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Abstract. In this paper we propose two guiding principles that sug-
gest a number of conjectures (some now proved) about various forms of
rigidity for moduli spaces arising in algebraic geometry. Such conjectures
have group-theoretic, topological and holomorphic aspects, and so they
also provide motivation for natural problems in geometric group theory
and topology.

1. Introduction

The purpose of this paper is to propose two guiding principles that sug-
gest a number of conjectures (some now proved) about various forms of rigid-
ity for moduli spaces arising in algebraic geometry. Such conjectures have
group-theoretic, topological and holomorphic aspects, and so they also pro-
vide motivation for natural problems in geometric group theory and topol-
ogy. These conjectures are in the style of, and in some cases can be seen
as algebro-geometric interpretations of, rigidity theorems such as Margulis
superrigidity.

All varieties in this paper will be taken over C, although the story over
arbitrary fields would be quite interesting to explore.

Moduli spaces from constructions. One of the most compelling as-
pects of algebraic geometry is its remarkable constructions. Such construc-
tions can often be reinterpreted as surprising morphisms between moduli
spaces. To choose three of many examples (see below for more):

This paper is based on a lecture I gave at Chern’s 110th birthday conference on
October 12, 2021. I would like to thank Professors Shing-Tung Yau and Shiu-Yuen Cheng
for soliciting the talk and this paper.
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(1) (Resolving the quartic) For each n ≥ 1 let Polyn be the space of
monic, square-free, degree n polynomials

P (z) = zn + a1z
n−1 + · · ·+ an ∈ C[z].

The space Polyn is embedded Cn (by recording the coefficients
(a1, . . . , an) ∈ Cn) as the complement of the hypersurface

Z(Δn) := {(a1, . . . , an) : Δn(a1, . . . , an) = 0} ⊂ Cn,

where Δn ∈ Z[x1, . . . , xn] is the discriminant. The classical con-
struction of “resolving the quartic” (Ferrari, 1545) produces a sur-
jective morphism of quasiprojective varieties

(1.1) R : Poly4 → Poly3

defined by taking the quartic polynomial f ∈ Poly4 with set of
(distinct) roots {r1, r2, r3, r4} to the cubic polynomial R(f) ∈ Poly3
with distinct1 roots

b1 :=
(r1 − r2 − r3 + r4)

2

4
, b2 :=

(r1 − r2 + r3 − r4)
2

4
,

b3 :=
(r1 + r2 − r3 − r4)

2

4

The induced map R∗ : π1(Poly4) → π1(Poly3) induces a surjection
of braid groups

R∗ : B4 → B3.

By factoring through the surjection Bn → Sn to the symmetric
group Sn, the map R provides an explanation for the existence of
the exceptional surjection S4 → S3.

(2) (Jacobi varieties) The Jacobian construction produces from any
genus g ≥ 1 Riemann surface X a g-dimensional principally polar-
ized abelian variety

Jac(X) := Ω1(X)∗/H1(X;Z),

where Ω1(X)∗ is the dual of the space of holomorphic 1-forms on
X and the embedding H1(X;Z) → Ω1(X)∗ is given by integration
along a 1-cycle. This construction globalizes to the period mapping

Jac : Mg → Ag,

where Mg is the moduli space of genus g Riemann surfaces and Ag

is the moduli space of principally polarized g-dimensional abelian
varieties.

(3) (Flex points and torsion) Fix d, n ≥ 1. Is there a way to choose in an
algebraically (or even continuously) varying fashion an unordered
set of n distinct points on every smooth, degree d plane curve?

1The miracle here is that if the {ri} are distinct then so are the {bj}.
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More precisely, let Cd be the parameter space of smooth, degree d
curves in CP2, and let
Ed,n := {(C, {z1, . . . , zn}) : C ∈ Cd, zi ∈ C, zi �= zj if i �= j}.
The projection πd,n(C, {z1, . . . , zn}) := C induces a fiber bundle

(1.2)
UConfn(C) −→ Ed,n⏐⏐�πd,n

Cd
where UConfn(C) denotes the space of configurations of unordered
n-tuples of distinct points on C. We are asking for an algebraic
(resp. continuous) section of πd,n. Remarkably, when d = 3 and
n = 9k2, k ≥ 1, such algebraic sections exist, as we now explain.

Any (complex) smooth cubic curve C ⊂ P2 has exactly nine
flex points FC . Each z ∈ F(C) determines a unique abelian group
structure on C with identity z. For each k ≥ 1 the union F9k2(C)
of these k-torsion points under these group structures produces an
algebraic section of πd,n : Ed,n → Cd defined by

C �→ F9k2(C).

Thus for each k ≥ 1, any cubic polynomial f ∈ C[x1, x2, x3] defining
a smooth curve comes equipped with a set of 9k2 zeros among its
uncountably many zeros (here C is the zero-set of f)!

The principle I want to present here predicts that each of the three maps
constructed above is indeed special; each is unique in various senses. For
example, resolving the quartic is the only nontrivial way of producing, from a
monic, square-free polynomial, another of lower degree, in a holomorphically
(or even continuously) varying way (see §2 for details). Another example is
the following result, which I proved in [Fa].

Theorem 1.1 (Global rigidity of the period mapping). Let g ≥ 3 and
assume that h ≤ g. Let F : Mg → Ah be any nonconstant holomorphic map
of complex orbifolds. Then h = g and F = J.

See §4 for a discussion of this and related results and problems.

Two guiding principles. I’d like to try to formalize the statement
that maps between moduli spaces (and sections of certain bundles) arising
from algebro-geometric constructions are unique. Such constructions typi-
cally start with a variety of a certain type, perhaps equipped with extra
data such as a tuple of subvarieties, and then one produces a new variety,
also perhaps with extra data, via geometry. Such a construction induces a
morphism, or more generally a rational map

F : M → N
where M and N are the moduli spaces of the input/output varieties (per-
haps equipped with their extra data) of the construction. We call such a
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map between moduli spaces a constructive map. While this is not a precise
mathematical definition, to paraphrase supreme court justice Potter Stew-
art: I know a constructive map when I see it.2 We also apply this term to
sections of bundles such as (1.2), constructed via geometry or arithmetic.

Constructive maps are things of beauty. Their existence often seems
miraculous. The following is a way to formalize how special such construc-
tions are.

Guiding Principle 1.2 (Constructive maps are rigid). Constructive
maps F : M → N satisfy the following:

(1) Group-theoretic rigidity: Any nontrivial representation πorb
1 (M) →

πorb
1 (N ) is conjugate to F∗.

(2) Topological rigidity: any homotopically nontrivial continuous map
f : M → N is homotopic to F .

(3) Holomorphic rigidity: any nonconstant holomorphic map f : M →
N is equal3 to F .

(4) Rational rigidity: any nonconstant rational map f : M → N is
equivalent as a rational map4 to F .

Remarks 1.3.
(1) If N is aspherical then topological rigidity and group-theoretic

rigidity are equivalent.
(2) One could replace “holomorphic rigidity” with “morphism rigid-

ity”; these are often equivalent (by extending holomorphic maps to
certain compactifications and applying Chow’s Theorem).

(3) There are also natural variations and generalizations of Conjec-
ture 1.2, such as versions for maps between all finite covers of M
and N , and for certain special infinite covers (e.g. Torelli space).

The following is a natural generalization of Guiding Principle 1.2.

Guiding Principle 1.4 (Characterization principle). Let {Mi}i∈I and
{N j}j∈J be natural families of moduli spaces. Then any nonconstant holo-
morphic map (resp. morphism, rational map, etc.) Mk → N � with k ∈ I,
� ∈ J is constructive.

In terms of the examples above, the guiding principles predict:
(1) Suppose n > m > 2. Let F : Polyn → Polym be a nonconstant

holomorphic map not factoring through the discriminant map Δn :
Polyn → C∗. Then (n,m) = (4, 3) and F is (up to affine coordinate
changes in the domain and range) resolving the quartic.

2Stewart’s comment described his threshold test for obscenity: “I know it when I see
it.”

3Sometimes we want to allow for pre-composition (resp. post-composition) with auto-
morphisms of the domain (resp. codomain), for example by a linear change of coordinates.

4Rational maps are equivalent as rational maps if they are equal on a Zariski open
subset of the domain. Also see Footnote 3.
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(2) Theorem 1.1: Let g ≥ 3 and assume that h ≤ g. Let F : Mg → Ah

be any nonconstant holomorphic map of complex orbifolds. Then
h = g and F = J.

(3) For (d, n) = (3, 2), any algebraic section of (1.2) comes from a
torsion construction; namely, is a sum of (variations of) the con-
struction given - see §3 for the precise definition.

I’d conjectured each of these results based on the guiding principles,
and each was subsequently proved to be true; see §2, §4 and §3. A general
reason in support of the holomorphic versions of the guiding principles is
that holomorphic maps tend - with some notable exceptions - to be unique
in their homotopy class.

I view these types of results as being worthwhile goals, for several rea-
sons. For one, they are in the same style as Mostow Rigidity, Margulis su-
perrigidity, and other rigidity results of those types: characterizing a math-
ematical object within a larger class of such. In proving such theorems, one
is forced to understand the object in a much deeper way. Secondly, I view
attempts to prove these types of rigidity theorems as a kind of systematic
search for beautiful algebro-geometric constructions. Finally, trying to prove
these conjectures brings up a host of interesting problems in group theory
and topology, as we attempt to explain in this paper.

General proof method. In many cases there is a common outline to
prove that a constructive map F : M → N is the unique holomorphic map
M → N . In the case when N is aspherical, the outline reads as follows: Let
f : M → N be nonconstant and holomorphic.

Step 1. Prove group-theoretic rigidity. (Ideas on this later.)
Step 2. When N is aspherical this already implies that f is either homo-
topically trivial or f is topologically rigid.
Step 3. Now assume that f is holomorphic. If N is aspherical, then when
it is homotopically trivial it is often constant by the maximum principal.
When f is homotopically nontrivial, one can try to find enough “negative
curvature” in N to prove uniqueness of holomorphic maps in a homotopy
class. One example where one does not have actual Riemannian negative
curvature but where such uniqueness holds is when N is the moduli space
Mg of smooth, genus g projective curves (see Theorem 4.3 and the discussion
following it).

Remark 1.5 (Orbifold issues). Many of the moduli spaces discussed in
this paper are (good) complex orbifolds: they are quotients X/Γ of simply-
connected manifolds X by groups Γ acting properly discontinuously but not
necessarily freely. A map X/Γ → Y/Λ between complex orbifolds is just an
equivariant map X → Y with respect to a homomorphism ρ : Γ → Λ. When
one of the group actions, say Γ on X, is not faithful, then one can choose to
replace Γ by Γ′ := Γ/ker(ρ), and ask for equivariance with respect to the Γ′
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action. This seemingly technical point can actually change the results; see
[Ser].

Outline of paper. In the rest of this paper we give a sampling of prob-
lems, conjectures and results motivated by the guiding principles. We restrict
ourselves to four types of problems/conjectures: problems about polynomi-
als (§2); problems about choosing points on hypersurfaces (§3); problems
about period mappings (§4); and problems about constructions in enumera-
tive geometry (§5). The choice of problems is of course biased, and is meant
only to illustrate the guiding principles. My hope is to inspire the reader
to come up with their own rigidity conjectures, and hopefully even some
theorems.

Acknowledgements. It is a pleasure to thank Dan Margalit and Trevor
Hyde for many useful comments, corrections and discussions.

2. Spaces of polynomials

Configuration spaces and maps between them provide a rich collection
of examples of interesting maps to which to apply the guiding principles. To
set notation, given a topological space X and an integer n ≥ 0, let

PConfn(X) := {(x1, . . . , xn) ∈ Xn : xi �= xj for i �= j}
be the space of configurations of ordered n-tuples of distinct points in X. The
symmetric group Sn acts on Xn by permuting coordinates, leaving invariant
the subspace PConfn(X). The quotient

UConfn(X) := PConfn(X)/Sn

is the space of configurations of unordered n-tuples of distinct points in
X. Note that when X is an algebraic variety then so are PConfn(X) and
UConfn(X).

The variety UConfn(C) relates to polynomials as follows. For each n ≥ 1,
let Polyn be the space of monic, square-free (i.e. has no repeated root), degree
n polynomials P ∈ C[x]. The classical theory of discriminants produces
a polynomial Δn ∈ Z[x1, . . . , xn] with the property that the polynomial
P (Z) = Zn+a1Z

n−1+· · ·+an is square-free if and only if Δn(a1, . . . , an) = 0.
It follows that

Polyn = {(a1, . . . , an) : Δn(a1, . . . , an) �= 0} = Cn − {Δn = 0}
is a hypersurface complement in Cn. We remark that the hypersurface {Δn =
0} is highly singular and incredibly complicated: while Δ2(b, c) = b2 − 4c,

Δ3(b, c, d) = b2c2 − 4c3 − 4b3d− 27d2 + 18abc,

and the complexity increases dramatically with n. The Fundamental Theo-
rem of Algebra implies that for each n ≥ 1, the map

Polyn → UConfn(C)
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given by
P (Z) �→ {λ : P (λ) = 0}

is an isomorphism of affine varieties.
The classical approach to understanding polynomials, initiated by

Tschirnhaus in the 17th century, was to try to reduce formulas for the roots
of the general degree n polynomial to such formulas for polynomials of lower
degrees. The most well-known example is resolving the quartic, which (as
discussed above - see (1.1)) produces the morphism
(2.1) R : Poly4 → Poly3.

It is natural to show that no other such miracles were found because they do
not actually exist. Now, if one considers maps between spaces of all degree n
polynomials and degree m polynomials, then each space is affine, and many
such algebraic maps exist. Hence it is natural to restrict to the spaces Polyn
of square-free polynomials.

Now, the “resolving the quartic” map R is not quite unique. First, for
each n ≥ 1 the discriminant gives a holomorphic surjection

Δn : Polyn → C∗,

and for any m ≥ 1 we can compose Δn with any holomorphic map C∗ →
Polym. For (n,m) = (4, 3) we can also alter the map R of (2.1) by multi-
plying by a power d ≥ 0 of the discriminant, giving a morphism

Rd : Poly4 → Poly3

defined by
Rd(a1, . . . , an) := Δn(a1, . . . , an)

dR(a1, . . . , an).

In particular R0 = R. Note that if one replaced Δn(a1, . . . , an)
d by an ar-

bitrary degree d polynomial in Δn(a1, . . . , an) then this polynomial would
take the value 0 at some nonzero input, by the Fundamental Theorem of
Algebra, and so the corresponding map Rd would not be well-defined. Up to
these minor modifications, I conjecture that resolving the quartic is unique,
in the following sense.

Conjecture 2.1 (Resolving the quartic is unique). Let m,n ≥ 3, and let
Ψ : Polyn → Polym be an arbitrary nonconstant holomorphic map. Assume
that Ψ is not constant and that Ψ does not factor through the discriminant
Δn : Polyn → C∗. If n ≥ 4 then (n,m) = (4, 3) and, after precomposing and
postcomposing automorphisms of Poly4 and Poly3, respectively,5 it must be
that Ψ = Rd for some d ≥ 0.

The systematic study of holomorphic maps Polyn → Polym was initiated
by V. Lin, over a series of papers (see [Li] and the references contained
therein). Lin proved in Theorem 3 of [Li] that Conjecture 2.1 is true in

5These are induced by an affine map of C, corresponding to a linear change of vari-
ables.
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the special case where Ψ is of the form Ψ({zi}) ∩ {zi} = ∅;6 that is, Ψ
only “adds points”, called disjoining by Lin. Recent work of Chen-Kordek-
Margalit [CKM] solves the “topological piece” of Conjecture 2.1 for the
cases 5 ≤ m ≤ 2n and (n,m) = (4, 3); see below.

The assumption n ≥ 4 of Conjecture 2.1 is necessary, as there are many
holomorphic maps Poly3 → Polym for various m, as we now explain. Given
a configuration λ := {λ1, λ2, λ3 : λi ∈ C, λi �= λj}, let Eλ be the 2-sheeted
branched cover

π : Eλ → Ĉ

branched over {λ1, λ2, λ3,∞}, each with ramification index 2. Then Eλ is
a complex torus, and comes equipped with a special point, the point at
infinity, which we can take as a basepoint, endowing Eλ with the structure of
an elliptic curve with this basepoint as identity element and {λ1, λ2, λ3,∞}
as the set of 2-torsion points. The map

Ψk : Poly3 → Polyk2−1

defined by
Ψk({λ1, λ2, λ3}) := π({nonzero k-torsion points of Eλ})

is a nonconstant holomorphic map.
One can ask a more general question: for fixed m,n ≥ 3, what are

the continuously (equivalently smoothly) varying ways (up to homotopy) of
assigning a degree m monic, square-free polynomial to a degree n monic,
square-free polynomial. The following question was asked explicitly by the
author and D. Margalit.

Question 2.2. Classify all homotopy classes of maps Polyn → Polyn+k

for all n ≥ 3, k ≥ 0. Equivalently, classify all homomorphisms Bn → Bn+k,
where Bm denotes the braid group on m strands.

The second part of 2.2 is equivalent to the first since Polyn is a K(Bn, 1)
space, where Bn is the braid group on n strands. In addition to the obvious
inclusions Bn → Bn+k for k ≥ 1, there are, at least for k ≥ n, many inter-
esting homomorphisms Bn → Bn+k, for example via braid cabling construc-
tions, via “transvections”, and via twists of these. Chen-Kordek-Margalit
have a precise conjecture classifying all homomorphisms Bn → Bn+k for
n ≥ 4 and any k ≥ 1. However, the corresponding smooth maps Polyn →
Polyn+k don’t seem to be homotopic to holomorphic maps, although this is
still open. What do these maps correspond to at the level of polynomials?
The case k ≤ n of Margalit’s conjecture was solved by L. Chen-Kordek-
Margalit as Theorem 1.1 of [CKM]. A first question that seems within
reach: do the cabling homomorphisms Bn → Brn, r ≥ 2 correspond to an
algebraic procedure on polynomials? Proposition 7.6 of [CKM] classifies all
surjections B4 → B3; the answer is compatible with Conjecture 2.1, since
multiplying Δd

n induces on π1 what they call a “transvection”.
6Here {zi}ni=1 denotes a point in UConfn(C), which we are identifying with Polyn.
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One can show, using the Schwarz Lemma, that if Ψ : Polyn → Polym
is holomorphic then Ψ∗ : Bn → Bm takes each “multitwist” in Bn to a
“multitwist” in Bm. It would be interesting to find other group-theoretic
restrictions on Ψ∗ for holomorphic Ψ, compared to smooth Ψ. As a ba-
sic illustration of what one can do with this type of constraint, recall the
isomorphism of varieties Polyn

∼= UConfn(C), and consider for n ≥ 2 the
continuous map

Φn : UConfn(C) → UConfn+1(C)

defined by
Φn({zi}) := {zi} ∪ {

∑
|zi|+ 1}.

The map Φn is not holomorphic, and I had conjectured that it is not even
homotopic to a holomorphic map, except in the case n = 2 discussed above.

Polynomials with extra data. As a more refined question, one can
ask: what are the smoothly (resp. holomorphically) varying ways of assign-
ing, to a monic, square-free, degree n polynomial together with some collec-
tions of its roots, a monic, square-free, degree m polynomial. In mathemat-
ical terms, given any subgroup H < Sn, consider the intermediate cover

PConfn(C) → XH → Polyn

corresponding to H. So, for example, when H = 1 then XH = PConfn and
when H = Sn−1 then

XH = {(P, λ) : P ∈ Polyn, P (λ) = 0}.

Problem 2.3 (Polynomials with extra data). Fix m,n ≥ 3. Let A < Sn

and B < Sm be any subgroups, and let XA (resp. XB) be the cover of
Polyn (resp. Polyn) corresponding to A (resp. B). Classify all nonconstant
holomorphic maps and all smooth homotopy classes of maps XA → XB.

Problem 2.3 is still open in the case A = B = 1. Another interesting
case is when m = n and A = 1 and B = Sn, so that XA = PConfn(C) and
XB = Polyn. Here there is the classical Viete map Vn : PConfn(C) → Polyn
sending a set of n distinct complex numbers to the unique monic, degree n
polynomial with those roots:

Vn(r1, . . . , rn) := (−σ1(r1, . . . , rn), σ2(r1, . . . , rn), . . . , (−1)nσn(r1, . . . , rn))

where σi is the ith elementary symmetric polynomial:
σ1(r1, . . . , rn) :=

∑n
i=1 ri

σ2(r1, . . . , rn) :=
∑

1≤i<j≤n rirj
...
σn(r1, . . . , rn) := r1r2 · · · rn.

It seems fundamental to ask if this way of attaching a monic, degree n,
square-free polynomial to a set of n distinct complex numbers is unique.
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Conjecture 2.4 (The Viete map is unique). Fix n ≥ 4. Let Ψ :
PConfn(C) → Polyn be any nonconstant holomorphic map. Assume fur-
ther that Ψ∗ does not factor through an abelian group. Then, up to a linear
changes of variables (i.e. affine automorphisms of the domain and range),
Ψ is the Viete map Vn.

Note that there are many homotopy classes of continuous maps
PConfn(C) → PConfn(C), equivalently homomorphisms Pn → Pn, where
Pn := π1(PConfn(C)) is the pure braid group on n strands. The group Pn

is the kernel of the natural homomorphism Bn → Sn that records the per-
mutation of the points induced by an element of Bn. There is thus an exact
sequence

1 → Pn → Bn → Sn → 1.

One example of such a homomorphism is the “forget some strands” homo-
morphism Pn → Pn−k followed by a standard inclusion Pn−k → Pn. While
the first homomorphism is induced by a holomorphic map, the second ho-
momorphism is almost surely not. Note that P3

∼= F2 ×Z, which surjects to
the free group F2 on two generators, and so one can produce many homo-
morphism

Pn � P3 � F2 → Pn.

However, one can argue that none of these homomorphisms is induced by a
holomorphic map. Thus Conjecture 2.4 survives.

3. Choosing points on hypersurfaces

Fix d, n,N ≥ 1. Let Cd,N be the parameter space of smooth, degree d

hypersurfaces in CPN , and let
Ed,N,n := {(C, {z1, . . . , zn}) : C ∈ Cd,N , zi ∈ C, zi �= zj if i �= j}.

The projection πd,n(C, {z1, . . . , zn}) := C induces a fiber bundle

(3.1)
UConfn(C) −→ Ed,N,n⏐⏐�πd,N,n

Cd,N
where UConfn(C) denotes the space of configurations of unordered n-tuples
of distinct points on C. Note that Ed,N,1 → Cd,N is the universal smooth,
degree d hypersurface in PN ; for simplicity we denote it by Ed,N . A section
of the bundle (3.1) is called an n-multisection of Ed,N → Cd,N .

Question 3.1 (The point-choosing problem). Fix d,N, n ≥ 1. Is it pos-
sible to choose in a holomorphically (resp. continuously, algebraically, ra-
tionally) varying manner an unordered n-tuple of distinct points on every
smooth, degree d hypersurface in PN?

In other words: does there exist a holomorphic (resp. continuous, alge-
braic, rational) n-multisection of Ed,N → Cd,N? When such a section exists,
is it unique (resp. unique up to homotopy)?
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Even the case n = 1 of Question 3.1 is open (as far as I know). Here is
a first challenge:

Conjecture 3.2 (You can’t choose a point). Fix d ≥ 3, N ≥ 2. There
is no holomorphic, or even continuous, section of Ed,N → Cd,N .

One of the compelling aspects of Question 3.1 is that there are many
examples when such sections exist. These (the holomorphic ones, anyway)
seem always to arise from beautiful algebro-geometric and arithmetic con-
structions. In trying to answer Question 3.1, we are both proving uniqueness
of these constructions (following the guiding principle), as well as initiating
a systematic search for other, not yet known, algebro-geometric and arith-
metic constructions.

3.1. The case of cubic curves. It is a classical fact that every smooth
cubic curve C ⊂ P2 has precisely 9 flex points; that is, points on C whose
tangent line intersects C with multiplicity 3. Let Flex(C) ∈ UConf9(P

2)
denote the set of flex points of C. The map

Ψ9 : C3,2 → E3,2
defined by

Ψ9(C) := Flex(C)

gives a 9-multisection of E3,2 → C3,2. Since the set of flex points of C is given
by the intersection of C with its associated Hessian curve (defined by the
vanishing of the determinant of the Hessian of the equation defining C), it
follows that Ψ9 is an algebraic 9-multisection. Now, any choice of a point
p ∈ Flex(C) gives C the structure of an abelian group (elliptic curve) with p
as identity element and the set Flex(C) as the set of 3-torsion points. Thus
{3-torsion points} of C is well-defined, independent of the choice of point
in Flex(C). For each k ≥ 1 there is an algebraic 9k-multisection Ψ9k2 of
E3,2 → C3,2 defined by

Ψ9k2 := {3k-torsion points of C}.

There are also (see, e.g. [Ch]) algebraic multisections given by sets of 3k-
torsion points that are not 3j-torsion points for any j < k, and indeed these
have geometric interpretations. For example, there are always precisely 72
points on C where an irreducible cubic intersects C at points of multiplicity
9; this set of points is the set of 9-torsion points of C that are not 3-torsion
points. We can also take unions of these torsion constructions to produce
new algebraic multisections. Banerjee-Chen call any such multisection a mul-
tisection from torsion. As Chen observed in Theorem 1 of [Ch] (attributed
to Maclaurin, Cayley and Gattazzo):

Theorem 3.3 (Canonical subsets of smooth cubic curves). The universal
cubic plane curve E3,2 → C3,2 admits an algebraic n-multisection precisely
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when

(3.2) n = 9
∑
m∈I

J2(m)

where J2(m) = m2
∏

p prime, p|m(1− p−2) and I is a set of positive integers.
For example when n = 9, 27, 36, 72, 81, 99, 108, . . ..

Thus any smooth cubic plane curve C has a canonical, algebraically
varying (in C) set of 108 points! I found this to be remarkable, and conjec-
tured that no other such constructions were possible, in the following precise
senses:

(1) Any algebraic n-multisection of E3,2 → C3,2 must be a multisection
from torsion.

(2) Any continuous n-multisection of E3,2 → C3,2 must be homotopic
to a multisection from torsion; in particular no continuous n-multi-
sections exist unless n is of the form given in (3.2).

C. McMullen gave a proof of the first conjecture (see the Appendix of
[BC]). Chen [Ch] and Banerjee-Chen [BC] proved many cases of the second
conjecture, although many cases are still open. As a sample of their results we
mention: if a continuous n-multisection exists then 9|n; and a continuous 18-
multisection does not exist; and any continuous 9-multisection is homotopic
to Ψ9. Surprisingly, they found counterexamples to the second conjecture:

Theorem 3.4 (Banerjee-Chen [BC], Theorem 1.8). For any m ≥ 4, the
universal smooth cubic plane curve has a connected,7 smooth n-multisection,
n = 18J2(m), that is not homotopic to any multisection from torsion.

The smallest examples of such an n are n = 216, 432, 864, 1296, 2160, . . ..
The construction of such n-multisections in [BC] is not geometric. Is there
a natural geometric construction of these?

3.2. Rational multisections. In contrast to the above situation, there
are many examples of interesting rational multisections of the universal
smooth, degree d hypersurface Ed,N → Cd,N ; that is, multisections that are
rational maps. The point is that they are only defined on a Zariski open in
Cd,N . Here are some examples.

(1) The universal smooth quartic curve E4,2 → C4,2 has a rational 56-
multisection. Proof: It is classical that every smooth quartic curve
C ⊂ P2 has 28 bitangents - lines L ⊂ P2 with L tangent to C at
two points (and so each intersection having multiplicity 2). These
bitangents are not always distinct, but are counted with multiplic-
ity. For example, the Fermat quartic F := Z(x4 + y4 + z4) ⊂ P2

has 12 standard bitangents, as well as 16 points where the tangent

7A multisection is connected if the space of smooth cubic plane curves equipped with
a point in the multisection is connected.
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to F intersects F in a single point of multiplicity 4, giving a total
of 40 tangency points.

The condition for a smooth quartic to have a point of tangency
of multiplicity 4 is a polynomial condition, and so there is a Zariski
open U ⊂ C4,2 for which each C ∈ U has 28 distinct bitangents,
and so 56 points of tangency. This gives a rational 56-multisection
of E4,2 → C4,2 with U as domain of definition.

(2) A general smooth, degree d ≥ 3 plane curve C has 3d(d − 2) flex
points, counted with appropriate multiplicity; for d > 3 one must
pass to a Zariski open subset U � Cd,2 in order for each curve C ∈ U
to have 3d(d−2) distinct flex points. This gives a rational 3d(d−2)
multisection of Ed,2 → Cd,2. There is a similar story for bitangents
of smooth plane curves of degree d > 4.

(3) Each smooth cubic surface S ⊂ P3 contains 27 distinct lines. There
is a Zariski open subset U of the parameter space C3,3 of smooth
cubic surfaces whose collection of lines have 135 points of intersec-
tion. This gives a rational 135-section of the universal smooth cubic
surface E3,3 → C3,3. This section is not a morphism since U � C3,3,
due to the existence of so-called Eckhardt points, where three of the
27 intersect.

(4) Here is a more mundane example. Fix d, r ≥ 1 and N ≥ 2. For
each smooth, degree r curve C ⊂ PN , there is a Zariski open UC ⊂
Cd,N of consisting of those degree d smooth hypersurfaces in PN

intersecting C in dr points. This gives a rational dr-multisection of
Ed,N → Cd,N .

The following seems quite natural, although I do not know how difficult
it is.

Problem 3.5 (Classification problem for rational multisections). Clas-
sify all rational multisections of Ed,N → Cd,N .

4. Period mappings

A common classical construction is to associate to a variety, which is
fundamentally nonlinear, a variety constructed via linear algebra, such as
an abelian variety. This is typically achieved via Hodge theory. In this section
we start by discussing the more classical case of (generalized) Jacobians, and
continue with more general period domains. We will then indicate how the
uniqueness results one might hope for by applying the guiding principles are
closely related to rigidity results for lattices in semisimple Lie groups.

4.1. Jacobians. The most classical way to attach one variety to an-
other in a canonical way is the Jacobian construction, going back at least
to Riemann (if not Abel).

Examples 4.1 (Jacobians). Many period mapping are Jacobians. Here
are some examples; see Debarre’s survey [De] for many more.
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(1) The classical period mapping J : Mg → Ag, as described in the
introduction. An equivalent formulation, using notation that will
be more suggestive for what will soon come: if X is a smooth curve
with Hodge decomposition H1(X;C) = H1,0(X)⊕H0,1(X), then

J(X) := H0,1(X)/H1(X;Z).

(2) Let C3,4 be the parameter space of smooth cubic hypersurfaces in
P4. If X ∈ C3,4 then Hodge theory implies H1,2(X) ∼= C5, and

J3,4(X) := H1,2(X)/H3(X;Z)

is a 5-dimensional principally polarized abelian variety. This gives
a holomorphic map

J3,4 : C3,4 → A5

called the intermediate Jacobian.
(3) Let X ∈ Mg be a smooth, genus g curve. Any nonzero θ ∈ H1(X;

Z/2Z) determines an unbranched double cover p : Y → X. Note
that Y is a genus 2g − 1 curve. The Prym variety Prym(X, θ) as-
sociated to (X, θ) is defined to be

Prym(X, θ) :=
J(X)

p∗(J(X))
.

Note that Prym(X, θ) ∈ Ag−1. Let
Rg := {(X, θ) : X ∈ Mg and 0 �= θ ∈ H1(X;Z/2Z)}/ ∼

where (X1, θ1) ∼ (X2, θ2) if there is an isomorphism f : X1 → X2

such that f∗θ2 = θ1. Then Rg is a quasiprojective variety and the
map

Prym : Rg → Ag−1

is a morphism.

Such constructions inspire the following.

Question 4.2 (Uniqueness of Jacobians). Given a moduli space M of
varieties, is there a nontrivial way to attach in a holomorphically (or even
continuously) varying way a principally polarized abelian variety to each X ∈
M? More precisely, does there exist g ≥ 1 and a nonconstant holomorphic
map (or nontrivial homotopy class of continuous maps) F : M → Ag? Is
each such homotopy class represented by a holomorphic map? If so, is such
a map unique?

The guiding principles indicate that classical constructions as in Exam-
ple 4.1 should be unique. I proved in [Fa] that this is the case for the classical
Jacobian.

Theorem 4.3 (Global rigidity of the period mapping). Let g ≥ 3 and
assume that h ≤ g. Let F : Mg → Ah be any nonconstant holomorphic map
of complex orbifolds. Then h = g and F = J.
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As with many of the results and problems discussed in the present paper,
the statement of Theorem 4.3 really has two parts:

(1) (Topological rigidity) If g ≥ 3 and h ≤ g and if F : Mg → Ah

is any continuous map of topological orbifolds, then either F is
homotopically trivial or h = g and F is homotopic to the clas-
sical period mapping J. Since Ag is the quotient of the lattice
Sp(2g,Z) acting on a nonpositively curved (hence contractible!)
symmetric space, topological rigidity reduces to understanding ho-
momorphisms Mod(Sg) → Sp(2g,Z). This was essentially done by
Korkmaz.

(2) (Holomorphic rigidity) The general philosophy is that holomorphic
maps are typically unique in their homotopy class unless their im-
ages lie in a product. When targets (such as Ag) are finite volume
quotients of bounded symmetric domains, Borel-Narasimhan re-
duce such uniqueness in a homotopy class to having a single image
point in common. Finding such a point can be involved and diffi-
cult. This is accomplished in [Fa] using what I called the “Wirtinger
squeeze”: a convexity argument applied to a Wirtinger-type in-
equality proves that a homotopy of holomorphic maps must restrict
to every curve in Mg as an algebraic deformation. Using a crite-
rion of Saito, a rigid curve C is then proved to exist, providing the
needed point (any point of C).

I conjectured in [Fa] that such a result should hold for the Prym con-
struction. This conjecture was recently proven by C. Servan in [Ser].

Theorem 4.4 (Uniqueness of the Prym construction). Let g ≥ 4 and
let 1 ≤ h ≤ g − 1. Let F : Rg → Ah be any nonconstant holomorphic map
of complex orbifolds. Then h = g − 1 and F = Prym.

In order to prove the topological rigidity part of Theorem 4.4, Servan
classifies all homomorphisms

StabMod(Sg)(θ) → Sp(2h,Z),

where 0 �= θ ∈ H1(Sg;Z/2Z) and StabMod(Sg)(θ) is the stabilizer of θ of
the natural action of Mod(Sg) on H1(Sg;Z/2Z). To do this he classifies all
homomorphisms

StabMod(S2g−1)(σ) → Sp(2h,Z)

where σ denotes the deck transformation of the cover p : Y → X.
This and many other such questions provide interesting problems in

group theory and low-dimensional topology.
Extending all of the above, it is natural to ask for ways to attach one

curve to another, or a principally polarized abelian variety (of arbitrary
dimension) to a curve. One obvious construction of this is the following: fix
an unramified, characteristic cover p : Sh → Sg of surfaces. Any complex
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structure on Sg can be pulled back via p to a complex structure on Sh, thus
inducing a holomorphic map

p∗ : Mg → Mh

and hence a holomorphic map ψ : Mg → Ah given by ψ : J◦p∗. We call such
maps covering constructions. Note that we needed to choose a characteristic
cover so as not to make any choices, thus giving a map with domain Mg,
as opposed to (for example) the moduli space Rg of Pryms. C. McMullen
asked me the following:

Question 4.5 (Curves from curves). Do all nonconstant holomorphic
maps Mg → Mh and Mg → Ah come from covering constructions?

The smallest characteristic cover of Sg is probably (it would be good
to check this) the mod 2 homology cover of Sg; in this case h = 22g − 1.
In particular, if the answer to Question 4.5 is “yes”, any holomorphic map
Mg → Mh with h < 22g − 1 should be constant. The best known result in
this direction is due to Antonakoudis-Aramayona-Souto [AAS], who proved
this statement for h ≤ 2g − 2.

One can do a similar construction, and ask a similar question as Ques-
tion 4.5, for branched covers, in which case one must consider moduli spaces
of pointed curves.

4.2. Other period mappings and superrigidity. Many period map-
pings take values in other finite volume quotients of bounded symmetric
domains.

Example 4.6 (The period mapping for smooth quartic surfaces). Let
X ⊂ P3 be a smooth quartic surface. The Hodge decomposition of the
primitive cohomology of any such X is

(4.1) H2(X;C)prim = H0,2(X)⊕H1,1(X)prim ⊕H2,0(X) ∼= C⊕ C19 ⊕ C

and the intersection form QX on H2(X;C)prim has signature (2, 19). It fol-
lows that the Hodge decomposition (4.1) is determined by the line H2,0(X)
in H2(X;C)prim; that is, by a point in the projectivization P(H2(X;C)prim) ∼=
P20. The period mapping takes values in the quotient of the bounded sym-
metric domain

{[ω] ∈ P20 : Q(ω, ω) = 0 and Q(ω, ω̄) > 0} ∼= SO(2, 19)0/SO(2)× SO(19)

by the cofinite volume arithmetic lattice Aut(H2(X;C)prim∩H2(X;Z), QX),
which is a locally symmetric quasiprojective variety which we will denote by
M2,19. The period map is thus a morphism

Ψ : C4,3 → M2,19

where C4,3 is the parameter space of smooth quartic surfaces X ⊂ P3.
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More generally, the target of a general period mapping is a complex
manifold N that is a fiber bundle C → N → M where C is a compact
homogeneous space and M is a finite volume locally symmetric (but not
necessarily Hermitian!) locally symmetric variety. Period mappings are con-
structed from Hodge-theoretic data, which is linear, preserving either a sym-
metric bilinear form on a lattice or a symplectic form (we have seen above
examples of each). In either case the targets of period mappings are compact
homogeneous space bundles over finite volume, locally symmetric varieties.
These are called period domains.8

It is natural to ask if there are other, Hodge-theoretic or not, linear data
to attach to families of varieties.

Question 4.7 (Uniqueness of period mappings). Let M be a moduli
space of smooth varieties. Is the standard period mapping on M unique?
More precisely, what are the nonconstant holomorphic maps (resp. nontrivial
homotopy classes of continuous maps) M → N where N is a period domain?

It seems to me that Question 4.7 is closely related to various rigidity
theorems for lattices in real semisimple Lie groups; in particular it can be
viewed as a generalization of Margulis’s superrigidity theorem. Superrigid-
ity states that if Γ is an irreducible lattice in a real semisimple Lie group
G with finite center, no compact factors and rankR(G) ≥ 2, then any linear
representation of G is either precompact or virtually extends to an algebraic
representation of G. Note that locally symmetric spaces are precisely prod-
ucts of compact symmetric spaces, flat tori, and spaces Γ\G/K, where G is
a semisimple Lie group with no compact factors, K is a maximal compact
subgroup of G, and Γ is a lattice in G (that is, a cofinite volume discrete
subgroup).

I think it would be interesting and useful to interpret superrigidity as
a kind of algebro-geometric rigidity. For example, the answer to the ques-
tion: “what are the ways of attaching one PPAV to another (perhaps of a
different dimension)?” can be worked out by applying superrigidity9 to ho-
momorphisms Sp(2g,Z) → Sp(2h,Z)? One can (and should) extend this to
level structures as well.

As another example, recall that the Kummer construction takes as input
an abelian surface A = C2/Λ ∈ A2, blows up A at its sixteen 2-torsion
points, and takes the quotient of the blowup by the involution induced by
(z, w) �→ (−z,−w), giving a K3 surface Kum(A). The map A �→ Kum(A)
induces a holomorphic map of moduli spaces

Kum : A2 → M2,19

where M2,19 is the locally symmetric variety defined above. I believe that
one can prove that the Kummer construction is unique among many possible

8Sometimes this term is reserved for their universal covers.
9Actually, for this case superrigidity is due to Bass-Milnor-Serre.
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constructions. As a first step to proving this, one can check that superrigidity
and some representation theory imply that any representation

ρ : πorb
1 (A2) ∼= Sp(4,Z) → SO(2, 19)(R)0

is (conjugate to) the standard one, induced by Kum.

5. Constructive maps via enumerative geometry

Various classical constructions from enumerative algebraic geometry can
be viewed as highly nontrivial - sometimes surprising - morphisms of moduli
spaces. One can then try to characterize these morphisms in various ways.
We state here only one example, and encourage the reader to find others.

Recall the notation above that Cd,N is the parameter space of smooth,
degree d hypersurfaces in Pn. Denote by G(k, n) ∼= Gr(k + 1, n + 1) the
Grassmannian of projective k-planes in Pn.

The Cayley-Salmon Theorem states that every smooth cubic surface
X ⊂ P3 contains 27 distinct lines. The theory behind this implies that the
map

(5.1) Ψ : C3,3 → UConf27(G(1, 3))

is a morphism of quasiprojective varieties. Similarly, every smooth quartic
curve C ⊂ P2 has exactly 28 bitangents; that is, lines in P2 tangent to C with
total multiplicity 4 (i.e. in two points of multiplicity 2 or one of multiplicity
4). This gives a morphism of quasiprojective varieties

(5.2) Φ : C4,2 → UConf28(G(1, 2)).

These seem like really interesting maps. Since any two cubic surfaces
in P3 intersect in a curve of degree at least 9 by Bezout, it follows that
the unordered set of 27 lines determines the cubic surface; that is, that
Ψ is injective. A similar argument shows that Φ is injective. The guiding
principles suggest that there are no other ways to attach configurations of
any other number of lines to every smooth cubic surface, or to quartic curves.
One might try to take all lines connecting all possible intersections of the
27 lines, but this won’t work since this number can vary over C3,3 (cf. the
existence of Eckhardt points, mentioned above). There is a similar problem
for the bitangents.

Conjecture 5.1 (Uniqueness Conjecture). Let r, s ≥ 1. Let F : C3,3 →
UConfr(G(1, 3)) and G : C4,2 → UConfs(G(1, 2)) be any continuous maps.

(1) F is homotopically trivial unless r = 27 and F is homotopic to the
map Ψ in (5.1). If F is nonconstant holomorphic then r = 27 and
F = Ψ.

(2) G is homotopically trivial unless s = 28 and G is homotopic to the
map Φ in (5.2). If G is nonconstant holomorphic then s = 28 and
G = Φ.
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