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Introduction to a deformed Hermitian Yang-Mills
flow

Jixiang Fu, Shing-Tung Yau, and Dekai Zhang

Abstract. The deformed Hermitian Yang-Mills equation is an impor-
tant fully nonlinear geometric PDE. In this survey, we sketch first some
developments on the deformed Hermitian Yang-Mills equation, and then
introduce a deformed Hermitian Yang-Mills flow. We present some re-
sults in our paper [9] on this flow, including the longtime existence, the
convergence under the subsolution condition, and as an application, the
convergence on a Kähler surface case under the semisubsolution condi-
tion.

1. Introduction

The deformed Hermitian Yang-Mills (dHYM) equation which was
founded by Mariño-Minasian-Moore-Strominger [20] and Leung-Yau-Zaslow
[17] arises from mirror symmetry in string theory. The dHYM equation is a
fully nonlinear elliptic PDE and the existence problem of this equation has
been extensively studied in these recent years. One can see Collins-Xie-Yau
[5] for the detailed mathematical and physical introduction of the dHYM
equation.

Let (M,ω) be a compact Kähler manifold of complex dimension n and
χ a closed real (1, 1)-form on M . Jacob-Yau [16] first studied the existence
and uniqueness of solutions of the dHYM equation on (M,ω, χ), which has
the following form:

(1.1) Re(χu +
√
−1ω)n = cot θ0 Im(χu +

√
−1ω)n,

where χu = χ +
√
−1∂∂̄u for a real smooth function u on M and θ0 is the

argument of the complex number
∫
M (χ+

√
−1ω)n.

The dHYM equation is called supercritical if θ0 ∈ (0, π) and hypercritical
if θ0 ∈ (0, π2 ).

Let λ = (λ1, . . . , λn) be the eigenvalues of χu with respect to ω. If
necessary we denote λ by λ(χu) and λi by λi(χu) for each 1 ≤ i ≤ n. Let
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λi = cot θi. Then

(χu +
√
−1ω)n =

n∏
i=1

(λi +
√
−1)ωn

=
exp(

√
−1

∑n
i=1 θi)∏n

i=1 sin θi
ωn

=
cos(

∑n
i=1 θi)∏n

i=1 sin θi
ωn +

√
−1

sin(
∑n

i=1 θi)∏n
i=1 sin θi

ωn

So the dHYM equation becomes

cos
( n∑
i=1

θi

)
= cot θ0 sin

( n∑
i=1

θi

)
,

or
(1.2) θ(χu) = θ0,

if we define

θ(χu) :=
n∑

i=1

θi =
n∑

i=1

arccotλi.

1.1. Some related studies on the dHYM equation.
1.1.1. The elliptic case. Jacob-Yau [16] solved the equation for n = 2

by writing the dHYM equation as a complex Monge-Ampère equation which
was solved by Yau [29]. When n ≥ 3, Collins-Jacob-Yau [4] solved the dHYM
equation for the supercritical case by assuming the following two conditions
hold:

(i) There exists a subsolution u, which means χu satisfies the inequality

(1.3) A0(u) := max
M

max
1≤j≤n

∑
i �=j

arccotλi(χu) < θ0;

(ii) χu also satisfies the inequality
(1.4) B0(u) := max

M
θ(χu) < π.

To be precise, Collins, Jacob and Yau proved the following

Theorem 1.1 (Collins-Jacob-Yau [4]). Let (M,ω) be a compact Kähler
manifold of dimension n and χ a closed real (1, 1) form on M with θ0 ∈
(0, π). Suppose there exists a subsolution u of dHYM equation (1.2) in the
sense of (1.3) and u also satisfies inequality (1.4). Then there exists a unique
smooth solution of dHYM equation (1.2).

Without condition (1.4), the dHYM equation in the supercritical case
was solved by Pingali [22] when n = 3 and by Lin [19] when n = 4. In these
two cases, the dHYM equation was written as a mixed Monge-Ampère type
equation and an appropriate continuity method was used. The 4 dimensional
case solved by Lin 2022 was very complicated.
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For the non-Kähler case, Lin [18] generalized Collins-Jacob-Yau’s result
to the Hermitian case (M,ω) with ∂∂̄ω = ∂∂̄ω2 = 0. Huang-Zhang-Zhang
[14] considered the solution on a compact almost Hermitian manifold for
the hypercritical case and the supercritical case was solved by Huang-Zhang
[13].

1.1.2. The parabolic case. For the parabolic flow method, there are also
several results.

Jacob-Yau [16] and Collins-Jacob-Yau [4] proved the existence and con-
vergence of the line bundle mean curvature flow (LBMCF){

ut = θ0 − θ(χu)

u(0) = u0
(1.5)

for the hypercritical case. Here they assumed the following:
(i) There exits a subsolution u;
(ii) u0 satisfies: θ(χu0) ∈ (0, π2 ).

Han-Jin [11] considered the stability result of the above flow.
Takahashi [26] proved the existence and convergence of the tangent La-

grangian phase flow: {
ut = tan

(
θ0 − θ(χu)

)
u(0) = u0

(1.6)

for the hypercritical case. Here he assumed the following:
(i) There exits a subsolution u;
(ii) u0 satisfies: θ(χu0)− θ0 ∈ (−π

2 ,
π
2 ).

1.1.3. Other related works. There are two problems raised by Collins-
Jacob-Yau [4]. One is whether condition (1.4) is superfluous. The other is
to find a sufficient and necessary geometric condition on the existence of a
solution to the dHYM equation.

Jacob and Shen [15] solved the dHYM equation on the blowup of P
n

under an algebraic stability condition. There are some important progresses
made by Chen [1] on the J-equation and the dHYM equation. Based on
the work of Chen [1], Song [23] proved Nakai-Moishezon criterions for
the J-equation. Recently, motivated by Chen [1] and Song [23], Chu-Lee-
Takahashi [3] established the following

Theorem 1.2 (Chu-Lee-Takahashi [3]). The dHYM equation (1.2) on
a compact Kähler manifold (M,ω) with complex dimension n is solvable for
the supercritical case if and only if there exists a Kähler metric γ on M such
that for any 1 ≤ k ≤ n,∫

M

(
Re(χ+

√
−1ω)k − cot θ0Im(χ+

√
−1ω)k

)
∧ γn−k ≥ 0

and for any proper m-dimensional subvariety Y of M and 1 ≤ k ≤ m,∫
Y

(
Re(χ+

√
−1ω)k − cot θ0Im(χ+

√
−1ω)k

)
∧ γm−k > 0.
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1.2. A new dHYM flow and our results. Motivated by the con-
cavity of cot θ(χu) by Chen [1], we consider the following dHYM flow:{

ut = cot θ(χu)− cot θ0,

u(x, 0) = u0(x).
(1.7)

1.2.1. The longtime existence and the convergence. We first prove the
longtime existence.

Theorem 1.3. Let (M,ω) be a compact Kähler manifold and χ be a
closed real (1, 1) form with θ0 ∈ (0, π). If u0 satisfies: θ(χu0) < π, then
dHYM flow (1.7) has a unique smooth longtime solution u.

Then we consider the convergence of the longtime solution of flow (1.7)
when there exists a subsolution of the dHYM equation and the subsolution
satisfies (1.4).

Theorem 1.4. Let (M,ω) be a compact Kähler manifold of dimension n
and χ be a closed real (1, 1) form with θ0 ∈ (0, π). Assume dHYM equation
(1.2) has a subsolution u in the sense of A0(u) < θ0 which also satisfies
B0(u) < π. Then the longtime solution u(x, t) of dHYM flow (1.7) converges
to a smooth solution u∞ to the dHYM equation:

θ(χu∞) = θ0.

Hence we reprove the Collins-Jacob-Yau’s existence theorem [4]. Our
proof looks like simpler than the one by Collins-Jacob-Yau.

The advantage of this new flow is that the imaginary part of the Calabi-
Yau functional is constant along the flow. However, we are still subject to
the condition θ(χu0) < π.

Chu-Lee [2] used the twisted version of the above dHYM flow to study
the equivalence of the coerciveness, properness of the J-functional and the
existence of the solution of the hypercritical dHYM equation.

1.2.2. The Kähler surface case under the semi-subsolution condition. A
smooth function u is called a semi-subsolution of the dHYM equation if
(1.8) A0(u) ≤ θ0.

In the 2-dimensional case, this condition is equivalent to
χu ≥ cot θ0ω.(1.9)

Assume there exists a semi-subsolution u of the dHYM equation. For
simplicity, we assume u = 0.

For any B1 ∈ (0, π), we define the set
HB1 = {v ∈ C∞(M,R) : θ(χv) ∈ (0, B1)} .(1.10)

If θ0 ∈ (0, π2 ), we have 0 ∈ HB1 for any B1 ∈ (2θ0, π). If θ0 ∈ [π2 , π), we can
show that the semi-subsolution condition implies the non-empty of HB1 for
any B1 ∈ (θ0, π) (see Lemma 4.1).

We take the initial function u0 ∈ HB1 with B1 ∈ (2θ0, π) if θ0 ∈ (0, π2 )
or B1 ∈ (θ0, π) if θ0 ∈ [π2 , π). Then we have the following result.
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Theorem 1.5. Let (M,ω) be a compact Kähler surface and χ be a closed
real (1, 1) form. Assume θ0 ∈ (0, π) and χ ≥ cot θ0ω. There exist a finite
number of curves Ei of negative self-intersection on M such that the so-
lution u(x, t) of dHYM flow (1.7) converges to a bounded function u∞ in
C∞
loc (M \ ∪iEi) satisfying the following

(i) χ +
√
−1∂∂̄u∞ − cotB1ω is a Kähler current which is smooth on

M\ ∪i Ei;
(ii) u∞ satisfies the dHYM equation on M\ ∪i Ei

Re(χu∞ +
√
−1ω)n = cot θ0Im(χu∞ +

√
−1ω)n;(1.11)

(iii) χu(x,t) coverges to χu∞ and u∞ satisfies (1.11) on M in the sense
of currents.

Fang-Lai-Song-Weinkove [8] considered such type problem for the J-flow
on a Kähler surface. By assuming θ0 ∈ (0, π2 ) and B1 ≤ π

2 + θ0, Takahashi
[27] proved the similar result for LBMCF (1.5).

2. Preliminaries

2.1. The linearized operator. Note that

cot θ(χu) =
Re(χu +

√
−1ω)n

Im(χu +
√
−1ω)n

.(2.1)

Lemma 2.1. The linearized operator P of the dHYM flow has the form:
P(v) = vt − F ij̄vij̄ ,

where
F ij̄ = csc2 θ(χu)

(
wg−1w + g

)ij̄
,

where g = (gij̄)n×n, w = (wij̄)n×n for wij̄ = χij̄ + uij̄, and Dij̄ := (D−1)ij̄
for an invertible Hermitian symmetric matrix D.

2.2. The concavity. Define the function

θ(λ) :=

n∑
i=1

arccotλi for λ = (λ1, . . . , λn) ∈ R
n(2.2)

and define the set
Γτ := {λ ∈ R

n | θ(λ) < τ} ⊂ R
n for τ ∈ (0, π).

We have the following two useful lemmas.
Lemma 2.2 (Yuan [30], Wang-Yuan [28]). If θ(λ) ≤ τ ∈ (0, π) for

λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn, then the following inequalities
hold.

(i) λn−1 ≥ cot τ
2 (> 0);

(ii) λn−1 ≥ |λn|;
(iii) λ1 + (n− 1)λn ≥ 0.

Moreover, Γτ is convex for any τ < π.
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Lemma 2.3 (Chen [1]). For any τ ∈ (0, π), the function cot θ(λ) on Γτ

is concave.

2.3. The parabolic subsolution. Motivated by B. Guan’s definition
[10] of a subsolution of fully nonlinear equations, Székelyhidi [25] gave a
weaker version of a subsolution and Collins-Jacob-Yau [4] used it to the
dHYM equation which is equivalent to (1.3).

On the other hand, Phong-Tô [21] modified Székelyhidi’s definition to
the parabolic case. We use their definition to the dHYM flow.

Definition 2.4. A smooth function u(x, t) on M × [0, T ) is called a
subsolution of the dHYM flow if there exists a constant δ > 0 such that for
any (x, t) ∈ M × [0, T ), the subset of Rn+1

Sδ(x, t) :=
{
(μ, τ) ∈ R

n × R | μi > −δ for each i, τ > −δ, and
cot θ

(
λ(χu(x,t)) + μ

)
− ut(x, t) + τ = cot θ0

}
is uniformly bounded.

We have the following observation.

Lemma 2.5. If u is a subsolution of the dHYM equation with B0(u) < π,
then the function u(x, t) = u(x) on M × [0,∞) is also a subsolution of the
dHYM flow.

2.4. The Calabi-Yau functional. Recall the definition of the Calabi-
Yau functional by Collins-Yau [6]: for any v ∈ C2(M,R),

CYC(v) :=
1

n+ 1

n∑
i=0

∫
M

v(χv +
√
−1ω)i ∧ (χ+

√
−1ω)n−i.

Let v(s) ∈ C2,1(M × [0, T ],R) be a variation of the function v, i.e.,
v(0) = v. By integration by parts, it holds

d

ds
CYC(v(s)) =

∫
M

∂v(s)

∂s

(
χv(s) +

√
−1ω

)n
.(2.3)

The J -functional is defined by Collins-Yau [6] as follows

J (v) := Im
(
e−

√
−1θ0CYC(v)

)
.

The J -functional is very important since it is the Kempf-Ness functional for
Collins-Yau’s infinite dimensional GIT problem by Collins-Yau [6].

Lemma 2.6. Let u(x, t) be a solution of the dHYM flow. Then
Im

(
CYC(u(·, t))

)
= Im

(
CYC(u0)

)
,

d

dt
Re

(
CYC(u(·, t))

)
=

∫
M

(∂u(t)
∂t

)2
Im(χu +

√
−1ω)n,

d

dt
J (u(·, t))) ≤ 0.
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3. The longtime existence and convergence

3.1. The longtime existence under the condition: B0(u0) < π.
We assume that u is the solution of dHYM flow (1.7) in M × [0, T ), where T
is the maximal existence time. Assuming B0(u0) < π, We will prove T = ∞.

3.1.1. The ut-estimate. The maximum principle implies directly

Lemma 3.1. For any (x, t) ∈ M × [0, T ), we have
min
M

ut|t=0 ≤ ut(x, t) ≤ max
M

ut|t=0;(3.1)

in particular,
0 < min

M
θ(χu0(x)) ≤ θ(χu(x,t)) ≤ B0(u0) < π.(3.2)

As a consequence of the above lemma, we have the following

Lemma 3.2. Let λn(x, t) be the minimum eigenvalue of χu with respect
to the metric ω at (x, t). Then

max
M×[0,T )

|λn| ≤ C0 for C0 := | cotB0|+
∣∣∣cot(minM θ(χu0)

n

)∣∣∣.
3.1.2. The longtime existence. By the ut-estimate, we have

sup
M×[0,T )

|u| ≤ CT + sup
M

|u0|.

By the concavity of cot θ(λ), we can prove the second order estimate and
the higher order estimate. Then we get the longtime existence.

3.1.3. The estimate of the real part of the Calabi-Yau functional. Along
the dHYM flow, we can prove that the real part of the Calabi-Yau functional
can be controled by |u|L∞ without the subsolution condition.

Proposition 3.3. Let u(x, t) be a solution of dHYM flow (1.7) with the
initial data satisfying (1.4). Then there exists a uniform constant C such
that

Re ( CYC(u)) ≤ C|u|L∞ .(3.3)

3.2. The convergence under the subsolution condition and the
condition (1.4). To prove the convergence we need the existence of the
subsolution and also the additional condition on the subsolution. The key
point is to prove the uniform C2-estimate which are independent of the time.

3.2.1. The C0 estimate. A Harnack type inequality along the dHYM
flow can be proved.

Lemma 3.4. Let u be the solution of the dHYM flow on M × [0,∞).
Then for any T0 > 0 we have the following Harnack type inequality:

sup
M×[0,T0]

u(x, t) ≤ C
(
− inf

M×[0,T0]

(
u(x, t)− u0(x)

)
+ 1

)
.

Now we prove the C0 estimate similar as Phong-Tô [21].



164 J. FU, S.-T. YAU, AND D. ZHANG

Proposition 3.5. Along the dHYM flow, there exists a uniform constant
M0 independent of T such that

|u|C0(M×[0,∞)) ≤ C.

3.2.2. The gradient estimate. The gradient estimate follows from the
argument in the elliptic case by Collins-Yau [6].

Proposition 3.6. Let u be the solution of dHYM flow (1.7). There exists
a uniform constant C such that

max
M×[0,∞)

|∇u|ω ≤ C.

3.2.3. The second order estimate. In the elliptic case, Collins-Jacob-Yau
[4] used an auxiliary function containing the gradient term which modifies
the one by Hou-Ma-Wu [12]. Our auxiliary function does not contain the
gradient term.

Proposition 3.7. There exists a uniform constant C such that

sup
M×[0,∞)

|∂∂̄u|ω ≤ C.

3.2.4. The convergence. We have got the uniform a priori estimates up
to the second order. By the concavity of θ(χu(x, t)), we obtain the uniform
C2,α estimates and then the higher order estimates hold. Then the proof
of the convergence is the similar as that by Phong-Tô [21]. Firstly, we can
prove u(x, t) converges exponentially to a function u∞. Then by the uniform
Ck estimates of u(x, t) for all k ∈ N, u(x, t) converges to u∞ in C∞ and u∞

satisfies

θ(χu∞) :=

n∑
i=1

arccotλi(χu∞) = θ0.

4. An application to the Kähler surface case under the
semi-subsolution condition

If θ0 ∈ [π2 , π), we can show the nonempty of the set HB1 for any B1 ∈
(θ0, π).

Lemma 4.1. Let (M,ω) be a compact Kähler surface. Assume χ ≥
cot θ0ω and θ0 ∈ [π2 , π). Then for any B1 ∈ (θ0, π), there exists a smooth
function u such that u ∈ HB1.

To study the dHYM flow on the Kähler surface under the semi-subsolution
condition, we first need a result of Song-Weinkove [24].

Lemma 4.2. Let M be a Kähler surface with a Kähler class β∈H1,1(M,R).
If α ∈ H1,1(M,R) satisfies α2 > 0 and α · β > 0, then either α is Kähler
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or there exists a positive integer m, curves of negative self-intersection Ei,
1 ≤ i ≤ m and positive numbers ai, 1 ≤ i ≤ m such that

α−
m∑
i=1

ai[Ei]

is a Kähler class.

Let χ̃ = χ− cot θ0ω, we can check the following
[χ̃]2 = (1 + cot2 θ0)[ω]

2 > 0,

[χ̃] · [ω] > 0.

By applying the above lemma, there exists a finite number (say m ≥ 1)
curves of negative self-intersection Ei and ai > 0, 1 ≤ i ≤ m such that
[χ̃]−

∑m
i=1 ai[Ei] is a Kähler class.

Let hi be the hermitian metric on [Ei] and si be a holomorphic section
of [Ei] which vanishes along Ei to order 1. Define

S :=

m∑
i=1

ai log |si|2hi
,

then
(4.1) χ̃+

√
−1∂∂̄S > 0.

4.1. The C0 estimate. To prove the C0 estimate of the solution along
the flow, similar as Fang-Lai-Song-Weinkove [8] and Takahashi [27], we need
the following lemma which was proved by Eyssidieux-Guedj-Zeriahi [7] and
Zhang [31].

Lemma 4.3. Let (M,ω) be a compact Kähler surface, χ̃ := χ−cot θ0ω ≥
0 and θ0 ∈ (0, π). There exists a uniquely (by adding a constant) bounded
χ̃-PSH function v on M satisfying

(χ̃+
√
−1∂∂̄v)2 = csc2 θ0ω

2(4.2)
in the sense of currents. Moreover, v ∈ C∞

loc (M\ ∪i Ei).

The ut estimate has been proved in Section 3 and thus along the flow
θ(χu) ∈ (minM θ(χu0), B1).

Proposition 4.4. There exists uniform constant M0 such that
sup

M×[0,∞)
|u| ≤ M0.(4.3)

The upper bound of u follows from applying maximum principal to the
following auxiliary function.

wε(x, t) := u− (1 + ε)v + εS − C0εt,

Similarly the lower bound of u can be proved by
w̃ε := u− (1− ε)v − εS + C0εt.
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Recall along the dHYM flow, Re(CYC(u)) ≤ C|u|L∞ . By the C0 esti-
mate, we have the following.

Corollary 4.5. Along the dHYM flow, there exists a uniform constant
C such that

Re(CYC(u)) ≤ C.(4.4)

This estimate is used to prove lim
t→∞

ut = 0 on M \ ∪iEi.

Proposition 4.6. For any compact set K ⊂ M \ ∪iEi, ut uniformly
converges to 0 in K as t tends to ∞.

4.2. The gradient estimate and the second order estimate. To
prove the gradient and second order estimate, we prove a useful inequality.

Lemma 4.7. There exists uniform constants K0 > 0 and c0 > 0 such
that if |λ(χu)| > K0, then

ut − F ij̄(uij̄ − Sij̄) ≥ c0.

Based on Lemma 4.7 and the C0 estimate, we can prove the following
gradient estimate.

Proposition 4.8. There exist uniform constants C and D such that for
any (x, t) ∈ M \ ∪iEi × [0,∞)

|∇u|ω(x, t) ≤ M1

∏
i

|si|−D1ai
hi

(x).(4.5)

Based on Lemma 4.7 and the C1 estimate, we can derive the second
order estimate.

Proposition 4.9. There exist uniform constants C and D such that for
any (x, t) ∈ M \ ∪iEi × [0,∞)

|∂∂̄u|ω(x, t) ≤ C
∏
i

|si|−2Dai
hi

(x, t).(4.6)

Proposition 4.10. For any compact set K ⊂ M \ ∪iEi and positive
integer k, there exists a uniform constant Ck,K such that

|u|Ck(K) ≤ Ck,K .(4.7)

Then we can get the convergence of the flow locally in M \ ∪iEi.
Similarly as Fang-Lai-Song-Weinkove [8] and Takahashi [27], Theorem

1.5 follows.

4.3. The lower bound of J -functional in HB1. As an application
of our dHYM flow, we have the lower bound of the J -functional in the
following set.

HB1 = {w ∈ C∞(M,R) : θ(χw) ∈ (0, B1)} .



INTRODUCTION TO A DEFORMED HERMITIAN YANG-MILLS FLOW 167

Corollary 4.11. Let (M,ω) be a compact Kähler surface and χ be a
closed real (1, 1) form. Assume that θ0 ∈ (0, π) and χ ≥ cot θ0ω, the J -
functional is bounded from below in HB1 for any B1 ∈ (θ0, π).

If θ0 ∈ (0, π2 ), Takahashi [27] proved the lower bound of the J -functional
in Hθ0+

π
2
.

Acknowledgements. Zhang would like to thank Prof. Xinan Ma for
constant help and encouragement. Fu is supported by NSFC grant No.
12141104. Zhang is supported by NSFC grant No. 11901102.

References
[1] Gao Chen. The J-equation and the supercritical deformed Hermitian-Yang-Mills

equation. Invent. Math., 225(2):529–602, 2021. MR 4285141
[2] Jianchun Chu and Man-Chun Lee. Hypercritical deformed Hermitian-Yang-Mills

equation. arXiv:2107.13192, 2021. MR 4621881
[3] Jianchun Chu, Man-Chun Lee, and Ryosuke Takahashi. A Nakai-Moishezon type cri-

terion for supercritical deformed Hermitian-Yang-Mills equation. arxiv: 2105.10725,
2021. MR 4621881

[4] Tristan C. Collins, Adam Jacob, and Shing-Tung Yau. (1, 1) forms with specified
Lagrangian phase: a priori estimates and algebraic obstructions. Camb. J. Math.,
8(2):407–452, 2020. MR 4091029

[5] Tristan C. Collins, Dan Xie, and Shing-Tung Yau. The deformed Hermitian-Yang-
Mills equation in geometry and physics. In Geometry and physics. Vol. I, pages 69–90.
Oxford Univ. Press, Oxford, 2018. MR 3932257

[6] Tristan C. Collins and Shing-Tung Yau. Moment maps, nonlinear PDE and stability
in mirror symmetry, I: geodesics. Ann. PDE, 7(1):Paper No. 11, 73, 2021. MR 4242135

[7] Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi. Singular Kähler-Einstein
metrics. J. Amer. Math. Soc., 22(3):607–639, 2009. MR 2505296

[8] Hao Fang, Mijia Lai, Jian Song, and Ben Weinkove. The J-flow on Kähler surfaces:
a boundary case. Anal. PDE, 7(1):215–226, 2014. MR 3219504

[9] Jixiang Fu, Shing-Tung Yau, and Dekai Zhang. A deformed Hermitian Yang-Mills
flow. arXiv:2105.13576, 2021.

[10] Bo Guan. Second-order estimates and regularity for fully nonlinear elliptic equations
on Riemannian manifolds. Duke Math. J., 163(8):1491–1524, 2014. MR 3284698

[11] Xiaoli Han and Xishen Jin. Stability of line bundle mean curvature flow.
arXiv:2001.07406, 2020. MR 4630779

[12] Zuoliang Hou, Xi-Nan Ma, and Damin Wu. A second order estimate for complex
Hessian equations on a compact Kähler manifold. Math. Res. Lett., 17(3):547–561,
2010. MR 2653687

[13] Liding Huang and Jiaogen Zhang. Fully nonlinear elliptic equations with gradient
terms on compact almost hermitian manifolds. arXiv:2112.02919, 2021. MR 4530185

[14] Liding Huang, Jiaogen Zhang, and Xi Zhang. The deformed Hermitian-Yang-Mills
equation on almost Hermitian manifolds. Sci. China Math., 65(1):127–152, 2022.
MR 4361971

[15] Adam Jacob and Norman Sheu. The deformed Hermitian-Yang-Mills equation on the
blowup of Pn. arXiv:2009.00651, 2020. MR 4583445

[16] Adam Jacob and Shing-Tung Yau. A special Lagrangian type equation for holomor-
phic line bundles. Math. Ann., 369(1-2):869–898, 2017. MR 3694663

[17] Naichung Conan Leung, Shing-Tung Yau, and Eric Zaslow. From special Lagrangian
to Hermitian-Yang-Mills via Fourier-Mukai transform. Adv. Theor. Math. Phys.,
4(6):1319–1341, 2000. MR 1894858



168 J. FU, S.-T. YAU, AND D. ZHANG

[18] Chao-Ming Lin. Deformed Hermitian-Yang-Mills Equation on Compact Hermitian
Manifolds. arXiv:2012.00487, 2020. MR 4648991

[19] Chao-Ming Lin. The Deformed Hermitian–Yang–Mills Equation, the Positivstellen-
satz, and the Solvability. arXiv: 2201.01438., 2022. MR 4648991

[20] Marcos Mariño, Ruben Minasian, Gregory Moore, and Andrew Strominger. Nonlinear
instantons from supersymmetric p-branes. J. High Energy Phys., (1):Paper 5, 32,
2000. MR 1743311

[21] Duong H. Phong and Dat T. Tô. Fully non-linear parabolic equations on compact Her-
mitian manifolds. Ann. Sci. Éc. Norm. Supér. (4), 54(3):793–829, 2021. MR 4311100

[22] Vamsi Pritham Pingali. The deformed Hermitian Yang-Mills equation on three-folds.
arXiv: 1910.01870., 2019. MR 4478294

[23] Jian Song. Nakai-Moishezon criterions for complex Hessian equations.
arXiv:2012.07956, 2021.

[24] Jian Song and Ben Weinkove. On the convergence and singularities of the J-flow with
applications to the Mabuchi energy. Comm. Pure Appl. Math., 61(2):210–229, 2008.
MR 2368374

[25] Gábor Székelyhidi. Fully non-linear elliptic equations on compact Hermitian mani-
folds. J. Differential Geom., 109(2):337–378, 2018. MR 3807322

[26] Ryosuke Takahashi. Tan-concavity property for Lagrangian phase operators and ap-
plications to the tangent Lagrangian phase flow. Internat. J. Math., 31(14):2050116,
26, 2020. MR 4203709

[27] Ryosuke Takahashi. Collapsing of the line bundle mean curvature flow on Kähler
surfaces. Calc. Var. Partial Differential Equations, 60(1):Paper No. 27, 18, 2021.
MR 4201650

[28] Dake Wang and Yu Yuan. Hessian estimates for special Lagrangian equations
with critical and supercritical phases in general dimensions. Amer. J. Math.,
136(2):481–499, 2014. MR 3188067

[29] Shing-Tung Yau. On the Ricci curvature of a compact Kähler manifold and the
complex Monge-Ampère equation. I. Comm. Pure Appl. Math., 31(3):339–411, 1978.
MR 0480350

[30] Yu Yuan. Global solutions to special Lagrangian equations. Proc. Amer. Math. Soc.,
134(5):1355–1358, 2006. MR 2199179

[31] Zhou Zhang. On degenerate Monge-Ampère equations over closed Kähler manifolds.
Int. Math. Res. Not., pages Art. ID 63640, 18, 2006. MR 2233716

Shanghai Center for Mathematical Sciences, Jiangwan Campus, Fudan

University, Shanghai, 200438, China

Email address: majxfu@fudan.edu.cn

Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100084,

China

Email address: syau@tsinghua.edu.cn

Department of Mathematics, Shanghai University, Shanghai, 200444, China

Email address: dkzhang@shu.edu.cn


	1. Introduction
	2. Preliminaries
	3. The longtime existence and convergence
	4. An application to the Kähler surface case under the semi-subsolution condition
	. References

