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Abstract. On Kähler manifolds, the asymptotic coefficients of Bergman
kernel, heat kernel and deformation quantization are local scalar invari-
ants which are universal polynomials of jets of the Kähler metric. We
show that they could be canonically expressed as a summation over
directed graphs and the coefficients of these graphs are explicit graph
invariants. The method should work for all geometrically meaningful lo-
cal Kähler invariants. We survey the related works and give applications
to heat coefficients of Kähler manifold. In particular, we show an explicit
formula of the heat coefficients of CP d as polynomials in d and present a
heuristic approach to Chern-Gauss-Bonnet formula of Kähler manifold.

1. Introduction

The asymptotic expansion of the heat kernel and the Bergman kernel
has found many applications in geometry, topology, analysis and mathe-
matical physics. The coefficients in these asymptotic expansion are local
invariants, i.e., universal polynomials of contractions of curvature tensors
and their covariant derivatives, which encode important geometric informa-
tion. For example, the inverse spectral problem aims at recovering geometry
of a manifold from the spectrum of Laplacian, or equivalently the integrals
of the heat coefficients. It was rephrased by M. Kac in 1966 as the famous
question: “Can one hear the shape of a drum?”

It is well-known that in a normal coordinate system, the coefficients in
the Taylor expansion of gij about the origin are polynomials in the curva-
ture Rijkl and its covariant derivatives. Conversely, Rijkl and its covariant
derivatives can be expressed as polynomials of partial derivatives of gij . In
the case of Kähler manifold, when local scalar invariants are written in terms
of partial derivatives of gij̄ , they could be neatly expressed as summations
over directed graphs.
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The computations for the first coefficients of the asymptotic expansion
are usually quite involved. Although we have recursive ways of doing the cal-
culation, it would be useful to have closed formulas and structural descrip-
tion of local Kähler invariants. These are important questions in subjects like
CR invariant theory of Chern-Moser and Fefferman on strictly pseudoconvex
domains, the asymptotic expansion of Bergman kernel, Yau’s program on
balanced conditions and Kähler-Einstein metrics, and local index theorem.

Asymptotic expansions are also ubiquitous in quantum theory. Deforma-
tion quantization provides rules for deforming the commutative algebra of
classical observables to a noncommutative algebra of quantum observables.
The input is a Poisson manifold M and the output is a noncommutative
associative algebra, which is a formal deformation of the algebra of smooth
functions on M . The quantization of Chern-Simons theory, which not only
led to Witten’s reinterpretation of Jones polynomial and Kontsevich integral
for knot invariant, but also it describes quantum Hall effect which is the cor-
nerstone of modern condensed matter physics. Asymptotic expansions play
important roles in these theories.

Prof. Chern has done many foundational works in complex and Kähler
geometry, as can be seen from the following description of the paper, which
covers only a small part of Chern’s important works.

The paper is organized as follows: In §2, we study asymptotic expan-
sions of weighted Bergman kernels on a polarized compact Kähler manifold
or a strictly pseudoconvext domain equipped with a Kähler potential. For
the definition, we need Chern connection of holomorphic Hermitian vector
bundles.

In §3, we describe how to use graph to represent local Kähler invari-
ants and give closed formulas for the asymptotic coefficients of the weighted
Bergman kernel.

In §4, we discuss CR invariant theory of Chern-Moser and Fefferman for
a strictly pseudoconvex domain. It could be used to express the coefficients
of the expansion of the Bergman kernel. We give a graph-theoretic formula
to do the calculation.

In §5, we discuss deformation quantization on Kähler manifolds. In par-
ticular, we present a graph theoretic formula for the Berezin star product.

In §6, we study the structure of heat coefficients of Kähler manifold and
present a heuristic approach to the Chern-Gauss-Bonnet formula via graph-
theoretic point of view, Patodi’s formula and the local index theorem.

2. Local and global weighted Bergman kernels

Weighted Bergman kernel can be defined either on a polarized compact
Kähler manifold or a complex domain equipped with a Kähler potential.

Let E be a holomorphic vector bundle on a complex manifold M and h a
Hermitian metric on E. Then a connection ∇ on E is said to be compatible
with h if for any two smooth sections ξ, η of E and a smooth vector field X
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on M , we have
Xh(ξ, η) = h(∇Xξ, η) + h(ξ,∇Xη).

A connection ∇ is said to be compatible with the complex structure of
E if ∇′′ = ∂̄, or equivalently if the connection matrix ω of ∇ consists of
(1, 0)-forms with respect to any local holomorphic frame.

Lemma 2.1. Let E be a holomorphic vector bundle on a complex manifold
M and h a Hermitian metric on E. Then there is a unique connection that
is compatible with both the metric h and the complex structure of E. Such
a connection is called Chern connection or Hermitian connection. Moreover
its connection and curvature matrices are given by

ω = ∂H ·H−1, Ω = ∂̄(∂H ·H−1)

where H = (Hij̄) = (H(ei, ej)) is the matrix of the metric h under a local
holomorphic frame {e1, . . . , er}.

Proof. See [78] for a proof. We only give a proof of the formula of Ω
which was missing in [78].

Ω = dω − ω ∧ ω

= d(∂H ·H−1)− (∂H ·H−1) ∧ (∂H ·H−1)

= ∂̄∂H ·H−1 + ∂H ·H−1 ∧ dH ·H−1 − ∂H ·H−1 ∧ ∂H ·H−1

= ∂̄∂H ·H−1 + ∂H ·H−1 ∧ ∂̄H ·H−1

= ∂̄(∂H ·H−1)

where in the second equation we used d(H−1) = −H−1dH ·H−1. �

Remark 2.2. Yang-Zheng [72] proved that on a Hermitian manifold
(M, g), the Chern connection and the Levi-Civita connection are equal if
and only (M, g) is Kähler.

Let M be a projective algebraic manifold. A polarization on M is the
assignment of an ample line bundle L on M . A Kähler metric g is called a
polarized metric, if the corresponding Kähler form

ωg =

√
−1

2π

n∑
i,j=1

gijdzi ∧ dzj

represents the first Chern class c1(L) of L in H2(M,Z). Given any polarized
Kähler metric g, there is a Hermitian metric h on L whose curvature form is
equal to ωg. This last assertion could be proved as follows [78]. By Lemma
2.1, for any Hermitian metric h on L, its curvature form is given by

Ωh = −∂∂̄ log |s|2h,

where s is a local nowhere vanishing holomorphic section of L. Then
√
−1
2π Ωh

represents c1(L) in H2(M,Z). Since ωg also represents c1(L), by ∂∂̄-Lemma,
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there exists a real-valued function f on M such that
√
−1
2π Ωh−ωg =

√
−1
2π ∂∂̄f .

Hence

ωg = −
√
−1

2π
∂∂̄ log(ef |s|2h) =

√
−1

2π
Ωh̃,

where h̃ is the Hermitian metric on L defined by h̃(s, s) = efh(s, s).
For each m ∈ N, h induces a Hermitian metric hm on Lm. Let {S1, . . . , Sd}

be an orthonormal basis of H0(M,Lm) with respect to the inner product

(Si, Sj)hm =

∫
M

hm(Si(x), Sj(x))
1

n!
ωn
g .

The Bergman kernel is defined by

(1) Km(x, y) =

d∑
j=1

hm(Sj(x), Sj(y)).

For any given m ≥ 1, one can define a holomorphic map

(2) φm : M → CP d, z �→ [S1(z), . . . , Sd(z)].

Theorem 2.3. Let gFS be the Fubini-Study metric on CP d. Then for
any k,

(3) ‖ φ∗
m(gFS)− g ‖Ck= O

(
1

m

)
, m → ∞.

The pull-back metric φ∗
m(gFS) is called the Bergman metric induced by

L. The above theorem arose out of a question of Yau [74]: whether a Kähler-
Einstein metric on M can be the limit of a sequence of Bergman metrics
induced by pluricanonical line bundles Km

M . The C2 convergence was proved
by Tian [64]. The C∞ convergence was proved by Ruan [58].

Theorem 2.3 is a corollary of the following Tian-Yau-Zelditch asymptotic
expansion of Km(x) := Km(x, x) proved independently by Zelditch [75] and
Catlin [10].

Theorem 2.4. When m → ∞,
(4) Km(x) = a0(x)m

n + a1(x)m
n−1 + a2(x)m

n−2 + · · · ,
where a0(x) = 1. More precisely, for any k, μ ≥ 0,

‖ Km(x)−
k∑

j=0

aj(x)m
n−j ‖Cμ≤ Ck,μm

n−k−1,

where Ck,μ depends on k, μ and the manifold M .

Different proofs and generalizations can be found in [7, 16, 36, 44, 48,
63]. The coefficient ak for k ≤ 3 were computed by Lu [47] using peak section
method. The above theorem and the coefficient a1 = 1

2ρ have important
applications in Donaldson’s breakthrough work [17] on Yau’s conjecture that
the existence of extremal metrics is equivalent to the stability of manifolds.
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Some recent work around Theorem 2.4 include: Arezzo-Loi-Zudda [3]
studied balance metrics in relation to the coefficients an. Feng-Tu [25] stud-
ied geometry of Cartan-Hartogs domains when a2 is constant. Alexakis-
Hirachi [1] proved a structure theorem of an as an application of their work
on local Kähler invariants. Shiffman [62] derived an asymptotic expansion
for the variance of the zero sets of random holomorphic sections on a com-
pact Kähler manifold.

A physical derivation of Theorem 2.4 was given by Douglas and Klevtsov
[18] using path integral and perturbation theory. Klevtsov [41] and Can-
Laskin-Wiegmann [9] studied the relations between Bergman kernel expan-
sion and quantum Hall effect.

Now we consider the weighted Bergman kernel in a local domain. Let
Ω be a domain in C

n with a Kähler potential Φ(x), i.e., gij̄ := ∂i∂j̄Φ is
a Kähler metric. Let Φ(x, y) be an almost analytic extension of Φ(x) to a
neighborhood of the diagonal, i.e., ∂̄xΦ and ∂yΦ vanish to infinite order for
x = y. We may assume Φ(x, y) = Φ(y, x).

For α > 0, consider the weighted Bergman space of all holomorphic func-
tion on Ω square-integrable with respect to the measure e−αΦwn

g

n! and denote
by Kα(x, y) the reproducing kernel. Locally, it is often the case that Kα(x, y)
has an asymptotic expansion in a small neighborhood of the diagonal when
α → ∞,

(5) Kα(x, y) = eαΦ(x,y)
∞∑
k=0

Bk(x, y)α
n−k

uniformly on compact subsets. For instance, the asymptotic expansion has
been established by Berezin [6] for bounded symmetric domains and by
Engliš [20] for bounded strictly pseudoconvex domains with real analytic
boundary. The coefficients Bk were computed by Engliš [19] for k ≤ 3 by a
recursive formula of Bk derived from the asymptotics of Laplace integrals.
It was proved by Loi [46] (cf. [67, §3]) that coefficients of the asymptotic
expansion of local and global Bergman kernels are equal, i.e., Bk = ak,
k ≥ 0. Recall Loi’s formula [46] (which is a refinement of Engliš’ formula),

(6) Bk(x) = −
∑
i+j=k
i,j≥1

Bi(x)Bj(x)−
∑

�+i+j=k
1≤�≤k

R�(Bi(x, y)Bj(y, x))|y=x,

where Rj : C
∞(Ω) → C∞(Ω) are explicit differential operators defined by

(7) Rjf(x) =
1

det g

3j∑
k=j

1

k!(k − j)!
Lk(f det gSk−j)|y=x,

where L is the (constant-coefficient) differential operator

Lf(y) = gij̄(x)∂i∂j̄f(y)
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and the function S(x, y) satisfies

S = ∂αS = ∂αβS = ∂i1i2...imS = ∂ī1 ī2...̄imS = 0 at y = x,

∂ij̄α1α2...αm
S|y=x = −∂α1α2...αmgij̄(x).

Here indices i, j, k, . . . run from 1 to n and Greek indices α, β, γ may repre-
sent either i or ī.

3. Graph theoretic formulas of the Bergman kernel asymptotics

First we introduce some notions of graph theory. A digraph G = (V,E)
is defined to be a finite directed multigraph which is permitted to have
multi-edges and loops. Here V and E are the sets of vertices and edges
respectively. The weight w(G) of G is defined to be |E|− |V |. The adjacency
matrix A = A(G) of a digraph G with n vertices is a square matrix of order
n whose entry Aij is the number of directed edges from vertex i to vertex j.
The outdegree deg+(v) and indgree deg−(v) of a vertex v are defined to be
the number of outward and inward edges at v respectively.

A vertex v of G is called stable if deg−(v) ≥ 2, deg+(v) ≥ 2. We call G
stable if each vertex of G is stable.

A vertex v of G is called semistable if deg−(v) ≥ 1, deg+(v) ≥ 1 and
deg−(v)+deg+(v) ≥ 3. We call G semistable if each vertex of G is semistable.

A digraph G is strongly connected if there is a directed path from each
vertex in G to every other vertex. We call G quasi-strong if each connected
component of G is strongly connected.

Thanks to the Kähler condition ∂igjk̄ = ∂jgik̄ and ∂l̄gjk̄ = ∂k̄gjl̄, we can
canonically associate a polynomial in the variables {gij̄ α}|α|≥1 to a stable
digraph G, such that each vertex represents a partial derivative of gij̄ and
each edge represents the contraction of a pair of barred and unbarred indices.

In [67], we proved the following closed formula for asymptotic coefficients
of the weighted Bergman kernel.

Theorem 3.1 ([67]). For k ≥ 0,

(8) Bk =

quasi-strong stable∑
G:w(G)=k

(−1)n(G) det(A(G)− I)

|Aut(G)| ,

where G runs over quasi-strong stable digraphs of weight k and n(G) is the
number of components of G.

The above theorem was inspired by Feynman diagram formulas in de-
formation quantization (cf. §5). The proof began with a graph-theoretic
interpretation of Engliš’ work on asymptotic expansion of Laplace integrals
and Loi’s formula (6). A key observation is that a graph with a non-strongly-
connected component will cancel out. Finally we used the coefficient theorem
from spectral graph theory to get coefficients for quasi-strong graphs.



LOCAL SCALAR INVARIANTS OF KÄHLER METRIC 239

Recall that at each point x on a Kähler manifold, there exists a normal
coordinate system such that at x the Kähler metric satisfies

gij̄(x) = δij , gij̄k1...kr(x) = gij̄l̄1...l̄r(x) = 0

for all r ≤ N ∈ N, where N can be chosen arbitrary large.
The curvature tensor is given by

(9) Rij̄kl̄ = −gij̄kl̄ + gmp̄gmj̄l̄gip̄k.

The covariant derivative of a covariant tensor field Tβ1...βp is defined by

(10) Tβ1...βp/γ = ∂γTβ1...βp −
p∑

i=1

Γδ
γβi

Tβ1...βi−1δβi+1...βp ,

where the Christoffel symbols Γα
βγ = 0 except for

Γi
jk = gil̄gjl̄k, Γī

j̄k̄ = g l̄iglj̄k̄.

The identities (9) and (10) can be used to convert partial derivatives of
metrics in (8) to covariant derivatives of curvature tensors and vice versa.
See [70, 71] for more discussions, where some closed formulas were derived.

Example 3.2. We represent a digraph as a weighted graph. The weight
of a directed edge is the number of multi-edges. The number attached to a
vertex denotes the number of its self-loops. A vertex without loops will be
denoted by a small circle ◦.

There is only one quasi-strong digraph with weight 1. By (8) and (9),

(11) B1 = −1

2

[
2
]
= −1

2
gīijj̄ =

1

2
Rīijj̄ =

1

2
ρ,

where (i, ī), (j, j̄) are paired indices to be contracted.
There are four quasi-strong digraphs with weight 2. By (8) we have

B2 =− 1

3

[
3
]
+

1

2

[
1

1

1
1

]
+

3

8

[
◦

2

◦
2

]
+

1

8

[
2 | 2

]
=− 1

3
gīijj̄kk̄ +

1

2
gīikl̄gjj̄lk̄ +

3

8
gij̄kl̄gjīlk̄ +

1

8
gīijj̄gkk̄ll̄

=
1

3
Δρ+

1

24
|R|2 − 1

6
|Ric|2 + 1

8
ρ2.

The last equation used the identities gij̄kl̄ = −Rij̄kl̄ and

gīijj̄kk̄ = −Rīijj̄;kk̄ +Rkīsj̄Rik̄js̄ +Rjj̄s̄iRkk̄is̄ +Rīisj̄Rkk̄js̄

= −Δρ+ |R|2 + 2|Ric|2,
Note that the tour de force computations of B3 (containing 13 terms) by
Lu [47] and Engliš [19] occupy more than ten pages in both papers. The
computation of B3 using the graph-theoretic formula (8) is much shorter
(see [67]).
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4. CR invariant and Bergman kernel

Let Ω be a bounded strictly pseudoconvex domain in C
n with smooth

boundary. If r ∈ C∞(Ω) is a defining function in the sense Ω = {r > 0} with
dr 
= 0 on ∂Ω, Fefferman [22] showed that the boundary singularity of the
Bergman kernel has the form

(12) K(z) =
n!

πn

(
ϕ(z)

r(z)n+1
+ ψ(z) log r(z)

)
, ϕ, ψ ∈ C∞(Ω).

A weighted analogue of Fefferman’s expansion was obtained by Engliš [20].
Hörmander [35] proved that r(z)n+1K(z) → n!

πnJ [r](z0) as z → z0 ∈ ∂Ω,
where J [r] denotes the complex Monge-Ampère operator defined by

(13) J [r] = (−1)n det

(
r ∂r/∂z̄j

∂r/∂zi ∂2r/∂zi∂z̄j

)
1≤i, j≤n

.

By (12), we have ϕ = J [r] on ∂Ω. Starting from an arbitrary smooth defining
function of Ω, Fefferman [23] devised a recursive algorithm to explicitly
construct another defining function rF ∈ C∞(Ω) satisfying

(14) J [rF ] = 1 +On+1(rF ), rF > 0 in Ω, rF |∂Ω = 0,

where On+1(rF ) denotes a term of the form (rF )n+1f with f ∈ C∞(Ω).
Let rF be a Fefferman’s defining function of Ω. Define a Lorentz-Kähler

metric

g =
∑

0≤i,j≤n

∂2r#
∂zi∂z̄j

dzi dz̄j , r#(z0, z) = |z0|2rF (z) on C
∗ × Ω,

called Fefferman’s ambient metric associated with ∂Ω. From the curvature
tensor R of g, Fefferman [24] constructed Weyl invariants by complete con-
tractions of covariant derivatives R(p,q) := Ra1b̄1a2b̄2/a3···apb̄3···b̄q , e.g. the fol-
lowing Weyl invariant

(15) W# = contr(R(p1,q1) ⊗ · · · ⊗R(ps,qs)),

is defined to be of weight
∑s

j=1(pj + qj)/2 − s and gives rise to a function
W = W#|z0=1 on Ω. Fefferman proposed a program [24] to express ϕ,ψ in
(12) as linear combinations of Weyl invariants Wk of weight k such that

(16) ϕ =
n∑

k=0

Wk r
k +On+1(r), ψ =

∞∑
k=0

Wk+n+1 r
k +O∞(r),

where O∞(r) means that ψ =
∑m

k=0Wk+n+1[r] r
k+Om+1(r) for any m ≥ 0.

The expansion of ϕ was proved by Fefferman [24] and Bailey et al. [4] for
any Fefferman’s defining function r = rF . The expansion of ψ was proved
by Hirachi [32] for more refined defining functions than (14).

The restriction of Wk to ∂Ω gives a CR invariant of weight k, which
can be defined using Moser normal form in analogy to the normal coordi-
nate system in Riemannian geometry. Let (z′, zn) = (z1, . . . , zn) ∈ C

n. A



LOCAL SCALAR INVARIANTS OF KÄHLER METRIC 241

hypersurface 0 ∈ ∂Ω ⊂ C
n with local equation

(17) 2u = |z′|2 +
∑

|α|,|β|≥2, k≥0

Ak
αβ̄(v)v

kz′αz̄
′
β , zn = u+ iv

is said to be in Moser normal form if the coefficients Ak
αβ̄

satisfy:

(i) Ak
αβ̄

= Ak
βᾱ;

(ii) tr(A22̄) = 0, i.e.
∑n−1

p=1 A
k
pip̄j̄

= 0 for all k, i, j;
(iii) tr(A23̄) = 0, i.e.

∑n−1
p,q=1A

k
pqp̄q̄j̄

= 0 for all k, j;
(iv) tr(A33̄) = 0, i.e.

∑n−1
p,q,r=1A

k
pqrp̄q̄r̄ = 0 for all k.

A celebrated theorem of Chern and Moser [15] says that any real analytic
hypersurface may be placed in Moser normal form through a biholomorphic
map in a neighborhood of 0.

Definition 4.1 ([24, 29, 34]). Denote by N(Ak
αβ̄

) a real hypersurface
in normal form (17). A polynomial P in variables Ak

αβ̄
is said to be a CR

invariant of weight w ∈ N≥0 if it satisfies the transformation law P (Ak
αβ̄

) =

| detΦ′(0)|2w/(n+1)P (Bk
αβ̄

) for any biholomorphic mapping Φ : N(Ak
αβ̄

) →
N(Bk

αβ̄
) preserving the origin.

Let Iw denote the set of CR invariants of weight w. Then every P ∈ Iw
is a homogeneous polynomial of weight w if we define the weight of Ak

αβ̄
to

be (|α|+ |β|)/2 + k − 1. Graham [29] proved the following:

Theorem 4.2 ([29]). (i) Let n = 2. Then I1 = I2 = {0} and dim I3 =
dim I4 = 1. Moreover, I3 and I4 are respectively spanned by A0

44̄
and |A0

24̄
|2.

(ii) Let n ≥ 3. Then I1 = {0} and dim I2 = 1. Moreover, I2 is spanned
by ‖A0

22̄
‖2 =

∑
|A0

αβ̄
|2, where the summation runs over |α| = |β| = 2.

When n = 2, a basis of dim I5 = 2 has been determined in [29, 34] and
a basis of dim I6 = 3 has been determined by Hirachi [33].

For the Dirichlet problem of the complex Monge-Ampère equation

(18) J [u] = 1, u > 0 in Ω, u|∂Ω = 0,

Cheng-Yau [13] proved that there exists a unique solution u ∈ C∞(Ω) ∩
Cn+3/2−ε(Ω) for any ε > 0 which implies that Ω admits a unique complete
Einstein-Kahler metric with scalar curvature −1. Cheng-Yau’s original proof
requires that the boundary ∂Ω is C2, which was later dropped by Mok-
Yau [51]. Lee-Melrose [43] proved that for any smooth defining function r,
Cheng-Yau’s solution has an asymptotic expansion

(19) u ∼ r

∞∑
k=0

ηk · (rn+1 log r)k, ηk ∈ C∞(Ω),
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which implies that u ∈ Cn+2−ε(Ω) for any ε > 0 improving Cheng-Yau’s
estimate. However, the solution to (18) is not C∞ smooth up to the bound-
ary, so we have to use Fefferman’s defining function rF when studying the
invariant expansions (16).

Let us fix r = rF and a ∈ C∞(∂Ω) locally near 0 ∈ ∂Ω. Then Gra-
ham [30] proved that there exists a unique formal series u of the form (19)
satisfying

(20) J [u] = 1 +O(r∞), η0 = 1 + arn+1 +O(rn+2)

near 0 ∈ ∂Ω. For any k ≥ 1, ηk modulo O(rn+1) is independent of r = rF

and a. Each ηk|∂Ω modulo O(rn+1) is a CR invariant of weight k(n + 1).
From Theorem 4.2, Graham [29] proved that:

Theorem 4.3 ([29]). (i) Let n = 2. Then η1 = 4A0
44̄

and the singularity
of the Bergman kernel (12) has the expansions

(21) ϕ = 1 +O(r3), ψ = −3η1 + c|A0
24̄|

2r +O(r2),

where c is a constant independent on Ω.
(ii) Let n ≥ 3. There is a constant cn depending only on n such that

(22) ϕ = 1 + cn‖A0
22̄‖

2r2 +O(r3).

Note that Theorem 4.3 was used in Huang and Xiao’s proof [37] of
Cheng’s conjecture that the Bergman metric of a smoothly bounded strictly
pseudoconvex domain is Kähler-Einstein if and only if the domain is biholo-
morphic to the ball. Hirachi, Komatsu and Nakazawa [34] gave two different
methods of identifying the above universal constants.

Theorem 4.4 ([34]). The constants in (21) and (22) are given by c =
24/5 and n(n− 1)cn = 2/3.

One of their proofs used an explicit asymptotic expansion for Reinhardt
domains. In the rest of the section, assume that Ω ⊂ C

n is a bounded strictly
pseudoconvex complete Reinhardt domain. Its logarithmic real representa-
tion domain is given by

− log |Ω| = {(x, y) ∈ R
n−1 × R | (e−x1 , . . . , e−xn−1 , e−y) ∈ Ω}.

First we assume n = 2. Let f(x) := inf{y ∈ R | (x, y) ∈ − log |Ω|}. Then
λ = y − f(x)(> 0) is a defining function of ∂Ω ∩ {z1z2 
= 0}. We make
change of variables (x, y) → (λ, v) with v = f ′(x) and set p(v) = f ′′(x), the
hodograph transformation. We have the following asymptotic expansion in
dimension 2 due to Nakazawa [52].

Theorem 4.5 ([52]). Let n = 2. Near ∂Ω ∩ {z1z2 
= 0}, we have

(23) K(z) =
2

π2
J [λ]

(
ϕ̃(v, λ)

λ3
+ ψ̃(v, λ) log λ

)
,
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where J [λ] = p
|4z1z2|2 . Let e1 = p′′, e2 = (pp(3))′, e3 = (p2p(4))′′, e41 = e1e3,

e42 = (pe′3)
′ and e43 = (pp(4))2. Then

ϕ̃(v, λ) = 1 +
λ

4
e1 +

λ2

12
e2,

ψ̃(v, λ) =
−e3
48

+
λ

480
(2e42 + e43 − e41) +O(λ2).

Theorem 4.5 and the following lemma immediately implies c = 24/5 in
(21).

Lemma 4.6 ([34]). Under the notation of the above theorem, we have
|A0

24̄
|2 = J [λ]4/3e43/48

2, rF = J [λ]−1/3(r̃ + O(λ4)) and η1 = J [λ](η̃1 +

O(λ2)), where

r̃ = λ− λ2

12
e1 −

λ3

36

(
e2 −

e21
2

)
, η̃1 =

e3
144

− λ

720

(
e42 −

e41
2

)
.

Write

(24) K =
p

8π2|z1z2|2

(
L0

λ3
+

L1

λ2
+

L2

λ
+

∞∑
k=3

Lkλ
k−3 log λ

)
.

Engliš [19] studied the asymptotic expansion of a Laplace integral and
proved a recursion relation for its coefficients. As an application, he derived a
formula of Fefferman’s invariants for the Bergman kernel of strictly pseudo-
convex Hartogs domains using the Forelli-Rudin construction. We observed
that some key quantities in Engliš’ formula can be expressed as explicit
summations over strongly connected graphs when the domain is complete
Reinhardt and proved a graph-theoretic formula of Lk.

Theorem 4.7 ([70]). Let k ≥ 0. Define a function Wk(p) by

(25) Wk(p) =
1

pk

quasi-strong semistable∑
G:w(G)=k

(−1)|V (G)|+n(G)

|Aut(G)|
∏

v∈V (G)

h(deg(v)− 2),

where G runs over all quasi-strong semistable graphs of weight k and n(G)
is the number of components of G; the function h is defined recursively by

h(1) = p′, h(k) = [p · h(k − 1)]′, k ≥ 2.

Then the coefficients of (24) are given by

(26) Lk =

⎧⎪⎪⎨⎪⎪⎩
(2− k)!

2
Wk(p), 0 ≤ k ≤ 2,

(−1)k

2(k − 3)!
Wk(p), k ≥ 3.
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Example 4.8. Obviously L0 = W0(p) = 1. Note that

h(1) = p′, h(2) = (p′)2 + pp′′,

h(3) = (p′)3 + 4pp′p′′ + p2p(3),

h(4) = (p′)4 + 11p(p′)2p′′ + 7p2p′p(3) + 4p2(p′′)2 + p3p(4).

We now compute L1, L2, L3 by using the above theorem. There are two
quasi-strong semistable graphs of weight 1,

[
2
] [

◦
2

◦
1

]

So W1(p) =
1
p(

h(2)
2 − h(1)2

2 ) = 1
2p

′′, which implies L1 =
1
4p

′′.
There are 19 quasi-strong semistable graphs of weight 2, among which 4

are stable. It is a routine calculation that W2(p) =
1
6(pp

(3))′, which implies
L2 =

1
12(pp

(3))′.
There are 300 quasi-strong semistable graphs of weight 3, among which

14 are stable. With the help of a computer program, we get W3(p) =
1
24(p

2p(4))′′, which implies L3 = − 1
48(p

2p(4))′′.

Next we assume n ≥ 3. Let Ω ⊂ C
n be a bounded strictly pseudoconvex

complete Reinhardt domain satisfying − log |Ω| = {λ := y − (f1(x) + · · · +
fn−1(x)) > 0} with hodograph variables vj = f ′

j(xj) and pj(vj) = f ′′
j (xj).

We introduce

e1 =
n−1∑
j=1

p′′j , e21 =
n−1∑
j=1

(pjp
′′′
j )

′, e22 =
n−1∑
j=1

(p′′j )
2, e23 =

∑
j 	=k

p′′j p
′′
k.

Theorem 4.9 ([34]). Under the above notation, we have

‖A0
22̄‖

2 =
J [λ]2/(n+1)

16n(n+ 1)

(
(n− 2)(n− 1)e22 + 2e23

)
,

rF = J [λ]
−1
n+1

(
λ− e1λ

2

2n(n+ 1)

+
−n(n+ 1)e21 + (n2 − 1)e22 − e23

6(n− 1)n2(n+ 1)2
λ3 +O(λ4)

)
.

The Bergman kernel has the expansion

(27) K(z) =
n!

πn
J [λ]

(
ϕ̃(v, λ)

λn+1
+ ψ̃(v, λ) log λ

)
,

where J [λ] = p
4n|z1···zn|2 and

(28) ϕ̃(v, λ) = 1 +
λ

2n
e1 +

λ2

n(n− 1)

(
1

6
e21 +

1

8
e23

)
+O(λ3).
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Theorem 4.9 immediately implies cn = 2
3n(n−1) in (22). Explicit graph

theoretic formulae for the coefficients of (27) similar to (26) can be found
in [70].

5. Deformation quantization

Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer [5] introduced
quantization as a deformation of the usual commutative product into a non-
commutative associative star product. Let M be a smooth manifold and
A = C∞(M) the algebra over R of smooth functions on M endowed with
the pointwise product. A star product on M is an associative R[[�]]-bilinear
product on A[[�]] given by the following formula for f, g ∈ A,

(29) f ∗ g = fg +

∞∑
k=1

�
kCk(f, g),

where � is the formal variable and Ck are bidifferential operators.
Two star products � and �′ are called gauge equivalent if there is an

R[[�]]-module automorphism D of A[[�]]:

D

(∑
n≥0

fn�
n

)
=
∑
n≥0

fn�
n +

∞∑
n≥0,m≥1

�
n+mDm(fn),

where Di : A → A are differential operators, such that f �′ g = D((D−1f) �
(D−1)g).

It is not difficult to check that a star product � gives a Poisson bracket
on A:

(30) {f, g} =
f � g − g � g

�
= C1(f, g)− C1(g, f),

which depends only on the gauge equivalence class of �.
Kontsevich proved a a long-standing conjecture that every Poisson struc-

ture arises from the first term of a star product. Before that it was known
only for symplectic manifolds.

Theorem 5.1 (Kontsevich [42]). The set of gauge equivalence classes of
star products on a smooth manifold M can be naturally identified with the
set of equivalence classes of formal Poisson structures on M .

In fact, it follows from the more general Kontsevich’s formality theorem
which establishes an L∞-algebra quasi-isomorphism between the DGLAs of
polyvector fields and Hochschild complex. Moreover, Kontsevich [42] gave
an explicit graph-theoretic formula whose coefficients are integrals over the
space of configurations.

If M is a Kähler manifold, a canonical Poisson bracket is locally given
by

(31) {f1, f2} = −gkl̄
(
∂f1
∂zk

∂f2
∂z̄l

− ∂f2
∂zk

∂f1
∂z̄l

)
.
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A star product � has the property of separation of variables, if it satisfies
f � h = fh and h � g = hg for any locally defined antiholomorphic function
f , holomorphic function g and an arbitrary function h.

In fact, all star products with separation of variables on Kähler manifolds
are equivalent. We give two examples.

Example 5.2. The Berezin transform

(32) Iαf(x) =

∫
Ω
f(y)

|Kα(x, y)|2
Kα(x, x)

e−αΦ(y)
wn
g (y)

n!

has an asymptotic expansion (cf. [19, 40]),

(33) Iαf(x) =

∞∑
k=0

Qkf(x)α
−k, α → ∞

where Qk are linear differential operators. Denote by cjαβ∂
α∂̄β the coeffi-

cients in

(34) Qjf =
∑

α,β multiindices
cjαβ∂

α∂̄βf.

Then the coefficients of Berezin star product are given by bidifferential op-
erators

(35) Cj(f1, f2) :=
∑
α,β

cjαβ(∂̄
βf1)(∂

αf2).

The Berezin transform has important applications in linear operator theory.

Example 5.3. The Berezin-Toeplitz star product �BT is equivalent to
Berezin star product �B via the Berezin transform (cf. [40])

(36) f1 �BT f2 = I−1(If1 �B If2),

where I := I1/� is obtained by substituting α by 1/� in the Berezin transform
Iα.

Recall that the Toeplitz operator T
(m)
f for f ∈ C∞(M) is defined by

(37) T
(m)
f := Π(m)(f ·) : H0(M,Lm) → H0(M,Lm),

where Π(m) : L2(M,Lm) → H0(M,Lm) is the projection.
Schlichenmaier [60] proved that �BT is the unique star product

(38) f1 �BT f2 :=

∞∑
j=0

hjCBT
j (f1, f2),

such that the following asymptotic expansion holds

(39) T
(m)
f1

T
(m)
f2

=
∞∑
j=0

m−jT
(m)

CBT
j (f1,f2)

, m → ∞.
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Let (M,ω−1) be a Kähler manifold with Kähler form ω−1. A formal
deformation of the form (1/ν)ω−1 is a formal (1, 1)-form,

(40) ω̂ =
1

ν
ω−1 + ω0 + νω1 + ν2ω2 + · · · ,

where each ωk is a closed (1, 1)-form.

Theorem 5.4 (Karabegov [38]). Each star product with separation of
variables on a Kähler manifold M bijectively corresponds to a formal defor-
mation of the Kähler metric ω−1 on M.

The Karabegov forms of Berezin and Berezin-Toeplitz quantizations
were identified by Karabegov and Schlichenmaier [40].

Theorem 5.5 ([40]). (i) The Karabegov form of Berezin star product is

1

ν
ω−1 +

√
−1 ∂∂̄ log

( ∞∑
k=0

νkBk(x)

)
,

where Bk(x) are the coefficients in the asymptotic expansion (5).
(ii) The Karabegov form of Berezin-Toeplitz star product is

−1

ν
ω−1 +Ric,

where Ric =
√
−1∂∂̄ log det g is the Ricci curvature. The negative sign

indicates that the role of holomorphic and antiholomorphic variables are
swapped.

Feynman diagram formulas for star products on Kähler manifolds was
first studied by Reshetikhin and Takhtajan [57], who proved a Feynman
diagram formula for the non-normalized Berezin star product. Gammelgaard
[26] obtained a universal formula as a summation over weighted acyclic
graphs for any star product with separation of variables corresponding to a
given classifying Karabegov form. Karabegov [39] gave an algebraic proof
of Gammelgaard’s formula and clarified why acyclic graphs play a role.

Berezin-Toeplitz quantization was extensively studied in the literature
[11, 12, 21, 49, 61]. Zelditch [76] studied connections between Berezin-
Toeplitz quantization and quantum chaos. Andersen [2] applied Berezin-
Toeplitz technique to prove asymptotic faithfulness of the mapping class
groups action on Verlinde bundles.

In [68], we proved the following graph theoretic formula for Berezin star
product. The proof follows similar lines as that of Theorem 3.1. We also
discussed its relation to Gammelgaard’s formula in [69].

Theorem 5.6 ([68]). Fix a normal coordinate system around x ∈ M ,
at x

(41) f1 �B f2(x) =

strong∑
Γ=(V ∪{•},E)

det(A(Γ−)− I)

| ˙Aut(Γ)|
�
|E|−|V |DΓ(f1, f2)

∣∣∣
x
.
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Let us explain notations in (41). Γ runs over all strongly connected
stable pointed graphs; Γ− is the graph obtained from Γ by removing the
distinguished vertex • and all adjacent edges of •; A(Γ−) is the adjacency
matrix of Γ−. The partition function DΓ(f1, f2) is defined to be a Weyl
invariant generated from Γ by replacing the vertex • with two vertices f1
and f2, such that all inward edges of • are connected to f1 and all outward
edges of f are connected to f2.

Example 5.7. The first terms of the Berezin transform are

I1/�(f) = f+�

[
• 1

]
+
�
2

2

[
• 2

]
+�

3

(
1

6

[
• 3

]
− 1

4

[
◦

2

•
2

]

− 1

2

[ •
1

◦
1

1
◦

2

]
−
[ •

1

◦

1

1 1
1

]
+

1

2

[
2

1

•
1

])
+O(�4).

By (35), we can get Berezin star product up to order �
3.

C0(f1, f2) = f1f2,

C1(f1, f2) = f1;̄if2;i,

C2(f1, f2) =
1

2
f1;̄ij̄f2;ij ,

C3(f1, f2) =
1

6
f1;̄ij̄k̄f2;ijk +

1

4
Rij̄kl̄f1;̄ik̄f2;jl −

1

2
ρ;ij̄f1;̄if2;j .

6. Heat kernel

The Laplace operator Δ on a Riemannian manifold (M, g) of dimension
d is given by

Δ = − 1√
det g

d∑
i,j=1

∂i(g
ij
√
det g ∂j).

The heat kernel is a smooth function e(t, x, y) ∈ C∞(M × M × R
+) that

solves the heat equation ∂e
∂t + Δxe = 0 and satisfies e(t, x, y, t) = e(t, y, x)

and
lim
t→0

∫
M

e(t, x, y)f(y)dV = f(x)

for any smooth function f of compact support.
For example, the heat kernel of Rd is

e(t, x, y) = (4πt)−d/2e−|x−y|2/4t.

If M is compact, there is a unique heat kernel H(x, y, t) on M with the
on-diagonal asymptotic expansion as t → 0+,

(42) e(t, x, x) = (4πt)−d/2(a0 + a1t+ a2t
2 + · · · ).
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The first few terms can be computed by using, e.g., the Minakshiundaram-
Pleijel recursive formula.

(43) a0 = 1, a1 =
1

6
ρ, a2 = − 1

30
Δρ+

1

72
ρ2 − 1

180
|Ric|2 + 1

180
|R|2,

where ρ is the scalar curvature and |Ric|2 = RijR
ij , |R|2 = RijklR

ijkl.
There exists a complete orthonormal basis {φ0, φ1, φ2, . . . } of L2(M),

consisting of eigenfunctions of Δ, with corresponding eigenvalues λ0, λ1,
λ2, . . . arranged in increasing order 0 = λ0 < λ1 ≤ λ2 ≤ · · · , we have

e(t, x, y) =

∞∑
k=0

e−λktφk(x)φk(y)

with uniformly convergence for any fixed t. Therefore by (42), we get
∞∑
k=0

e−λkt =

∫
M

e(t, x, x) = (4πt)−d/2

(
Vol(M) + t

∫
M

1

6
ρ dV + · · ·

)
.

The integrals
∫
M an are called heat traces. This equation implies that if

two Riemannian manifolds are isospectral (i.e., have the same spectrum of
Laplacian), then they have the same heat traces. By (42) and (43), one
sees that two isospectral Riemannian manifolds have the same dimensions,
volumes and integrals of scalar curvatures.

Polterovich [55] proved a closed formula for all heat coefficients using a
generalization of the Agmon-Kannai asymptotic expansion on the resolvent
kernels of elliptic operators.

Theorem 6.1 ([55]). Let w ≥ 3n. Then the heat coefficients an(x) are
equal to

(44) an(x) = (−1)n
w∑

j=0

(
w + d

2

j + d
2

)
1

4jj!(j + n)!
Δj+n

(
f(dist(y, x)2)j

)
|y=x,

where dist(y, x) is the distance function and f is an arbitrary smooth func-
tion with f(s) = s+O(s2) for s ∈ [0, ε].

It was proved by Weingart [66] that when f(s) = s, Polterovich’s formula
(44) holds for w ≥ n. However, in general, it is highly nontrivial to convert
powers of the Laplacian and the distance function to curvature tensors and
their covariant derivatives, which also seems hopeless to have a nice compact
form.

In [45], we proved that on a Kähler manifold, Polterovich’s formula
implies a graph-theoretic formula of heat coefficients.

Theorem 6.2. On a Kähler manifold, the heat coefficients of the (real)
Laplacian are given by

(45) an =
stable∑

G:w(G)=n

(−1)|V (G)|2n

|Aut(G)|
∑

C⊂E(G)

(−1)|C|ϕ(ΓC)

(|C|+ n)!
G.
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We explain the notations in (45). Here G runs over all stable digraphs
of weight n and C runs over all subsets of edges of G. Here ΓC is a pointed
graph obtained by cutting each edge in C in the middle and connecting all
loose ends to a new distinguished vertex •. Finally ϕ(ΓC) is a graph invariant
that can be calculated as follows:

(i) if Γ is not strongly connected, then ϕ(Γ) = 0,
(ii) if Γ has only one vertex with l loops, then ϕ(Γ) = l!,
(iii) a vertex v ∈ V (Γ−) is called removable if it satisfies deg+(v) =

deg−(v) = 1. If v is removable, denote by Γ/{v} the graph obtained
by removing v and connecting its two neighboring vertices, then
ϕ(Γ) = ϕ(Γ/{v}),

(iv) if Γ is a strongly connected pointed graph and has no removable
vertices, then

ϕ(Γ) =
∑

e∈E(Γ)

ϕ(Γ− {e}),

where Γ−{e} denotes deleting an edge e from Γ while keeping the
endpoints.

Example 6.3. There is only one stable graph with weight 1.

(46) a1 = −1

3

[
2
]
=

1

3
ρ.

There are four stable graphs with weight 2.

a2 =− 2

15

[
3
]
+

1

18

[
2 | 2

]
+

23

90

[
1

1

1
1

]
+

7

45

[
◦

2

◦
2

]
(47)

=
2

15
�ρ+

1

18
ρ2 − 1

90
|Ric|2 + 1

45
|R|2.

Here �f = f;īi for any function f . We computed a3 in the appendix.
a3 for Riemannian metric was obtain in [27].

Definition 6.4. Let G be a stable digraph. Define

h(G) =
∑

C⊂E(G)

(−1)|C|ϕ(ΓC)

(|C|+ w(G))!
, a(G) =

(−1)|V (G)|2n

|Aut(G)| h(G).

Then by (45), we have

an(z) =
stable∑

G:w(G)=n

a(G)G.
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Lemma 6.5. Let G = ∪k
i=1Gi be a disjoint union of connected subgraphs.

Then

h(G) =
k∏

j=1

h(Gj),(48)

a(G) =
1

|Sym(G1, . . . , Gk)|

k∏
j=1

a(Gj),(49)

where Sym(G1, . . . , Gk) is the permutation group of the connected subgraphs.

Proof. The equation (49) follows from the fact that the heat kernel of
a product manifold M ×N is equal to the product of the heat kernels of M
and N . Obviously (48) follows from (49). �

Example 6.6. Let k, i, j be nonnegative integers. Consider a pointed
digraph Γk,i,j

k
i

•
j

Here k in the circle means k loops. One may recursively show that
ϕ(Γk,i,j) = ij · (k + i+ j − 2)!.

Let Gk be the digraph with a single vertex and k + 1 loops. Then

h(Gk) =
k+1∑
i=1

(
k + 1

i

)
(−1)ii2 · (k + i− 1)!

(i+ k)!

=
k(

2k+1
k+1

) =
k · k!(k + 1)!

(2k + 1)!

and z(Gk) = −2kk · k!/(2k + 1)!.

On a Riemannian manifold of constant sectional curvature or a Käh-
ler manifold of constant holomorphic sectional curvature, the heat kernel
coefficients are constants.

Lemma 6.7. Let gij̄ be the Fubini-Study metric on CP d. Then
gij̄α1α2...αr

(0) is nonzero only if the number of barred and unbarred indices
in {α1, α2, . . . , αr} are equal. In this case, we have

(50) gi1j̄1i2j̄2...ik j̄k(0) = (−1)k−1(k − 1)!
∑
σ∈Sk

gi1j̄σ(1)
gi2j̄σ(2)

. . . gik j̄σ(k)
(0),

where 0 is the center of Kähler normal coordinates.

Proof. The Fubini-Study metric has constant holomorphic sectional
curvature, namely Rij̄kl̄ = gij̄gkl̄ + gil̄gkj̄ , which implies

(51) gi1j̄1i2j̄2 = gmn̄gmj̄1j̄2gi1n̄i2 − gi1j̄1gi2j̄2 − gi1j̄2gi2j̄1 .

The remaining argument is similar to that of [67, Lemma 7.4]. �
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Example 6.8. For the 2-sphere S2 = CP 1, the heat coefficients of the
Fubini-Study metric can be calculated by using (45) and (50),

an =

balanced∑
G:w(G)=n

(−1)na(G)
∏

v∈V (G)

(deg+(v)− 1)! deg+(v)!,

where G runs over all stable balanced digraphs of weight n and a(G) is
defined in Definition 6.4. Recall that a balanced digraph means deg+(v) =
deg−(v) for each vertex v ∈ V (G).

On the other hand, Polterovich [56] obtained a combinatorial formula
of heat coefficients of the unit sphere S2 from his formula (44),

cn =
1

n!22n

n∑
r=0

(
n

r

)
(2− 22r)B2r,

where B2r are Bernoulli numbers. See [65] for a different calculation of heat
coefficients of CP 1.

Since the Fubini-Study metric on CP 1 gives a round ball of radius 1
2 , we

have an = 2ncn for any n ≥ 0. Namely,
(52)

cn =
balanced∑
G:w(G)=n

(−1)|E(G)|

|Aut(G)|
∑

C⊂E(G)

(−1)|C|ϕ(ΓC)

(|C|+ n)!

∏
v∈V (G)

(deg+(v)−1)! deg+(v)!

We have checked (52) for n ≤ 4, but it seems not easy to give a direct proof.

Theorem 6.9. On the complex projective space CP d with Fubini-Study
metric, the heat coefficients are given by

(53) an =

balanced∑
G:w(G)=n

(−1)na(G)
∏

v∈V (G)

(deg+(v)− 1)!
∑

H∈CG

dp(H),

where CG denote the set of all cycle decomposition of G and p(H) is the
number of cycles in the cycle decomposition H ∈ CG.

Proof. It follows from (45) and (50). �

Corollary 6.10. Each heat coefficient an of CP d is a polynomial in d.
The leading term of an is 1

3nn!d
2n. In particular,

a1 =
1

3
d2 +

1

3
d, a2 =

1

18
d4 +

1

10
d3 +

7

90
d2 +

1

30
d.

Proof. The polynomiality of an follows from (45) and (50). The con-
tribution to the top degree of an comes from a single graph G = [ 2 | · · · | 2 ]

︸ ︷︷ ︸

n

with a(G) = 1
n!(−

1
3)

n. a1 and a2 could be calculated using Example 6.3 and
Theorem 6.9. �
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Note that Cahn-Wolf [8] computed heat coefficients of compact sym-
metric spaces of rank one (e.g., Sd, RP d and CP d) by using representation
theory of Lie groups. Their formula for heat coefficients of CP d need to treat
separately cases of odd and even d as well as n < d− 1 and n ≥ d− 1. It is
totally unclear from their formula that an should be polynomials in d.

Lemma 6.11. Let Tα1...αp be a covariant tensor of type (0, p). When we
interchange the order of its covariant derivative, the difference is

(54) Tα1...αp;ij̄ − Tα1...αp;jī =

p∑
k=1

Rβ
αkij̄

Tα1...αk−1βαk+1...αp ,

where Rk̄
l̄ij̄

= −gmk̄Rml̄ij̄, Rk
lij̄

= gkm̄Rlm̄ij̄ and Rk
l̄ij̄

= Rk̄
lij̄

= 0.

Proposition 6.12. The heat traces ui =
∫
ai of compact Kähler mani-

fold are

u1 =
1

3

∫
ρ,

u2 =
1

90

∫
(5ρ2 − 2|Ric|2 + 4|R|2),

u3 =

∫ (
1

162
ρ3 − 1

270
ρ|Ric|2 + 1

135
ρ|R|2 − 2

2835
Rij̄Rkīlm̄Rjk̄ml̄

− 2

2835
Rij̄Rjk̄Rkī +

4

945
Rij̄kl̄Rjīmn̄Rlk̄nm̄ − 7

270
|∇ρ|2

− 4

2835
|∇Ric|2 − 1

810
|∇R|2

)
.

Proof. The formulas of u1 and u2 follow immediately from Example
6.3. For u3, recall Green’s theorem that the integral of the divergence of a
tangent vector field on a closed manifold is zero. The Laplacian of a function
is a divergence, for example,

(ρ2);īi = 2ρ;iρ;̄i + 2ρρīi = 2σ11 + 2σ8,

(Rij̄kl̄Rjīlk̄)mm̄ = 2Rij̄kl̄Rjīlk̄;mm̄ + 2Rij̄kl̄;mRjīlk̄;m̄ = 2σ10 + 2σ13,

(Rij̄Rjī);kk̄ = 2Rij̄Rjī;kk̄ + 2Rij̄;kRjī;k̄ = 2σ9 + 2σ12,

where the σ notations are defined in the Appendix A.
We compute three more divergences. The first is
(Rij̄kl̄Rjm̄lk̄);mī = Rij̄kl̄;mīRjm̄lk̄ +Rij̄kl̄;mRjm̄lk̄;̄i +Rij̄kl̄;̄iRjm̄lk̄;m

+Rij̄kl̄Rjm̄lk̄;mī

= σ10 + σ13 + σ12 +Rij̄kl̄Rjīlk̄;m̄m +Rij̄kl̄Rjn̄mīRnm̄lk̄

−Rij̄kl̄Rnm̄mīRjn̄lk̄ +Rij̄kl̄Rln̄mīRjm̄nk̄

−Rij̄kl̄Rnk̄mīRjm̄ln̄

= σ10 + σ13 + σ12 + σ10 + σ7 − σ5 + σ7 − σ15

= 2σ10 + σ13 + σ12 + 2σ7 − σ5 − σ15,
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where we used
Rjm̄lk̄;mī−Rjm̄lk̄;̄im = Rjn̄mīRnm̄lk̄−Rnm̄mīRjn̄lk̄+Rln̄mīRjm̄nk̄−Rnk̄mīRjm̄ln̄

and Rij̄kl̄Rjīlk̄;m̄m = Rij̄kl̄Rjīlk̄;mm̄.
The second divergence is

(Rij̄Rjm̄);mī = Rij̄;mīRjm̄ +Rij̄;mRjm̄;̄i +Rij̄;iRjm̄;m +Rij̄Rjm̄;mī

= σ9 + σ12 + σ11 +Rij̄Rjm̄;̄im +Rij̄Rjk̄mīRkm̄ −Rij̄RkīRjk̄

= σ9 + σ12 + σ11 + σ9 + σ4 − σ6

= 2σ9 + σ12 + σ11 + σ4 − σ6

The third divergence is
(Rij̄Rjīmk̄);km̄ = σ10 + 2σ7 − σ15 − σ5 + σ12.

Finally we make substitutions∫
σ8 = −

∫
σ11,

∫
σ9 = −

∫
σ12,

∫
σ10 = −

∫
σ13∫

σ4 =

∫
(σ6 − σ11 + σ12),

∫
σ15 =

∫
(−σ13 + σ12 + 2σ7 − σ5)

to the integral of (61) and get

u3 =

∫ (
1

162
σ1 −

1

270
σ2 +

1

135
σ3 −

2

2835
σ5 −

2

2835
σ6

+
4

945
σ7 −

7

270
σ11 −

4

2835
σ12 −

1

810
σ13

)
as desired. �

Corollary 6.13. Let M and M ′ be two isospectral Kähler-Einstein
manifolds. If their curvature tensors satisfy

(55)
∫
M

Rij̄kl̄Rjīmn̄Rlk̄nm̄ =

∫
M ′

R′
ij̄kl̄R

′
jīmn̄R

′
lk̄nm̄,

then M is locally symmetric if and only if M ′ is locally symmetric.

Proof. On Kähler-Einstein manifold, we have |Ric|2 = ρ2/d where
both sides are constants. Then the heat traces are

u0 =vol(M),

u1 =
1

3
ρvol(M),

u2 =

(
1

18
− 1

90d

)
ρ2vol(M) +

1

45

∫
|R|2,

u3 =

(
1

162
− 1

270d
− 2

2835d2

)
ρ3vol(M) +

(
1

135
− 2

2835d

)
ρ

∫
|R|2

+
4

945

∫
Rij̄kl̄Rjīmn̄Rlk̄nm̄ − 1

810

∫
|∇R|2.

The conclusion follows easily. �
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Remark 6.14. Proposition 6.12 for Riemannian metric and Corollary
6.13 for (real) Einstein manifold were proved by Sakai [59]. The condition
(55) in Proposition 6.12 could be replaced by∫

Rij̄kl̄Rjm̄ln̄Rmīnk̄ =

∫
R′

ij̄kl̄R
′
jm̄ln̄R

′
mīnk̄.

Consider the Laplacian acting on p-forms on a compact Riemannian
manifold of dimension d, the corresponding heat kernel epx, y, t has asymp-
totic expansion as t → 0+,

(56) tr ep(t, x, x) = (4πt)−d/2

((
d

p

)
+ a1,pt+ a2,pt

2 + · · ·
)
.

Patodi [53] computed a1,p and a2,p.
The local index theorem (conjectured by McKean and Singer [50]) for

Laplacian says

(57)
d∑

p=0

(−1)pan,p =

{
0 if 2n < d;

(−2π)nPf(R) if 2n = d,

where Pf(R) is the Pfaffian of the Riemann curvature tensor. The local index
theorem was first proved by Patodi [54]. It implies the Chern-Gauss-Bonnet
theorem [14] by integration when d = 2n. See [77] for a comprehensive
survey on the local index theorem. In fact, Chern-Gauss-Bonnet theorem is
the only formula such that the integral of local invariants gives a topological
invariant. This is a conjecture of Singer, a proof was given in [28].

On Kähler manifold (of complex dimension d), Patodi’s formulas in
terms of digraphs are given by

a1,p =

(
−1

3

(
2d

p

)
+ 2

(
2d− 2

p− 1

))[
2
]
,

a2,p = C1(d, p)
[
2 | 2

]
+ C2(d, p)

[
1

1

1
1

]
+ C3(d, p)

[
◦

2

◦
2

]
+ C4(d, p)

[
3
]
,

where the coefficients Ci(d, p) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1(d, p) =
1
18

(
2d
p

)
− 2

3

(
2d−2
p−1

)
+ 2

(
2d−4
p−2

)
,

C2(d, p) =
23
90

(
2d
p

)
− 1

3

(
2d−2
p−1

)
− 4

(
2d−4
p−2

)
,

C3(d, p) =
7
45

(
2d
p

)
−
(
2d−2
p−1

)
+ 2

(
2d−4
p−2

)
,

C4(d, p) = − 2
15

(
2d
p

)
+ 2

3

(
2d−2
p−1

)
.
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From the local index theorem and Patodi’s formula, we expect that on
Kähler manifold (of complex dimension d)

(58) an,p =
stable∑

G:w(G)=n

|V (G)|∑
k=0

cn,k(G)

(
2d− 2k

p− k

)
G,

where cn,k(G) are rational numbers depending only on n, k and G. In par-
ticular, setting p = 0, we get cn,0(G) = a(G).

Assuming (58), it is not difficult to see that if n < d,

(59)
d∑

p=0

(−1)pan,p = 0

and if n = d,

(60)
d∑

p=0

(−1)pan,p =

stable∑
G:w(G)=|V (G)|=n

(−1)ncn,n(G)G,

where G runs over digraphs with weight n and n vertices. Note that a stable
digraph of weight n has at most n vertices.

The Chern-Gauss-Bonnet formula for Kähler manifold reads χ(M) =∫
M cd(M). The Chern classes ck are defined by

det

(
I +

√
−1

2π
Ω

)
= 1 + c1 + · · ·+ cd.

In other words,

ck =
1

k!

(√
−1

2π

)k∑
δj1···jki1···ik Ω

i1
j1
∧ · · · ∧ Ωik

jk
,

where Ωi
j = Rjīkl̄dz

k ∧ dz̄l

Let us compute top Chern class cd on M for d = 1 and 2.

c1 =

√
−1

2π
Ωi
i =

√
−1

2π
ρdz1 ∧ dz̄1,

c2 =− 1

8π2
(Ωi

i ∧ Ωj
j − Ωj

i ∧ Ωi
j)

=− 1

8π2
(Rīikl̄dz

k ∧ dz̄l ∧Rjj̄pq̄dz
p ∧ dz̄q −Rij̄kl̄dz

k ∧ dz̄l ∧Rjīpq̄dz
p ∧ dz̄q)

=− 1

8π2
(ρ2 − 2|Ric|2 + |R|2)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2.

The last equation needs some reorganizations of terms. We omit the details.
So we verified that for n = 1 and 2, cn is equal to the right-hand side
of (60) up to constant factors. Of course this equality for all n will prove
Chern-Gauss-Bonnet formula for Kähler manifold.
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Appendix A. Heat coefficient a3 on Kähler manifold

We express a3 in terms of the following basis as used by Engliš [19].

σ1 = ρ3, σ2 = ρRij̄Rjī, σ3 = ρRij̄kl̄Rjīlk̄,

σ4 = Rij̄Rkl̄Rjīlk̄, σ5 = Rij̄Rkīlm̄Rjk̄ml̄, σ6 = Rij̄Rjk̄Rkī,

σ7 = Rij̄kl̄Rjīmn̄Rlk̄nm̄, σ8 = ρ�ρ, σ9 = Rij̄Rjī;kk̄,

σ10 = Rij̄kl̄Rjīlk̄;mm̄, σ11 = ρ;iρ;̄i, σ12 = Rij̄;kRjī;k̄,

σ13 = Rij̄kl̄;mRjīlk̄;m̄, σ14 = �2ρ, σ15 = Rij̄kl̄Rjm̄ln̄Rmīnk̄.

Note that our convention of curvatures Rij̄kl̄, Rij̄ , ρ all differ by a minus
sign with that of [19].

Theorem A.1. On a Kähler manifold, the heat coefficient a3 is given
by

(61) a3 =

15∑
i=1

ciσi

where ci are given by

c1 = 1/162, c2 = −1/270, c3 = 1/135, c4 = 8/945, c5 = −4/945,

c6 = −26/2835, c7 = 32/2835, c8 = 2/45, c9 = 1/315, c10 = 2/105,

c11 = 17/630, c12 = −1/315, c13 = 1/70, c14 = 1/35, c15 = −2/567.

Below we outline the derivation. There are 15 stable graphs of weight 3.

τ1 =
[
2 | 2 | 2

]
, τ2 =

[
1

1

1
1

∣∣∣ 2

]
, τ3 =

[
◦

2

◦
2

∣∣∣ 2

]
,

τ4 =

⎡⎣ ◦
1

1

1

1

1
1

⎤⎦ , τ5 =

⎡⎢⎣ 1
1

◦
1

1
◦

2

⎤⎥⎦ , τ6 =

⎡⎢⎣ 1
1

1

1

1
1

⎤⎥⎦ ,

τ7 =

⎡⎢⎣
◦

1

1

◦

1

1 ◦
1

1

⎤⎥⎦ , τ8 =
[
2 | 3

]
, τ9 =

[
1

1

2
1

]
,

τ10 =

[
1

2

◦
2

]
, τ11 =

[
2

1
2
]
, τ12 =

[
1

1

1
2

]
,

τ13 =

[
◦

3

◦
2

]
, τ14 =

[
4
]
, τ15 =

⎡⎣ ◦
2

◦
2

◦
2

⎤⎦ .
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By (45), we wrote a computer program to get a3 =
∑15

i=1 ziτi with
z1 = −1/162, z2 = −23/270, z3 = −7/135, z4 = −17/135,

z5 = −332/945, z6 = −307/2835, z7 = −74/405, z8 = 2/45,

z9 = 64/315, z10 = 26/105, z11 = 17/630, z12 = 89/315,

z13 = 1/10, z14 = −1/35, z15 = −206/2835.

We express each τi as a linear combination of σi, 1 ≤ i ≤ 15.
τi = −σi, 1 ≤ i ≤ 7,

τ8 = −2σ2 − σ3 + σ8, τ9 = −σ4 − σ5 − σ6 + σ9, τ10 = −2σ5 + σ10 − σ15,

τ11 = σ11, τ12 = σ12, τ13 = σ13,

τ14 = −3σ4 − 12σ5 − 3σ6 + 6σ7 + 7σ9 + 8σ10 + 10σ12 + 3σ13−σ14− 6σ15,

τ15 = −σ15.

The only nontrivial computation is for τ14. Then we get (61).
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