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Cannon-Thurston maps in Kleinian groups and
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Abstract. We give a survey account of Cannon-Thurston maps, both
in the original context of Kleinian groups, as well as in the more general
context of Geometric Group Theory. Some of the principal applications
are mentioned.
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1. Introduction
A discrete subgroup Γ of PSL2(C), also called a Kleinian group, can

be seen from a number of viewpoints:
(1) As a discrete faithful representation of an abstract group into

PSL2(C).
(2) Geometrically, as acting properly discontinuously by isometries on

H3, or equivalently, as the fundamental group of the 3-manifold
H3/Γ.

(3) Dynamically, as acting by complex analytic automorphisms of the
Riemann sphere Ĉ.

The last, complex analytic, point of view was taken by in their study
of quasiconformal deformations of Fuchsian groups in the 60’s, giving rise
to the rich theory of quasi-Fuchsian groups. The geometric viewpoint was
developed and popularized by Thurston in the 70’s and 80’s. The relation-
ships between these different points of view have often turned out to be
deep. In [Thu82], Thurston posed a number of questions that established a
conjectural picture connecting and relating them.

We introduce some basic terminology first. The limit set of the Kleinian
group Γ, denoted by ΛΓ, is the collection of accumulation points of a Γ-orbit
Γ·z for some z ∈ Ĉ. ΛΓ is independent of z. It may be thought of as the locus
of chaotic dynamics of Γ on Ĉ, i.e. for Γ non-elementary and any z ∈ ΛΓ,
Γ · z is dense in ΛΓ. We shall identify the Riemann sphere Ĉ with the sphere
at infinity S2 of H3. The complement of the limit set Ĉ \ ΛΓ is called the
domain of discontinuity ΩΓ of Γ. If the Kleinian group Γ is torsion-free,
it acts freely and properly discontinuously on ΩΓ with a Riemann surface
quotient. In [Thu82, Problem 14], Thurston raised the following question,
which is at the heart of the work that is surveyed in this paper:
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Question 1.1. Suppose Γ has the property that (H3∪DΓ)/Γ is compact.
Then is it true that the limit set of any other Kleinian group Γ′ isomorphic to
Γ is the continuous image of the limit set of Γ, by a continuous map taking
the fixed points of an element γ to the fixed points of the corresponding
element γ′?

A special case of Question 1.1 had been answered affirmatively in seminal
work of Cannon and Thurston [CT85, CT07]:

Theorem 1.2 ([CT07]). Let M be a closed hyperbolic 3-manifold fiber-
ing over the circle with fiber Σ. Let Σ̃ and M̃ denote the universal covers of
Σ and M respectively. After identifying Σ̃ (resp. M̃) with H2 (resp. H3), we
obtain the compactification D

2 = H2 ∪S1 (resp. D3 = H3 ∪S2) by attaching
the circle S1 (resp. the sphere S2) at infinity. Let i : Σ → M denote the
inclusion map of the fiber and ĩ : Σ̃ → M̃ the lift to the universal cover.
Then ĩ extends to a continuous map î : D2 → D

3.
A version of Question 1.1 was raised by Cannon and Thurston in the

context of closed surface Kleinian groups:
Question 1.3. ([CT07, Section 6]) Suppose that a closed surface group

π1(S) acts freely and properly discontinuously on H3 by isometries such
that the quotient manifold has no accidental parabolics. Does the inclusion
ĩ : S̃ → H3 extend continuously to the boundary?

Continuous boundary extensions as in Question 1.3, if they exist, are
called Cannon-Thurston maps. Question 1.3 is intimately related to a
much older question asking if limit sets are locally connected:

Question 1.4. Let Γ be a finitely generated Kleinian group such that
the limit set ΛΓ is connected. Is ΛΓ locally connected?

It is shown in [CT07] that for simply degenerate surface Kleinian groups,
Questions 1.3 and 1.4 are equivalent, via the Caratheodory extension The-
orem. The connection of Question 1.3 to the larger question of connecting
dynamics on Ĉ to the geometry of H3/Γ via the celebrated Ending Lamina-
tion Theorem of Brock-Canary-Minsky [BCM12] is explicated in Section
6.2.

1.1. History of the problem. We give below a brief historical account
of the steps that led to the resolution of the above questions.

(1) In the 70’s it was believed [Abi76] that Question 1.4 had a negative
answer for simply degenerate Kleinian groups.

(2) In 1980, Floyd [Flo80] proved that the analogous problem for non-
cocompact geometrically finite Kleinian groups has an affirmative
answer.

(3) In their major breakthrough, Cannon and Thurston [CT85] proved
Theorem 1.2. This paper was published more than two decades later
[CT07]!
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(4) Minsky [Min94] extended the techniques and result of [CT85]
to closed surface groups of bounded geometry (see [Mj10] for a
different proof).

(5) The author [Mit98b], and, independently, Klarreich [Kla99] using
very different methods, extended Minsky’s result to hyperbolic 3-
manifolds of bounded geometry with incompressible core and with-
out parabolics.

(6) Alperin-Dicks-Porti [ADP99] gave an elementary proof for fibers
of the figure eight knot complement, thought of as a punctured
surface bundle over the circle. This has led to a development in a
very different direction [CD02, CD06, DS10, DW12]. This was
the first extension to a geometrically infinite case with parabolics.

(7) Using the model geometry for punctured torus Kleinian groups
proven by Minsky [Min99], McMullen [McM01] proved the ex-
istence of Cannon-Thurston maps for punctured torus groups.

(8) Bowditch [Bow13, Bow07] proved the existence of Cannon-
Thurston maps for punctured surface groups of bounded geome-
try (see also [Mj10] for a different proof).

(9) Bowditch’s result was extended to pared manifolds with incom-
pressible (relative) core by the author [Mj09].

(10) Miyachi [Miy02] (see also [Sou06]) proved the existence of Cannon-
Thurston maps for handlebody groups of bounded geometry.

(11) In [Mj11a, Mj16] the author proved the existence of Cannon-
Thurston maps for certain special unbounded geometries.

(12) The general surface group case was accomplished in [Mj14a] and
the general Kleinian group case in [Mj17b].

1.2. Geometric group theory. After the introduction of hyperbolic
metric spaces by Gromov [Gro85], Question 1.3 was extended by the author
[Mit97b, Bes04, Mit98c] to the context of a hyperbolic group H acting
freely and properly discontinuously by isometries on a hyperbolic metric
space X. Let ΓH denote a Cayley graph of H with respect to a finite gen-
erating set. There is a natural map i : ΓH → X, sending vertices of ΓH to
the H−orbit of a point x ∈ X, and connecting images of adjacent vertices
by geodesic segments in X. Let Γ̂H , X̂ denote the Gromov compactification
of ΓH , X respectively. The analog of Question 1.3 is the following:

Question 1.5. Does i : ΓH → X extend continuously to a map î : Γ̂H →
X̂?

Continuous extensions as in Question 1.5 are also referred to as Cannon-
Thurston maps and make sense when ΓH is replaced by an arbitrary
hyperbolic metric space Y . A simple and basic criterion for the existence of
Cannon-Thurston maps was established in [Mit98a, Mit98b]:
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Lemma 1.6. Let i : (Y, y) → (X,x) be a proper map between (based)
Gromov-hyperbolic spaces. A Cannon-Thurston map î : Ŷ → X̂ exists if and
only if the following holds:

There exists a non-negative proper function M : N → N, such that if
λ = [a, b]Y is a geodesic lying outside an N -ball around y, then any geodesic
segment [i(a), i(b)]X in X joining i(a), i(b) lies outside the M(N)-ball around
x = i(y).

2. Closed 3-manifolds
2.1. 3-manifolds fibering over the circle. We start by giving a

sketch of the proof of Theorem 1.2, following the original Cannon-Thurston
paper [CT85]. We use the notation of Theorem 1.2.

1) Let φ be the pseudo-Anosov homeomorphism giving the monodromy
of M as a Σ−bundle over S1. Let Fs and Fu denote the stable and unstable
singular measured foliations of φ on Σ. Equip Σ with a singular Euclidean
metric d0 using Fs and Fu. Thus d0 has the local expression dx2+dy2 away
from finitely many singularities on Σ. Lift this metric to Σ̃ and identify the
x− (resp. y−) direction with Fs (resp. Fu). Then, in local charts U , in the
complement of the singularities in Σ̃, d0 has again an expression dx2 + dy2.
Denote the ‘flow’ direction by the t−co-ordinate. Then U × R(⊂ M̃) is
equipped with a Sol-type metric with local form ds2 = dt2+ etdx2+ e−tdy2.
Pasting these metrics together, in particular along the flow lines through the
singularities, we get a singular Sol-type metric ds on M̃ .

2) Let l be a leaf (i.e. a connected component) of Fs (or Fu). By flowing
l in the t−direction we obtain Hl homeomorphic to R

2, equipped with the
metric dt2+etdx2 (or dt2+e−tdy2). Thus the intrinsic metric on Hl is (quasi-
)isometric to that on H2. Since we are forgetting the y (or x) co-ordinate in
the process, any such Hl is totally geodesic in (M̃, ds).

3) Compactify M̃ by adjoining a ‘can’
∂cM̃ = ∂Σ̃× [−∞,∞] ∪ Σ̃× {−∞,∞}.

4) We get a natural cell-like decomposition of ∂cM̃ consisting of the
following collection G of contractible cell-like subsets:

(1) (l0 ×∞) ∪ (∂l0 × [−∞,∞]) for l0 a (possibly singular) leaf of Fs.
(2) (l0 ×−∞)∪ (∂l0 × [−∞,∞]) for l0 a (possibly singular) leaf of Fu.
(3) {t} × [−∞,∞] for t ∈ ∂Σ̃ \ (∂Fs ∪ ∂Fu).

5) Collapsing each of these contractible cell-like subsets we obtain the
quotient space ∂M , which is homeomorphic to S2 by Moore’s theorem
[Moo25] below.

Theorem 2.1. Let G denote a cell-like decomposition of Z homeomorphic
to S2 (as above). Then the quotient space Z/G is homeomorphic to S2.

6) Since each cell-like subset in G intersects ∂Σ (identified with ∂Σ ×
{0} say) in isolated points (in any case, finitely many) and since this is
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π1(Σ)−equivariant, we thus have a π1(Σ)−equivariant quotient map ∂i :

∂Σ̃ → ∂M̃ .
7) It remains to show that ∂i continuously extends ĩ : Σ̃ → M̃ , where

Σ̃, M̃ are identified with H2, H3 and hence their boundaries with S1, S2

respectively. To show this it suffices to construct a system of neighborhoods
of p ∈ S1 and prove that they are mapped into a system of neighborhoods
of ∂i(p).

These neighborhoods are constructed as follows. For any p ∈ S1, there
exist a sequence of bi-infinite geodesics ln contained in leaves (connected
components) of Fs ∪ Fu such that ln → p and so does a component Kn of
S1 \ ∂ln containing p. Then Kn is the boundary of a small neighborhood Un

of p and the family {Un} forms a neighborhood system. Flowing Un in the
t−direction, we obtain a convex set Vn (identifiable with Un × R) bounded
by the totally geodesic plane Hln . It is easy to check that Vn can again be
chosen to form a neighborhood system of ∂i(p). This completes the proof.

8) The above proof also gives the structure of the Cannon-Thurston
map ∂i. We note that ∂i(p) = ∂i(q) for p �= q if and only if p, q are end-
points of a leaf of either Fs or Fu.

2.2. Quasiconvexity. The structure of Cannon-Thurston maps in Sec-
tion 2.1 can be used to establish quasiconvexity of certain subgroups of
π1(M). Let H ⊂ π1(Σ) be a finitely generated infinite index subgroup of the
fiber group. Then, due to the LERF property for surface subgroups [Sco78],
there is a finite sheeted cover of Σ where H is geometric, i.e. it is carried
by a proper embedded subsurface of (a finite sheeted cover of) Σ. But such
a proper subsurface cannot carry a leaf of Fs or Fu since Fs and Fu are
arational. This gives us the following Theorem of Scott and Swarup:

Theorem 2.2 ([SS90]). Let H ⊂ π1(Σ) be a finitely generated infinite
index subgroup of the fiber group in π1(M). Then H is quasiconvex in π1(M).

A somewhat more sophisticated theorem was proved by Cooper-Long-
Reid [CLR94]. Let us denote the suspension flow on M by F . Let f : S → M

be an immersion transverse to the flow. Let f̃ : S̃ → M̃ be a lift to the
universal cover. Also fix a lift Σ̃ of Σ. Each flow line intersects Σ̃ exactly once.
This gives a map Π : M̃ → Σ̃ sending flow lines to intersection points with Σ̃.
Identify Σ̃ with H2. Let A(S) denote Π ◦ f̃(S̃). Cooper-Long-Reid establish
the following necessary and sufficient condition for geometric finiteness of S.

Theorem 2.3 ([CLR94]). A(S) is a (quasi)convex subset of Σ̃(= H2).
f(S) is quasi-Fuchsian if and only if A(S) is a proper subset of Σ̃.

In [CLR94] it is also shown that A(S) is an infinite sided polygon in
H2 whose sides correspond to leaves of the stable and unstable laminations.

2.3. Quasigeodesic flows. In this section, we discuss generalizations
of the Cannon-Thurston theorem to the context of flows by Calegari [CD03,
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Cal00, Cal06], Fenley [Fen12] and Frankel [Fra15]. We therefore turn to
flows on arbitrary closed hyperbolic 3-manifolds M . All flows F will be
non-singular, i.e. the associated vector field has no zeros Such a flow F is
called quasigeodesic if each flow line of F lifts to a quasigeodesic in the
universal cover M̃ . The lifted flow in M̃ is denoted F̃ . The flow space P is
the space of flow lines equipped with the quotient topology. Thus we have a
quotient map Π : M̃ → P . P is homeomorphic to a plane if M is hyperbolic
[Cal06]. Calegari shows that P also admits a natural compactification by
adjoining a certain ‘universal’ circle S1

u. In fact, Calegari first constructs
two universal circles, which parameterize the action of π1(M) at infinity
and then combines them together to get S1

u. Moreover, he obtains a pair of
laminations Λ±

u of S1
u preserved by π1(M). As in the case of Theorem 1.2,

there is a compactification P = P ∪ S1
u called the ends compactification.

Next, since any flow line σ of F is a quasigeodesic, there exist natural
maps Φ± : P → S2

∞ sending each σ to σ(±∞). Frankel proves the following
analog of Theorem 1.2 in this context:

Theorem 2.4 ([Fra15]). Let F be a quasigeodesic flow on a closed
hyperbolic 3-manifold M . There are unique continuous extensions of the
endpoint maps Φ± to the compactified orbit space P , and Φ+ agrees with Φ−

on the boundary.
Next, let s : P → H3 be a transversal section to the lifted flow F̃ . Then

there exists a natural compactification P ∪S1
u of P inheriting a π1(M) action

and a unique continuous extension s̄ : P ∪ S1
u → H3 ∪ S2

∞. The boundary
map ∂s : S1

u → S2 is π1(M)-equivariant surjective.

2.3.1. Pseudo-anosov flows. We now turn to pseudo-Anosov flows F on
closed 3-manifolds M following Fenley [Fen12]. A key point is that he does
not assume M to be hyperbolic. The flow space of F̃ is again a plane P . He
constructs a natural compactification of P with an ideal circle boundary S1

I .
He shows that if there are no perfect fits between stable and unstable leaves
of F̃ and F is not topologically conjugate to a suspension Anosov flow, then
S1
I has a natural sphere quotient S2

d (the Cannon-Thurston property). The
sphere S2

d is a dynamical systems ideal boundary for a compactification of
M̃ . Fenley shows the following using a theorem due to Bowditch [Bow98]
characterizing hyperbolic groups.

Theorem 2.5 ([Fen12]). π1(M) acts on S2
d is as a uniform convergence

group. Hence π1(M) is Gromov hyperbolic. Further, the action of π1(M) on
S2
d is topologically conjugate to the action of π1(M) on the Gromov boundary

∂π1(M).

Fenley also points out that pseudo-Anosov flows without perfect fits are
quasigeodesic flows. He then obtains an application to the case of an R-
covered foliation F in an aspherical, atoroidal M . There is a transversely
oriented foliation F2 associated to F and a pseudo-Anosov flow Φ transverse
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to F2. He proves that there are no perfect fits for this flow, nor is it conjugate
to a suspension Anosov flow. Hence Φ is quasigeodesic and F2 satisfies the
Cannon-Thurston property.

2.4. Punctured torus bundles. In this subsection, we discuss some
work on Cannon-Thurston maps for punctured torus bundles. We shall re-
turn to the general case of punctured surfaces later. In [ADP99], a direct
and elementary proof of the existence of Cannon-Thurston maps was estab-
lished for the fiber group of the figure eight knot complement group. They
also show the following. Let Γ2 denote the Cayley graph of the fiber sub-
group which is a free group on 2 generators. If an edge is removed from Γ2,
the authors show that the complementary subtrees give rise to a decompo-
sition of S2 into two disks bounded by a common Jordan curve c. The curve
c can be further cut into two arcs with common endpoints, so that cusps are
dense in each.

This approach was developed extensively in the context of hyperbolic
punctured torus bundles by Cannon, Dicks, Sakuma and Wright in [CD02,
CD06, DS10, DW12] to obtain a number of special features that arise in
the punctured torus bundle case:

(1) A generalization of the [ADP99] result above to all punctured
torus bundles was obtained in [CD02]. In particular, a Cannon-
Thurston map iCT : ∂Σ̃ → S2 exists, where Σ is the fiber punctured
torus and Σ̃ its universal cover.

(2) Identify ∂Σ̃ with S1. Let q ∈ S1 correspond to a cusp. Then S1 \
i−1
CT ◦ iCT (q) is a countable union of intervals. The images of these

intervals under iCT give a bi-infinite sequence of fractal subsets of
the plane which tessellate it. This is the content of [CD06].

(3) In [DS10], the above tessellation is related to a tessellation of the
plane arising from Jørgensen’s canonical triangulation of a punc-
tured torus bundle.

(4) The fractal curves of [ADP99] and [CD02] are shown to be codi-
fied by the classical Adler-Weiss automata in [DW12].

3. Gromov-hyperbolic groups
3.1. Preliminaries. We turn now to Cannon-Thurston maps in the

context of geometric group theory and furnish a different proof of Theo-
rem 1.2. We recall a couple of basic Lemmata we shall be needing from
[Mit98b]. The following says that nearest point projection onto a geodesic
in a hyperbolic space is coarsely Lipschitz.

Lemma 3.1. Let (X, d) be a δ-hyperbolic metric space. Then there exists
a constant C ≥ 1 such that the following holds:

Let λ ⊂ X be a geodesic segment and let Π : X → λ be a nearest point
projection to λ. Then d(Π(x),Π(y)) ≤ Cd(x, y) for all x, y ∈ X.
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The next Lemma says that nearest point projections and quasi-isometries
almost commute.

Lemma 3.2. Let (X, d) be a δ-hyperbolic metric space. Given K ≥ 0,
ε ≥ 0, there exists C such that the following holds:

Let λ = [a, b] be a geodesic segment in X. Let p ∈ X be arbitrary and let
q be a nearest point projection of p onto λ. Let φ be a (K, ε)−quasi-isometry
from X to itself and let Φ(λ) = [φ(a), φ(b)] be a geodesic segment in X
joining φ(a), φ(b). Let r be a nearest point projection of φ(p) to Φ(λ). Then
d(r, φ(q)) ≤ C.

Sketch of Proof. The proof of Lemma 3.2 follows from the fact that
a geodesic tripod T (built from [a, b] and [p, q]) is quasiconvex in hyperbolic
space and a quasi-isometric image φ(T ) of T lies close to a geodesic tripod
T ′ built from [φ(a), φ(b)] and [φ(p), r]. Hence the image φ(q) of the centroid
q of T lies close to the centroid r of T ′. �

3.2. The key tool: hyperbolic ladder. The key idea behind the
proof of Theorem 1.2 and its generalizations in [Mit98a, Mit98b] is the
construction of a hyperbolic ladder Lλ ⊂ M̃ for any geodesic in Σ̃.
Since the context is geometric group theory, we replace Σ̃ and M̃ by quasi-
isometric models in the form of Cayley graphs Γπ1(Σ) and Γπ1(M) respectively.
Let us denote Γπ1(Σ) by Y and Γπ1(M) by X. Then X can be thought of as
(is quasi-isometric to) a tree T of spaces, where

(1) T is the simplicial tree with underlying space R and vertices at Z.
(2) All the vertex and edge spaces are (intrinsically) isometric to Y .
(3) The edge space to vertex space inclusions are uniform quasi-isom-

etries (and not just qi-embeddings).
(4) It follows from the assumptions above that (Y, dY ) is properly em-

bedded in (X, dX).
Thus X is a tree T of spaces satisfying the qi-embedded condition

[BF92].
Given a geodesic λ = λ0 ⊂ Y , we now sketch the promised construction

of the ladder Lλ ⊂ X containing λ. Index the vertices by n ∈ Z. Since the
edge-to-vertex inclusions are quasi-isometries, this induces a quasi-isometry
φn from the vertex space Yn to the vertex space Yn+1 for n ≥ 0. A similar
quasi-isometry φ−n exists from Y−n to the vertex space Y−(n+1). These quasi-
isometries are defined on the vertex sets of Yn, n ∈ Z. φn induces a map
Φn from geodesic segments in Yn to geodesic segments in Yn+1 for n ≥ 0
by sending a geodesic in Yn joining a, b to a geodesic in Yn+1 joining φn(a),
φn(b). Similarly, for n ≤ 0. Inductively define:

• λj+1 = Φj(λj) for j ≥ 0,
• λ−j−1 = Φ−j(λ−j) for j ≥ 0,
• Lλ =

⋃
j λj .
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Lλ turns out to be quasiconvex in X. To prove this, we construct a
coarsely Lipschitz retraction Πλ :

⋃
j Yj → Lλ as follows.

On Yj define Πj(y) to be a nearest-point projection of y to λj and define
Πλ(y) = πj(y), for y ∈ Yj .

The following theorem asserts that Πλ is coarsely Lipschitz.

Theorem 3.3 ([Mit98a, Mit98b, Mj10]). There exists C ≥ 1 such
that for any geodesic λ ⊂ Y ,

dX(Πλ(x),Πλ(y)) ≤ CdX(x, y)

for x, y ∈
⋃

i Yi.

Sketch of Proof. The proof requires only the hyperbolicity of Y , but
not that of X. It suffices to show that for dX(x, y) = 1, dX(Πλ(x),Πλ(y)) ≤
C. Thus x, y may be thought of as

(1) either lying in the same Yj . This case follows directly from Lemma
3.1.

(2) or lying vertically one just above the other. Then (up to a bounded
amount of error), we can assume without loss of generality, that
y = φj(x). This case now follows from Lemma 3.2. �

Since a coarse Lipschitz retract of a hyperbolic metric space is quasicon-
vex, we immediately have:

Corollary 3.4. If (X, dX) is hyperbolic, there exists C ≥ 1 such that
for any λ, Lλ is C−quasiconvex.

Note here that we have not used any feature of Y except its hyperbolicity.
In particular, we do not need the specific condition that Y = Σ̃. We are now
in a position to prove a generalization of Theorem 1.2.

Theorem 3.5 ([Mj10]). Let (X, d) be a hyperbolic tree (T ) of hyperbolic
metric spaces satisfying the qi-embedded condition, where T is R or [0,∞)
with vertex and edge sets Yj as above, j ∈ Z. Assume (as above) that the edge-
to-vertex inclusions are, moreover, uniform quasi-isometries (and not just
qi-embeddings). For i : Y0 → X there is a Cannon-Thurston map î : Ŷ0 → X̂.

Proof. Fix a basepoint y0 ∈ Y0. By Lemma 1.6 and quasiconvexity of
Lλ (Corollary 3.4), it suffices to show that for all M ≥ 0 there exists N ≥ 0
such that if a geodesic segment λ lies outside the N -ball about y0 ∈ Y0, then
Lλ lies outside the M -ball around y0 ∈ X. Equivalently, we need a proper
function M(N) : N → N.

Since Y0 is properly embedded in X, there exists a proper function g :
N → N such that λ lies outside the g(N)-ball about y0 ∈ X.

Let p be any point on Lλ. Then p = pj ∈ Yj for some j. Assume without
loss of generality that j ≥ 0. It is not hard to see that there exists C0,
depending only on X, such that for any such pj , there exists pj−1 ∈ Yj−1 with
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d(pj , pj−1) ≤ C0. It follows inductively that there exists y ∈ λ = λ0 such that
dX(y, p) ≤ C0j. Hence, by the triangle inequality, dX(y0, p) ≥ g(N)− C0j.

Next, looking at the ‘vertical direction’, dX(y0, p) ≥ j and hence

dX(y0, p) ≥ max(g(N)− C0j, j) ≥
g(N)

C0 + 1
.

Defining M(N) = g(N)
C0+1 , we see that M(N) is a proper function of N

and we are done. �
3.3. Applications and generalizations.
3.3.1. Normal subgroups and trees. The ladder construction of Section

3.2 has been generalized considerably. We work in the context of an exact
sequence 1 → N → G → Q, with N hyperbolic and G finitely presented.
We observe that for the proof of Theorem 3.5 to go through it suffices to
have a qi-section of Q into G to provide a ‘coarse transversal’ to flow along.
Such a qi-section was shown to exist by Mosher [Mos96]. We then obtain
the following.

Theorem 3.6 ([Mit98a]). Let G be a hyperbolic group and let H be
a hyperbolic normal subgroup that is normal in G. Then the inclusion of
Cayley graphs i : ΓH → ΓG gives a Cannon-Thurston map î : Γ̂H → Γ̂G.

Theorem 3.6 was generalized by the author and Sardar to a purely coarse
geometric context, where no group action is present. The relevant notion is
that of a metric bundle for which we refer the reader to [MS12]. Roughly
speaking, the data of a metric bundle consists of vertex and edge spaces as
in the case of a tree of spaces, with two notable changes:

(1) The base T is replaced by an arbitrary graph B.
(2) All edge-space to vertex space maps are quasi-isometries rather

than just quasi-isometric embeddings.
With these modifications in place we have the following generalizations

of Mosher’s qi-section Lemma [Mos96] and Theorem 3.6:
Theorem 3.7 ([MS12]). Suppose p : X → B is a metric graph bundle

satisfying the following:
(1) B is a Gromov hyperbolic graph.
(2) Each fiber Fb, for b a vertex of B is δ-hyperbolic (for some δ > 0)

with respect to the path metric induced from X.
(3) The barycenter maps ∂3Fb → Fb, b ∈ B, sending a triple of dis-

tinct points on the boundary ∂Fb to their centroid, are (uniformly,
independent of b) coarsely surjective.

(4) X is hyperbolic.
Then there is a qi-section B → X. The inclusion map ib : Fb → X gives

a Cannon-Thurston map î : F̂b → X̂.
The ladder construction can also be generalized to the general framework

of a tree of hyperbolic metric spaces.
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Theorem 3.8 ([Mit98b]). Let (X, d) be a tree (T ) of hyperbolic metric
spaces satisfying the qi-embedded condition. Let v be a vertex of T and
(Xv, dv) be the vertex space corresponding to v. If X is hyperbolic then the
inclusion i : Xv → X gives a Cannon-Thurston map î : X̂v → X̂.

3.3.2. Hydra groups. Hyperbolic hydra groups were introduced by
Brady, Dison and Riley in [BDR11]. They constructed a sequence Γk, k =
1, 2, · · · of hyperbolic groups with finite-rank free subgroups Hk such that
the distortion function of Hk in Γk is at least Ak, the k−th term of the
Ackermann function (an example of a totally computable function that is
not primitive recursive). Baker and Riley prove the following:

Theorem 3.9 ([BR13]). Hyperbolic hydra have Cannon–Thurston maps
for all k.

3.3.3. Arcs in the boundary. Recall the situation in Section 3.2 where we
had geodesics λ ⊂ Y and ladders Lλ ⊂ X constructed out of them. It can be
easily seen that Lλ is (uniformly, independent of λ) quasi-isometric to H2. It
follows that there is an embedding ∂Lλ → ∂X, where X is the relevant tree
(ray or bi-infinite geodesic) of hyperbolic spaces. This allows us to join any
pair of points in ∂X by quasi-arcs which may be thought of as boundaries
of ladders Lλ. In the special case of a simply degenerate surface Kleinian
group, the limit set ∂X is a dendrite of Hausdorff dimension 2. Since the
quasi-arcs ∂Lλ → ∂X have Hausdorff dimension uniformly bounded away
from 2, and all cut-points of ∂X lie within such quasi-arcs, we have the
following Theorem due to Bowditch:

Theorem 3.10 ([Bow05]). Let Γ be a simply degenerate Kleinian group
of bounded geometry. Let ΛΓ be its dendritic limit set. Then the set of cut
points of ΛΓ has Hausdorff dimension strictly less than 2.

3.3.4. A non-proper Cannon-Thurston map. It was observed in Section
3.2 that the construction of the ladder Lλ and Theorem 3.3 require hyper-
bolicity of the space Y (the fiber in Theorem 1.2) but not that of the total
space X. In particular, this goes through for the Birman exact sequence

1 → π1(Σ) → Mod(Σ, ∗) → Mod(Σ) → 1,

where Mod(Σ) (resp. Mod(Σ, ∗)) refers to the mapping class group of a
closed surface Σ (resp. Σ with a marked point ∗). In [LMS11], Leininger,
the author and Schleimer constructed a Cannon-Thurston map in a closely
related, non-proper, setting.

Fix a hyperbolic metric on Σ and a basepoint ∗ ∈ Σ. Let p : H2 → Σ
be the universal cover and fix a lift z ∈ p−1(∗). With this normalization, we
obtain an isomorphism between π1(Σ, ∗) and the deck transformation group
π1(Σ) of p : H2 → Σ.

Let C(Σ) and C(Σ, ∗) be the relevant curve complexes. There exists a
natural ‘forgetful’ projection Π : C(Σ, ∗) → C(Σ). The fiber Π−1(v), for v a
vertex of C(Σ), was identified by Kent-Leininger-Schleimer [KLS09] to be
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π1(Σ)−equivariantly isomorphic to the Bass-Serre tree Tv of the splitting of
π1(Σ) given by splitting it along the simple curve v. π1(Σ) acts on C(Σ, ∗)
via the point-pushing map. There is a natural map

Φ : C(Σ)×H2 → C(Σ, ∗),
sending {v} ×H2 π1(Σ)−equivariantly to Tv(⊂ C(Σ, ∗)) and extending lin-
early over simplices. Let Φv denote the restriction of Φ to {v}×H2. We thus
think of Φv as a map Φv : H2 → C(Σ, ∗).

We shall next identify a collection of geodesic rays AT F ⊂ H2. It is
not hard to see [LMS11] that if σ is a geodesic ray in Σ lying eventually
inside a component of a pre-image of a proper essential subsurface of Σ,
then Φv(Σ) has finite diameter in C(Σ, ∗). The remaining set of geodesic
rays is denoted as AT F . Identifying elements of AT F with their end-points
in ∂H2 we obtain a set of full Lebesgue measure. The following establishes
the existence of a Universal Cannon–Thurston map in this setup.

Theorem 3.11 ([LMS11]). For v a vertex of C(Σ), Φv : H2 → C(Σ, ∗)
has a unique continuous π1(Σ)−equivariant extension

Φv : H2 ∪ AT F → C(Σ, ∗).
The boundary map ∂Φ = Φv|AT F does not depend on v and is a quotient
map onto ∂C(Σ, ∗).

Point-preimages: Given distinct points x, y ∈ AT F , ∂Φ(x) = ∂Φ(y)
if and only if x and y are ideal endpoints of a leaf or ideal vertices of a
complementary polygon of the lift of an arational lamination on Σ.

As a consequence of Theorem 3.11, we find that the boundary of the
curve complex C(Σ, ∗) is locally connected.

3.4. A counterexample. An explicit counterexample to Question 1.5
was found by Baker and Riley [BR13] in the context of hyperbolic sub-
groups of hyperbolic groups. The counterexample is in the spirit of small
cancellation theory and uses Lemma 1.6 to rule out the existence of Cannon-
Thurston maps.

The authors of [BR13] start with the free group on 5 generators F5 =
〈a, b, c1, c2, d1, d2〉. They introduce relators on F5 to obtain a hyperbolic
group G such that

(1) The subgroup H = 〈b, d1, d2〉 is a free subgroup of rank 3.
(2) The pair (H,G) does not have a Cannon-Thurston map.

A word about the relators used in constructing G is in order. The authors
choose positive words C, C1, C2 on c1, c2 and D1, D2, D11, D12, D21, D22

on d1, d2 such the relators are given by
(1) a−1b−1ab = C
(2) b−1cib = Ci, i = 1, 2
(3) (ab)−1di(ab) = Di, i = 1, 2
(4) c−1

i djci = Dij , i, j = 1, 2
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Matsuda and Oguni [MO14] used the construction of Baker and Riley
above to show that for any non-elementary hyperbolic group H, there is a
hyperbolic group G containing H such that the pair (H,G) has no Cannon-
Thurston map. They generalize this to relatively hyperbolic groups too.

3.5. Point pre-images: laminations. In Section 2.1, it was pointed
out that the Cannon-Thurston map î identifies p, q ∈ S1 if and only if p, q
are end-points of a leaf or ideal end-points of a complementary ideal polygon
of the stable or unstable lamination.

In [Mit97a] an algebraic theory of ending laminations was developed
based on Thurston’s theory [Thu80]. The theory was developed in the con-
text of a normal hyperbolic subgroup of a hyperbolic group G and used to
give an explicit structure for the Cannon-Thurston map in Theorem 3.6.

Definition 3.12 ([BFH97, CHL07, CHL08a, CHL08b, KL10,
KL15, Mit97a]). An algebraic lamination for a hyperbolic group H is
an H-invariant, flip invariant, closed subset L ⊆ ∂2H = (∂H×∂H \Δ)/ ∼,
where (x, y) ∼ (y, x) denotes the flip and Δ the diagonal in ∂H × ∂H.

Let
1 → H → G → Q → 1

be an exact sequence of finitely presented groups with H, G hyperbolic. It
follows by work of Mosher [Mos96] that there is a qi section σ : Q → G
and hence Q is hyperbolic. In [Mit97a], we construct algebraic ending lam-
inations naturally parametrized by points in the boundary ∂Q. We describe
the construction now.

Every element g ∈ G gives an automorphism of H sending h to g−1hg
for all h ∈ H. Let φg : V(ΓH) → V(ΓH) be the resulting bijection of the
vertex set V(ΓH) of ΓH . This induces a map Φg sending an edge [a, b] ⊂ ΓH

to a geodesic segment joining φg(a), φg(b).
For some (any) z ∈ ∂ΓQ we shall describe an algebraic ending lamination

Λz. Fix such a z and let
(1) [1, z) ⊂ ΓQ be a geodesic ray starting at 1 and converging to z ∈

∂ΓQ.
(2) σ : Q → G be a qi section [Mos96].
(3) zn be the vertex on [1, z) such that dQ(1, zn) = n.
(4) gn = σ(zn).

For h ∈ H, let Sh
n be the H–invariant collection of all free homotopy rep-

resentatives (or equivalently, shortest representatives in the same conjugacy
class) of φg−1

n
(h) in ΓH . Identifying equivalent geodesics in Sh

n one obtains
a subset S

h
n of unordered pairs of points in Γ̂H . The intersection with ∂2H

of the union of all subsequential limits (in the Hausdorff topology) of {Shn}
is denoted by Λh

z .
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Definition 3.13. The set of algebraic ending laminations corre-
sponding to z ∈ ∂ΓQ is given by

ΛEL(z) =
⋃

h∈H
Λh
z .

Definition 3.14. The set Λ of all algebraic ending laminations is defined
by

ΛEL =
⋃

z∈∂ΓQ

ΛEL(z).

The following was shown in [Mit97a]:

Theorem 3.15. The Cannon-Thurston map î of Theorem 3.6 identifies
p, q if (p, q) ∈ ΛEL. Conversely, if î(p) = î(q) for p �= q ∈ ∂ΓH , then
(p, q) ∈ ΛEL.

3.5.1. Finite-to-one. The classical Cannon-Thurston map of Theorem
1.2 is finite-to-one. Swarup asked (cf. Bestvina’s Geometric Group Theory
problem list [Bes04, Prolem 1.20]) if the Cannon-Thurston maps of Theo-
rem 3.6 are also finite-to-one. I. Kapovich and Lustig answered this in the
affirmative in the following case.

Theorem 3.16 ([KL15]). Let φ ∈ Out(FN ) be a fully irreducible hyper-
bolic automorphism, i.e. an irreducible hyperbolic automorphism all whose
powers are irreducible. Let Gφ = FN �φ Z be the associated mapping torus
group. Let ∂i denote the Cannon-Thurston map of Theorem 3.6 in this case.
Then for every z ∈ ∂Gφ, the cardinality of (∂i)−1(z) is at most 2N .

Bestvina-Feighn-Handel [BFH97] define a closely related set ΛBFH of
algebraic laminations in the case covered by Theorem 3.16 using train-track
representatives of free group automorphisms. Any algebraic lamination L
defines a relation RL on ∂FN by aRLb if (a, b) ∈ L. The transitive closure
of L will be called its diagonal closure. In [KL15], Kapovich and Lustig
further show that in the case covered by Theorem 3.16, ΛEL precisely equals
the diagonal closure of ΛBFH .

3.6. Quasiconvexity. This subsection deals with a theme explored in
[DKL14, MR18, DT16]. We follow the treatment in [MR18]. Develop-
ing the method of Scott-Swarup’s Theorem 2.2 and using Kapovich-Lustig’s
work [KL15], we obtain an analogous theorem for finitely generated infi-
nite index subgroups of the fiber group of Theorem 3.16 in [Mit99]. This
approach is further developed in [MR18], where the relationship between
the following different kinds of algebraic laminations are examined. We are
in the setup of Theorem 3.6.

(1) For an action of H on an R−tree, there is a dual lamination ΛR

[Thu80, BFH97, CHL07, CHL08a, KL10].
(2) Thurston’s ending laminations [Thu80] and the algebraic ending

lamination ΛEL of [Mit97a].
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(3) The Cannon-Thurston lamination ΛCT arising in the context of the
existence of a Cannon-Thurston map [CT07] and Theorem 3.6.

The following quasiconvexity result is a consequence of a close exami-
nation of the above laminations and their inter-relationships. We refer the
reader to [FM02] and [DT17] for the notions of convex cocompact sub-
groups of Teichmuller space or Outer Space.

Theorem 3.17. [MR18] Let

1 → H → G → Q → 1

be an exact sequence of hyperbolic groups, where H is either a free group
or a closed surface group and Q is convex cocompact in Outer Space or
Teichmuller space respectively. For the free group case, we assume further
that Q is purely hyperbolic. Let K be a finitely generated infinite index
subgroup of H. Then K is quasiconvex in G.

The case where H is a closed surface group in Theorem 3.17 was obtained
by Dowdall, Kent and Leininger [DKL14] by different methods. In [DT16],
Dowdall and Taylor use the methods of their earlier work [DT17] on convex
cocompact purely hyperbolic subgroups of Out(Fn) to give a different proof
of Theorem 3.17 when H is free.

3.7. Relative hyperbolicity. The notion of a Cannon-Thurston map
can be extended to the context of relative hyperbolicity. This was done in
[MP11]. Let X and Y be relatively hyperbolic spaces, hyperbolic relative to
the collections HX and HY of ‘horosphere-like sets’ respectively. For H ∈ HX

(or HY ), equipped with metric dH , the horoballification Hh of H is obtained
by equipping H×R+ with a metric that is Euclidean in the R+ factor while
H × {t} is equipped with the exponentially scaled metric e−tdH . Gluing
such horoballifications Hh to H in X (resp. Y ) for all H in X (resp. Y ) we
obtain the horoballifications G(X,HX) (resp. G(Y,HY )) of X (resp. Y ) with
respect to HX (resp. HY ) (see [Bow12] for details). Note that G(X,HX),
G(Y,HY ) are hyperbolic. The electrifications will be denoted as E(X,HX),
E(Y,HY ).

Definition 3.18. A map i : Y → X is strictly type-preserving if for
all HY ∈ HY there exists HX ∈ HX such that i(HY ) ⊂ HX and images of
distinct horospheres-like sets in Y lie in distinct horosphere-like sets in X.

Let i : Y → X be a strictly type-preserving proper embedding. Then i
induces a proper embedding ih : G(Y,HY ) → G(X,HX).

Definition 3.19. A Cannon-Thurston map exist for a strictly type-
preserving inclusion i : Y → X of relatively hyperbolic spaces X, Y if a
Cannon-Thurston map exists for the induced map ih : G(Y,HY )→G(X,HX).

Lemma 1.6 generalizes to the following.
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Lemma 3.20. A Cannon-Thurston map for i : Y → X exists if and
only if there exists a non-negative proper function M : N → N such that the
following holds:

Fix a base-point y0 ∈ Y . Let λ̂ in E(Y,HY ) be an electric geodesic segment
starting and ending outside horospheres. If λb = λ̂ \

⋃
K∈HY

K lies outside
BN (y0) ⊂ Y , then for any electric quasigeodesic β̂ joining the end points of
î(λ̂) in E(X,HX), βb = β̂ \

⋃
H∈HX

H lies outside BM(N)(i(y0)) ⊂ X.

Theorem 3.8 then generalizes to:

Theorem 3.21 ([MP11]). Let P : X → T be a tree of relatively hyper-
bolic spaces satisfying the qi-embedded condition. Assume that

(1) the inclusion maps of edge-spaces into vertex spaces are strictly
type-preserving

(2) the induced tree of electrified (coned-off) spaces continues to satisfy
the qi-embedded condition

(3) X is strongly hyperbolic relative to the family C of maximal cone-
subtrees of horosphere-like sets.

Then a Cannon-Thurston map exists for the inclusion of relatively hyperbolic
spaces i : Xv → X, where (Xv, dXv) is the relatively hyperbolic vertex space
corresponding to v.

3.8. Punctured surface bundles. We illustrate Theorem 3.21
by sketching a proof in the classical case of a hyperbolic 3-manifold fibering
over the circle with fiber a punctured surface Σh. This case was first estab-
lished by Bowditch [Bow07] by a somewhat different proof. We will work
with the cover Nh corresponding to the fiber subgroup. We lose nothing and
gain greater generality by working with punctured surface Kleinian groups
of bounded geometry. So Nh will henceforth denote the convex core of a
simply or doubly degenerate manifold of bounded geometry corresponding
to a punctured surface Kleinian group.

Excise the cusps of Nh leaving us a manifold N that has one or two ends.
Then, by work of Minsky [Min92], N is quasi-isometric to the universal
curve over a Lipschitz path in Teichmuller space from which cusps have been
removed. Identify Σh with a base pleated surface in Nh. Excising cusps from
Σh we obtain a base surface Σ in N . The universal cover Σ̃ is quasi-isometric
to a tree. The inclusion i : Σ̃ ⊂ Ñ is a special case of the setup of Theorem
3.21.

Let λ = [a, b] be a geodesic segment in Σ̃. As in Section 3.2, we obtain a
ladder Lλ. Theorem 3.3 ensures that there is a coarsely Lipschitz retraction
from Ñ to Lλ. Hence, in particular, Lλ is quasi-isometrically embedded in
Ñ .

Let λh be a geodesic in Σ̃h lying outside a large ball around p. Let
λ ⊂ Σ̃ be the ambient geodesic in Σ̃ (i.e. the geodesic in the intrinsic metric
on Σ̃) joining the same pair of points. It follows from the hypothesis on λh
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that λ lies outside a large ball modulo horodisks corresponding to lifts of
the cusps. Also, outside of horodisks, λh and λ track each other [Far98].
Since Lλ is qi-embedded in Ñ , there exists a quasigeodesic μ ⊂ Ñ lying in a
bounded neighborhood of Lλ joining the end-points of λ. Modulo horoballs
in Ñh, corresponding to lifts of cusps, μ lies outside a large ball around p.
Let μh be the hyperbolic geodesic joining the end points of μ. Away from
horoballs, μ and μh track each other [Far98]. Away from horoballs therefore,
μh lies outside large balls about p. The points at which μh enters and leaves
a particular horoball therefore lie outside large balls about p. But then the
hyperbolic segment joining them must do the same. This shows that μh must
itself lie outside large balls around p. The existence of a Cannon-Thurston
map follows (Lemmas 1.6 and 3.20 for instance).

Recall that there is a universal bundle over Teichmüller space Teich(Σh)
where the fiber over x ∈ Teich(Σh) is, tautologically, the Riemann surface s.
For r a geodesic in Teich(Σh), the pullback bundle over r can be equipped
with a metric that is infinitesimally a product of the Euclidean metric on r
with the hyperbolic metrics on x ∈ r ⊂ Teich(Σh). The universal cover of
the resulting bundle is called the universal metric bundle over r. Theorem
3.17 now generalizes to the following:

Theorem 3.22 ([MR18]). Let H be π1(Σ
h) for Σh a non-compact hy-

perbolic surface of finite volume and K a finitely generated infinite index sub-
group of H. Let r be a thick geodesic ray in the Teichmuller space Teich(Σh)
and let r∞ ∈ ∂Teich(Σh) be the limiting ending lamination. Let X denote
the universal metric bundle over r minus a small neighborhood of the cusps
and let H denote the horosphere boundary components. Then any orbit of K
in X is relatively quasiconvex in (X,H).

We also obtain the following:

Theorem 3.23 ([MS12, MR18]).
Let
(1) H = π1(Σ

h) be the fundamental group of a surface with finitely
many punctures

(2) H1, · · · , Hn be the peripheral subgroups of H
(3) Q be a convex cocompact subgroup of the pure mapping class group

of Sh

(4) K be a finitely generated infinite index subgroup of H.
Let

• 1 → H → G → Q → 1, and
• 1 → Hi → NG(Hi) → Q → 1

be the induced short exact sequences of groups. Then G is strongly hyper-
bolic relative to the collection {NG(Hi)}, i = 1, · · · , n. and K is relatively
quasiconvex in G.
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4. Kleinian surface groups
In this section and the next we shall describe a sequence of models for

degenerate ends of 3-manifolds following [Min01, Min94, Mj10, Mj11a,
Mj16] (in this section) and [Min10, BCM12, Mj14a] (in the next section)
and indicate how to generalize the ladder construction of Section 3.2 incorpo-
rating electric geometry. Using a process of recovering hyperbolic geodesics
from electric geodesics, we shall establish the existence of Cannon-Thurston
maps. We shall focus on closed surfaces and follow the summary in [LM18]
for the exposition.

The topology of each building block is simple: it is homeomorphic to
S×[0, 1], where S is a closed surface of genus greater than one. Geometrically,
the top and bottom boundary components in the first three model geometries
are uniformly bi-Lipschitz to a fixed hyperbolic structure on S. In fact it
is inconvenient to consider them to be equipped with a fixed hyperbolic
structure. We do so henceforth. The different types of geometries of the
blocks make for different model geometries of ends.

Definition 4.1. A model Em is said to be built up of blocks of some
prescribed geometries glued end to end, if

(1) Em is homeomorphic to S × [0,∞)
(2) There exists L ≥ 1 such that S × [i, i + 1] is L−bi-Lipschitz to a

block of one of the three prescribed geometries: bounded, i-bounded
or amalgamated.

S × [i, i+ 1] will be called the (i+ 1)th block of the model Em.
The thickness of the (i+ 1)th block is the length of the shortest

path between S × {i} and S × {i+ 1} in S × [i, i+ 1](⊂ Em).

4.1. Bounded geometry. Minsky [Min01, Min94] calls an end E of
a hyperbolic 3-manifold to be of bounded geometry if there are no arbitrarily
short closed geodesics in E.

Definition 4.2. Let B0 = S× [0, 1] be given the product metric. If B is
L−biLipschitz homeomorphic to B0, it is called an L−thick block.

An end E is said to have a model of bounded geometry if there exists L
such that E is bi-Lipschitz homeomorphic to a model manifold Em consisting
of gluing L−thick blocks end-to-end.

It follows from work of Minsky [Min92] that if E is of bounded geometry,
it has a model of bounded geometry. The existence of Cannon-Thurston
maps in this setup is then a replica of the proof of Theorem 3.5 (See also
Section 3.8).

4.2. i-bounded geometry.

Definition 4.3 ([Mj11a]). An end E of a hyperbolic 3-manifold M has
i-bounded geometry if the boundary torus of every Margulis tube in E
has bounded diameter.
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We give an alternate description. Start with a fixed closed hyperbolic
surface S and a finite collection C of disjoint simple closed geodesics on S.
Let Nε(σi) denote an ε neighborhood of σi, σi ∈ C, were ε is small enough
to ensure that lifts of Nε(σi) to S̃ are disjoint.

Definition 4.4. Let I = [0, 3]. Equip S × I with the product metric.
Let Bc = (S × I −∪iNε(σi)× [1, 2]), equipped with the induced path-metric.
Perform Dehn filling on some (1, n) curve on each resultant torus component
of the boundary of Bc (the integers n are quite arbitrary and may vary). We
call n the twist coefficient. Foliate the relevant torus boundary component
of Bc by translates of (1, n) curves. Glue in a solid torus Θ, which we refer
to as a Margulis tube, with a hyperbolic metric foliated by totally geodesic
disks bounding the (1, n) curves.

The resulting copy of S×I thus obtained, equipped with the above metric
is called a thin block.

Definition 4.5. A model manifold Em of i-bounded geometry is
built out of gluing thick and thin blocks end-to-end

It follows from work in [Mj11a] that

Proposition 4.6. An end E of a hyperbolic 3-manifold M has i-bounded
geometry if and only if it is bi-Lipschitz homeomorphic to a model manifold
Em of i-bounded geometry.

We give a brief indication of the construction of Lλ and the proof of
the existence of Cannon-Thurston maps in this case. First electrify all the
Margulis tubes. This ensures that in the resulting electric geometry, each
block is of bounded geometry. More precisely, there is a (metric) product
structure on S × [0, 3] such that each {x} × [0, 3] has uniformly bounded
length in the electric metric.

Further, since the curves in C are electrified in a block, Dehn twists about
components of C are isometries from S×{1} to S×{2} in a thin block. This
allows the construction of Lλ to go through as before and ensures that it is
quasiconvex in the resulting electric metric.

Finally given an electric geodesic lying outside large balls modulo Mar-
gulis tubes one can recover a genuine hyperbolic geodesic tracking it outside
Margulis tubes. The criterion of Lemma 1.6 can now be satisfied using the
same technique as the one we used in Section 3.8 to handle horoballs. The
existence of Cannon-Thurston maps follows in this case.

4.3. Amalgamation geometry. Again, as in Definition 4.4, start with
a fixed closed hyperbolic surface S, a collection of disjoint simple closed
curves C and set I = [0, 3]. Perform Dehn surgeries on the Margulis tubes
corresponding to C as before. Let K = S×[1, 2] ⊂ S×[0, 3] and let Kc = (S×
I−∪iNε(σi)×[1, 2]). Instead of fixing the product metric on the complement
Kc of Margulis tubes in K, allow these complementary components to have
arbitrary geometry subject only to the restriction that the geometries of
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S×{1, 2} are fixed. Equip S× [0, 1] and S× [3, 4] with the product metrics.
The resulting block is said to be a block of amalgamation geometry.
After lifting to the universal cover, complements of Margulis tubes in the
lifts S̃ × [1, 2] are termed amalgamation components.

Definition 4.7. An end E of a hyperbolic 3-manifold M has amalga-
mated geometry if

(1) it is bi-Lipschitz homeomorphic to a model manifold Em consisting
of gluing thick and amalgamation geometry blocks end-to-end.

(2) Amalgamation components are (uniformly) quasiconvex in Ẽm.
To construct the ladder Lλ we electrify amalgamation components as

well as Margulis tubes. This ensures that in the electric metric,
(1) Each amalgamation block has bounded geometry
(2) The mapping class element taking S × {1} to S × {2} induces an

isometry of the electrified metrics.
Quasiconvexity of Lλ in the electric metric now follows as before. To re-

cover the data of hyperbolic geodesics from quasigeodesics lying close to Lλ,
we use (uniform) quasiconvexity of amalgamation components and existence
of Cannon-Thurston maps follows.

5. Split geometry
We need to relax the assumption of the previous section that the bound-

ary components of model blocks are of (uniformly) bounded geometry.
Roughly speaking, split geometry is a generalization of amalgamation ge-
ometry where

(1) A Margulis tube is allowed to travel through contiguous blocks and
split them.

(2) The complementary pieces, now called split components, are qua-
siconvex in a somewhat weaker sense.

One of the main points of [Mj14a] is to show than any degenerate end
has split geometry. Below, we shall invert this logic and start with the Minsky
model [Min10] of degenerate ends and come up with the appropriate notion
of split geometry. We shall follow the exposition of [Mj14a].

First, some basic notions and notation. The complexity of a compact
surface S = Sg,b of genus g and b boundary components is denoted by
ξ(Sg,b) = 3g + b. For an essential subsurface Y of S, the curve complex and
pants complex are denoted by C(Y ) and P(Y ) respectively. For a simplex
α ∈ C(Y ), the simple closed curves forming the vertices of α is denoted
by γα. Simplices α, β in C(Y ) are said to fill an essential subsurface Y of
S if all non-trivial non-peripheral curves in Y have essential intersection
with at least one of γα or γβ. Fixing α, β in C(S), we can form a regular
neighborhood of γα∪γβ and fill in all disks to obtain an essential subsurface
Y . We say that Y is filled by α, β. If X ⊂ Z is an essential subsurface, Z(X)
will denote the relative boundary of X in Z, i.e. the set of all boundary
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components of X that are non-peripheral in Z. A pants decomposition of S
is a disjoint collection of pairs of pants P1, · · · , Pn embedded in S such that
S \

⋃
i Pi is a disjoint collection of non-homotopic annuli in S. A tube in an

end E ⊂ N is an embedded solid torus R−neighborhood of an unknotted
geodesic.

5.1. Hierarchies. We recall the concept of hierarchies from [MM00].

Definition 5.1. Fix an essential subsurface Y in S.
Case 1: ξ(Y ) > 4: A sequence of simplices {vi}i∈I in C(Y ) for I a finite or
infinite interval in Z is said to be tight if it satisfies the following:

• For vertices wi of vi and wj of vj (i �= j), dC(Y )(wi, wj) = |i− j|,
• Let F (vi−1, vi+1) denote the subsurface of Y filled by the multicurves
vi−1, vi+1. Then for {i− 1, i, i+ 1}⊂ I, vi equals Y F (vi−1, vi+1).

Case 2: ξ(Y ) = 4: A tight sequence is the vertex sequence of a geodesic in
C(Y ).

Definition 5.2. A tight geodesic g in C(Y ) consists of a tight sequence
v0, · · · , vn, and two simplices in C(Y ), I = I(g) and T = T(g), the initial
and terminal markings respectively, such that v0 is a sub-simplex of I and
vn is a sub-simplex of T.

n is called the length of g. vi is called a simplex of g. Y is called the
domain of g and is denoted as Y = D(g). g is said to be supported in D(g).

For a simplex v of C(W ), collar(v) will denote a small tubular neigh-
borhood of the union of the simple closed curves in v. If ξ(W ) ≥ 4, v is
a simplex of C(W ) and Y is a component of W \ collar(v), then we shall
call Y a component domain of (W, v). For a tight geodesic g having domain
D(g), Y ⊂ S is called a component domain of g if Y is a component domain
of (D(g), vj) for some simplex vj of g.

An edge path ρ : [0, n] → P(S) joining ρ(0) = P1 to ρ(n) = P2 is called
a hierarchy path in the pants complex P(S) joining pants decompositions
P1 and P2 if

(1) There exists a collection {Y } of essential, non-annular subsurfaces
of S, which we refer to as component domains of ρ, such that for
each Y there exists a sub-interval JY ⊂ [0, n] with ∂Y ⊂ ρ(j) for
all j ∈ JY .

(2) For any such component domain Y of ρ, there exists a tight geodesic
gY supported in Y satisfying the following: for each j ∈ JY , there
exists α ∈ gY with α ∈ ρ(j).

Definition 5.3. A hierarchy path ρ in P(S) is a sequence {Pn}n
of pants decompositions of S such that for any Pi, Pj ∈ {Pn}n, i ≤ j, the
sequence Pi, Pi+1, · · · , Pj−1, Pj of pants decompositions is a hierarchy path
joining Pi and Pj.

The collection of tight geodesics gY supported in component domains of
ρ will be referred to as the hierarchy of tight geodesics associated to ρ.
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In [Min10], Minsky considered a finer construction called a resolution. The
notion of a hierarchy path above differs from a resolution in the sense of
Minsky by ignoring geodesics supported in curve complexes of annuli. Thus
the resolution of a hierarchy path we shall define below continues to ignore
annular domains.

Given a hierarchy H associated to a hierarchy path ρ, a slice is a set τ
of pairs (h, v), with h ∈ H and v a simplex of h, such that the following is
satisfied:

• Any geodesic h occurs in at most one element (pair) of τ .
• There exists a distinguished pair (hτ , vτ ) in τ , called the bottom

pair of τ and hτ is called the bottom geodesic.
• For every (k,w) ∈ τ not equal to the bottom pair, D(k) is a com-

ponent domain of (D(h), v) for some (h, v) ∈ τ .

Definition 5.4. Given a hierarchy path ρ : I → P(S) and a hi-
erarchy H associated to it, a resolution of H is a sequence of slices
τi = {(hi1, vi1), (hi2, vi2), · · · , (hini , vini)}, i ∈ I, such that the set of ver-
tices of {vi1, vi2, · · · , vini} coincides with the set of non-peripheral boundary
curves of pairs of pants in ρ(i) ∈ P(S).

We introduce the notion and structure of Minsky Blocks following
[Min10]. These are the building blocks of the model in [Min10]. A 4-
geodesic is a tight geodesic in H supported in a component domain of
complexity 4. An edge e of such a 4-geodesic is called a 4-edge. Let g be
the 4-geodesic containing e, D(e) the domain D(g). e− and e+ will denote
the initial and terminal vertices of e and collar v will denote a small neigh-
borhood of v in D(e).

In [Min10], Minsky constructs a block B(e) which we refer to as a
Minsky block as follows:
B(e) = (D(e)× [−1, 1]) \ (collar(e−)× [−1,−1/2) ∪ collar(e+)× (1/2, 1]).

The horizontal boundary of B(e), consisting of pairs of pants, is given
by

±B(e) ≡ (D(e) \ collar(e±))× {±1}.
The top (resp. bottom) horizontal boundaries of B(e) are (D(e)\collar(e+))×
{1} (resp. (D(e) \ collar(e−))×{−1}). The rest of the boundary, called the
vertical boundary, is a union of annuli.

5.2. Split level surfaces. Let E be (a neighborhood of) a degenerate
end of a hyperbolic 3-manifold N . Let T denote a collection of disjoint,
uniformly separated tubes in E containing all Margulis tubes. In particular,
there is a uniform lower bound ε0 > 0 on the injectivity radius at all points
in E outside

⋃
T∈T Int(T ). In [Min10], Minsky constructs a model M for

E from a model M(0) for E \
⋃

T∈T Int(T ). In [BCM12], it is shown that
there exists a bi-Lipschitz homeomorphism F : E → M . There is a unique
standard hyperbolic pair of pants (Q, ∂Q) such that each component of ∂Q
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has length one. A copy of (Q, ∂Q) in (M(0), ∂M(0)) is called flat if it is
isometrically embedded.

Definition 5.5. A split level surface associated to a pants decompo-
sition {Q1, · · · , Qn} is an embedding f : ∪i(Qi, ∂Qi) → (M(0), ∂M(0)) such
that

(1) f(Qi, ∂Qi) is flat for all i. (We shrink each Qi slightly so that the
complement of ∪iQi in S is a union of small annular neighborhoods
of the pants curves.)

(2) f extends to a topological embedding (which we also denote by f)
of S into M such that f(S \

⋃
iQi) ⊂ F (

⋃
T∈T Int(T )).

For an embedded split level surface Si as above, the union of the collec-
tion of flat pairs of pants in its image is denoted as Ss

i . Hence Si\Ss
i consists

of annuli properly embedded in the tubes T .
The set of equivalence classes of topological embeddings from S to M

that agree with a split level surface f corresponding to a pants decomposition
{Q1, · · · , Qn} on Q1 ∪ · · · ∪Qn can be partially ordered. Denote the equiv-
alence class of f by [f ]. The partial order ≤E is given as follows. f1 ≤E f2
if there exist gi ∈ [fi], i = 1, 2, such that g2(S) lies in the unbounded com-
ponent of E \ g1(S).

We shall say that a sequence {Si} of split level surfaces exits E if
(1) i < j implies Si ≤E Sj .
(2) For all compacts B ⊂ E, Si ∩B = ∅ for all sufficiently large i.

Definition 5.6. A pair of split level surfaces Si and Sj (i < j) is
k-separated if

(1) for all x ∈ Ss
i , dM (x, Ss

j ) ≥ k.
(2) for all x ∈ Ss

j , dM (x, Ss
i ) ≥ k.

The following Definition is the take-off point for split geometry.

Definition 5.7. A simple closed curve v splits a pair of split level
surfaces Si and Sj (i < j) if v occurs as a pants curve of both Si and Sj.

Definition 5.8. A simple closed curve v ⊂ S is l-thin if the corre-
sponding tube Tv has core curve of length at most l. A tube T ∈ T is l-thin if
its core curve is l-thin. A tube T ∈ T is l-thick if it is not l-thin. We denote
the collection of all l-thin tubes as Tl and M(0) along with all l-thick tubes
as M(l).

A pair of split level surfaces Si and Sj (i < j) is said to be an l-thin
pair if there exists an l-thin curve v that splits Si, Sj.

5.2.1. The Minsky model, the bi-Lipschitz model theorem and conse-
quences. For θ, ω > 0, a neighborhood Nε(γ) of a closed geodesic γ is called
a (θ, ω)-thin tube if the length of γ is at most θ and the length of the shortest
geodesic on ∂Nε(γ) is at least ω.
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Theorem 5.9 ([Min10], [BCM12]). Let N be the convex core of a sim-
ply or doubly degenerate hyperbolic 3-manifold without cusp corresponding
to a representation of the fundamental group of a closed surface S. There
exist

(1) L ≥ 1, θ, ω, ε, ε1 > 0,
(2) a collection T of (θ, ω)-thin tubes containing all Margulis tubes in

N ,
(3) a 3-manifold M ,
(4) an L-bi-Lipschitz homeomorphism F : N → M ,

such that if
(1) M(0) = F (N \

⋃
T∈T Int(T ))

(2) F (T ) denotes the image of the collection T under F ,
(3) and ≤E denotes the partial order on the collection of split level

surfaces in an end E of M ,
then there exists a sequence Si of split level surfaces associated to pants
decompositions Pi exiting E such that

(1) Si ≤E Sj if i ≤ j.
(2) The sequence {Pi} gives a hierarchy path in P(S).
(3) If Pi∩Pj = {Q1, · · ·Ql} then fi(Qk) = fj(Qk) for k = 1 · · · l, where

fi, fj are the embeddings defining the split level surfaces Si, Sj

respectively.
(4) For all i, Pi ∩ Pi+1 = {Qi,1, · · ·Qi,l} consists of a collection of

pairs of pants, such that S \ (Qi,1 ∪ · · · ∪ Qi,l) has a single non-
annular component of complexity 4. Further, there exists a Minsky
block Wi and an isometric map Gi of Wi into M(0) such that
fi(S \(Qi,1∪· · ·∪Qi,l) (resp. fi+1(S \(Qi,1∪· · ·∪Qi,l)) is contained
in the bottom (resp. top) gluing boundary of Wi.

(5) For each flat pair of pants Q in a split level surface Si there exists
an isometric embedding of Q × [−ε, ε] into M(0) such that the
embedding restricted to Q× {0} agrees with fi restricted to Q.

(6) For each T ∈ T , there exists a split level surface Si associated to
pants decomposition Pi such that the core curve of T is isotopic
to a non-peripheral boundary curve of Pi. The boundary F (∂T ) of
F (T ) with the induced metric dT from M(0) is a Euclidean torus
equipped with a product metric S1×S1

v , where any circle of the form
S1 × {t} ⊂ S1 × S1

v is a round circle of unit length and is called
a horizontal circle; and any circle of the form {t} × S1

v is a round
circle of length lv and is called a vertical circle.

(7) Let g be a tight geodesic other than the bottom geodesic in the
hierarchy H associated to the hierarchy path {Pi}, let D(g) be the
support of g and let v be a boundary curve of D(g). Let Tv be the
tube in T such that the core curve of Tv is isotopic to v. If a vertical
circle of (F (∂Tv), dTv) has length lv less than nε1, then the length
of g is less than n.
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5.3. Split surfaces and weak split geometry. We are now in a po-
sition to describe the general case of split geometry. We first extend split
level surfaces to split surfaces by adjoining bi-Lipschitz annuli.

Definition 5.10. An L-bi-Lipschitz split surface in M(l) associated to
a pants decomposition {Q1, · · · , Qn} of S and a collection {A1, · · · , Am} of
(some of the) complementary annuli in S is an embedding f : ∪iQi

⋃
∪iAi →

M(l) such that
(1) the restriction f : ∪i(Qi, ∂Qi) → (M(0), ∂M(0)) is a split level

surface,
(2) the restriction f : Ai → M(l) is an L-bi-Lipschitz embedding,
(3) f extends to an embedding (also denoted f) of S into M such

that each annulus component of f(S \ (∪iQi
⋃
∪iAi)) is properly

contained in F (
⋃

T∈Tl Int(T )).
Denote split surfaces by Σi. Let Σs

i denote the union of the collection of
flat pairs of pants and bi-Lipschitz annuli in the image of the split surface
Σi.

We recall one of the technical tools from [Mj14a].
Theorem 5.11. ([Mj14a, Theorem 4.8]) Let N , M , M(0), S, F be as

in Theorem 5.9 above. Let E be an end of M . Fix a hyperbolic metric on
S, l less than the Margulis constant, and let M(l) be the union of M(0)
and l−thick Margulis tubes. Then there exist L1 ≥ 1, ε1 > 0, n ∈ N, and
a sequence Σi of L1-bi-Lipschitz, ε1-separated split surfaces exiting E such
that for all i, either an l-thin curve splits the pair (Σi,Σi+1); or there exists
an L1-bi-Lipschitz embedding Gi : (S × [0, 1], (∂S)× [0, 1]) → (M,∂M) such
that Σs

i = Gi(S × {0}) and Σs
i+1 = Gi(S × {1}).

Further, each l-thin curve in S splits at most n split level surfaces in the
sequence {Σi}.

A crucial feature of Theorem 5.11 above is that each l−thin in S splits a
uniformly bounded number of split level surfaces. This necessarily involves
passing to a subsequence {Σi} of the sequence Si of split level surfaces given
by Theorem 5.9 (hence the change in notation).

Pairs of split surfaces satisfying the first (resp. second) alternatives of
Theorem 5.11 are called l-thin pairs (resp. l-thick pairs) of split surfaces.
We shall drop l if it is understood. We now provide a weakened version of
the promised notion of split geometry.

Definition 5.12. A model end E identified with S × [0,∞) satisfying
the following conditions is said to have weak split geometry:

(1) There exists a sequence of split surfaces Ss
i (⊂ S × {i}) exiting E.

(2) A collection T of Margulis tubes in (the corresponding end of N)
with image F (T ) in E. The image is also referred to as a Margulis
tube.

(3) Each complementary annulus of Ss
i with core curve v is mapped

properly into a Margulis tube F (T ) which is said to split Ss
i .
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(4) Either there exists a Margulis tube splitting both Ss
i and Ss

i+1, or
else both Si(= Ss

i ) and Si+1(= Ss
i+1) have bounded geometry and

bound a thick block Bi.
(5) F (T )∩Ss

i is either empty or consists of a pair of boundary compo-
nents of Ss

i that are parallel in Si.
(6) There is a uniform upper bound on the number of surfaces that any

F (T ) splits.
We shall sketch a proof of a special case of the following Theorem in the

next subsection.
Theorem 5.13 ([Mj14a]). Any degenerate end of a hyperbolic 3-manifold

is bi-Lipschitz homeomorphic to a Minsky model and hence to a model of
weak split geometry.

To proceed to define split geometry, we have to impose a quasiconvexity
condition. But before we do this, we need to identify the analog of amal-
gamation components in weak split geometry (Definition 5.12). We do this
now.

If (Σs
i ,Σ

s
i+1) is a thick pair of split surfaces in M , then the closure of

the bounded component of E \ (Σs
i ∪ Σs

i+1) between Σs
i , Σs

i+1 will be called
a thick block as in Section 4.

Definition 5.14. Let (Σs
i ,Σ

s
i+1) be an l-thin pair of split surfaces in

M and F (Ti) be the collection of l-thin Margulis tubes that split both Σs
i ,

Σs
i+1. The closure of the union of the bounded components of M \ ((Σs

i ∪
Σs
i+1)

⋃
F (T )∈F (Ti) F (T )) between Σs

i , Σs
i+1 will be called a split block.

The closure of any bounded component is called a split component.
Each split component is allowed to contain Margulis tubes, called hang-

ing tubes that do not go all the way across from the top to the bottom,
i.e. they do not split both Σs

i , Σs
i+1.

Topologically, therefore, a split component Bs ⊂ B = S×I is a topolog-
ical product Ss × I for some, necessarily connected Ss. However, the upper
and lower boundaries of Bs need only be split subsurfaces of Ss to allow for
hanging tubes starting or ending (but not both) within the split block.

Electrifying split components as in Section 4.3, we obtain a new electric
metric called the graph metric dG on E.

Definition 5.15. A model of weak split geometry is said to be of split
geometry if the convex hull of each split component has uniformly bounded
dG−diameter.

5.4. Cannon-Thurston maps for degenerate manifolds. Let M
be a hyperbolic 3-manifold homotopy equivalent to a closed hyperbolic sur-
face S. Once we establish that M has split geometry, the proof proceeds
as in Section 4.3 by electrifying split components, constructing a hyperbolic
ladder Lλ and finally recovering a hyperbolic geodesic from an electric one.
We shall therefore dwell in this subsection on showing that any degenerate
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Figure 1. Split Block with hanging tubes

end has split geometry. We shall do this under two simplifying assumptions,
directing the reader to [Mj14a] (especially the Introduction) for a more
detailed road-map.

We borrow extensively from the hierarchy and model manifold terminol-
ogy and technology summarized in Sections 5.1 and 5.2 above. The model
manifold of [Min10] (Theorem 5.9) furnishes a resolution, or equivalently,
a sequence {Pm} of pants decompositions of S exiting E and hence a hierar-
chy path. Let τm denote simple multicurve on S constituting Pm. The Pm in
turn furnish split level surfaces {Sm} exiting E. Next, corresponding to the
hierarchy path is a tight geodesic in C(S) consisting of the bottom geodesic
{ηi} of the hierarchy. We proceed to extract a subsequence of the resolution
τm using the bottom geodesic {ηi} under two key simplifying assumptions:

(1) For all i, the length of exactly one curve in ηi is sufficiently small,
less than the Margulis constant in particular. Call it ηi for conve-
nience.

(2) Let Si correspond to the first occurrence of the vertex ηi in the res-
olution τm. Assume further that the Si’s are actually split surfaces
and not just split level surfaces, i.e. they all have injectivity radius
uniformly bounded below,

It follows that the Margulis tube ηi splits both Si and Si+1 and that
the tube Ti corresponding to ηi is trapped entirely between Si and Si+1.
The product region Bi between Si and Si+1 is therefore a split block for
all i and Ti splits it. The model manifold thus obtained therefore satisfies
the conditions of Definition 5.12. In a sense, this is a case of ‘pure split
geometry’, where all blocks have a split geometry structure (no thick blocks).
To prove that the model is indeed of split geometry, it remains to establish
the quasiconvexity condition of Definition 5.15.

Let K be a split component and K̃ an elevation to Ẽ. Let v be a boundary
short curve for the split component and let Tv be the Margulis tube corre-
sponding to v abutting K. Denote the hyperbolic convex hull by CH(K̃) and
pass back to a quotient in M . A crucial observation that is needed here is
the fact that any pleated surface has bounded dG−diameter. This is because
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thin parts of pleated surfaces lie inside Margulis tubes that get electrified in
the graph metric. It therefore suffices to show that any point in CH(K) lies
close to a pleated surface passing near the fixed tube Tv. This last condi-
tion follows from the Brock-Bromberg drilling theorem [BB04] and the fact
that the convex core of a quasi-Fuchsian group is filled by pleated surfaces
[Fan99]. This completes our sketch of a proof of the following main theorem
of [Mj14a]:

Theorem 5.16. Let ρ : π1(S) → PSL2(C) be a simply or doubly de-
generate (closed) surface Kleinian group. Then a Cannon-Thurston map
exists.

It follows that the limit set of ρ(π1(S)) is a continuous image of S1 and
is therefore locally connected. As a first application of Theorem 5.16, we
shall use the following Theorem of Anderson and Maskit [AM96] to prove
that connected limit sets of Kleinian groups without parabolics are locally
connected.

Theorem 5.17 ([AM96]). Let Γ be an analytically finite Kleinian group
with connected limit set. Then the limit set Λ(Γ) is locally connected if and
only if every simply degenerate surface subgroup of Γ without accidental
parabolics has locally connected limit set.

Combining the remark after Theorem 5.16 with Theorem 5.17, we im-
mediately have the following affirmative answer to Question 1.4.

Theorem 5.18. Let Γ be a finitely generated Kleinian group without
parabolics and with a connected limit set Λ. Then Λ is locally connected.

Further generalizations and applications of Theorem 5.16 appear in the
following section.

6. Generalizations and applications: Kleinian groups
6.1. Finitely generated Kleinian groups. In [Mj14b], we show

that the point preimages of the Cannon-Thurston map for a simply or dou-
bly degenerate surface Kleinian group given by Theorem 5.16 corresponds to
end-points of leaves of ending laminations. In particular, the ending lamina-
tion corresponding to a degenerate end can be recovered from the Cannon-
Thurston map. This was extended further in [DM16] and [Mj17b] to obtain
the following general version for finitely generated Kleinian groups.

Theorem 6.1 ([Mj17b]). Let G be a finitely generated Kleinian group.
Let i : ΓG → H

3 be the natural identification of a Cayley graph of G with the
orbit of a point in H

3. Then i extends continuously to a Cannon-Thurston
map î : Γ̂G → D

3, where Γ̂G denotes the (relative) hyperbolic compactification
of ΓG.

Let ∂i denote the restriction of î to the boundary ∂ΓG of ΓG. Let E be
a degenerate end of Nh = H

3/G and Ẽ a lift of E to Ñh and let Mgf be an
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augmented Scott core of Nh. Then the ending lamination LE for the end E

lifts to a lamination on M̃gf ∩Ẽ. Each such lift L of the ending lamination of
a degenerate end defines a relation RL on the (Gromov) boundary ∂M̃gf (or
equivalently, the relative hyperbolic boundary ∂rΓG of ΓG), given by aRLb
iff a, b are end-points of a leaf of L. Let {Ri} be the entire collection of
relations on ∂M̃gf obtained this way (taking all ends E and all lifts L). Let
R be the transitive closure of the union

⋃
iRi. Then ∂i(a) = ∂i(b) iff aRb.

6.2. Cannon-Thurston maps and the ending lamination theo-
rem. Theorems 5.16 and 6.1 in conjunction with the Ending Lamination
Theorem [Min10, BCM12] establish the slogan:

Dynamics on the Limit Set determines Geometry in the Interior.
The model built in [Min10, BCM12] is of course necessary for the

proofs of Theorems 5.16 and 6.1. We now combine the Ending Lamination
Theorem with these two theorems to establish the above slogan. In the
simplest case, the Ending Lamination Theorem says that for a simply or
doubly degenerate surface Kleinian group Γ(= ρ(π1(S)) without accidental
parabolics, the geometry i.e. the isometry type of the manifold M = H3/Γ
is determined by its end-invariants. For a doubly degenerate group, the end-
invariants are two ending laminations, one each for the two geometrically
infinite ends of M . For a simply degenerate group, the end-invariants are an
ending lamination corresponding to the geometrically infinite end of M and
a conformal structure on S corresponding to the geometrically finite end of
M . The ending lamination corresponding to a geometrically infinite end is
independent of the hyperbolic structure on S and hence may be regarded as
a purely topological piece of data associated to the end. Thus, in the context
of geometrically infinite Kleinian groups, the Ending Lamination Theorem
justifies the slogan

Topology implies Geometry.
It may thus be considered an analog of Mostow Rigidity for infinite covolume
Kleinian groups.

The structure of Cannon-Thurston maps ([Mj14b], or more generally,
Theorem 6.1) show that the point preimage data of Cannon-Thurston maps
captures precisely the ending lamination. By the Ending Lamination Theo-
rem, it follows that the Cannon-Thurston map determines the isometry type
of M

(1) completely when M is doubly degenerate, and
(2) up to bi-Lipschitz homeomorphism (with a uniformly bounded con-

stant) when M is simply degenerate.
Further, since topological conjugacies are compatible with Cannon-

Thurston maps, it follows that a topological conjugacy of the Γ−action on
limit sets comes from a bi-Lipschitz homeomorphism of quotient manifolds.
Hence the Ending Lamination Theorem [Min10, BCM12] in conjunction
with Theorem 5.16 and the structure theorem of [Mj14b] (or Theorem 6.1)



CANNON-THURSTON MAPS: A SURVEY 311

show that we can recover the geometry of M from the action of Γ on the
limit set ΛΓ.

6.3. Primitive stable representations. In [Min09] Minsky intro-
duced an open subset of the PSL2(C) character variety for a free group,
properly containing the Schottky representations, on which the action of
the outer automorphism group is properly discontinuous. He called these
primitive stable representations. Let Fn be a free group of rank n. An
element of Fn is primitive if it is an element of a free generating set. Let
P = · · ·www · · · be the set of bi-infinite words with w cyclically reduced
primitive. A representation ρ : Fn → PSL2(C) is primitive stable if all
elements of P are mapped to uniform quasigeodesics in H3.

Minsky conjectured that primitive stable representations are character-
ized by the feature that every component of the ending lamination is block-
ing.

Using Theorem 6.1, Jeon and Kim [JK10], and Jeon, Kim, Ohshika and
Lecuire [JKOL14] resolved this conjecture. We briefly sketch their argument
for a degenerate free Kleinian group without parabolics.

Let {D1, · · · , Dn} = D be a finite set of essential disks on a handlebody
H cutting H into a 3-ball. A free generating set of Fn is dual to D. For a
lamination L, the Whitehead graph Wh(Λ,D) is defined as follows. Cut
∂H along ∂D to obtain a sphere with 2n holes, labeled by D±

i . The vertices
of Wh(L,D) are the boundary circles of ∂H, with an edge whenever two
circles are joined by an arc of L \ D. For the ending lamination LE of a
degenerate free group without parabolics, Wh(LE ,Δ) is connected and has
no cutpoints.

Let ρE be the associated representation, i.e. a representation of a free
Kleinian group with ending lamination LE . If ρE is not primitive stable,
then there exists a sequence of primitive cyclically reduced elements wn such
that ρE(w

∗
n) is not an n− quasi-geodesic. After passing to a subsequence,

wn and hence w∗
n converges to a bi-infinite geodesic w∞ in the Cayley graph

with two distinct end points w+, w− in the Gromov boundary of Fn. The
Cannon-Thurston map identifies w+, w−. Hence by Theorem 6.1 they are
either the end points of a leaf of LE or ideal end-points of a complementary
ideal polygon of LE . It follows therefore that Wh(w∞,D) is connected and
has no cutpoints. Since the wn’s converge to w∞, Wh(wn,D) is connected
and has no cutpoints for large enough n. A Lemma due to Whitehead says
that if Wh(wn,D) is connected and has no cutpoints, then wn cannot be
primitive, a contradiction.

6.4. Discreteness of commensurators. In [LLR11] and [Mj11b],
Theorems 5.16 and 6.1 are used to prove that commensurators of finitely
generated, infinite covolume, Zariski dense Kleinian groups are discrete. The
basic fact that goes into the proof is that commensurators preserve the
structure of point pre-images of Cannon-Thurston maps. The point pre-
image structure is known from Theorem 6.1.
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6.5. Motions of limit sets. We discuss the following question in this
section, which paraphrases the second part of [Thu82, Problem 14]. A de-
tailed survey appears in [Mj17a].

Question 6.2. Let Gn be a sequence of Kleinian groups converging to a
Kleinian group G. Does the corresponding dynamics of Gn on the Riemann
sphere S2 converge to the dynamics of G on S2?

To make Question 6.2 precise, we need to make sense of ‘convergence’
both for Kleinian groups and for their dynamics on S2. There are three
different notions of convergence for Kleinian groups.

Definition 6.3. Let ρi : H → PSL2(C) be a sequence of Kleinian
groups. We say that ρi converges to ρ∞ algebraically if for all h ∈ H,
ρi(h) → ρ∞(h).

Let ρj : H → PSL2(C) be a sequence of discrete, faithful representations
of a finitely generated, torsion-free, nonabelian group H. If {ρj(H)} con-
verges as a sequence of closed subsets of PSL2(C) in the Gromov-Hausdorff
topology to a torsion-free, nonabelian Kleinian group Γ, Γ is called the geo-
metric limit of the sequence.

Gi(= ρi(H)) converges strongly to G(= ρ∞(H)) if the convergence is
both geometric and algebraic.

Question 6.2 then splits into the following three questions.

Question 6.4.
(1) If Gn → G geometrically, then do the corresponding limit sets con-

verge in the Hausdorff topology on S2?
(2) If Gn → G strongly then do the corresponding Cannon-Thurston

maps converge uniformly?
(3) If Gn → G algebraically then do the corresponding Cannon-Thurston

maps converge pointwise?

We give the answers straight off and then proceed to elaborate.

Answers 6.5.
(1) The answer to Question 6.4 (1) is Yes.
(2) The answer to Question 6.4 (2) is Yes.
(3) The answer to Question 6.4 (3) is No, in general.

The most general answer to Question 6.4 (1) is due to Evans [Eva00],
[Eva04]:

Theorem 6.6 ([Eva00], [Eva04]). Let ρn : H → Gn be a sequence of
weakly type-preserving isomorphisms from a geometrically finite group H to
Kleinian groups Gn with limit sets Λn, such that ρn converges algebraically
to ρ∞ : H → Ga

∞ and geometrically to Gg
∞. Let Λa and Λg denote the limit

sets of Ga
∞ and Gg

∞. Then Λn → Λg in the Hausdorff metric. Further, the
sequence converges strongly if and only Λn → Λa in the Hausdorff metric.
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The answer to Question 6.4 (2) is due to the author and Series [MS17]
in the case that H = π1(S) for a closed surface S of genus greater than one.
This can be generalized to arbitrary finitely generated Kleinian groups as in
[Mj17a]:

Theorem 6.7. Let H be a fixed group, ρn a sequence of strongly type-
preserving isomorphisms such that ρn(H) = Γn is a sequence of geometrically
finite Kleinian groups converging strongly to a Kleinian group Γ. Let Mn

and M∞ be the corresponding hyperbolic manifolds. Let K be a fixed complex
with fundamental group H.

Consider embeddings φn : K → Mn, n = 1, · · · ,∞ such that the maps
φn are homotopic to each other by uniformly bounded homotopies (in the
geometric limit). Then Cannon-Thurston maps for φ̃n exist and converge
uniformly to the Cannon-Thurston map for φ̃∞.

Finally we turn to Question 6.4 (3), which turns out to be the subtlest.
In [MS13] we showed that the answer to Question 6.4 (3) is ‘Yes’ if the
geometric limit is geometrically finite. We illustrate this with a concrete
example due to Kerckhoff and Thurston [KT90]

Theorem 6.8. Fix a closed hyperbolic surface S and a simple closed
geodesic σ on it. Let twi denote the automorphism of S given by an i-
fold Dehn twist along σ. Let Gi be the quasi-Fuchsian group given by the
simultaneous uniformization of (S, twi(S)). Let G∞ denote the geometric
limit of the Gm’s. Let Si− denote the lower boundary component of the
convex core of Gi, i = 1, · · · ,∞ (including ∞). Let φi : S → Si− be such
that if 0 ∈ H2 = S̃ denotes the origin of H2 then φ̃i(0) lies in a uniformly
bounded neighborhood of 0 ∈ H3 = M̃m. We also assume (using the fact
that M∞ is a geometric limit of Mm’s) that Si−’s converge geometrically to
S∞−. Then the Cannon-Thurston maps for φ̃i converge pointwise, but not
uniformly, on ∂H2 to the Cannon-Thurston map for φ̃∞.

However, if the geometric limit is geometrically infinite, then the answer
to Question 6.4 (3) may be negative. We illustrate this with certain examples
of geometric limits constructed by Brock in [Bro01].

Fix a closed hyperbolic surface S and a separating simple closed geodesic
σ on it, cutting S up into two pieces S− and S+. There is a natural map G

defined on ∂S̃(= S1) that identifies p, q ∈ ∂S̃ if and only if p, q are end-points
of a lift of σ to S̃. Then G(∂S̃) is naturally identifiable with the limit set of
a(ny) representation of π1(S) where σ corresponds to an accidental parabolic
and the induced representations of π1(S−) and π1(S+) are quasi-Fuchsian
with parabolic boundary curves (corresponding to σ). Thus G(∂S̃) is a tree
of circles corresponding to limit sets of the quasi-Fuchsian representations
of π1(S−) and π1(S+).

Let φ denote an automorphism of S such that φ|S− is the identity and
φ|S+ = ψ is a pseudo-Anosov of S+ fixing the boundary. Let Gi be the
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quasi-Fuchsian group given by the simultaneous uniformization of (S, φi(S)).
Let G∞ denote the geometric limit of the Gm’s. Let Si0 denote the lower
boundary component of the convex core of Gi, i = 1, · · · ,∞ (including ∞).
Let φi : S → Si0 be such that if 0 ∈ H2 = S̃ denotes the origin of H2 then
φ̃i(0) lies in a uniformly bounded neighborhood of 0 ∈ H3 = M̃m. We also
assume (using the fact that M∞ is a geometric limit of Mm’s) that Si0’s
converge geometrically to S∞0.

Let Σ be a complete hyperbolic structure on S+ such that σ is homotopic
to a cusp on Σ. Let Λ consist of pairs (ξ−, ξ) of endpoints (on S

1
∞ of stable

leaves λ of the stable lamination of ψ acting on Σ̃. Also let ∂H̃ denote the
collection of basepoints of lifts (to Σ̃) of the cusp in Σ corresponding to σ.
Let

Θ = {ξ : There exists ξ− such that (ξ−, ξ) ∈ Λ; ξ− ∈ ∂H̃}.
Identifying ∂Σ̃ with one of the (topological) circles in the tree of circles

G(∂S̃) above, define
Ξ0 = G−1(Θ)

to be the preimage of Θ under G and Ξ to be the π1(S)−orbit of Ξ0. We
then have the following characterization of points where Cannon-Thurston
maps do not converge:

Theorem 6.9 ([MS17]). Let ∂φi, i = 1 · · ·,∞ denote the Cannon-
Thurston maps for φ̃i. Then

(1) ∂φi(ξ) does not converge to ∂φ∞(ξ) for ξ ∈ Ξ.
(2) ∂φi(ξ) converges to ∂φ∞(ξ) for ξ /∈ Ξ.

In [MO17], we identify the exact criteria that lead to the discontinuity
phenomenon of Theorem 6.9.
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