In 1933, Kähler published the first paper where Kähler geometry was
introduced. It is a remarkable paper as some very important concepts were
introduced. He has computed the Ricci tensor of a Kähler metric to be
the complex Hessian of the log of the volume form. Kähler observed the
condition of the metric to be Kähler–Einstein metric comes from solution
of a complex Monge–Ampère equation, where he gave many examples. He
also proved that the Ricci form defines a closed form which gives rise to a
de Rham homology class which is independent of the choice of the Kähler
metric. This is the first Chern form of the Kähler manifold.

Chern certainly was influenced by this paper as he was a student there.
In the last thirty years of his life, Chern told many students that he would
like to spend his time to teach them the powerful concept of moving frames
invented by Cartan.

He probably learned Cartan–Kähler from Kähler in Hamburg in 1934
when he was taking a class from Kähler where he ended up to be the only
student in that class.

4.1.4. Chern’s education: with Cartan. When Chern graduated, he earned
a postdoctoral fellowship in 1936 to pursue further study in Europe. Blaschke
advised him either stayed in Hamburg to study with Artin or to go to Paris
to study with Cartan. He took the latter choice. In 1936 to 1937, Chern
went to Paris, to study with Cartan on moving frames (principle bundles,
in modern terminology), the method of equivalence and more on Cartan–
Kähler theory. He spent ten months in Paris and met Cartan every two
weeks.
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Chern went back to China in the summer of 1937. He spent a few years
to study Cartan’s work. He said that Cartan wrote more than six thousand
pages in his whole life. Chern has read at least seventy to eighty percent of
these works. Some of the works he read it over and over again. During the
War, it is great to spend full time to read and think in isolation.

Chern mentioned the influence of Cartan on him in the following way:
• Undoubtedly one of the greatest mathematician of this century, his

career was characterized by a rare harmony of genius and modesty.
• In 1940, I was struggling in learning Cartan. I realized the central

role to be played by the notion of a connection and wrote several
papers associating a connection to a given geometrical structures.

Hermann Weyl (1885–1955) was a great mathematician of all time who
studied with Hilbert. His comment on Cartan was:

• Cartan is undoubtedly the greatest living master in differential ge-
ometry. Nevertheless, I must admit that I found the book, like most
of Cartan’s papers, hard reading.

It was Cartan, around 1901, who first formulated many local geometric
problem as a generalization of the Pfaff problem (which was about describing
the Lagrangian submanifolds associated to a contact 1-form).

Cartan proposed to consider, instead of a single 1-form, a collection I of
1-forms on a manifold M , and to find the conditions for finding the maximal
submanifolds N of M to which all of the 1-forms in I pullback to be zero.

He found sufficient conditions for this, but had to use the Cauchy–
Kovalewski theorem to solve a sequence of initial value problems to construct
the maximal submanifolds, so his theory was only valid in the real-analytic
category (which did not bother people that much at the time).

4.2. The equivalence problem. In modern terms, we would say that
Cartan formulated his answer in terms of the algebra of the differential ideal
on M generated by the collection of 1-forms I. Cartan’s version of this result
sufficed for (nearly) all of Cartan’s applications.

In 1933, Kähler found that Cartan’s theory could be naturally general-
ized to the case of a differential ideal on M that was generated by forms of
arbitrary degree (not just 1-forms), and he reformulated Cartan’s “Test for
Involutivity” to cover this more general case. That is what became known
as the Cartan–Kähler Theorem.

The tools of Cartan–Kähler theory has deep influence on the works of
Chern. His skill on constructing forms for the Gauss–Bonnet theorem and
the characteristic forms cannot be surpassed by any geometer that I knew
of.

It is also interesting to know the history of non-Abelian gauge theory,
which are connections over vector bundles or principle bundles.

• In the beginning of 20-th century, Cartan recognized right away
that the work of Levi-Civita and Jan Arnoldus Schouten (1883–1971)
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could be generalized to cover “covariant differentiation” of many
different kinds of tensor fields on manifolds endowed with geomet-
ric structures.

In fact, he had already worked out, in his method of equivalence,
a general method for computing curvature invariants and canonical
parallelizations of what we now recognize as principal bundles by
the time of his famous papers on pseudo-groups in the early 1900s.

Throughout the early 1920s, he published papers about intrinsic
“connections” on manifolds endowed with (pseudo-)Riemannian,
conformal, or projective structures, as well as many others (which
he called “generalized spaces”).

In his 1926 book on Riemannian geometry, he did talk about
covariant differentiation of tensor fields.

• Of course, when Chern published the theory of Chern forms in
1946, he knew unitary connections on bundles. Both Ehresmann
and Chern has written detailed survey paper for connections over
general bundles in 1950. In fact, Chern gave the planetary talk on
connections in 1950 in the international congress of mathematics
in Harvard.

Chern summarizes works about connections in general vector
bundles in 1950 when Chern gave a planetary speech in the in-
ternational congress of mathematics in 1950 in Harvard, where he
explained the general theory in great detail.

In fact, when Chern left China in late 1948 and arrived in
Princeton in the new year of 1949, he gave a series of lectures in the
Veblen Seminar in the Institute for Advanced Study. The lectures
were written up in 1951 when Chern was in Chicago. The title was
called: “Topics in Differential Geometry”.

He explained clearly the works of Cartan and himself on con-
nections and characteristic classes for general vector bundles (The
subject is called non abelian gauge theory by physicists and was
founded and pioneered by Weyl in 1928. Weyl coined the term of
gauge principle to explain the basic law behind matter).

• In 1954, C.-N. Yang (1922– ) and Robert Mills (1927–1999) ap-
plied this theory to explain isospin in particle physics. But since
they did not know how to quantize the theory, they did not know
how to compute the mass as was pointed out by Wolfgang Pauli
(1900–1958) who had also developed the non Abelian version of
Weyl’s gauge theory.

Apparently, all of Pauli, Yang and Mills did not know the works
of Cartan, Ehresmann and Chern had finished the theory of non-
Abelian gauge theory. It may be interested to know that Yang took
a course of geometry from Chern in China. He was also a student
in Chicago and postdoctoral fellow in Princeton at the time when
Chern was there. Yang’s father was also a teacher of Chern.
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In a note written by Yang, he said that in 1948, he was in a
meeting with Weil and Fermi. Weil told Fermi that the fact that
Chern classes are integral would be used to quantize physical the-
ories.

4.2.1. Equivalence problem. Let us now explain in more details of Chern’s
works in geometry. Most of the works of Chern are related to problem of
equivalence, which dated back to Riemann.

In 1869, Christoffel and Lipschitz solved a special form of equivalence
problem in Riemannian geometry. It was also called the form problem:

To decided when two ds2 differ by a change of coordi-
nate, Christoffel introduced the covariant differentiation
now called Levi-Civita connection.

It was Cartan who formulated a more general form of equivalence prob-
lem which can be stated in the following:

Given two sets of linear differential forms θi, θ∗j in the
coordinates xk, x∗l respectively, where 1 ≤ i, j, k, l ≤ n both
linearly independent. Given a Lie group G ⊂ GL(n,R),
find the conditions that there are functions

x∗l = x∗l(x1, . . . , xn)

such that θ∗j, after the substitution of these functions, dif-
fer from θi by a transformation of G.

The problem generally involves local invariants, and Cartan gave a procedure
to generate such invariants.

4.2.2. Chern (1932–1943). Chern continued the tradition of Cartan and
applied the Cartan–Kähler theory to solve various geometric questions re-
lated to equivalence problem.

For example, in projective differential geometry, he is interested in the
following question:

Find a complete system of local invariants of a submani-
fold under the projective group and interpret them geomet-
rically through osculation by simple geometrical figures.

Chern studied web geometry, projective line geometry, invariants of contact
pairs of submanifolds in projective space, transformations of surfaces (related
to Bäcklund transform in soliton theory).

Another typical problem in projective differential geometry is to study
the geometry of path structure by normal projective connections. Tresse (a
student of Sophis Lie) studied paths defined by integral curves of

y′′ = F (x, y, y′)

by normal projective connections in space (x, y, y′). Chern generalized this
to n-dimension: Given 2(n−1)-dimensional family of curves satisfying a dif-
ferential system such that through any point and tangent to any direction at
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the point, there is exactly one such curve. Chern defines a normal projective
connection. He then extended it to families of submanifolds.

4.2.3. Chern (1940–1942). The first major work that Chern did was in
1939 where he studied integral geometry which was developed by Crofton,
Blaschk.

Chern observed that such theory can be best understood in terms of
two homogeneous spaces with the same Lie group G. Hence there are two
subgroups H and K:

G

G/H G/K.

Two cosets aH and bK are incident to each other if they intersect in G.
Important geometric quantities in G/H can be pulled back to G and then
pushes forward to be interesting geometric quantities in G/K.

This work proceeded the important works of the Russian school led
by Israel Gelfand (1913–2009) and the works of Shigeru Mukai (1953– ).
The transformations defined this way is sometimes called the Fourier–Mukai
transformation.

In his work in integral geometry, Chern generalized several important
formula of Crofton and much later, he uses this setting to generalize the
kinematic formula of Poincaré, Santaló and Blaschke.

Weil commented on this work of Chern that it lifted the whole subject
at one stroke to a higher plane than where Blaschke’s school had lift it. I
was impressed by the unusual talent and depth of understanding that shone
through it.

4.2.4. Chern’s visit of Princeton (1943). In 1943, Chern went from Kun-
ming to Princeton, invited by Oswald Veblen (1880–1960) and Weyl. This
was during the war time. It took him seven days to fly by military aircraft
from Kumming to Miami via India, Africa and South America. He arrived
at Princeton in August by train (It took him five years before he meet his
new born son again).

Weyl was his hero. But it was Weil who suggested him to look into
Fiber bundle theory of Cartan and Whitney. Weil pointed out that Stiefel–
Whitney classes were only defined mod two. But there were works of Todd
and Eger that constructed certain classes that are well-defined without mod
two.

• John Arthur Todd (1908–1994) publishes his work: “the geometric
invariants of algebraic loci” in 1937 on Todd class in Proceedings
of the London Mathematical Society.

• Max Eger published his work “Sur les systems canoniques d’une
varietie algebrique a plusieurs dimensions” in 1943 in Annales Sci-
entifique de l’Ecole Normale Supérieure.
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Weil just published his work on Gauss–Bonnet formula and told Chern
the works of Todd and Eger on “canonical classes” in algebraic geometry
(These works were done in the spirit of Italian geometers and rested on
some unproved assumptions).

4.3. Chern–Gauss–Bonnet formula. Chern told everybody his best
work was his intrinsic proof of Gauss–Bonnet formula. Here is a brief history
of the formula:

• Carl Friedrich Gauss (1777–1855) did it for geodesic triangle (1827):
“Disquistiones Circa superficies Curvas”. He considered surface in
R
3 and used Gauss map.

• Pierre Ossian Bonnet (1819–1892) in 1948 generalized to any simply
connected domain bounded by an arbitrary curve: “Mémoire sur la
théorie générale des surfaces”.

• Walther von Dyck (1856–1943) in 1888 generalized it to arbitrary
genus: “Beiträge zur analysis situs”.

• Hopf generalized the formula to codimension one hypersurfaces in
R
n.

• Carl B. Allendoerfer (1911–1974) in 1940 and Werner Fenchel (1905–
1988) studied closed orientable Riemannian manifold which can be
embedded in Euclidean space.

• C.B. Allendoerfer and Weil in 1943 extended the formula to closed
Riemannian polyhedron and hence to general closed Riemannian
manifold in“The Gauss-Bonnet theorem for Riemannian polyhedra,
Amer. Math. Soc., 53(1943), 101–129.”

But the proof of Allendoerfer–Weil depends on the possibility of iso-
metric embedding of the manifold into Euclidean spaces. This was only
established about 15 years by John Nash (1928–2015).

4.3.1. The Chern–Gauss–Bonnet formula. Weil in his comment in the
introduction of Chern’s selected works made the following comments:

• Weil: Following the footsteps of Weyl and other writers, the lat-
ter proof, resting on the consideration of “tubes”, did depend (al-
though this was not apparent at that time) on the construction of
an sphere-bundle, but of a non-intrinsic one, viz. the transversal
bundle for a given immersion.

• Weil: Chern’s proof operated explicitly for the first time with an
intrinsic bundle, the bundle of tangent vectors of length one, thus
clarifying the whole subject once and for all.

4.3.2. The proof of Chern–Gauss–Bonnet formula. Let us explain what
Chern did: in the simplest two dimensional case, he wrote, in terms of moving
frame, the structure equation for a surface is

dω1 = ω12 ∧ ω2

dω2 = ω1 ∧ ω12

dω12 = −K ω1 ∧ ω2
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where ω12 is the connection form and K is the Gauss curvature.
If the unit vector e1 is given by a globally defined vector field V by

e1 =
V

‖V ‖
at points where V �= 0, then we can apply Stokes’ formula to obtain

(1) −
∫
M

K ω1 ∧ ω2 =
∑
i

∫
∂B(xi)

ω12

where B(xi) is a small disk around xi with V (xi) = 0. Each term in the
right hand side of (1) can be computed via the index of the vector field of V
at xi. According to the theorem of Hopf and Poincaré, summation of indices
of a vector field is the Euler number. This proof of Chern is new even in
two dimension. In higher-dimensional proof, the bundle is the unit tangent
sphere bundle.

The curvature form Ωij is skew-symmetric. The Pfaffian is

Pf =
∑

εi1,...,i2nΩi1i2 ∧ · · · ∧ Ωi2n−1i2n .

The Gauss–Bonnet formula is

(−1)n
1

22nπnn!

∫
M

Pf = χtop(M).

Chern managed to find, by tour de force, a canonical form Π on the unit
sphere bundle so that dΠ is the lift of Pf. This beautiful construction is
called transgression and played an important role in topology theory of
fiber bundle. This construction is very important. When it applies to the
Pontryagin forms, it gives rises to the Chern–Simons forms, a joint work
with Jim Simons (1938– ) twenty some years later.

4.4. Invention on Chern classes. In the preface to Chern’s selected
works, Weil said that when Chern arrived in Princeton in 1943, both of them
were deeply impressed by the works of Cartan and the masterly presentation
by Kähler in the following paper:

Einfuhrung in die Theorie der Systeme von Differential-
gleichungen.

Both of them realized the importance of fiber bundles in geometry. Then
Weil told Chern to look into the “canonical classes” in algebraic geometry
introduced by Todd and Eger. Their work resembled the Stiefel–Whitney
classes, but do not need to define mod 2. On the other hand, the works of
these two authors were done in the spirit of Italian geometers and rested on
some unproved assumptions.

Weil did not seem to realize that Chern was also influenced by two works
of Lev Pontryagin (1908–1988)

1. Characteristic cycles on manifolds, C.R.(Doklady) Acad. Sci. URSS,
Vol 35(1942), 34–37.
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2. On some topological invariants of Riemannian manifolds, C.R.(Dok-
lady) Acad. Sci. URSS(N.S.) Vol 43(1944), 91–94.

These two papers were mentioned by Chern in the preface of his paper on
Chern classes. In the second paper, Pontryagin has introduced closed forms
defined by curvature form. He proved that the de Rham cohomology defined
by the closed form is independent of the metric that defines the curvature
forms. Apparently Pontryagin did not know how to integrate his curvature
forms in Schubert cells to identify the cohomology classes they represented
was the same classes that he defined topologically.

Chern attempted to solve this problem left in the work of Pontryagin, af-
ter he succeeded in giving the intrinsic proof of the Gauss–Bonnet formula.
He did not succeed to carry out the calculation for the real Grassmanni-
ans, whose cell structure is more complicated. He did it for the complex
Grassmanians. Chern said:

My introduction to characteristic class was through the
Gauss–Bonnet formula, known to every student of surfaces
theory. Long before 1943, when I gave an intrinsic proof of
the n-dimensional Gauss–Bonnet formula, I know, by us-
ing orthonormal frames in surface theory, that the classi-
cal Gauss–Bonnet is but a global consequence of the Gauss
formula which expresses the “Theorema Egregium”.

The algebraic aspect of this proof is the first instance
of a construction later known as transgression, which is
destined to play a fundamental role in the homology theory
of fiber bundle, and in other problems.

Cartan’s work on frame bundles and de Rham’s theorem have been al-
ways behind Chern’s thinking. The history of fiber bundle can be briefed as
follows:

• Stiefel in 1936 and Whitney in 1937 introduced Stiefel–Whitney
classes. It is only defined mod two.

• acques Feldbau (1914–1945) in 1939, Ehresmann in 1941, 1942,
1943, Chern in 1944, 1945, and Norman Steenrod (1910–1971) in
1944 studied topology of fiber bundles.

• Pontrjagin in 1942 introduced Pontrjagin classes. He also associated
topological invariants to curvature of Riemannian manifolds in 1944
(Doklady).

In the proof of Gauss–Bonnet formula, Chern uses one vector field and
look at its set of zero to find the Euler characteristic of the manifold. If we
replace a single vector field by k vector fields s1, . . . , sk in general position,
they are linearly independent form a (k − 1)-dimensional cycle whose ho-
mology class is independent of the choice of si. This was done by Stiefel in
his thesis (1936).

Chern considered similar procedure for complex vector bundles. In the
proof of Gauss–Bonnet formula, he used curvature forms to represent the
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Euler class by zero set of vector field. It is therefore natural to do the same
for the other Chern classes using set of degeneracy for k vector fields.

Whitney in 1937 considered sections for more general sphere bundles,
beyond tangent bundles, and looked at it from the point of view of ob-
struction theory. He noticed the importance of the universal bundle over the
Grassmannian Gr(q,N) of q planes in R

N . He in 1937 showed that any rank
q bundle over the manifold M can be induced by a map f : M → Gr(q,N)
from this bundle.

When N is large, Pontrjagin in 1942 and Steenrod in 1944 observed
that the map f is defined up to homotopy. The characteristic classes of the
bundle is given by

f∗H•(Gr(q,N)) ⊂ H•(M).

The cohomology H•(Gr(q,N)) was studied by Ehresmann in 1936 and they
are generated by Schubert cells.

In a recollection of his own works in the nineties, Chern said that it
was a trivial observation and a stroke of luck, when I saw in 1944 that
the situation for complex vector bundles is far simpler, because most of the
classical complex spaces, such as the classical complex Grassmann manifolds,
the complex Stiefel manifolds, etc. have no torsion.

For a complex vector bundle E, the Chern classes Chern defined are in
three different ways: by obstruction theory, by Schubert cells and by curva-
ture forms of a connection on the bundle. He proved their equivalences. Al-
though the theory of Chern classes have a much bigger impact than his proof
of Gauss–Bonnet theorem. Chern considered his proof of Gauss–Bonnet for-
mula to be his best work. The formula was in fact carved in his Tomb stone
in Nankai University.

I believe the reason is that he got some of his ideas on Chern classes from
the Gauss–Bonnet theorem. Also in his proof of Gauss–Bonnet formula, he
started to appreciate the power on study the geometry of forms on the
intrinsic sphere bundle of tangent vectors with length one.

In the approach based on obstruction theory, it is parallel to the way
that Stiefel generalized Hopf’s vector field theory to Stiefel–Whitney classes
by looking at them as an obstruction to multi vector fields that are linearly
independent.

As for the curvature forms, the representations of Chern classes by curva-
ture forms are clear analogue with Gauss–Bonnet formula. Therefore Chern
did the Chern form for unitary connections. When Weil reported his work
in Bourbaki Seminar, Weil formulated it so that it applies to connections
based on connections with any compact Lie group.

According to Chern himself, he knew the formula for general G-con-
nections. But he did not know the proof that the cohomology classes are
independent of the choice of connections. In a way, this is surprising, because
Weil simply forms a family of connections joining linearly two connections
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together, and then differentiates the characteristics forms defined by the
connections in this family and obtains its transgression form.

This kind of idea was used by Kähler in 1933 to prove that the first
Chern class as represented by the Ricci curvature form is independent of
the Kähler metric. The same idea was also used by Pontryagin to prove
similar statement for Pontryagin classes.

In 1945, Chern was invited to give a plenary address in the summer
meeting of American mathematical society. His report appeared in 1946 in
Bulletin of American Mathematical Society 52. It is titled: “Some new view
points in the differential geometry in the large”. In the mathematical review
of this paper, Hopf wrote that Chern’s work had ushered in a new era in
global differential geometry.

Chern returned to China in April of 1946 where he became the deputy
director of mathematics Institute for Academia Sinica in Nanking.

In this period and also in the period when he was teaching in Tsinghua
University as part of Southwestern Associated University in Kuming, he
trained a few young Chinese mathematicians that were influential in China.
The most notable mathematicians were Hsien-Chung Wang (1918–1978),
Kuo-Tsai Chen (1923–1987) and Wen-Tsun Wu (1919–2017). They made
contributions to topology.

Chern also proved that the Chern classes of algebraic bundles are repre-
sented by algebraic cycles. This statement was known to Hodge for algebraic
hypersurfaces.

When Hirzebruch was writing his paper “Transferring some theorems of
algebraic surfaces to complex manifolds of two complex dimension, J. Reine
Angew. Math. 191(1953), 110–124.”, he noticed that some of the results
of that paper could have been generalized to higher dimensions. But the
so-called duality formula was not yet proved. This formula says that the
total Chern class of the direct sum of two complex vector bundles equals the
product of the total Chern classes of the summands.

Hirzebruch’s paper has a remark written during proofreading that Chern
and Kunihiko Kodaira (1915–1997) told Friedrich Hirzebruch (1927–2012)
that the duality formula is proved in a forthcoming paper of Chern “On
the characteristic classes of complex spherebundles and algebraic varieties,
Amer. J. Math. 75(1953), 565–597.” Hirzebruch said:

My two years (1952–1954) at the Institute for Advanced
Study were formative for my mathematical career. I had to
study and develop fundamental properties of Chern classes,
introduced the Chern character, which later (joint work
with Michael Atiyah (1929–2019)) became a functor from
K-theory to rational cohomology.

4.4.1. The fundamental paper of Chern (1946). In the paper, “Charac-
teristic classes of Hermitian manifolds”, Chern also laid the foundation of
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Hermitian geometry on complex manifolds. The concept of Hermitian con-
nections was introduced.

If Ω is the curvature form of the vector bundle, one defines

det

(
I +

√
−1

2π
Ω

)
= 1+ c1(Ω) + · · ·+ cq(Ω).

The advantage of defining Chern classes by differential forms have tremen-
dous importance in geometry and in modern physics.

An example is the concept of transgression created by Chern. Let ω be
the connection form defined on the frame bundle associated to the vector
bundle. Then the curvature form is computed via Ω = dω−ω∧ω and hence

c1(Ω) =

√
−1

2π
Tr(Ω) =

√
−1

2π
d(Tr(ω)).

Similarly, we have

Tr(Ω ∧ Ω) = d

(
Tr(ω ∧ ω) +

1

3
Tr(ω ∧ ω ∧ ω)

)

= d(CS(ω)).

This term CS(ω) is called Chern–Simons form and has played fundamental
role in three dimensional manifolds, in anomaly cancellation, in string theory
and in solid state physics.

The idea of doing transgression on form level also gives rise to a sec-
ondary operation on homology, e.g. Massey product. It appeared in K.T.
Chen’s work on iterated integral.

When the manifold is a complex manifold, we can write d = ∂ + ∂̄. In
a fundamental paper, Raoul Bott (1923–2005) and Chern (1965) found: for
each i there is a canonically constructed (i − 1, i − 1)-form T̃ ci(Ω) so that
ci(Ω) = ∂̄∂(T̃ ci(Ω)).

Chern made use of this theorem to generalize Nevanlinna theory of value
distribution to holomorphic maps between higher dimensional complex man-
ifolds. The form T̃ ci(Ω) plays a fundamental role in Arekelov theory.

Simon Donaldson (1957– ) used the case i = 2 to prove the Donaldson–
Uhlenbeck–Yau theorem for the existence of Hermitian Yang–Mills equations
on algebraic surfaces. For i = 1,

c1 =

√
−1

2π
∂̄∂ log det(hij̄)

where hij̄ is the hermitian metric. The right hand side is the Ricci tensor of
the metric.

The simplicity of the first Chern form motivates the Calabi conjecture.
The simplicity and beauty of geometry over complex number can not be
exaggerated.
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4.4.2. Chern (IAS in 1949 and later in Chicago). After the fundamental
paper on Chern classes in 1946, he explored more details on the multiplica-
tive structure of the characteristic classes.

In 1951, he had a paper with Edwin Spanier (1921–1996) on the Gysin se-
quence on fiber bundle. They proved the Thom isomorphism independently
of René Thom (1923–2002).

4.4.3. Splitting principle. In the paper (1953), “On the characteristic
classes of complex sphere bundle and algebraic varieties”, Chern showed
that by considering an associated bundle with the flag manifold as fibers
the characteristic classes can be defined in terms of line bundles. As a con-
sequence the dual homology class of a characteristic class of an algebraic
manifold contains a representative of algebraic cycle.

This paper provides the splitting principle in K-theory and coupled with
Thom isomorphism allows one to give the definition of Chern classes on the
associated bundle as was done by Alexander Grothendieck (1928–2014) later.

Hodge has considered the problem of representing homology classes by
algebraic cycles. He considered the above theorem of Chern and was only
able to prove it when the manifold is complete intersection of nonsingular
hypersurfaces in a projective space.

Chern’s theorem is the first and the only general statement for the
“Hodge conjecture”. It also gives the first direct link between holomorphic
K-theory and algebraic cycles. Chern’s ability to create invariants for im-
portant geometric structure is unsurpassed by any mathematicians that I
have ever known. His works on projective differential geometry, on affine ge-
ometry, on Chern–Moser invariants for pseudo-convex domains demonstrate
his strength.

The intrinsic norm on cohomology of complex manifolds that he defined
with Harold Levine (1922–2017) and Louis Nirenberg (1925–2020) has not
been fully exploited yet. Before he died, a major program for him was to
carry out Cartan–Kähler system for more general geometric situation.

In 1957, Chern wrote a paper called “On a generalization of Kähler
geometry.” In effect, he was looking for geometry with special holonomic
groups. But at that time, he could not find interesting examples, beyond
Kähler Geometry.

On the other hand, in his review article on a book by André Lichnerowicz
(1915–1998) in 1955 called “Theorie globale des connexions et dea groupers
d’holonomie.” Chern pointed out that the classical works of Cartan pointed
to the fact that the group concept is the basic underlying idea behind the
work of Levi-Civita and Schouten on the theory of connections. He also
wrote that people had confusion of Cartan’s terminology. Cartan’s “tangent
space” is a fiber in the modern terminology and his space of moving frame
is what is now called a principal fiber bundle.

In this review, he made a comment which did not come out as he thought.
He said: the holonomic group is a very natural notion in the theory of con-
nections. However, recent investigations by Marcel Berger (1927–2016) and
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Isadore Singer (1924– ) have shown that its possibilities are rather limited.
Except for homogeneous spaces, It is perhaps not a strong invariant. Many
years ago, Singer told me that both Warren Ambrose (1914–1995) and him
attended the class taught by Chern in geometry in Chicago when they were
graduate students together in Chicago. Afterwards, they managed to prove
what we call Ambrose–Singer theorem which identifies the Lie algebra of the
holonomic group by relating it with curvature tensors.

Berger in France developed this idea further and classified all possible
Lie group that may appear as holonomic group in Riemannian geometry
(a more conceptual proof was given by Simons later). Holonomic groups
were introduced by Cartan in 1926. It gives rise to the concept of internal
symmetry of the manifold and it gives geometric meaning of what modern
physicists called supersymmetry.

Kähler manifolds are those whose holonomic group is a unitary group.
Calabi–Yau manifolds are those with manifolds whose holonomic group is a
special unitary group. To the contrary of what Chern expected, manifolds
with special holonomy has been one of the most fascinating manifolds in
modern geometry. The construction of such manifolds depend on nonlinear
analysis which Chern was not very familiar with.

It may be interested to note that Chern gave a course on Hodge theory
for Kähler manifolds in Chicago using potential theory after the works of
Kodaria. But in late sixties, Chern wrote a booklet called “complex manifold
without potential theory”. For some reason, Chern gave up his interest in the
direction in Kähler geometry pioneered by Kodaria starting on the proof of
vanishing theorems.

In the late fifties, Chern studied to show interest in the old classical sub-
ject of minimal surfaces. His works largely followed the works of Jean Gaston
Darboux (1842–1917), Cartan, and others, which was more local in nature.
However he was immediately attracted by the works of Calabi in the global
theory of minimal two spheres in higher-dimensional spheres. He observed
that the Gauss map mapping minimal surfaces in higher-dimensional Eu-
clidean spaces into the Grassmanian of two planes in higher-dimensional Eu-
clidean space, is anti-holomorphic. Hence one can apply the theory of holo-
morphic curves to minimal surfaces theory to reprove the work of Bernstein–
Osserman on minimal surfaces (Note that the Grassmanian of two planes
has a natural complex structure).

His lectures on minimal surfaces in Berkeley influenced the important
works of Simons on higher-dimensional minimal subvarities by making im-
portant contribution towards the stability questions on minimal cones which
in turns solves some part of the Bernstein problem which gave better under-
standing of singularity of minimal subvarities. In particular, Simons made an
important contribution towards the Bernstein problem in this theory which
gave better understanding of singularity of minimal subvarities.
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The last most important works that Chern did in the seventies were his
work with Simons, now called Chern–Simons invariants, and his work with
Jürgen Moser (1928–1999), now called Chern–Moser invariants for strongly
pseudoconvex manifolds.

The first work was motivated by the idea of transgression started in
his proof of Gauss–Bonnet formula. It has become a corner stone for works
in theoretical physics and condensed matter. The last work continued the
unfinished works of Cartan on construction of local invariants of domains
invariant under biholomorphic transformations.

During the past forty years, the Chern-Simons form has grown in impor-
tance in theoretical physics. The developments can be briefly summarized
as follows:

• In 1978, Albert Schwarz (1934– ) introduced a topological quantum
field theory including the Chern-Simons theory. His paper is titled
“The partition function of degenerate functional and Ray-Singer
invariants” (1978).

• In 1981, Roman Jackiw (1939– ) and his student Stephen Temple-
ton studied the three-dimensional QED of the Chern-Simons term;
in 1982, he studied the non-commutative gauge field theory and
three-dimensional Einstein gravity.

• In 1981, Laughlin (1950– ) published a paper on the two-dimensional
quantized Hall conduction; in 1983 he published a paper on the frac-
tional quantum Hall effect, where the low energies can be described
by the Chern-Simons term. Subsequent workers were Frank Wilczek
(1951– ), Anthony Zee (1945– ), Alexander Markovich Polyakov
(1945– ), etc.

• Witten (1951– ) developed the three-dimensional Chern-Simons
theory into a quantum theory related to Jones polynomials. Wit-
ten’s article set off explored the theory of knots, including the so-
called volume conjecture for three-dimensional hyperbolic mani-
folds. The Chern-Simons theory and its extensions to condensed
matter physics are too vast to be reviewed here.

The Chern-Simons theory is getting more and more powerful in fun-
damental physics. It may go beyond what Chern or Simons can imagine
themselves.

4.5. Conclusion. When I was a student, Chern told me that he is
interested in mathematics because it is fun and is the only thing he knew
how to do. He feels that he can master very complicated calculation as was
shown in his proof of Gauss–Bonnet theorem.

Despite of his tremendous influence in modern geometry, he said that he
did not have a global vision as people would think that he is guided by it. He
just followed his intuition to have fun. And he emphasized how important
it was to him to have friends with brilliant minds.
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Chern said
The importance of complex numbers in geometry is a mys-
tery to me. It is well-organized and complete.

Chern always regret that ancient Chinese mathematicians never discovered
complex number. Chern’s everlasting works in complex geometry make up
the loss of Chinese mathematics for the last two thousand years.

At the last part of his life, Chern tried to promote Finsler Geometry.
He wrote a book with David Bao in the subject. Since there is no concrete
example of Finsler geometry to model, they had difficulty to develop their
theory with great depth. In particular, they were not able to apply their
theory to the concrete example of Finsler geometry appeared in Teichmüller
space or in Kobayashi hyperbolic manifolds.

In Riemann’s thesis, he thought about the possibility of replacing Rie-
mannian metrics defined by quadratic differentials by quartic differentials,
presumably to handle geometry of space which is far apart. It will be in-
terested to know whether rich geometry can be developed based on quartic
differentials. One has to solve the equivalence problem, i.e., to find com-
plete invariants to determine whether two quartic differential are equal up
to change of variables. Ironically, while Chern was a great admirer of Rie-
mann, Cartan, Weyl and Weil, he did not think highly of Einstein and was
slow in reaction to the ideas coming from theoretical physics.

He showed no interest in the part of geometry related to quantum field
theory. The dream of Riemann to understand space of extremely small needs
full understanding of quantum field theory and perhaps a new form of quan-
tum geometry. But he is flexible in general. When I mentioned to him that
I was working on Calabi conjecture, he did not think much of it until he
realized that it could be used to solved problems that he wanted to solve in
algebraic geometry. Since then, he realized the power of nonlinear analysis in
geometry. This was reflected by the series of international conference called
“conference on differential geometry and differential equations”, organized
by him after he returned to China.

There is no question that Chern is a great mathematician and will always
be remembered in the history of mathematics, especially on his contributions
to the theory of fiber bundle and its characteristic classes.
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