
Surveys in Differential Geometry XXV

Volumes of quasifuchsian manifolds

Jean-Marc Schlenker

Abstract. Quasifuchsian hyperbolic manifolds, or more generally con-
vex co-compact hyperbolic manifolds, have infinite volume, but they
have a well-defined “renormalized” volume. We outline some relations
between this renormalized volume and the volume, or more precisely
the “dual volume”, of the convex core. On one hand, there are striking
similarities between them, for instance in their variational formulas. On
the other, objects related to them tend to be within a bounded dis-
tance. These analogies and proximities lead to several questions. Both
the renormalized volume and the dual volume can be used for instance
to bound the volume of the convex core in terms of the Weil-Petersson
distance between the conformal metrics at infinity.
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1. Two relations between surfaces and quasifuchsian manifolds
1.1. The Teichmüller and Fricke-Klein spaces of a surface. Con-

sider a closed oriented surface S of genus at least 2, and let M = S × R.
One can then define TS , the Teichmüller space of S, as the space of complex
structures on S considered up to diffeomorphisms isotopic to the identity. It
is also interesting to introduce FS , the Fricke space of S, defined as the space
of hyperbolic structures on S considered up to diffeomorphisms isotopic to
the identity.

The Poincaré-Riemann uniformization theorem provides a diffeomor-
phism PS between TS and FS , but keeping different notations might be
preferable here. The geometry of these spaces develops along related but
distinct lines. For instance, the cotangent space T ∗

c TS at a complex struc-
ture c ∈ TS is classically identifed with the space of holomorphic quadratic
differentials on (S, c) and the tangent bundle TcTS with the space of har-
monic Beltrami differentials on (S, c) (see e.g. [1]), while the cotangent space
T ∗
hFS at a hyperbolic metric h can be identified with the space of measured

geodesic laminations on (S, h), and the tangent space ThFS is identified with
the space of traceless Codazzi 2-tensors on (S, h), see Section 2.1.

The Teichmüller space TS of S can be equipped with a Riemannian
metric, the Weil-Petersson metric gWP . It is simpler to define it on the
cotangent space. Given two holomorphic quadratic differentials q, q′ ∈ T ∗

c TS
at a complex structure c, their scalar product is defined as:

gWP (q, q
′) =

∫
S

qq′

h
,

where h = PS(c) is the hyperbolic metric uniformizing c. Here the quo-
tient qq′/h makes sense as an area form on S, as can be seen using a
local coordinate z: if q = fdz2 and q′ = f ′dz2, and if h = ρ|dz|2, then
qq′/h = (ff ′/ρ)|dz|2. This scalar product on cotangent vectors defines an
identification between the cotangent space T ∗

c TS and the tangent space TcTS ,
a scalar product on the tangent space TcTS , and therefore a Riemannian
metric on TS . The Weil-Petersson Riemannian metric is known to be Kähler
[76, 2] and to have negative sectional curvature [3]. It is incomplete, but
geodesically convex [81, 82].

On the side of the Fricke space, a closely related analog of the Weil-
Petersson metric was defined by Fischer and Tromba [28]. Let h ∈ FS be
a hyperbolic metric, and let [k1], [k2] ∈ ThFS be the tangent vector fields
defined by two traceless, Codazzi symmetric 2-tensors on (S, h). The Fischer-
Tromba metric is defined as:

gFT ([k1], [k2]) =
1

8

∫
S
〈k1, k2〉hdah .

This metric then corresponds to the Weil-Petersson metric, see [28]:

gWP = P∗
SgFT .
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1.2. 3-dimensional hyperbolic structures. There are deep relations
between the geometry of TS (resp. FS) and hyperbolic structures on 3-
dimensional manifolds. These relations develop differently for TS and for
FS and remain partly conjectural. Our main goal here is to describe the
analogies between these relations. We focus here on quasifuchsian manifolds,
and will only briefly mention the extension to convex co-compact hyperbolic
manifolds. To simplify notations, we set M = S × R. Then the boundary
∂M of (M, g) can be identified canonically to S ∪ S̄, where S̄ is S with
the opposite orientation, so that T∂M = TS × TS̄ . Both TS and TS̄ can be
identified with the space of conformal metrics on S, and we will often identify
TS with TS̄ in this manner.

Definition 1.1. A quasifuchsian structure on M is a complete hyper-
bolic metric g on M such that (M, g) contains a non-empty compact geodesi-
cally convex subset. We denote by QFS the space of quasifuchsian hyperbolic
structures on M , considered up to isotopies.

The relation between quasifuchsian hyperbolic manifolds and the Teich-
müller space of S rests on the Bers Double Uniformization Theorem, see
[6].

Theorem 1.2 (Bers). Given a quasifuchsian structure g ∈ QFS, the
asymptotic boundary ∂∞M of (M, g) is equipped with a complex structure
c = (c+, c−), and each such c ∈ T∂M is obtained from a unique g ∈ QFS.

We are also interested in the relation between quasifuchsian manifolds
and the Fricke space FS . This relation can be understood through a con-
jectural statement, due to Thurston, which is analogous to the Bers Double
Uniformization Theorem.

1.3. The convex core of quasifuchsian manifolds. By definition, a
quasifuchsian hyperbolic manifold contains a non-empty, compact, geodesi-
cally convex subset. Since the intersection of two non-empty geodesically
convex subsets is geodesically convex, any quasifuchsian manifold (M, g)
contains a unique smallest non-empty geodesically convex subset, which is
compact. It is called the convex core of (M, g), and will be denoted here by
C(M).

There is a rather special case where C(M) is a totally geodesic surface
in (M, g) — in that case, (M, g) is a Fuchsian manifold. In all other cases,
C(M) has non-empty interior, and its boundary is the disjoint union of two
surfaces homeomorphic to S, denoted here by ∂+C(M) and ∂−C(M).

Thurston [71] noted that since C(M) is a minimal convex set, its bound-
ary has no extreme point, so ∂+C(M) and ∂−C(M) are convex pleated sur-
faces. Their induced metrics are hyperbolic (i.e. of constant curvature −1),
and this defines two points m+,m− ∈ FS .

Conjecture 1.3 (Thurston). For all (m+,m−) ∈ FS ×FS, there exists
a unique g ∈ QFS such that the induced metrics on ∂+C(M) and ∂−C(M)
are m+ and m−, respectively.
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The existence part of this statement is known since work of Labourie
[48], Epstein and Marden [25] and Sullivan [67].

Conjecture 1.3 is of course analogous to the Bers Simultaneous Uni-
formization Theorem, when one replaces the complex structure (or confor-
mal metric) at infinity by the induced metric on the boundary of the convex
core. One main goal here is to extend this analogy. The other goal is to ex-
tend the comparisons between objects associated to the Teichmüller theory
of S, read at infinity, and objects associated to the Fricke space of S, read
from the boundary of the convex core. For the conformal metric at infinity
and induced metric on the boundary of the convex core, the following result
provides a bound on the distance between the two.

Theorem 1.4 (Sullivan, Epstein-Marden). There exists a universal con-
stant K such that m± are K-quasiconformal to c±, respectively.

The constant K was long conjectured to be equal to 2, but is actually
larger than 2.1, see [26].

1.4. The measured bending lamination of the boundary of the
convex core. To understand the definition of “dual volume” that plays a
central role below, we need another important notion: the bending measured
lamination on the boundary of the convex core. This is the quantity that
records in what manner the boundary of the convex core is “pleated” in
M . It is a transverse measure on a geodesic lamination on ∂C(M). A short
description of some of its main properties, and of the main properties of
measured laminations more generally, can be found in Section 2.4.

1.5. Volumes of quasifuchsian manifolds. Quasifuchsian hyperbolic
manifolds have infinite volume. However, techniques originating from physics
make it possible to define a renormalized volume, see Section 3. This renor-
malized volume is closely related to the Liouville functional, see e.g. [69, 68,
70, 44]. It determines a function VR : QFS → R which can also be consid-
ered, through the Bers Simultaneous Uniformization Theorem, as a function
VR : TS ×TS̄ → R. When c− ∈ TS̄ is fixed, the function VR(·, c−) : TS → R is
a Kähler potential for the Weil-Petersson metric on TS , a fact that we will
not develop here. (A proof can be found in [45, Section 9].)

The convex core C(M), on the other hand, has a well-defined volume,
and this defines a function VC : QFS → R>0, the volume of the convex core.
It should be clear from the considerations that follow, however, that VC is
not the “right” analog of the renormalized volume, and we rather consider
the dual volume.

Definition 1.5. The dual volume of the convex core of a quasifuchsian
manifold (M, g) is

V ∗
C(M) = VC(M)− 1

2
Lm(l) ,

where m is the induced metric on the boundary of the convex core, and l is
it’s measured bending lamination.
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The dual volume can be defined for a more general geodesically convex
subset K ⊂ M . For a convex subset with smooth boundary, it is defined as

V ∗(K) = V (K)− 1

2

∫
∂K

Hda ,

where H is the mean curvature of ∂K (defined as the sum of its principal
curvatures) and da is the area form of the induced metric on the boundary
of K.

The reason for the term “dual volume” is that, if P is a convex poly-
hedron in H

3 and its “dual volume” V ∗ is defined in the same manner as
V ∗ = V −

∑
e Leθe, where the sum is over the edges and Le (resp. θe) is

the length (resp. exterior dihedral angle) of edge e, then V ∗ is equal to the
volume, suitably defined, of the dual polyhedron in the de Sitter space, see
[36]. For quasifuchsian manifolds, a similar interpretation is possible, but
only in a relative manner. A quasifuchsian manifold has a de Sitter coun-
terpart M∗, which is a pair of globally hyperbolic de Sitter manifolds M∗

+,
M∗

−, see [54, 5]. Any convex compact subset K ⊂ M has a pair of dual
convex subsets K∗

+ ⊂ M∗
+, K∗

− ⊂ M∗
−. If K and K̄ are two subsets of M

with K ⊂ K̄, then K̄∗ ⊂ K∗, and V ∗(K̄)−V ∗(K) = V (K∗ \K̄∗). We do not
delve more onto this topic and refer the interested reader to [51] for details.

1.6. The dual Bonahon-Schläfli formula. The classical Schläfli for-
mula [55] expresses the first-order variation of the volume of a hyperbolic
polyhedron P ⊂ H

3 in terms of the variation of its exterior dihedral angles
as follows:

Ṗ =
1

2

∑
e

l(e)θ̇(e) ,

where the sum is over the edges of P , l(e) is the length and θ(e) the exterior
dihedral angle of edge e.

Bonahon [9, 8] extended this classical formula to the convex cores of
quasifuchsian (or more generally convex co-compact) hyperbolic manifolds.
In a first-order deformation of a quasifuchsian manifold (M, g), correspond-
ing say to a first-order variation of the holonomy representation,

(1) V̇ =
1

2
Lm(l̇) .

Bonahon showed that l̇, the first-order variation of l, makes senses as a
Hölder cocycle, and has a well-defined length, so that (1) makes sense.

The dual Bonahon-Schläfli formula is the analog of the Bonahon-Schläfli
variational formula for the dual volume (see [46]). It is a direct consequence
of (1):

(2) V̇ ∗
C = −1

2
(dL(l))(ṁ) .

Note however that the interpretation of (2) is much simpler than that of
(1), since now the right-hand term is simply the differential of an analytic
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function — the length of l — applied to a tangent vector to F∂C(M). We will
see below that Equation (2) is closely analogous to the variational formula
for the renormalized volume. Before stating this formula, we need to better
understand the geometric data at infinity of quasifuchsian manifolds.

1.7. The holomorphic quadratic differential at infinity. We now
introduce what we believe to be a natural analog at infinity of the measured
lamination on the boundary of the convex core. This is a measured lamina-
tion, defined as follows. Given a quasifuchsian structure g ∈ QFS on M , we
have seen that the asymptotic boundary ∂∞M is the disjoint union of two
disjoint Riemann surfaces (S, c+) and (S̄, c−). In fact, each of those surfaces
is equiped not only with a complex structure c±, but also with a complex
projective structure σ±, see Section 2.8.

The Schwarzian derivative (see Section 2.3) provides the tool to compare
σ± to σF (c±), the Fuchsian complex projective structure associated to c±.
This yields a holomorphic quadratic differential q± on (S, c+) and (S̄, c−),
or in other terms a holomorphic quadratic differential q on ∂∞M , which we
call the holomorphic quadratic differential at infinity.

1.8. A first variational formula for the renormalized volume.
The renormalized volume also satisfies a simple variational formula, see Sec-
tion 3.6.
(3) V̇R = Re(〈q, ċ〉) ,
where q is considered as a vector in the complexified cotangent space to TS
at c, and 〈·, ·〉 is the duality bracket.

We will see below that this first variational formula can be formulated in
a way that makes it similar to (2), using the extremal length of a measured
foliation at infinity instead of the hyperbolic length of a measured lamination
on the boundary of the convex core.

1.9. The measured foliation at infinity and Schläfli formula at
infinity. A holomorphic quadratic differential q on a Riemann surface (S, c)
determines canonically two measured foliations, the horizontal and vertical
foliations. The leaves of the horizontal (resp. vertical) foliation are the inte-
gral curves of the vector fields u such that q(u, u) ∈ R>0 (resp. ∈ R<0), see
[27].

Definition 1.6. The measured foliation at infinity of M , denoted by f ∈
MF∂M , is the horizontal foliation of the holomorphic quadratic differential
q of M .

1.10. The Schläfli formula for the renormalized volume. There is
a simple variational formula for the renormalized volume, in terms of q and
of the variation of the conformal structure at infinity, Equation (3). Here
we write this variational formula in another way, involving the measured
foliation at infinity. Instead of the hyperbolic length of the measured bending
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lamination, as for the dual volume, this formula involves the extremal length
of the measured foliation at infinity.

Recall that given a Riemann surface (S, c) and a simple closed curve γ
on S, the extremal length ext(γ) of γ can be defined as the supremum of
the inverses of the conformal moduli of annuli embedded in S with meridian
isotopic to γ.

Theorem 1.7. In a first-order variation of M , we have

(4) V̇R = −1

2
(dext(f))(ċ) .

Here ext(f) is considered as a function over the Teichmüller space of the
boundary T∂M . The right-hand side is the differential of this function, eval-
uated on the first-order variation of the complex structure on the boundary.

1.11. Comparing and relating the two viewpoints. Theorem 1.7,
and the analogy between (2) and (4), suggests an analogy between the prop-
erties of quasifuchsian manifolds considered from the boundary of the convex
core and from the boundary at infinity. For instance, on the boundary of
the convex core, we have the following upper bound on the length of the
bending lamination, see [13, Theorem 2.16].

Theorem 1.8 (Bridgeman, Brock, Bromberg). Lm±(l±) ≤ 6π|χ(S)|.
Similarly, on the boundary at infinity, we have the following result,

proved in Section 4.1.
Theorem 1.9. extc±(f±) ≤ 3π|χ(S)|.

Table 1. Infinity vs the boundary of the convex core

On the convex core At infinity
Induced metric m Conformal structure at infinity c
Thurston’s conjecture on prescrib-
ing m

Bers’ Simultaneous Uniformization
Theorem

Measured bending lamination l measured foliation f
Hyperbolic length of l for m Extremal length of f for c
Volume of the convex core VC Renormalized volume VR

Dual Bonahon-Schläfli formula Theorem 1.7
V̇ ∗
C = −1

2(dL(l))(ṁ) V̇R = −1
2(dext(f))(ċ)

Bound on Lm(l) [12, 13] Theorem 1.9
Lm±(l±) ≤ 6π|χ(S)| extc±(f±) ≤ 3π|χ(S)|
Brock’s upper bound on VC [15] Upper bound on VR [64]

This analogy, briefly described in Table 1, suggests a number of questions
(see Section 7) since it appears that, at least up to a point, results known on
the boundary of the convex core might hold also on the boundary at infinity,
and conversely.
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Another series of questions stems from comparing the data on the bound-
ary of the convex core to the corresponding data on the boundary at infin-
ity. For instance, it was proved by Sullivan that the induced metric on the
boundary of the convex core is uniformly quasi-conformal to the conformal
metric at infinity (see [25, 26]), and one can ask whether similar statements
hold for other quantities. We do not delve much on those questions here, see
Section 7.4 for a question in this direction.

Outline of the content. Section 2 contains background material on a
variety of topics that are considered or used in the paper. The renormalized
volume is defined in Section 3, and its main properties proved. Section 4
contains the proof of the Schläfli-type formula for the renormalized volume,
(4), while section 6 explains how to obtain upper bounds on the volume
of the convex core in terms of boundary data, using either the dual or the
renormalized volume. It then outlines some applications, in particular results
of Brock and Bromberg [16] on the systoles of the Weil-Petersson metric on
moduli space and of Kojima and McShane [41] on the comparison between
the entropy of a pseudo-Anosov diffeomorphism and the hyperbolic volume
of its mapping torus. Finally Section 7 presents some open questions.

Acknowledgement. The author is grateful to Keaton Quinn for care-
fully reading a previous version of this text and noticing numerous typos
and inconsistencies, and to an anonymous referee for numerous additional
remarks and corrections leading to a clear improvement in the presentation.

2. Background material
This section contains a short description of some of the background

material used in the paper, aiming at providing references for readers who
are not familiar with certain topics.

2.1. The Fischer-Tromba metric. Let h be a hyperbolic metric on
S. The tangent space ThFS to the Fricke space of S can be identified with
the space of symmetric 2-tensors on S that are traceless and satisfy the Co-
dazzi equation for h, see [28]. (In other terms, the real parts of holomorphic
quadratic differentials in Qc, if c is the complex structure compatible with
h on S.)

Let k, l be two such tensors and let [k], [l] be the corresponding vectors
in ThF . Then the Weil-Petersson metric between [k] and [l] can be expressed
as

〈[k], [l]〉WP =
1

8

∫
S
〈k, l〉hdah .

The right-hand side of this equation is sometimes called the Fischer-Tromba
metric on FS . It is proved in [28] that this metrics corresponds to the Weil-
Petersson metric on TS , through the identification of TS with FS by the
Poincaré-Riemann Uniformization Theorem.
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We can also relate the scalar product on symmetric 2-tensors to the
natural bracket between holomorphic quadratic differentials and Beltrami
differentials as follows.

Lemma 2.1. Let X be a closed Riemann surface, and let h be the hy-
perbolic metric compatible with its complex structure. Let ḣ be a first-order
deformation of h, and let μ be the corresponding Beltrami differential. Then
for any holomorphic quadratic differential q on X,∫

X
〈Re(q), h′〉hdah = 4Re

(∫
X
qμ

)
.

2.2. Complex projective structures on a surface. A complex pro-
jective structure (also called CP 1-structure) is a (G,X)-structure (see [71,
29]), where X = CP 1 and G = PSL(2,C). Such a structure can be de-
fined by an atlas of charts with values in CP 1, with change of coordinates
in PSL(2,C). We denote by CPS the space of CP 1-structures on S.

The space CPS of complex projective structures can be identified with
either T ∗TS or T ∗FS , itself identified with FS × MLS . We describe those
two identifications below. The first uses the Schwarzian derivative, while the
second is through the grafting map.

2.3. The Schwarzian derivative. Let Ω ⊂ C be an open subset, and
let f : Ω → C be holomorphic. The Schwarzian derivative of f is a mero-
morphic quadratic differential defined as

S(f) =
((

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
)
dz2 .

It has two remarkable properties that both follow from lengthy but direct
computations based on the definition.

(1) S(f) = 0 if and only if f is a Möbius transformation,
(2) if g : Ω′ → C is holomorphic and f(Ω) ⊂ Ω′ then S(g ◦ f) =

f∗S(g) + S(f).
It follows from those two properties that the Schwarzian derivative is defined
for any holomorphic map from a surface equipped with a complex projec-
tive structure to another: given such a map, its Schwarzian derivative can
be computed with respect to a coordinate chart in the domain and target
surfaces, and properties (1) and (2) indicate that it actually does not depend
on the choice of charts.

There are several nice geometric interpretations of the Schwarzian de-
rivative that can be found in [72], [23] or in [21].

Given a complex structure c ∈ TS on S, there is by the Poincaré-Riemann
Uniformization Theorem a unique hyperbolic metric hc on S compatible with
c. Any hyperbolic metric has an underlying complex projective structure on
S, because the hyperbolic plane can be identified with a disk in CP 1, on
which hyperbolic isometries act by elements of PSL(2,C) fixing the bound-
ary circle. We denote by σF (c) the underlying complex projective structure
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of the hyperbolic metric hc, and call it the Fuchsian complex projective
structure of c.

Let σ ∈ CPS , and let c ∈ TS be the underlying complex structure. There
is a unique map φ : (S, σ) → (S, σF (c)) holomorphic for the underlying com-
plex structure and isotopic to the identity. Let q(σ) = S(φ) be its Schwarzian
derivative. This construction defines a map Q : CPS → T ∗TS , sending σ to
(c, q(σ)).

The holomorphic quadratic differential q(σ) can be considered as a cotan-
gent vector to TS at c, so that Q can be defined as a map from CPS to T ∗TS .

The map Q is known to be a homeomorphism, see [22].

2.4. The measured bending lamination on ∂C(M). Although the
induced metric on the boundary of the convex core is hyperbolic, the bound-
ary surface is not (except in the Fuchsian case) totally geodesic. Rather, it
is “pleated” along a locus which is a disjoint union of complete geodesics.

The simplest situation is when this pleating locus is a simple closed
geodesic, or a disjoint union of such geodesics. The amount of pleating is
then measured by an angle, analogous to the exterior dihedral angle at
the edge of a hyperbolic polyhedron. It is quite natural then to describe
the pleating as a transverse measure along the pleating locus: any segment
transverse to the pleating locus has a weight, which is simply the sum of the
pleating angles along the connected component of the pleating locus that it
intersects, and this weight is constant when the segment is deformed while
remaining transverse to the pleating locus. There is then a natural notion
of “length” of this measured pleating lamination: it is simply the sum of
products of the length of the connected component of the pleating locus by
their pleating angle.

However, the pleating locus is generally much more complicated: it is a
geodesic lamination, that is, disjoint union of simple geodesics which might
be non-closed. This geodesic lamination is also equipped with a transverse
measure quantifying the amount of pleating. The pleating of the surface is
therefore described by a measured geodesic lamination.

We refer the reader to [10] for a nice introduction to geodesic laminations
on hyperbolic surfaces. Here are a few key points.

• As for closed curves, the notion of measured lamination can be con-
sidered on a surface without reference to a hyperbolic metric. Given
a measured lamination on S, it has a unique geodesic realization
for each hyperbolic metric h on S. We will denote by MLS the
space of measured laminations on S.

• MLS can be defined as the completion of the space of weighted
simple closed curves (or multicurves) on S for a natural topology
defined by intersection with closed curves.

• The projectivization PMLS of MLS provides a compactification
of FS , called the Thurston boundary, see e.g. [71, 27].
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• On a hyperbolic surface (S, h), measured laminations have a well-
defined length, defined by continuity from the length of weighted
simple closed curves. (The length of a weighted closed curve is the
product of the weight by the length of the geodesic representative
of the curve.) We will denote by Lh(l) the length of a measured
lamination l with respect to a hyperbolic metric h on S.

• For each l ∈ MLS , the length function L·(l) : FS → R≥0 is analytic
over FS (see [40]). At each hyperbolic metric h ∈ FS , the differen-
tial of the length function, l 
→ dhL·(l), provide a homeomorphism
from MLS to T ∗

hFS , so that T ∗FS can be identified globally with
FS ×MLS .

2.5. The grafting map. We now turn to the description of complex
projective structures on a surface in terms of hyperbolic metrics and mea-
sured laminations.

Consider first the simple situation where the measured bending lamina-
tion on ∂+C(M) is supported on a disjoint union of simple closed curves.
The upper boundary at infinity ∂+M of M can then be decomposed as the
union of two sub-domains by considering the extension to infinity of the
nearest-point projection from M \C(M) to ∂C(M). The set of points which
project to the complement of the bending locus of ∂+C(M) is projective
equivalent to the complement of a lamination in ∂+C(M) (equipped with
the complex projective structure underlying its induced hyperbolic metric),
while the set of points projecting to the bending lamination of ∂+C(M) is a
disjoint union of annuli, each carrying a standard complex projective struc-
ture depending on two parameters: the length and bending angle at each
closed geodesic in the bending locus.

In this manner, the complex projective structure on ∂+M can be ob-
tained by a well-defined procedure, where ∂+C(M) (equipped with the com-
plex projective structure underlying its induced metric) is cut along the
support of the measured lamination, and a projective annulus is inserted in
each cut. Thurston called grafting the function sending the induced metric
m and measured bending lamination l to the complex projective structure
at infinity σ, and he proved that this function extends to a homeomorphism
gr : FS ×MLS → CPS , see [22, 38].

The grafting map therefore provides an identification of CPS and T ∗FS ,
identified with FS ×MLS .

2.6. The energy of harmonic maps and the Gardiner formula.
The proof of Equation (4) from Equation (3) uses well-known results in-
volving the energy of harmonic maps and length of measured foliations. We
recall those statements in this section and the next.

Given a measured foliation f ∈ MFS , consider its universal cover f̃ ,
which is a measured foliation of S̃. One can then define the dual tree Tf̃ of
the universal cover f̃ , see e.g. [78, 56]. In the simplest case where f has
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closed leaves, the vertices of the dual tree Tf̃ correspond to singular points
of the foliation f̃ , while each leaf of the foliation corresponds to an interior
point of an edge. However for general measured foliations, Tf̃ is a real tree.

Let f ∈ MFS be a measured foliation, and let Tf be its dual real tree.
There is a well-defined notion of harmonic map from a Riemann surface to
a real tree [79], or more generally to a non-positively curved geodesic metric
space, see [32, 42, 43] or [20, Section 2.3.3] for a nice exposition. For each
c ∈ TS , there is a unique equivariant harmonic map u from S̃ to Tf , see
[78], and it has a well-defined notion of Hopf differential, which is still a
holomorphic quadratic differential on (S, c), see [66]1 (or [20, Section 3.1.2]
for an exposition). Let Ef (c) = E(u, c) be its energy, and let Φf be its Hopf
differential. The following remarkable formula can be found in [77, Theorem
1.2].

(5) dEf (ċ) = −4Re(〈Φf , ċ〉) .

Here ċ is considered as a Beltrami differential, and 〈·, ·〉 is the duality product
between Beltrami differentials and holomorphic quadratic differentials.

We use below the same notations, but with S replaced by ∂M .

2.7. Extremal lengths of measured foliations. Let c be a complex
structure on S, and let Q be a holomorphic quadratic differential on (S, c).
Q determines two measured foliations on S, its horizontal and vertical folia-
tions, see [37]. For any non-zero vector v tangent to a leaf of the horizontal
foliation, q(v, v) ∈ R>0, while if v is tangent to a leaf of the vertical folia-
tion, q(v, v) ∈ R<0. It is well known (see e.g. [27]) that, given a measured
foliation f on (S, c), there is a unique holomorphic quadratic differential on
(S, c) with horizontal measured foliation f .

Let f be a measured foliation on S and, for a given c ∈ T , let Q be the
holomorphic quadratic differential on S with horizontal foliation f . We will
use the following relation, see [39].

Lemma 2.2. The extremal length of f at c is the integral over S of Q,

extc(f) =
∫
S
|Q| .

Moreover, Wolf proved that the extremal length of a measured foliation
is directly related to the energy of the harmonic map to its dual tree as
follows.

Theorem 2.3 ([80]). Q = −Φf . Moreover,

Ef (c) = 2

∫
S
|Φf | = 2

∫
S
|Q| = 2extc(f) .

1ref “the effect of curvature...”
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2.8. Quasifuchsian manifolds. We collect here a few basic facts on
quasifuchsian hyperbolic manifolds. Recall that M = S × R, where S is a
closed oriented surface of genus at least 2.

Quasifuchsian structures on M were defined in Definition 1.1, but can
also be defined as quasiconformal deformations of Fuchsian structures. Specif-
ically, given a complete hyperbolic metric g on M , with (M, g) isometric to
H

3/ρ(π1S), (M, g) is quasifuchsian if and only if there exists a Fuchsian
representation ρ0 : π1S → PSL(2,R) and a quasiconformal homeomorphism
φ : CP1 → CP

1 such that the actions of ρ0 and ρ on CP
1 are conjugated by

φ: ρ(γ) = φ−1 ◦ ρ0(γ) ◦ φ for any γ ∈ π1S.
This point of view leads to the following proposition.

Proposition 2.4. Given a quasifuchsian structure g ∈ QFS on M ,
(M, g) is the quotient of H3 by the image of a morphism ρ : π1S → PSL(2,C).
The corresponding action of π1S on CP

1 is properly discontinuous and free
on each connected component of the complement of a Jordan curve Λρ. More-
over, Λρ is a quasicircle, that is, the image of RP1 ⊂ CP

1 by a quasiconformal
homeomorphism from CP

1 to CP
1.

It follows that each connected component of CP
1 \ Λρ corresponds to

a connected component of the boundary at infinity ∂∞M . Since ρ acts on
each by elements of PSL(2,C), each is equipped with a complex projective
structure. We denote by σ the complex projective structure defined in this
manner on ∂∞M , and by σ± the complex projective structure defined on
∂∞,±M , the two connected components of ∂∞M .

3. The renormalized volume of quasifuchsian manifolds
3.1. Outline. The renormalized volume of quasifuchsian manifolds is

at the intersection of two distinct developments in mathematics.
• It is closely related to the Liouville functional in complex analysis,

see [69, 68, 70, 44].
• It can also be considered as the 3-dimensional case of the renor-

malized volume of conformally compact Einstein manifolds, see
[35, 31, 30].

A definition of the renormalized volume of quasifuchsian manifolds can
be found in [45, Def 8.1] or in [64, Section 3]. We recall this definition here
for completeness. It is based on equidistant foliations in the neighborhood
of infinity, on a notion of “W -volume” of geodesically convex subsets of a
quasifuchsian manifold, and on a “renormalized” limit as r → ∞ of the W -
volume of the region between the level r surfaces of a well-chosen equidistant
foliation.

Another equivalent definition uses a conformal description of the metric
and the behavior at 0 of a meromorphic function constructed by integration,
see [33].
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3.2. Equidistant foliations near infinity. We first define equidistant
foliations in the neighborhood of infinity in a quasifuchsian manifold.

Definition 3.1. An equidistant foliation of M near ∂∞,+M (resp.
∂∞,−M) is a foliation of a neighborhood of ∂+,∞M (resp. ∂∞,−M) by locally
convex surfaces, (Sr)r≥r0 , for some r0 > 0, such that, for all r′ > r ≥ r0, Sr′

is between Sr and ∂∞,+M , and at constant distance r′ − r from Sr.
Two equidistant foliations in E will be identified if they coincide in a

neighborhood of infinity. In this case they can differ only by the first value
r0 at which they are defined.

Given an equidistant foliation (Sr)r≥r0 and given r′ > r ≥ 0, there is a
natural identification between Sr and Sr′ , obtained by following the normal
direction from St for all t ∈ [r, r′]. This identification will be implicitly used
below.

Definition 3.2. Let (Sr)r≥r0 be an equidistant foliation of M near
∂∞,+M (resp. ∂∞,−M). The metric at infinity, second and third fundamen-
tal forms at infinity associated to (Sr)r≥r0 are defined by the asymptotic
development:

(6) Ir =
1

2
(e2rI∗ + 2II∗ + e−2rIII∗) ,

where Ir is the induced metric on Sr.
Those symmetric 2-tensors I∗, II∗ and III∗ can naturally be defined on

∂∞,+M (resp. ∂∞,−M). The existence of the asymptotic development follows
from a straightforward computation using the expansion of Ir as a function
of r, see [45]. This direct computation shows that, if S0 exists and is smooth,
then

(7) I∗ =
1

2
(I + 2II + III) , II∗ =

1

2
(I − III) , III∗ =

1

2
(I − 2II + III) ,

where I, II and III are the induced metric and second and third fundamental
forms of S0.

The first part of the following proposition is quite elementary (see e.g.
[45]) while the second part follows from ideas of Epstein [24], see below.

Proposition 3.3. The limit metric I∗ is in the conformal class at in-
finity of M .

Let M be a quasifuchsian manifold, and let h be a Riemannian metric
on ∂∞,+M (resp. ∂∞,−M) in the conformal class at infinity of M . There
is a unique equidistant foliation near ∂∞,+M (resp. ∂∞,−M) such that the
associated metric at infinity I∗ is equal to h.

This equidistant foliation can be defined from a metric at infinity in
terms of the envelope of a family of horospheres, see [24]. We briefly outline
this construction here for completeness. Consider the hyperbolic space H

3

as the universal cover of M . The metric I∗ lifts to a metric on the domain of
discontinuity Ω of M , in the canonical conformal class of ∂∞H

3. Let x ∈ Ω.
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For each y ∈ H
3, the visual metric hy on ∂∞H

3 is conformal to I∗. Let Hx,r

be the set of points y ∈ H
3 such that hy ≥ e2rI∗ at x. A simple computation

shows that Hx,r is a horosphere intersecting ∂∞H
3 at x, and the lift of Sr to

H
3 happens to be equal to the boundary of the union of horoballs bounded

by the Hx,r, for x ∈ Ω.
An alternative approach is provided in [63], in terms of the isometric

embedding of the metric h in the “space of horospheres” of H
3, and of a

duality between this “space of horospheres” and H
3.

3.3. Definition and first variation of the W -volume. Consider a
quasifuchsian manifold M and a geodesically convex subset N of M with
smooth boundary. We first define (in Definition 3.4) a modified volume of N ,
and will then use this modified volume, for a particular choice of a convex
subset of M , to define the renormalized volume of M (Definition 3.11).

Definition 3.4. Let N ⊂ M be a convex subset. We set:

W (N) = V (N)− 1

4

∫
∂N

Hda

where H is the mean curvature of ∂N and da is the area form of its induced
metric.

There is a clear similarity between this W -volume and the dual volume of
convex subsets of M seen above: only the coefficient changes. The W -volume
can thus be considered as the half-sum of the volume and dual volume.

The first variation of this modified volume is computed in [45], using an
earlier variation formula for deformations of Einstein manifolds with bound-
ary [61, 60]. Here we consider a first-order deformation of the hyperbolic
metric on N (that is, we do not only vary N as a convex subset of M but
also allow variations of M), and denote by I ′ and II ′, respectively, the corre-
sponding first-order variations of the induced metric and second fundamental
form on the boundary of N , and denote the derivatives of all quantities with
a prime.

Lemma 3.5. Under a first-order deformation of N ,

(8) W ′ =
1

4

∫
∂N

〈II ′ − H

2
I ′, I〉IdaI .

Proof. It was proved in [61, 60] that in this setting the first-order
variation of the volume is given by:

2V ′ =

∫
∂N

H ′ +
1

2
〈I ′, II〉IdaI .

The first-order variation of the area form of I is equal to

da′I =
1

2
〈I ′, I〉IdaI ,
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and it follows from the definition of W (N) that

W ′ = V ′ − 1

4

(∫
∂N

HdaI

)′
=

∫
∂N

H ′

4
+

1

4
〈I ′, II〉I −

1

8
H〈I ′, I〉IdaI .

However a simple computation shows that

H ′ = (〈II, I〉I)′ = 〈II ′, I〉I − 〈II, I ′〉I ,

and the result follows. �

The scalar product appearing in (8) and in the proof between symmet-
ric bilinear forms is the usual extension to tensors of the Riemannian scalar
product on T∂N defined by the induced metric I: if (ei)i=1,2 is any orthonor-
mal basis for I of Tx∂N , and if k, l are two bilinear symmetric forms on
Tx∂N , then

〈k, l〉I =
∑

i,j=1,2

k(ei, ej)l(ei, ej)

at x, and the result does not depend on the choice of (ei)i=1,2.

Corollary 3.6. Under the same hypothesis as for Lemma 3.5, we have

(9) W ′ =
1

4

∫
∂N

H ′ + 〈II0, I ′〉IdaI ,

where II0 = II − H
2 I is the traceless part of II.

The following lemma is a direct consequence of Lemma 3.5.

Lemma 3.7. Let r ≥ 0, and let Nr be the set of points of M at distance
at most r from N . Then W (Nr) = W (N)− πrχ(∂M).

Proof. For s ∈ [0, r], we denote by Ns the set of points of M at distance
at most s from N , and let w(s) = W (Ns). We also denote by Is, IIs, IIIs and
Bs the induced metric, second and third fundamental forms and the shape
operator of ∂Ns.

According to standard differential geometry formulas, the derivatives of
Is and IIs are given by:

I ′s = 2IIs , II ′s = IIIs + Is .

Lemma 3.5 therefore shows that:

W (Ns)
′ =

1

4

∫
∂Ns

〈IIIs + Is −HsIIs, Is〉das =
1

4

∫
∂Ns

tr(B2
s ) + 2−H2

s das =

=
1

4

∫
∂Ns

2− 2 det(Bs)das =
1

2

∫
∂Ns

−Kdas = −πχ(∂N) . �
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3.4. First variation of the W -volume from infinity. We have seen
above that given a geodesically convex subset N ⊂ M , we have:

• the induced metric I and second fundamental form II on ∂N , as
well as the shape operator B defined by the condition that II =
I(B·, ·) = I(·, B·),

• the induced metric I∗ and second fundamental form II∗ at infinity,
as well as the corresponding “shape operator” B∗, defined by II∗ =
I∗(B∗·, ·) = I∗(·, B∗·).

There is a simple expression of I∗ and II∗ from I and II, and conversely,
see (7). One can therefore express the first variation of W in terms of the
“data at infinity” I∗ and II∗. A key fact, obtained through a lengthy and
not very illuminating computation (see [45, Lemma 6.1]) is that Equation
(8) remains almost identical when expressed in this manner.

Lemma 3.8. Under a first-order deformation of N ,

(10) W ′ = −1

4

∫
∂M

〈II∗′ − H∗

2
I∗′, I∗〉I∗daI∗ .

Here H∗ = trI∗II∗ is the “shape operator at infinity”.

Corollary 3.9. Under the same hypothesis, we have

(11) W ′ = −1

4

∫
∂N

H∗′ + 〈II∗0 , I∗′〉I∗daI∗ ,

where II∗0 = II∗ − H∗
2 I∗ is the traceless part of II∗ relative to I∗.

3.5. Definition of the renormalized volume. Consider a Riemann-
ian metric h on ∂M in the conformal class at infinity of ∂∞M . There is by
Proposition 3.3 a unique equidistant foliation (Sr)r≥r0 of M near infinity
such that the associated metric at infinity is h.

For r ≥ r1, for a fixed r1 > 0, the surfaces Sr bound a convex subset of
M , so that Definition 3.4 applies.

Definition 3.10. Let h be a metric on ∂∞M , in the conformal class at
infinity. Let (Sr)r≥r0 be the equidistant foliation close to infinity associated
to h. We define W (M,h) := W (Sr) + πrχ(∂M), for any choice of r ≥ r1.

Lemma 3.7 shows that this definition does not depend on the choice of
r ≥ r1. As a consequence of the definition, for any ρ ∈ R, W (M, e2ρh) =
W (M,h)− πρχ(∂M).

We can now give the definition of the renormalized volume of M .

Definition 3.11. The renormalized volume VR of M is defined as equal
to W (h) when the metric at infinity h is the unique metric of constant
curvature −1 in the conformal class of ∂∞M .

Another possible definition is as the maximum of W (M,h) over all met-
rics h in the conformal class at infinity of M , under the condition that



VOLUMES OF QUASIFUCHSIAN MANIFOLDS 337

the area of h is equal to −2πχ(∂M), see [45]. This is actually an interest-
ing statement: the W -volume can be used to simultaneously uniformize the
conformal structures at infinity in the asymptotic boundary components of
M .

3.6. The variational formula (3). Consider now a first-order defor-
mation of M , specified — through the Bers Double Uniformization Theorem
— by a first-order deformation of the conformal structure at infinity, con-
sidered as a point in the Teichmüller space of ∂M .

Proposition 3.12. Under a first-order deformation of the hyperbolic
structure on M ,

(12) dVR = −1

4

∫
∂M

〈II∗0 , I∗′〉I∗daI∗ .

Here 〈, 〉I∗ is the extension to symmetric 2-tensors of the Riemannian
metric I∗ on T∂M . Proposition 3.12 follows by a simple computation from
Equation (11), see [45, Lemma 8.5], using the fact that at infinity H∗ = −K∗

(see [45, Remark 5.4], so that if I∗ has constant curvature then II∗0 satisfies
the Codazzi equation relative to I∗, as II∗ does.

It should be pointed out that Proposition 3.12 has a rather simple trans-
lation in terms of complex analysis. Since II∗0 is Codazzi and traceless, it is
the real part of a holomorphic quadratic differential, which is minus the
Schwarzian derivative q of the uniformization map, see Section 2.3. More-
over, any first-order deformation I∗ of the hyperbolic metric at infinity de-
termines a first-order variation of the underlying complex structure, and
therefore a Beltrami differential μ.

Corollary 3.13. Equation (12) can then be written as:

(13) dVR = −Re (〈q, μ〉) = −
∫
∂M

Re(qμ) ,

where 〈, 〉 is the natural pairing between holomorphic quadratic differentials
and Beltrami differentials.

Proof. The computation needed to go from (12) to (13) is local. We
choose a complex coordinate z = x + iy adapted to I∗, that is, such that
I∗ = dx2 + dy2 at z = 0. Let μ = (μ0 + iμ1)

dz̄
dz , and q = (q0 + iq1)dz

2. A key
point is that II∗0 = Re(q), see [45, Appendix A] (note that the sign here is
different because of a different convention in the definition of q). Therefore

II∗0 = Re(q) = (q0(dx
2 − dy2)− 2q1dxdy) ,
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while the first-order variation of I∗ is equal to

I∗′ =
d

dt |t=0
|dz(1 + tμ)|2

=
d

dt |t=0
|dz + t(μ0 + iμ1)dz̄|2

= 2Re((μ0 + iμ1)dz̄
2)

= 2(μ0(dx
2 − dy2) + 2μ1dxdy) .

As a consequence,
〈II∗0 , I∗′〉I∗ = 〈(q0(dx2 − dy2)− 2q1dxdy), 2(μ0(dx

2 − dy2) + 2μ1dxdy)〉I∗
= 4(μ0q0 − μ1q1) ,

so that
〈II∗0 , I∗〉I∗daI∗ = 4Re(qμ) .

The result follows by integrating this equality. �
3.7. Further properties. The renormalized volume VR has other prop-

erties which can be very interesting, but will not be considered here because
they do not (yet) have any analog on the dual volume side. One key property
is that when c− is fixed, the function VR(·, c−) : T∂+M → R is a Kähler po-
tential for the Weil-Petersson metric on T∂+M . This is proved in [45, Section
8] following ideas from [53].

Another point is that the renormalized volume or closely related quan-
tities are generating functions that can be used to identify symplectic struc-
tures with very different definitions on the space of quasifuchsian manifolds
[49], or to show that certain maps are symplectic (eg [62], or [46] for the
grafting map).

Finally, we already noted that the renormalized volume was originally
defined in higher dimensions, in the setting of conformally compact Einstein
manifolds [35, 31, 30]. In this setting, some (but not all, so far) of the
properties present in 3 dimensions extend nicely, see [34].

4. The extremal length and the measured foliation at infinity
4.1. The measured foliation at infinity. We now focus on the bound-

ary at infinity of quasifuchsian manifolds, and introduce a measured foliation
which can be thought of as an analog at infinity of the measured bending
lamination on the boundary of the convex core.

Definition 4.1. The measured foliation at infinity is the horizontal
measured foliation of q, the Schwarzian derivative of the uniformization map
at infinity. We denote it by f .

Proof of Theorem 1.9. According to Lemma 2.2, the extremal length
extc±f± is the integral over ∂∞,±M of |q|. By the Nehari estimate (Theorem
5.3), |q| ≤ 3dah±/2, where dah± is the area form of the hyperbolic metric
h± compatible with c±. The result follows. �
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We now consider one connected component of the ideal boundary of
M , say ∂∞,+M , equipped with its canonical conformal structure. Recall
from Section 2.6 that Tf is the real tree dual to the universal cover of the
measured foliation f , and that Φf is the Hopf differential of the unique
equivariant harmonic map from the universal cover of ∂∞,+M , equipped with
this conformal structure, to Tf . The same construction works for ∂∞,−M .

It follows from Theorem 2.3 that Φf = −q.
The following lemma relates the renormalized volume to the measured

foliation at infinity.

Lemma 4.2. Let c ∈ T∂M , and let F ∈ MF∂M . Then F is the measured
foliation at infinity of the quasifuchsian hyperbolic metric determined by c
if and only if the function ΨF defined as

ΨF = VR − 1

4
EF : T∂M → R

is critical at c.

Proof. Suppose first that F is the horizontal measured foliation of q,
the holomorphic quadratic differential at infinity of the quasifuchsian man-
ifold M(c).

It follows from (5) and (13) that, in a first-order variation ċ,

dΨF (ċ) = dVR(ċ)−
1

4
dEF (ċ) = Re(〈q +ΦF , ċ〉) .

But it follows from Theorem 2.3 that q = −ΦF , and it follows that dΨF = 0.
Conversely, if dΨF = 0, the same argument as above shows that q =

−ΦF , so that F is the horizontal measured foliation of q. �

4.2. Proof of Theorem 1.7. According to Equation (13), in a first-
order deformation of M ,

V̇R = −Re(〈q, ċ〉) ,

and using Theorem 2.3 we obtain that

V̇R = Re(〈Φf , ċ〉) .

Using (5), this can be written as

V̇R = −1

4
dEf (ċ) .

Using Theorem 2.3 again, we finally find that

V̇R = −1

2
(dext(f))(ċ) .
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5. Comparisons
5.1. Outline. Some applications of the renormalized volume follow from

the following related facts, each having its own independent proof.
(1) The dual volume of the convex core is within a bounded additive

constant (depending only on the genus) from the volume of the
convex core.

(2) The dual volume is within a bounded additive constant (depending
only on the genus) from the renormalized volume.

(3) The renormalized volume is bounded from above by the Weil-
Petersson distance between the conformal metrics c−, c+ on the
connected components of its boundary at infinity (times an explicit
constant).

(4) The dual volume is bounded from above by the Weil-Petersson
distance between the induced metrics m−,m+ on the two boundary
components of the convex core (times an explicit function).

We outline the main arguments — and provide references — for those state-
ments below.

Perhaps surprisingly, the comparison between the renormalized volume
and the volume of the convex core (suitably corrected by a constant times
the length of the measured bending lamination) turns out to be also relevant
for applications to physics, see [65].

5.2. Comparing the renormalized volume and the dual volume.
The renormalized volume can be compared to the dual volume using the
following statement, see [64, Prop. 3.12].

Lemma 5.1. Let h, h′ be two non-positively curved metrics on ∂∞M , in
the conformal class at infinity. Suppose that h′ ≥ h at each point. Then
W (M,h′) ≥ W (M,h), with equality if and only if h = h′.

The proof of this lemma rests on the fact that if h′ ≥ h, then whenever
r > 0 is such that the equidistant surfaces Sr and S′

r associated to h and h′,
respectively, are well-defined (see Section 3.2), then Sr is in the interior of
S′
r. And moreover if Sr is in the interior of S′

r, and both Sr and S′
r bound

convex subsets, then the W -volume of the domain bounded by Sr is smaller
than the W -volume of the domain bounded by S′

r — W is increasing under
inclusion of convex subsets.

By definition of the W -volume, we see that W (C(M)) = W (M,h) where
h is the metric at infinity defined by the folation of M \ C(M) by surfaces
equidistant to C(M). A direct computation (see [64]) shows that this metric
is equal to h = hTh/2, where hTh is Thurston’s projective metric. This metric
hTh has a simple description when the bending lamination l is supported
on simple closed curves: it is then obtained by cutting the induced metric
on the boundary of the convex core along the bending curves and inserting
for each a flat cylinder of width equal to the exterior bending angle. A key
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feature of this metric is that it is in the conformal class at infinity c of M ,
see [47, 38].

Let h−1 be the hyperbolic metric in the conformal class c at infinity.
Then

(14) h−1 ≤ hTh ≤ 2h−1 .

The first inequality follows from the definition of the Thurston metric, or
from the fact that hTh has curvature at least −1 at all points. The second
inequality is a direct consequence of a result of G. Anderson [4, Theorem
4.2], see [13, Theorem 2.1].

It is also useful to remark that if N ⊂ M is geodesically convex, and
if the metric at infinity associated to N is h, then for r > 0 the metric at
infinity associated to Nr is e2rh. So it follows from Lemma 3.7 that

W (M, e2rh) = W (M,h)− πrχ(∂M) .

It therefore follows from Equation (14) that:

W (M,h−1) ≤ W (M,hTh) ≤ W (M,h−1)−
π log(2)

2
χ(∂M) ,

so that

VR(M) ≤ W (C(M)) +
π log(2)

2
χ(∂M) ≤ VR(M)− π log(2)

2
χ(∂M) .

Recall that

W (C(M)) = V (C(M))− 1

4
Lm(l) = V ∗

C(M) +
1

4
Lm(l) ,

so we obtain that

VR(M) ≤ V ∗
C(M) +

1

4
Lm(l) +

π log(2)

2
χ(∂M) ≤ VR(M)− π log(2)

2
χ(∂M) .

Finally, it is known that Lm(l) ≤ 6π|χ(∂M)| (see [13, Theorem 1.1 (2)]),
and we therefore obtain the following statement.

Theorem 5.2. For all quasifuchsian metric on M ,

VR(M)−3π|χ(∂M)|
2

+
π log(2)

2
|χ(∂M | ≤ V ∗

C(M) ≤ VR(M)+π log(2)|χ(∂M | .

The additive constants depend on the choice of normalization in the
definition of renormalized volume — chosing a metric at infinity of constant
curvature −2, rather than −1, leads to somewhat simpler additive constants.

Very similar comparison apply when M is a convex co-compact hy-
perbolic manifold with incompressible boundary, see [14]. For convex co-
compact manifolds with compressible boundary, there are also similar esti-
mates [65], but with V ∗

C(M) replaced by the W -volume of the convex core,
that is, the volume of the convex core minus one quarter of the length of
the measured bending lamination.



342 JEAN-MARC SCHLENKER

5.3. An upper bound on the renormalized volume. The renor-
malized volume of a quasifuchsian manifold can be bounded from above
in terms of the Weil-Petersson distance between the conformal metrics on
∂∞,−M and on ∂∞,+M . This upper bound is based on the following classical
result. We denote by D the unit disk in C, equipped with the hyperbolic
metric h.

Theorem 5.3 (Kraus, Nehari [59]). Let f : D → CP
1 be an injective

holomorphic map. Then at each point ‖S(f)‖h ≤ 3/2.

The following theorem from [64] is a direct consequence.

Theorem 5.4. For any quasifuchsian metric g0 on S × R,
(15) VR(g0) ≤ 3

√
π(g − 1)dWP (c−, c+) ,

where c− and c+ are the conformal structures at infinity of g0 and dWP is
the Weil-Petersson distance.

Proof. Let c ∈ TS be a complex structure on S, let q and μ be a
holomorphic quadratic differential and a Beltrami differential on (S, c), and
let h′ be the first-order variation corresponding to μ of the hyperbolic metric
h in the conformal class defined by c. Then a direct computation shows that∫

S
〈Re(q), h′〉hdah = 4Re

(∫
S
qμ

)
.

Applying this relation with q equal to Schwarzian derivative term as above,
and using that II∗0 = −Re(q), we obtain that for a variation h′ of the hy-
perbolic metric h in the conformal class on the upper component of the
boundary at infinity,

dVR(h
′) = −1

4

∫
S
〈II∗0 , h′〉hdah =

1

4

∫
S
〈Re(q), h′〉hdah = Re

(∫
S
qμ

)
.

Let z be a local complex coordinate, with h = ρ2|dz|2, then we can write

q = q′dz2 , μ = μ′dz̄

dz
,

so that
dVR(h

′) = Re

(∫
S

(
q′

ρ2

)
μ′ρ2|dz|2

)
.

Using the Nehari estimate (Theorem 5.3) shows that |q′/ρ2| ≤ 3/2, and
therefore

|dVR(h
′)| ≤ 3

2

∫
S

∣∣μ′∣∣ ρ2|dz|2 .

It then follows from the Cauchy-Schwarz inequality that

|dVR(h
′)| ≤ 3

2
‖μ‖WP

√
4π(g − 1) = 3

√
π(g − 1)‖μ‖WP .

We can integrate this inequality on a path from c− to c+ as in the first
proof above to obtain the result. �
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5.4. An upper bound on the dual volume. We have seen in Theo-
rem 5.2 that the dual volume V ∗

C(M) is within a bounded additive constant
from the renormalized volume VR(M). In addition, Theorem 5.4 shows that
VR(M) is bounded by 3

√
π(g − 1)dWP (c−, c+). This immediately yields the

following corollary.
Corollary 5.5. For all quasifuchsian metric on M ,

(16) V ∗
C(M) ≤ 3

√
π(g − 1)dWP (c−, c+) + π log(2)|χ(∂M | .

It should be noted, however, that this argument is quite indirect and
uses the whole technology of the renormalized volume.

5.5. Estimates from the dual volume. Recently, Filippo Mazzoli
[51] has developed a completely different and much more elementary argu-
ment to obtain directly an inequality of the type of (16), and as a conse-
quence an explicit upper bound on VC(M) in terms of the Weil-Petersson
distance between c− and c+, using the dual Bonahon-Schläfli formula.

Theorem 5.6 (Dual Bonahon-Schläfli formula). Under a first-order
variation of a quasifuchsian structure on M ,

(17) V ∗
C
′ = −1

2
dL(l)(m′) .

A proof of this formula can be found in [46, Lemma 2.2], based on an
analoguous formula proved by Bonahon [8, 9]: under the same hypothesis,

(18) V ′
C =

1

2
Lm(l′) .

Note however that (2) has a much simpler interpretation than (1), since
(2) involves only the differential of the (analytic) function L(l) applied to
the tangent vector m′, while (1) uses the notion of first-order variation of a
measured lamination, which is quite subtle and necessitates the full technical
toolbox developed by Bonahon [8].

A direct and relatively elementary (but non-trivial) proof of (2) is given
by Mazzoli [50], using differential-geometric arguments and an approxima-
tion of the boundary of the convex core by smooth surfaces.

Mazzoli then shows [51] that (2) can be used, together with Theorem
1.8, to obtain directly an upper bound on the dual volume.

Theorem 5.7 (Mazzoli [51]). There exists a constant K2 > 0 such that
for any quasifuchsian manifold M and any first-order deformation,

|V ∗
C
′| ≤ K2

√
g − 1‖c′‖WP .

It follows directly from this inequality — as in the proof of Theorem 5.4
above — that for any quasifuchsian manifold,
(19) V ∗

C(M) ≤ K2

√
g − 1dWP (c−, c+) .

The constant found in [51] is K2 = 10.3887, which is slightly larger than
the constant obtained for the renormalized volume in Theorem 5.4.
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6. Applications
We briefly outline in this section a few applications of the bound on the

renormalized volume, or the dual volume, of quasifuchsian manifolds. This
section does not contain complete proofs — we refer to specific papers for
the details — but only a very quick outline of the main ideas.

6.1. Bounding the volume of the convex core using the renor-
malized volume or the dual volume. We have seen in Theorem 5.2 that
the renormalized volume VR(M) is within bounded additive constant (de-
pending only on the genus of the underlying surface) from the dual volume
V ∗
C(M), while Theorem 5.4 provides an upper bound on the renormalized

volume in terms of the Weil-Petersson distance between the conformal met-
rics at infinity. It follows directly that the volume of the convex core is also
bounded in terms of the Weil-Petersson distance between the conformal met-
rics at infinity: for every genus g > 1, there exists a constant Cg > 0 such
that for any quasifuchsian manifold M ,

VC(M) ≤ 3
√
π(g − 1)dWP (c−, c+) + Cg .

It also follows from Theorem 5.7, thanks to the upper bound on the
length of the bending lamination in Theorem 1.8, that the same inequality
holds for VC(M), with an additional term 3π|χ(M)|: for all quasifuchsian
manifold M ,

VC(M) ≤ K2

√
g − 1dWP (c−, c+) + 3π|χ(∂M)| .

However at this point the constant K2 arising from Mazzoli’s work [51]
is somewhat weaker than the 3

√
π coming out of the renormalized volume

argument.

6.2. The volume of hyperbolic manifolds fibering over the cir-
cle. A neat applications of the upper bound found in the previous section
on the volume of the convex core is given by Kojima and McShane [41] and
Brock and Bromberg [16].

Let φ : S → S be a diffeomorphism. The mapping torus of φ is the
3-dimensional manifold Mφ obtained by identifying in S × [0, 1] the points
(x, 1) and (φ(x), 0) for all x ∈ S. Clearly, Mφ depends only on the isotopy
class of φ. Thurston [73] proved that if φ is pseudo-Anosov (see e.g. [27])
then Mφ admits a hyperbolic structure, which is unique by the Mostow
Rigidity Theorem [58].

A pseudo-Anosov diffeomorphism φ acts by pull-back on the Teichmüller
space TS , and this action is isometric for the Weil-Petersson metric. One can
define its Weil-Petersson translation length.

l(φ) = min
c∈TS

dWP (c, φ
∗(c)) .

Moreover, this minimum is attained along a line, the axis of φ, on which it
acts by translation, see [19].
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Theorem 6.1 (Kojima-McShane, Brock-Bromberg). For any pseudo-
Anosov diffeomorphism φ of S, V ol(Mφ) ≤ 3

√
π(g − 1)l(φ).

The proof of this theorem parallels the construction by Thurston of the
hyperbolic structure on Mφ. Given c−, c+ ∈ TS × TS , let M(c−, c+) be the
quasifuchsian hyperbolic structure on S × R with conformal structure at
infinity c− and c+, respectively. If c is any fixed element of TS , Thurston
proved that M(φ−n

∗ c, φn
∗c) → M̄ , the infinite cyclic cover of M . Brock and

Bromberg [16], building on work of McMullen [52], show that this conver-
gence translates as a precise estimate on the volume of the convex core.

Theorem 6.2 (Brock–Bromberg [16]). In this setting, |VC(φ
−n
∗ c, φn

∗ c)−
2nV ol(Mφ)| is bounded.

It follows that
VC(φ

−n
∗ c, φn

∗ c) ≤ 3
√
π(g − 1)dWP (φ

−n
∗ c, φn

∗ c) + Cg .

Taking for c an element of the axis of φ, we obtain that

VC(φ
−n
∗ c, φn

∗ c) ≤ 6n
√
π(g − 1)lφ + Cg .

As a consequence,

V ol(Mφ) = lim
n→∞

VC(φ
−n
∗ c, φn

∗ c)

2n
≤ 3

√
π(g − 1)lφ ,

which is Theorem 6.1

6.3. Systoles of the Weil-Petersson metric on moduli space. As
a consequence of Theorem 6.1, Brock and Bromberg obtain a lower bound on
the systole MS of the moduli space of S, equipped with the Weil-Petersson
metric.

Corollary 6.3 (Brock–Bromberg). The shortest closed geodesic of the
Weil-Petersson metric on MS has length at least V ol(W)/3

√
π(g − 1).

Here W is the Weeks manifold, the closed hyperbolic manifold of smallest
volume. This statement follows from Theorem 6.1 and from the fact that any
closed geodesic of moduli space corresponds to a pseudo-Anosov element of
the mapping-class group.

6.4. Entropy and hyperbolic volume of mapping tori. Let φ :
S → S be a diffeomorphism. We denote here by ent(φ) the entropy of φ,
that is, the infimum of the topological entropy of diffeomorphisms isotopic to
φ. If φ is a pseudo-Anosov diffeomorphism, Thurston showed that its entropy
is equal to the log of the minimal dilation of diffeomorphisms isotopic to φ
[27, Exposé 10], and Bers [7] proved that this is equal to its translation
length for the Teichmüller distance on TS .

Kojima and McShane prove the following relation between the entropy
of φ and the hyperbolic volume of the mapping torus of φ.
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Theorem 6.4. If φ is a pseudo-Anosov diffeomorphism of S, then

ent(φ) ≥ 1

3π|χ(S)|Vol(Mφ) .

The proof of this result is quite similar to the proof of Theorem 6.1 above,
but the bound on the renormalized volume of a quasifuchsian manifold by the
Weil-Petersson distance between its conformal metrics at infinity is replaced
by a bound by the Teichmüller distance between those conformal metrics
at infinity. Specifically, Kojima and McShane prove the following statement,
see [41, Prop. 11].

Theorem 6.5 (Kojima–McShane). Let c−, c+ ∈ TS. Then
VR(M(c−, c+)) ≤ 3π|χ(S)|dT (c−, c+) ,

where dT denotes the Teichmüller distance on TS.

The proof is closely related to the proof of Theorem 5.4. We consider a
Teichmüller geodesic (ct)t∈[0,1] with c0 = c− and c1 = c+. Using Corollary
3.13 and the Nehari estimate, Theorem 5.3, we obtain that:

VR(M(c−, c+)) ≤
∫ 1

0
|VR(c0, ct)

′|dt

≤
∫ 1

0

(∫
∂∞,+M

|Re(qμt)|
)
dt

≤
∫ 1

0

(∫
∂∞,+M

3

2
|μt|dah

)
dt

≤ 3π|χ(S)|dT (c0, c1) .

7. Questions and perspectives
We list here a number of questions concerning the global behavior of

the renormalized volume, and in a related way of the measured foliations at
infinity, for quasifuchsian manifolds and generalizations.

7.1. Convexity of renormalized volume. Renormalized volume is
known to be convex in the neighborhood of the Fuchsian locus, see [57,
18, 74]. However, not much is known on its global behavior. However, it
does not appears not to be convex for the Weil-Petersson metric, because,
for fixed c−, there are values of c+ close to the metric boundary of TS for
the Weil-Petersson metric where the gradient of VR(M(c−, ·)) is arbitrarily
small.2

Question 7.1. Is renormalized volume convex in any other sense, for
instance along Teichmüller geodesics or earthquake deformations?

2This argument was communicated by Ken Bromberg.
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A related question is whether there is an explicit lower bound on the
renormalized volume in terms of the Weil-Petersson distance between the
conformal metrics at infinity of a quasifuchsian manifold. The existence of
such a constant in fact follows from the results of Brock [15] on the volume of
the convex core, together with Theorem 5.2, but no estimate of this constant
is known.

Question 7.2. Let g ≥ 2. What is the largest constant cg > 0 for which
there exists a constant d > 0 such that, for any quasifuchsian structure g
on S ×R (where S is a closed surface of genus g) with conformal metrics at
infinity c−, c+ ∈ TS ,

VR(M, g) ≥ cgdWP (c−, c+)− d ?

Note that it has been proved recently that the renormalized volume is
minimal at the Fuchsian locus (for quasifuchsian manifolds) and for metrics
containing a convex core with totally geodesic boundary (for acylindrical
manifolds), see [75, 13].

Note that Theorem 5.2 shows that Question 7.2 is equivalent to the
corresponding question for the volume or the dual volume of the convex
core.

7.2. The measured foliation at infinity. We have described above
an analogy between the measured folation at infinity and the measured
bending lamination on the boundary of the convex core. This analogy sug-
gests that one may be able to extend to the foliation at infinity a number
of known statements or conjectures on the measured bending lamination on
the boundary of the convex core. The first question in this direction can be
the following.

Question 7.3. Suppose that M is not Fuchsian (that is, it does not
contain a closed totally geodesic surface). Do f− and f+ fill?

This would be the analog of the well-known (and relatively easy) corre-
sponding statement for l− and l+, the measured bending lamination on the
boundary of the convex core.

Question 7.4. Let (f−, f+) ∈ MLS ×MLS , (f−, f+) �= 0. Is there at
most one quasifuchsian manifold with measured foliation at infinity (f−, f+)?

This is the analog at infinity of the uniqueness part of a conjecture
of Thurston on the existence and uniqueness of a quasifuchsian manifold
having given measured bending lamination (l−, l+) on the boundary of the
convex core. In this case (l−, l+) are requested to fill and to have no closed
leaf of weight larger than π. The existence part of this conjecture for the
bending measured lamination was proved in [11], as well as the uniqueness
for rational measured laminations, but the uniqueness remains conjectural
for more general measured laminations.

A related question would be whether infinitesimal rigidity holds, that
is, whether any non-zero first-order deformation of M induces a non-zero
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deformation of either the f− or f+ — this might be related to Question 7.1.
The analog question for l− and l+ is also open.

One can also ask for what pair (f−, f+) of measured foliations there exists
a quasifuchsian manifold having them as measured foliation at infinity:

Question 7.5. Given (f−, f+) ∈ MLS ×MLS , what conditions should
it satisfy so that there exists a quasifuchsian manifold M with measured
foliation at infinity (f−, f+)?

If the answer to Question 7.3 is positive, then one should ask that (if
(f−, f+) �= 0) f− and f+ should fill. However other conditions might be
necessary.

Recently, Diptaishik Choudhury [17] has obtained positive answers to
questions 7.3, 7.4 and 7.5 for pairs of small foliations, that is, in the neigh-
borhood of the Fuchsian locus. He hows that any pair of filling, small enough
measured foliations can be realized as the foliations at infinity of a quasi-
fuchsian manifold close to the Fuchsian locus.

7.3. Comparing the foliation at infinity to the measured bend-
ing lamination. We have seen above that the renormalized volume of a
quasifuchsian manifold is within a bounded additive distance (depending
on the genus) from the dual volume of the convex core, and also that the
induced metric on the boundary of the convex core is within a bounded
quasi-conformal constant of the conformal metric at infinity.

This suggests the following question.
Question 7.6. Is the measured foliation at infinity of a quasifuchsian

manifold within bounded distance — in a suitable sense — from the mea-
sured bending lamination on the boundary of the convex core?

A recent result of Dumas [21] should be relevant here and actually pro-
vides a kind of answer.

7.4. Extension to convex co-compact or geometrically finite hy-
perbolic manifolds. The definition of renormalized volume can be ex-
tended to convex co-compact hyperbolic manifolds, and the main estimates
also apply for convex co-compact manifolds with incompressible boundary,
see [14]. We can expect Theorem 1.7 to apply to convex co-compact hy-
perbolic manifolds, and Theorem 1.9 to extend to convex co-compact hy-
perbolic manifolds with incompressible boundary, while the estimate for
manifolds with compressible boundary might involve the injectivity radius
of the boundary.

Question 7.7. Can Theorem 1.9 and Theorem 1.7 be extended to geo-
metrically finite hyperbolic 3-manifolds?

Again, the definition and some key properties of renormalized volume
extend to geometrically finite hyperbolic 3-manifolds, see [33]. It could be
expected that Theorems 1.7 and 1.9 extends to this setting. (For Theorem
1.9 one might need consider manifolds with incompressible boundary.)
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7.5. Higher dimensions. Finally the notion of renormalized volume
can be considered in dimension larger than 3, and a number of questions
appear to be meaningful.

Question 7.8. Are there any extensions of the measured foliation at
infinity in higher dimension, for quasifuchsian (or convex co-compact) hy-
perbolic d-dimensional manifolds?

For those manifolds, there is a well-defined notion of convex core, and
the boundary of the convex core also has a “pleating”. However the pleating
lamination might have a more complex structure than for d = 3, with codi-
mension 1 “pleating hypersurfaces” of the boundary meeting along singular
strata of higher codimension. Other aspects of the renormalized volume of
quasifuchsian manifold have a partial extension in higher dimensions, see
e.g. [34].
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