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Abstract. In this expository note, we illustrate phenomena and con-
jectures about boundaries of hyperbolic groups by considering the spe-
cial cases of certain amalgams of hyperbolic groups. While doing so, we
describe fundamental results on hyperbolic groups and their boundaries
by Bowditch [5] and Haissinsky [27], along with special treatments for
the boundaries of free groups by Otal [48] and Cashen [15].

1. Introduction and background
A boundary of a group contains in general, a wealth of information about

the group. For example, if the boundary is a Z-set compactification, the
dimension of the boundary is one less than the cohomological dimension of
the group, and if the group is torsion-free, this boundary is S2 exactly when
the group is a PD(3) group [2]. Perhaps more fundamentally, the boundary
can tell us when the group splits over a finite group [24] and when the group
splits over a virtually cyclic group [5, 28]. In this survey, we will focus on
Gromov hyperbolic and relatively hyperbolic groups, and investigate the
planarity of their boundaries under specific circumstances.

A Gromov hyperbolic group G is a group that acts geometrically (co-
compactly, properly discontinuously, and by isometries) on some proper hy-
perbolic space X. The Gromov boundary of such an X is the set of all
geodesic rays from a point, where two such rays are equivalent if they have
finite Hausdorff distance. The Gromov boundary, ∂G, is the boundary of any
proper hyperbolic space X that admits a geometric action by G. Crucially,
for a hyperbolic group G this boundary is well-defined up to homeomor-
phism. Indeed, all such spaces X are quasi-isometric, and since they are
hyperbolic, it follows that their boundaries are homeomorphic [24]. There
are several equivalent ways to define the Gromov boundary of a proper hy-
perbolic metric space; for more extensive details on this definition see Section
3 and the excellent survey article [34].
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A relatively hyperbolic group pair (G,P) is a group which acts geometri-
cally finitely on some hyperbolic space X, where the set of peripheral sub-
groups is P ; see Definition 3.3 for a precise definition. One of the equivalent
definitions of a geometrically finite action in the Isom(Hn), when n = 2, 3
is that G admits a finite-sided fundamental polyhedron [45]. This definition
was generalized to apply to higher n in [4]. A geometrically finite Kleinian
group G along with the collection of its maximal parabolic subgroups P
forms a relatively hyperbolic group pair (G,P).

The Bowditch boundary of a relatively hyperbolic group pair (G,P) is
the boundary of any proper hyperbolic metric space X such that (G,P) acts
on X geometrically finitely. Like a hyperbolic group, for a relatively hyper-
bolic group pair (G,P) this boundary is well-defined up to homeomorphism.
Indeed, the boundary of a relatively hyperbolic group pair coincides with
the boundary of the coned-off Cayley graph, with the parabolic fixed points
suitably used to compactify this boundary [10, Section 7]. However, all such
spaces X are not quasi-isometric, [29]. We will denote this boundary by
∂B(G,P) to avoid confusion although it is often denoted simply as ∂(G,P).

Much of our intuition about hyperbolic and relatively hyperbolic groups
comes from studying geometrically finite Kleinian groups. If a topological
space embeds in S2 we say that it is planar. The limit set of a geometrically
finite Kleinian group is planar. One may ask if hyperbolic or relatively hy-
perbolic groups with planar boundaries are virtually Kleinian. The Gromov
boundaries of one-ended hyperbolic groups do not have cut points. If one
wants to conjecture that every relatively hyperbolic group pair with planar
boundary is (even virtually) the fundamental group of a 3-manifold, it is
necessary to exclude cut points. Indeed there are many examples of rela-
tively hyperbolic group pairs with planar Bowditch boundary which are not
virtually Kleinian [31]. This can happen when the peripheral subgroups are
Z⊕Z by gluing surfaces along their boundaries to a torus, as shown in [31].
This suggests the following Planarity Conjectures:

Conjecture 1.1 (Cannon, Kapovich-Kleiner, Haissinsky). If a hyper-
bolic group G has planar Gromov boundary ∂G then G is virtually isomor-
phic to a Kleinian group.

Conjecture 1.2 ([31]). If a non-elementary relatively hyperbolic group
pair (G,P) has planar Bowditch boundary that does not have cut points,
then G is virtually isomorphic to a Kleinian group.

If (G,P) with P = ∅ is a relatively hyperbolic group pair, then G is
a hyperbolic group. So Conjecture 1.2 is a generalization of the more well-
known Conjecture 1.1. Also see [25, Corollary 1.4] it is shown that a special
and important case of Conjecture 1.2 is implied by Conjecture 1.1, namely
[38, Problem 60]. Even when a group acts effectively on its boundary and
is torsion-free, it can be virtually Kleinian without being Kleinian “on the
nose”. The first example we know of this phenomena appeared in [37]; more
recent examples are in [32]. All of these examples split over cyclic groups,
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and this is a necessary condition for being both virtually Kleinian and non-
Kleinian when the group acts effectively on its boundary; see Proposition
6.3. Here we are addressing only a small case of Conjecture 1.1, for the case
of certain amalgams of hyperbolic groups, and limit groups, and this follows
readily from known results. Relatively hyperbolic group boundaries will be
used to understand the pieces during the course of the argument.

1.1. Plan of the paper. In section 4 we give specific examples of hy-
perbolic and relatively hyperbolic groups, focusing our examples on the case
of geometrically finite Kleinian groups discussed above. We show how the
canonical splittings of these groups can be seen from the Gromov bound-
ary. In Section 3 we give more precise definitions of hyperbolic and rela-
tively hyperbolic groups, and in Section 5 we give a self-contained synopsis
of Bowditch’s theory of splittings over 2-ended subgroups for hyperbolic
groups. We also discuss Otal’s theorem in Section 6.1 and the relation with
relatively hyperbolic group boundaries. It will follow pretty quickly from the
results cataloged here that hyperbolic doubles of free groups are virtually
Kleinian exactly when their boundaries are planar.

2. Brief history of convergence groups and progress on
characterization

Convergence groups were introduced by Gehring and Martin in [21].
A convergence group (called a discrete convergence group by Gehring and
Martin) is a group G of homeomorphisms of Sn such that for every sequence
(gi) of distinct elements of G, one can pass to a subsequence where there are
x and y on Sn such that gi|Sn\{x} → y uniformly on compact subsets. Fuch-
sian and Kleinian groups are convergence groups, and convergence groups
enjoy many properties enjoyed by these groups, such as having a classifica-
tion of elements, a limit set, and domain of discontinuity. The introduction of
convergence groups was in some sense the beginning of relatively hyperbolic
groups.

The definition of convergence group was naturally extended to other
compact metric spaces, by Tukia [60]. Both hyperbolic and relatively hy-
perbolic groups are specific instances of convergence groups. Let M be a
perfect compact metric space. A group G acting on M induces a properly
discontinuous action on the space of distinct triples of M exactly when the
action is a convergence group action [58, Theorem 4A]. Bowditch proved
that when the induced action of G on the space of triples of M is properly
discontinuous and co-compact, then G is hyperbolic and M is the Gromov
boundary of G, [7]. Convergence groups acting co-compactly on the space
of triples of M are called uniform convergence groups. Furthermore, Tukia
proved [61] that uniform convergence groups are exactly the convergence
groups G acting on M such that every point of M is a conical limit point
for the action of G. (See also Freden [19].)
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In [10], Bowditch defined relatively hyperbolic groups dynamically. Gro-
mov initially defined such groups in [24], and Farb [18] had a foundational
definition. A convergence group action on M is geometrically finite if every
point of M is either a conical limit point or a bounded parabolic point. Ya-
man [62] subsequently characterized relatively hyperbolic groups as exactly
those groups acting on some perfect metrizable space M as a geometrically
finite convergence group. In this case M is the Bowditch boundary of (G,P),
where P is the set of maximal parabolic subgroups. Note that there are many
non-geometrically finite convergence groups, even with limit set S2. See Sec-
tion 3 for exact definitions of relatively hyperbolic group pair, conical limit
point, and bounded parabolic point.

P. Tukia proposed that the convergence groups acting on S1 are exactly
those groups of homeomorphisms of S1 that are topologically conjugate
to some Fuchsian group in [59], giving an outline of a partial proof. In
[58], Tukia proved this conjecture in many cases, building on earlier work
of Nielsen [47] and Zieschang [63] on the Nielsen realization conjecture.
This proved the convergence group conjecture if there is a simple axis in
the convergence group (which happens if the convergence group does not
contain a hyperbolic turnover orbifold subgroup) or if there is a parabolic
element. The issue is the presence of triples of axes that intersect pairwise.
If the fixed points of two elements link in the circle, then their axes are
forced to intersect if the action is extended to the disk. If three such pairs
of fixed points pairwise link, there are different ways for the associated axes
to intersect in the disk. This issue was overcome by Gabai in [20], using
combinatorial arguments. Gabai characterized convergence groups acting
on S1 as Fuchsian groups. Casson and Jungreis [17] gave a different proof
slightly later using the quotient of the space of distinct triples. The result
that convergence groups acting on S1 are Fuchsian groups was pivotal in
the theory of 3-manifolds. Using work of G. Mess and P. Scott, it has a
corollary that if a compact orientable irreducible 3-manifold has an infinite
cyclic normal subgroup, then it is a Seifert fibered space (the Seifert fibered
space conjecture).

It is not true that all convergence group actions on S2 are topologi-
cally conjugate to Kleinian groups. For example, the fundamental group of
a hyperbolic 3-manifold with totally geodesic boundary acts on S2 as a con-
vergence group with limit set all of S2. This action is not conjugate to the
Kleinian group action since there are points on S2 stabilized by hyperbolic
surface groups. However, Martin and Skora conjectured in [44, Section 6]
that every convergence group acting on S2 is covered by a Kleinian group.
A group G acting on S2 is covered by a Kleinian group H acting on S2 if
there is an isomorphism φ : H → G and a cellular map ν : S2 → S2 such
that ν(h(x)) = (φ(h))(ν(x)) for all h ∈ H and x ∈ S2. In the case above
H can be taken to be a Kleinian representation with limit set a Sierpiński
carpet. Martin and Skora proved their conjecture in some cases.
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One special case of this conjecture is the Cannon conjecture [14], that
a hyperbolic group with S2 Gromov boundary acts geometrically on H

3.
Cannon’s conjecture was very influential since it relates to Thurston’s ge-
ometrization conjecture and the conjecture that PD(3) groups are manifold
groups. Gromov hyperbolic groups with S2 boundary are exactly the uni-
form convergence groups acting on S2. Several inroads have been made on
this important conjecture. Bonk and Kleiner [3] showed that if G is a hy-
perbolic group with S2 boundary that attains its Ahlfors regular conformal
dimension, then G acts geometrically on H

3. (The Ahlfors regular confor-
mal dimension of a metric space Z is the infimal Hausdorff dimension of all
Ahlfors regular metric spaces quasisymmetrically homeomorphic to Z.) They
comment that Cannon’s conjecture is equivalent to the conjecture that any
hyperbolic group with S2 boundary attains its Ahlfors regular conformal di-
mension. Markovic [42] proved that if G is a hyperbolic group with boundary
S2, then G acts geometrically on H

3 if every two points of S2 are separated
by the limit set of a quasi-convex surface subgroup of G. Another special
case of Martin and Skora’s conjecture is due to Kapovich and Kleiner [35]
that a hyperbolic group with Sierpiński carpet boundary is Kleinian. The
action of such a hyperbolic group on its boundary extends to a convergence
group on S2, since the boundary circles are the only non-separating circles.
More recently, special cases of the conjecture that convergence groups are
covered by Kleinian groups where the convergence groups are geometrically
finite but not uniform are studied. Here the group is relatively hyperbolic
with Bowditch boundary S2. For example, see [25] and [57], both of which
discuss the case of relatively hyperbolic groups with boundary S2.

3. Boundaries of hyperbolic and relatively hyperbolic groups
3.1. Hyperbolic groups. Let X be a geodesic space, and let δ be a

positive number. A geodesic triangle Δ is called δ–slim if each side of Δ is
contained in the union of the δ–neighborhoods of the other two remaining
sides. We say such an X is δ-hyperbolic if every geodesic triangle in X is
δ-slim [24].

Definition 3.1. A group is word-hyperbolic (or simply, hyperbolic) if it
acts geometrically (properly discontinuously, co-compactly, and by isome-
tries) on a proper δ-hyperbolic metric space for some δ > 0.

A proper geodesic space is hyperbolic if it is quasi-isometric to a hy-
perbolic space [34, Proposition 2.20]. Using this observation and Schwarz–
Milnor Lemma, the hyperbolicity of a finitely generated group is equivalent
to its Cayley graph being δ-hyperbolic for some choice of a finite generating
set.

The group boundary ∂Γ of a hyperbolic group Γ can be defined as the set
of equivalence classes of based geodesic rays where two rays are declared to
be equivalent if they have a bounded Hausdorff distance. This boundary is
naturally topologized by the basis of the sets of rays that stay close for a long
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time. See [34, Section 2] for various equivalent definitions of the boundary
and its topology. In particular, we will use the sequential boundary below.
Since quasi-isometric hyperbolic spaces have homeomorphic boundaries [34,
Proposition 2.20] the above definition is equivalent to:

Definition 3.2. The boundary ∂Γ of a hyperbolic group Γ is the topo-
logical space ∂X where X is a proper geodesic space on which Γ acts geo-
metrically.

We give a more detailed constuction from the Cayley graph, as Γ nat-
urally acts geometrically on its Cayley graph. From now on, we let Γ be a
hyperbolic group, and Cay(Γ) be its Cayley graph with a fixed finite generating
set.

One may extract ∂Γ from sequences of group elements. The Gromov
product for three points x, y, z in a metric space (X, d) is defined as

(y, z)x :=
1

2
(d(x, y) + d(x, z)− d(y, z)) .

Then ∂Γ coincides topologically with the set of equivalence classes of se-
quences {xi} ⊆ Cay(Γ) satisfying

lim
i,j→∞

(xi, xj)x = ∞.

The meaning of this equation is that the geodesics [x, xi] stay close to each
other for a longer and longer time as i → ∞. Two such sequences {xi}, {yj}
are equivalent if

lim
i,j→∞

(xi, yj)x = ∞.

Here, the choice of the base point x is arbitrary and does not alter the
topology. For every pair of distinct points p, q ∈ ∂Γ there exists a geodesic
sequence {xi} ∈ Cay(Γ) such that limi→−∞ xi = p and limi→∞ xi = q.

By Stallings’ theorem, a group G is
• 0–ended if G is finite;
• two-ended if G is virtually infinite cyclic;
• ∞–ended if G nontrivially splits as a free product or an HNN-

extension over a finite group.
The group G is one-ended otherwise.

Recall a topological space is locally connected if there exists a basis
of open connected sets. A continuum is a nonempty compact connected
metrizable space. In particular, a Peano continuum is a continuum that
is locally connected. It is a result of Swarup [55] using [9, 6], [40] and
Bestvina–Mess [2] (expanded upon by Bowditch [8]) that the boundary of
a one-ended hyperbolic group Γ is a Peano continuum without a global
cutpoint. This means that ∂Γ \ {x} is connected for all x ∈ ∂Γ.

The limit set Λ(H) of an infinite subgroup H ≤ Γ is the smallest
nonempty closed H–invariant subset of H in ∂Γ. The set Λ(H) can be
realized as the set of equivalence classes of sequences tending to infinity
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p = {γn} ∈ ∂Γ such that γn ∈ H. A subgroup H ≤ Γ is called elementary if
it is virtually cyclic, i.e. 0– or 2–ended.

An isometry f of a hyperbolic space X is loxodromic if f acts by north-
south dynamics on ∂X; in particular, f fixes exactly two points on ∂X. It
turns out that every infinite order element g ∈ Γ acts loxodromically on
∂Γ. If g ∈ Γ is loxodromic, then the limit set Λ(g) := Λ(〈g〉) is a pair of
points and Γ acts on ∂Γ \ Λ(g) properly cocompactly. The limit sets of two
loxodromics of Γ are either equal or disjoint.

When Γ is hyperbolic, we say a subgroup H ≤ Γ is quasi-convex if the
inclusion H ↪→ Γ is a quasi-isometric embedding, see [11, Corollary 3.6]. In
this case we have that H is hyperbolic [11, 3.7] and that there exists an
H–equivariant homeomorphism ∂H → ΛH.

If G, H are quasi-convex subgroups of Γ, then so is G ∩ H [52] and
moreover,

Λ(G ∩H) = Λ(G) ∩ Λ(H).

3.2. Boundaries of 3-manifold groups. A prime motivational ex-
ample of a hyperbolic group is a convex co-compact Kleinian group G. A
discrete subgroup of Isom(H3) is called a Kleinian group. A Kleinian group
is nonelementary if it is not virtually abelian.

For a Kleinian group G, we define its limit set Λ(G) as the minimal
nonempty closed G–invariant subset in ∂H3. We will denote by hull(G) the
convex hull of Λ(G) (when Λ(G) contains more than one point). We define
the domain of discontinuity as the complement

ΩG := ∂H3 \ Λ(G).

A Kleinian group G is called convex cocompact Kleinian if the action of
G on hull(G) in H

3 is cocompact. Equivalently, the action of G on H
3 ∪ΩG

is cocompact. In the case that G acts freely,
MC(G) :=

(
H

3 ∪ ΩG

)
/G

is a compact orientable 3-manifold whose boundary consists of hyperbolic
surfaces.

When G is a convex co-compact Kleinian group, G acts geometrically
on hull(G). This is a geodesic, proper, hyperbolic space, so G is a hyperbolic
group. The limit set Λ(G) is homeomorphic to ∂G, the Gromov boundary
of G.

There are some hyperbolic 3-manifolds whose fundamental groups are
not hyperbolic as groups. For example, the fundamental groups of hyperbolic
knot complements. However, these manifolds do admit geometrically finite
hyperbolic structures. If a Kleinian group Γ admits a finite-sided convex
fundamental domain with the side pairings, then we say MC(Γ) is geomet-
rically finite [4]. This is equivalent to saying that MC(Γ) is the union of a
compact set and a finite number of “standard cusp regions”. Another notion,
which is equivalent for hyperbolic manifold groups Γ [4, Definition GF2], is
that every point of the limit set is either a conical limit point or a bounded
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parabolic point (defined below). This is what we will use for the general
definition of a relatively hyperbolic group.

3.3. Relatively hyperbolic groups. Just as a hyperbolic group is a
group which acts geometrically on a hyperbolic metric space, a relatively
hyperbolic group is a group which acts geometrically finitely on a hyperbolic
metric space. There are many equivalent definitions of a relatively hyperbolic
group, see [30].

Definition 3.3. [10, Definition 1] Let G be a group, and let P be a
collection of infinite finitely generated subgroups. We say that the group
pair (G,P) is a relatively hyperbolic group pair , or that G is hyperbolic
relative to P if G acts properly discontinuously and by isometries on a
proper hyperbolic space X such that

(i) Every element of ∂X is either a conical limit point or a bounded
parabolic point;

(ii) The elements of P are exactly the maximal parabolic subgroups of
G.

In this case, we say that (G,P) acts on X geometrically finitely.
There are a couple of words that should be defined to make this def-

inition complete. A subgroup P of G is parabolic if it is infinite, contains
no loxodromic, and fixes a point of ∂X. A parabolic subgroup which fixes
a point xp of ∂X is bounded if P acts cocompactly on ∂X \ {xp}. A point
y ∈ ∂X is a conical limit point of G if there exists a sequence (gi)i∈N ⊂ G
and distinct points a, b ∈ ∂X such that gi(y) → a, and such that gi(x) → b
for all x ∈ ∂X \ {y}.

We can immediately define the Bowditch boundary, or the relatively
hyperbolic boundary of a group pair.

Definition 3.4. The Bowditch boundary ∂B(G,P) of a relatively hyper-
bolic group (G,P) is the boundary of any hyperbolic space X that (G,P)
acts on geometrically finitely.

It is not true that every such space X is quasi-isometric for a given pair
[29] but nonetheless, all such ∂X are homeomorphic [10, Section 9]. This
defines the boundary of a relatively hyperbolic group pair up to homeomor-
phism.

Let us recall a general definition. A collection of subgroups {H1, ...Hn}
of a hyperbolic group G is almost malnormal if Hi ∩ gHjg

−1 is finite for
g ∈ G unless i = j and g ∈ Hi. There are two points about the relationship
between hyperbolic and relatively hyperbolic structures on the same group
that are particularly relevant here.

Lemma 3.5 (Bowditch, [10, Theorem 7.11]). If G is a hyperbolic group
and P is a almost malnormal collection of infinite quasi-convex subgroups
consisting of finitely many conjugacy classes then (G,P) is a relatively hy-
perbolic group pair.
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Lemma 3.6 (Tran, [56, Main Theorem], also [22] and [43]). If G is
a hyperbolic group and (G,P) is a relatively hyperbolic group pair, then
∂B(G,P) is the quotient of ∂G obtained by collapsing each of ∂P for each
P ∈ P to a point.

4. Examples of hyperbolic and relatively hyperbolic groups and
their maximal splittings

Let us now give some examples of hyperbolic 3-manifold groups, ex-
plain their canonical splitting, and illustrate how relatively hyperbolic group
boundaries fit into the picture. Here we will also give examples of Bowditch’s
canonical splitting (Theorem 5.6). Precise and complete definitions are given
in Section 5.

The universal cover of a manifold or a complex, can be a useful tool to
determine the Gromov boundary of the fundamental group of the manifold
or complex. As such, we will need to deal with the components of the pre-
image of certain curves.

Definition 4.1. Let W ⊂ M . If M̃ → M is a cover, then the compo-
nents of the pre-image of W in M̃ are called the elevations of W .

4.1. Example 1: three surfaces glued along a circle. Let Sg,1 de-
note a hyperbolic surface of genus g ≥ 1 with one boundary component. We
glue S1,1, S2,1 and S3,1 along their boundaries to one copy of the unit circle
S1 (call it a) by degree 1 maps. Call the resulting 2-complex T (for Triple).
This 2-complex T embeds into R

3, and one can take a regular neighbor-
hood in R

3 to obtain a 3-manifold M with boundary. Since the fundamental
group Γ of T acts geometrically on a hyperbolic space (the universal cover
T̃ of the 2-complex T ) the group Γ is hyperbolic. Therefore M is realized
as a hyperbolic 3-manifold with boundary, and Γ is a convex cocompact
Kleinian group [50, Theorem 2.24]. The resulting 3-manifold M cannot be
realized as a hyperbolic 3-manifold with totally geodesic boundary, as there
are many essential annuli. Both the convex hull of the limit set of Γ and T̃
are proper hyperbolic metric spaces on which Γ acts geometrically, and so,
Λ(Γ) ∼= ∂T̃ ∼= ∂Γ.

The subgroups corresponding to the fundamental groups G1, G2 and G3

of the surfaces S1,1, S2,1 and S3,1 are free quasi-convex subgroups. Pick an
elevation of a and let its stabilizer be generated by an element ga ∈ Γ.

We consider two representations of the groups Gi as a discrete group
of isometries of H2, as this will be helpful in visualizing the universal cover
T̃ . The Fuchsian group G1 acts on H

2, and acts co-compactly on a convex
subset C of H

2 where the boundary curves of C correspond to elevations
of boundary curve of S1,1. We continue to denote the stabilizer of one of
the elevations in H

2 by 〈ga〉. The conjugates of the cyclic subgroup 〈ga〉 act
loxodromically, and each leaves an elevation of a invariant. In this represen-
tation, the limit set of G1 is a Cantor set. It is naturally a subset of S1 and
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we say that this Cantor set is cyclically ordered; see Proposition 5.5. Also,
G1 acts on H

2 as a finite co-volume Fuchsian group, where conjugates of
〈ga〉 act parabolically. In this representation, the limit set is a circle. The
way to get from the limit set of the first representation to the limit set of the
second representation is to collapse the endpoints of the loxodromic bound-
ary elements to points, just as in Lemma 3.6. The same process can be done
with the other surface groups.

Now consider T̃ as a union of convex pieces of hyperbolic planes (each
the universal cover of one of the Si,1) glued together along their boundary
curves. Any elevation of one of the Si,1 is isometric to a convex subset of H2,
and is a convex subset of T̃ . Its boundary is the limit set of a conjugate of
Gi, and is a Cantor set. This is an example of a cyclically ordered Cantor set.
When we collapse the pairs of points of this Cantor set that correspond to
the endpoints of conjugates of ga in Si,1 we get a circle, and this is the largest
such group with this property. This is called a maximal hanging Fuchsian
group. When we are looking at S2,1 or S3,1, we could have taken a subgroup
of one of these groups corresponding to a lower genus subsurface. Then the
limit set of the subgroup would be a cyclically ordered Cantor set, and when
we collapsed the boundaries of the subgroup-invariant collection of cyclic
subgroups (corresponding to the boundary of this subsurface) we would
obtain a circle. However, it would not be a maximal such subgroup. See the
formal definition of a maximally hanging Fuchsian subgroup, Definition 5.9
in Section 5.

Apart from maximal hanging Fuchsian subgroups, another important
collection of subgroups is the collection of cyclic subgroups which are con-
jugates of 〈ga〉. Each of these groups stabilizes a line in the 2-complex T̃ , an
elevation of a. The lines are where the pieces of hyperbolic planes are glued
together in T̃ . Removing one of these elevations will break the complex T̃
into three pieces. The two points on ∂T̃ which are the boundary of one of
these elevations will break the boundary into three components. They will
be a pair of local cut points (each of valence 3) that forms a cut pair, which
will separate the boundary into three pieces; see Lemma 5.4.

The complex T̃ consists of elevations of the Si,1’s, glued along elevations
of a. We can embed a bipartite tree in T̃ , by putting a black vertex in each
elevation of the Si,1, and a white vertex in each elevation of a. Here the white
vertices correspond to elementary subgroups of this splitting, and the black
vertices correspond to the non-elementary vertices (Definition 5.1). Then we
connect the associated vertices whenever an elevation of a meets an elevation
of Si,1. The tree is exactly the tree corresponding to the maximal splitting
tree in Section 5. The associated graph of groups will be a tripod, where
the center vertex is the cyclic group corresponding to 〈ga〉, the edge groups
are all Z, and the hanging vertex groups are the maximal hanging Fuchsian
vertex groups described above.
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Now T̃ is not canonical for the hyperbolic group Γ, but the boundary is.
From this boundary, one can read a tree; see Theorem 5.6. The boundary
of Γ consists of the boundaries of the elevations of the Si.1, glued together
along the boundaries of the elevations of a, compactified by the endpoints of
this tree. To see this last fact note that every sequence of points tending to
infinity in Γ goes through a sequence of elevations of a and elevations of the
Si,1. This sequence either terminates, in which case the sequence is associated
to the boundary of some subgroup labeled by a white or black vertex, or
it does not terminate, in which case it is associated to the boundary of the
bipartite tree.

4.2. Example 2: a hyperbolic manifold with totally geodesic
boundary glued to a surface. Suppose M is the union of two hyperbolic
3-manifolds glued along an essential annulus as follows. Let M1 be a hyper-
bolic manifold with a totally geodesic boundary, and let M2 = Sg,1 × I. We
glue these together by gluing the annulus ∂Sg,1× I to a neighborhood of an
essential simple closed curve b on ∂M1, and denote the resulting 3-manifold
as M . By the Bestvina–Feign combination theorem [1], the resulting group
Γ = π1(M) is hyperbolic and M is atoroidal. Since ∂M �= ∅, we may apply
Thurston’s hyperbolization of Haken manifolds. By hyperbolization, M can
be realized as a hyperbolic 3-manifold [50, Theorem 2.24], [46, Theorem A’]
and Γ can be realized as a convex cocompact Kleinian group. The group Γ
admits a graph of groups decomposition π1(M1) ∗Z π1(Sg,1), and this split-
ting is visible from the limit set Λ(Γ), which is homeomorphic to the Gromov
boundary ∂Γ.

Instead of building a 3-manifold, we can also build a negatively curved
complex whose fundamental group is Γ. Let π1(Sg,1) act geometrically on a
convex subset C2 of H2 as the surface groups do in Example 1. Recall π1(M1)
acts geometrically on C1, the convex hull of its limit set in H

3. We will require
that the length of the curve b in Sg,1 is the same as the length of the curve b on
the boundary of M1. Let D be the complex obtained by gluing Sg,1, realized
as a geometric quotient of the corresponding convex hull C2, to M1, realized
as a geometric quotient of C1. Then the universal cover D̃ is a union of copies
of C1 and C2 (elevations of M1 and M2), glued together along elevations of b.
Call the stabilizer of one of the elevations of b as γb, and note that the rest of
the stabilizers are exactly the conjugates of 〈γb〉. The boundary of any copy
of C2 is a cyclically ordered Cantor set, such that when one collapses the
endpoints of the quasi-convex groups corresponding to conjugates of 〈γb〉,
the result is a circle, and these are maximal for the property. The end points
of the conjugates of 〈γb〉 are local cut points of valence two, and each pair
cuts the boundary of D̃ into two pieces as the associated elevation of b cuts
the complex D̃ into two pieces. This splitting has three types of pieces, the
cyclic groups corresponding to the conjugates of 〈γb〉, the maximally hanging
Fuchsian groups corresponding to the boundaries of the copies of C2, and
the rigid pieces corresponding to the boundaries of the copies of C1.
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Again we can build the bipartite splitting tree of Section 5 which embeds
in the complex D̃ by putting a black vertex in each elevation of M1 and of
M2. These will be the non-elementary vertices in Definition 5.1. We also put
a white vertex in each elevation of b, and these are the elementary vertices.
Again we connect the vertices when the associated elevations meet in the
universal cover. The vertex stabilizers are the same as the stabilizers of the
associated elevations. In this case there are two types of non-elementary
vertices: namely, the rigid vertices associated to the hyperbolic 3-manifold
with totally geodesic boundary and the hanging Fuchsian vertices. As in
Example 1, every point of the boundary of the hyperbolic group is either
in the limit set of one of the stabilizers of a vertex in the canonical tree of
Bowditch in Theorem 5.6 or can be associated with an endpoint of this tree.

In this example, the stabilizers of each elevation of M1 (which is isometric
to the convex hull of a Sierpiński carpet) is a rigid subgroup – it does not
split over any two-ended group. Note that M1 is also rigid in the sense that
there is only one hyperbolic structure with totally geodesic boundary. One
can see this by doubling M1 over the totally geodesic boundary, obtaining a
closed hyperbolic manifold, and applying Mostow rigidity. More relevant to
the work here, is that there is one hyperbolic structure on an elevation C1

of M1 where the elevations of b in C1 are parabolic.

Definition 4.2. We say that a group G splits with respect to a collection
of subgroups A if G admits a graph of groups decomposition where every
subgroup in A is contained in some vertex group of the associated Bass-Serre
tree. Equivalently, every subgroup in A is conjugate into one of the vertex
groups of the graph of groups. Let G be a hyperbolic group with connected
Gromov boundary ∂G, and A a collection of two-ended subgroups. We say
that a subgroup R of a hyperbolic group G is rigid with respect to A if it does
not split over two-ended subgroups with respect to AR = {A ∩R : A ∈ A}.

Compare the above with Definition 5.10. The rigid subgroups in our
example here do not split over any two-ended subgroup; we will see in the
next example that there are rigid subgroups which can split in many different
ways, for example a free group. However, they do not split over a 2-ended
group with respect to the collection A of prescribed virtually cyclic groups.

4.3. Example 3: the double of a free group. Let F denote a non-
abelian free group written as

F := 〈a1, . . . , an〉.
We fix a copy F̄ of F , and let σ : F → F̄ be an isomorphism. For g ∈ F , we
also write σ(g) = ḡ. For each word w ∈ F , we define the (Baumslag) double
of F along w as the group

D(F,w) = 〈a1, ā1, . . . , an, ān, | w = w̄〉.
A word w ∈ F is root-free if it is not a proper power of another word.

The doubles are among the earliest examples of hyperbolic groups; namely,
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the double D(F,w) is hyperbolic if and only if w is root-free. This follows
from Bestvina-Feighn combination theorem [1]. One can further characterize
group theoretic properties of D(F,w) using the following terms.

Definition 4.3. Let w ∈ F be a word.
(1) We say w is indecomposable (or, diskbusting [12]) if there does not

exist a nontrivial free product decomposition F = A ∗B such that
w is conjugate into A or B.

(2) We say w is acylindrical if one cannot write F as the free product
decomposition F = A∗CB or an amalgamated HNN decomposition
F = A∗C such that C is 2-ended and such that w is conjugate into
A or B.

Note that w is non-acylindrical if F admits a nontrivial graph of groups
decomposition with two-ended edge groups such that w is conjugate into
one of the vertex groups. In other words, the word w is acylindrical exactly
when F is rigid with respect 〈w〉. It is well-known that D(F,w) is one-ended
if and only if w is indecomposable (cf. [23, 39]]).

We will identify F with the fundamental group of a genus n handlebody
H. A word w ∈ F is called geometric if w can be realized by a simple closed
curve on ∂H.

Let us now assume w is indecomposable, acylindrical, geometric and
root-free in F , realized by a simple closed curve γ ⊆ ∂H. In particular,
D(F,w) is a one-ended hyperbolic group. We will see how acylindricity comes
into play in a moment. We let H1 and H2 be two copies of H, and glue H1

and H2 along an annulus Aγ on each of ∂Hi with γ as its core. Denote by Mγ

the 3-manifold thus obtained. The properties of the manifold will depend on
properties of the word that represents γ up to conjugacy in the free group
π1(H).

The group D(F,w) is hyperbolic. By hyperbolization (as in Example
2 above, ∂M �= ∅ and π1(M) is a hyperbolic group) Mγ is a hyperbolic
manifold, the union of H1 and H2 glued along the annulus Aγ . We can
realize π1(Mγ) = D(F,w) as a convex cocompact Kleinian group such that
the limit set Λ(D(F,w)) is connected, as D(F,w) is one-ended.

Consider the universal cover M̃γ of Mγ . This can be realized as the
convex hull of Λ(D(F,w)). It consists of elevations of H1 and H2, glued
along the elevations of Aγ . Each elevation of Aγ has two points at infinity,
and these are the fixed points of the infinite cyclic group stabilizing this
elevation. Each such pair of endpoints separates ∂M̃γ = Λ(D(F,w)) into two
pieces, and each elevation of Aγ separates M̃γ into two pieces. We can form
the canonical splitting tree of Theorem 5.6 by putting a black vertex in each
elevation of H1 and H2, and putting a white vertex in each elevation of Aγ .
Then we connect vertices when the associated elevations meet. We claim that
all stabilizers of the black vertices are rigid with respect to the stabilizers of
white vertices that are incident, as in Definition 4.2. Indeed, each stabilizers
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of an elevation of H1 = Gv is a free group Fn, and the stabilizers of the
incident vertices are the conjugates of 〈w〉 in this Fn. Because the word w
is acylindrical, this Fn does not split over a two ended-group where 〈w〉 is
conjugate into one of the vertex groups. So each black vertex stabilizer is
rigid with respect to the stabilizers of the white vertex groups which are
incident to it.

The stabilizers of the elevations of the Hi are rigid in the hyperbolic
manifold sense as follows. Let H be an elevation of one of the Hi. The quo-
tient of H by its stabilizer is a handlebody H. Let us make the stabilizers
of the elevations of the annulus Aγ parabolic. This results in a cusped hy-
perbolic structure by Thurston’s hyperbolization for Haken manifolds (see
Morgan’s article [46, Theorem B’]) since (H, Aγ) is a pared manifold. We
claim that there is a cusped hyperbolic structure MH = H/ Stab(H) with
totally geodesic boundary. There are no essential annuli in MH ; indeed, if
there were essential annuli in MH then there would be a splitting with w
conjugate into some vertex group, violating the acylindricity. Consider the
manifold MH , where the conjugates of 〈w〉 are parabolic. Since w can be
realized as an essential curve γ on the boundary of H1, the manifold MH

has boundary component(s) which are ∂H1 with the curve γ parabolic. This
will be a cusp on the boundary. The double of the hyperbolic manifold MH

along its boundary does not contain any essential tori and so admits one
(up to conjugation in PSL(2,C)) complete finite volume hyperbolic struc-
ture by Mostow-Prasad rigidity. This manifold admits an isometry which
fixes the boundary of MH . Thus the manifold H/ Stab(H) admits a unique
hyperbolic structure with totally geodesic boundary. The pair (Fn, 〈w〉) is
relatively hyperbolic since 〈w〉 is root-free by [10, Theorem 7.11]. Note that
the Bowditch boundary of the relatively hyperbolic group pair (Fn, 〈w〉) is
the limit set of Stab(H) where the w conjugates are parabolic. By Tran’s
Lemma 3.6 this is obtained as a quotient of the Cantor set by pinching the
endpoints of the conjugates of w.

5. Bowditch’s canonical splitting of hyperbolic groups
One of the most important tools analyzing boundaries of hyperbolic

groups is Bowditch’s canonical splitting. Let us exhibit a self-contained defi-
nition of this splitting and summarize its key algebraic features, following [5].

5.1. Elementary splittings. A splitting of a group is often considered
as a finite graph of groups decomposition [49]. However, an equivalent defi-
nition using an action on a tree seems more apt when one compares various
splittings of a given group [5, Section 6].

Recall an action (simplicial, by default) of a group Γ on a tree Σ is
minimal if Σ has no proper nonempty Γ–invariant subtree. The action is
co-finite if the quotient Σ/Γ is finite. A graph Σ = (V, E) is bipartite on
(X,Y ) if the vertex set has a partition V = X

∐
Y and the edge set E is a
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symmetric binary relation satisfying

E ⊆ (X × Y ) ∪ (Y ×X).

We simply express this by saying Σ = (X
∐

Y, E) is bipartite. If Γ acts on
Σ, then the stabilizer group of a vertex or an edge x is written as Γ(x).

A subgroup H of a nontrivial hyperbolic group is elementary if H is 0-or
two-ended. In particular, H is maximal elementary if it is maximal among
elementary subgroups.

Definition 5.1. Let Γ be a one-ended group. By an elementary splitting
of Γ, we mean a minimal, co-finite action of Γ on a simplicial bipartite tree

Σ = (V = Ve

∐
Vne, E)

such that the following hold.
(i) (vertices) Distinct vertices have distinct stabilizer groups.
(ii) (bipartite) We have that

Ve = {v ∈ V | Γ(v) is elementary},
Vne = {v ∈ V | Γ(v) is nonelementary}.

Furthermore, if Γ(v) is maximal elementary for each v ∈ Ve, then we say Σ
is a maximal elementary splitting.

We remark that the tree is allowed to be locally infinite. The term ele-
mentary splitting refers to the condition that each edge stabilizer group is
necessarily elementary. As Γ is one-ended, each Γ(v) is two-ended (i.e. not
0-ended) for each v ∈ Ve by Stallings’ Theorem,

The commensurator group of a subgroup H ≤ Γ is defined as

CommΓ(H) = {g ∈ Γ | [H : H ∩Hg] < ∞ and [Hg : H ∩Hg] < ∞}.

We say H is full if CommΓ(H) = H. If H is quasi-convex in Γ, then we have
that

CommΓ(H) = {g ∈ Γ | gΛ(H) = Λ(H)},
which coincides with the unique maximal finite-index extension of H in Γ.
Moreover, CommΓ(H) is full and quasi-convex. If g ∈ Γ is loxodromic, then

CommΓ(g) := CommΓ(〈g〉) = {h ∈ Γ | hgnh−1 = g±n for some n ∈ N}.

It follows that CommΓ(g) is the unique maximal elementary subgroup of Γ
containing the loxodromic element g.

Remark. More generally, if Γ is hyperbolic but not assumed to be one-
ended, then it is reasonable to define an elementary splitting Σ of Γ after
replacing the condition (i) above by the following.

(i)’ If two distinct vertices have the same stabilizer group H, then H
is finite.
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If we further assume that each vertex stabilizer group of Σ is full and quasi-
convex, then the above description of commensurator groups implies that
the limit sets of distinct vertex stabilizer groups will be distinct unless those
limit sets are empty.

An elementary splitting yields a usual finite graph of groups decomposi-
tion from quotienting by Γ; see [51] for instance. Conversely, if a one-ended
hyperbolic group is written as a graph of groups such that its induced Bass–
Serre tree action satisfies the condition (ii) above, then it is often easy to
enforce the condition (i) after consolidating certain vertices as follows.

Proposition 5.2. Let Γ be a one-ended hyperbolic group admitting an
action on a simplicial bipartite tree

Σ = (Ve

∐
Vne, E)

such that the condition (ii) above holds and such that each vertex stabilizer
group is full. Then there exists another tree Σ′ and a surjective graph map

Σ → Σ′

such that the induced action of Γ on Σ′ satisfies (i) and (ii). Furthermore,
if a vertex v maps to a vertex v′ by this graph map then we have

Γ(v) = Γ(v′).

Proof. As we stated above, we may consider the condition (i)’ instead
of (i). Let us first consider two distinct vertices u and v having the same
stabilizer groups. If u ∈ Vne, then the open geodesic interval (u, v) contains
a vertex w ∈ Ve. It would then follow that

Γ(u) = Γ(u) ∩ Γ(v) ≤ Γ(w),

which is a contradiction. Hence we have that u, v ∈ Ve. Furthermore, the
same reasoning reveals that the stabilizer group of each vertex in Ve ∩ [u, v]
coincides with Γ(u) = Γ(v).

We also need the following observation. Suppose two vertices u ∈ Ve and
v ∈ Vne satisfy that

H := Γ(u) ∩ Γ(v)

is infinite. Let w ∈ Ve be the neighbor of v in the geodesic interval [u, v];
possibly, we have u = w. Since the infinite elementary group H is contained
in both of the maximal elementary groups Γ(u) and Γ(w), it follows from
fullness, which implies uniqueness, that Γ(u) = Γ(w).

Let us identify the vertices of Σ having the same stabilizer groups, and
obtain

V ′
e := Ve/∼, V ′

ne := Vne/∼ .

Moreover, we declare that [u] ∈ V ′
e and [v] ∈ V ′

ne are adjacent if and only if
Γ(u) ∩ Γ(v) is infinite. We let

Σ′ = (V ′
e

∐
V ′
ne, E ′)

denote the resulting graph.
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We see that two vertices [x] ∈ V ′
e and [y] ∈ V ′

ne are adjacent in Σ′ if and
only if some representative of [x] is adjacent to y in Σ. Moreover, adjacent
vertices in Σ map to adjacent vertices in Σ′ by the natural quotient map.
We have an induced action of Γ on Σ′, satisfying g.[u] = [g.u] for each g ∈ Γ.
Let v be a vertex of Σ. If g ∈ Γ fixes [v] in Σ′, then by definition we have

gΓ(v)g−1 = Γ(g.v) = Γ(v).

The fullness of Γ(v) implies that g ∈ Γ(v) and hence,

Γ([v]) = Γ(v).

Note that our construction of Σ′ is obtained from Σ by folding subtrees in
which elementary vertices with the same stabilizer groups are identified and
preserving the nonelementary vertices. It follows that Σ′ is a tree [53]. �

We now list key combinatorial properties of a maximal elementary split-
ting, motivated by the above proposition.

Proposition 5.3. For a maximal elementary splitting Σ = (Ve
∐

Vne, E)
of a one-ended nonelementary hyperbolic group Γ, the following hold.

(1) Each edge stabilizer group is two-ended and quasi-convex.
(2) Each vertex stabilizer group is full and quasi-convex.
(3) Let u, v be distinct vertices. Then Γ(u) ∩ Γ(v) is infinite if and

only if either u and v are adjacent, or u and v have a common
elementary neighbor; in this case, Γ(u) ∩ Γ(v) is two–ended.

(4) Let e, f ∈ E. Then Γ(e) ∩ Γ(f) is two-ended if and only if e and f
share a vertex from Ve.

Proof. (1) This follows from Stallings’ theorem on the number of ends.
(2) Since each edge group is quasi-convex, so is each vertex group; see [5,

Proposition 1.2]. In order to see the fullness, we let v ∈ Vne and H := Γ(v).
For each g ∈ CommΓ(H), it suffices to show that g ∈ H.

Assume g �∈ H = Γ(v), so that g.v �= v. Then the geodesic interval [v, g.v]
in Σ contains some u ∈ Ve such that H ∩ gHg−1 ≤ Γ(u). This contradicts
the assumption that Γ(u) is elementary and that g is a commensurator of
H.

(3) Suppose Γ(u)∩Γ(v) is infinite. Since there exists at most one maximal
elementary subgroup of Γ containing Γ(u)∩Γ(v), we see that u and v cannot
be both elementary. So, we may assume v ∈ Vne. Then the closed interval
[u, v] ⊆ Σ contains some w ∈ Ve that is adjacent to v. If u = w, then we
are done. So, we suppose u �= w. Since Γ(u) ∩ Γ(v) ≤ Γ(w), the uniqueness
argument again implies that u ∈ Vne and that the interval (u,w) ⊆ Σ does
not contain elementary vertices. It follows that w is a common elementary
neighbor of u and v.

To see the converse, it suffices to consider the case that u and v have
a common elementary neighbor w. Then Γ(u) and Γ(v) both contain some
two-ended subgroups (namely, corresponding edge groups) of the maximal
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elementary group Γ(w). Since these two-ended subgroups are commensu-
rable, it follows that Γ(u) ∩ Γ(v) is infinite. Furthermore, Γ(u) ∩ Γ(v) is
two-ended as it is contained in Γ(w).

The proof of (4) is very similar. �

Remark. By part (3) above, we see that the graph structure of Σ is
uniquely determined by the set of its vertex stabilizer groups.

5.2. Canonical splitting of Γ. From now on, let us assume that Γ
is a one-ended hyperbolic group that is not quasi-isometric to a cocompact
Fuchsian group. Let us describe Bowditch’s canonical splitting Σ = (V, E)
through the action of Γ on ∂Γ.

Let x ∈ ∂Γ. Since ∂Γ \ {x} is locally compact, we have the valency map
val : ∂Γ → N defined by

val(x) := #ends(∂Γ \ {x}).
We define the set of local cut points as

LC(∂Γ) := val−1[2,∞).

For two points x, y ∈ LC(∂Γ), we declare x ∼ y if either x = y or

val(x) = val(y) = #π0(∂Γ \ {x, y}).
In the latter case, we say {x, y} is a cut pair ; since ∂Γ has no global cut
point we then have x �= y. It turns out that ∼ is an equivalence relation, the
corresponding equivalence class of which will be denoted as [x]. So, it makes
sense to define val[x] := val(x).

Lemma 5.4. For each x ∈ LC(∂Γ), exactly one of the following holds.
(i) val(x) ∈ [3,∞) and #[x] = 2;
(ii) val(x) = 2 and #[x] = 2;
(iii) val(x) = 2 and #[x] = ∞.

Remark. In [5], the alternative (i) is denoted as a ≈–pair and the
symbol ∼ was reserved only for the other two alternatives.

We now define

Θ1 := {[x] | #[x] = 2}, Θ2 := {[x] | #[x] = ∞},
and set T := Θ1 ∪Θ2. Let A,B ⊆ ∂Γ. We say A separates B, if B intersects
at least two distinct components of ∂Γ \A.

Recall a Cantor set C can be realized as

C = S1 \
∐
j≥1

Ij

for some countable collection of open intervals {Ij}. This realization of C
is also called as a cyclically ordered Cantor set. Each pair of points ∂Ij is
called a jump of the cyclically ordered Cantor set C.
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Proposition 5.5. Suppose x ∈ LC(∂Γ) satisfies val(x) = 2 and #[x] =
∞. Then there exists a homeomorphism

h : [x] → C ⊆ S1

for some cyclically ordered Cantor set C such that the following hold.
(1) For some y1, y2, . . . ∈ LC(∂Γ), we have that each h[yi] is a jump

and that
[x] \ [x] = ∪i≥1[yi] ⊆ val−1[3,∞).

(2) For two θ, ξ ∈ T , the class θ does not separate ξ.
(3) For four distinct points x, y, z, w in [x] whose images by h appear

cyclically in this order on S1, we have that {x, z} separate {y, w}
in ∂Γ.

(4) For θ, ξ, η ∈ T , the class η separate θ ∪ ξ if and only if there exist
two points x, y ∈ η such that θ and ξ are contained in distinct
components of ∂Γ \ {x, y}.

We let J([x]) denote the set of all jumps in [x]. Some of the jumps in
J([x]) are missing from [x] itself, while others are not. Using the notations
from the above proposition, we define

J0([x]) := {[yi] | i ≥ 1}
as the set of “missing jumps” in [x].

We say F ⊆ T is inseparable (or, null and full) if there do not exist
θ, ξ ∈ F and η ∈ T such that η separates θ ∪ ξ. A star is a subset F ⊆ T
which is maximal among inseparable subsets [9]. We define Θ3 as the set
of stars with infinite cardinality. For convention, we often identify a star
with the union of the equivalence classes in it. In particular, each Θi is a
collection of subsets of ∂Γ.

Finally, we define Θ′
1 as the collection of sets ξ ⊆ ∂Γ satisfying both of

the following properties:
• ξ is a jump of some θ ∈ Θ2 such that ξ ⊆ θ; in other words,
ξ ∈ J(θ̄) \ J0(θ̄);

• for some star η ∈ Θ3 containing θ and for the unique component
U ∈ π0(∂Γ \ ξ) not intersecting θ, we have that η \ θ ⊆ U .

For A ⊆ ∂Γ, we let Stab(A) denote the setwise stabilizer of A. Let
V1 = {Stab θ | θ ∈ Θ1 ∪Θ′

1}.
Similarly, we let Vi = {Stab θ | θ ∈ Θi} for i = 2, 3. We let V = V1 ∪V2 ∪V3.

Recall an elementary splitting is uniquely determined by its collection
of vertex stabilizer groups. We note that u ∈ V is elementary if and only if
u ∈ V1 [5, Theorem 5.28]. More precisely, the main result of [5] asserts the
following.

Theorem 5.6 (Bowditch’s canonical JSJ splitting). Let Γ be a one-ended
nonelementary hyperbolic group that is not quasi-isometric to a cocompact
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Fuchsian group, and let V be the collection of subgroups described above.
Then V determines a maximal elementary splitting; moreover, whenever Γ
splits over a two-ended group H, we can find some v ∈ V1 ∪ V2 such that
H ≤ v.

To describe this result more precisely, we define Σ = (V, E) as a bipartite
graph on (V1,V2∪V3) such that the adjacency relation E is defined as follows:
u ∈ V1 and v ∈ V2 ∪ V3 are adjacent if and only if u ∩ v is an infinite group
(Proposition 5.3). We let Σ be equipped with the natural conjugation action
of Γ defined as

g.v := gvg−1.

Under this setting, Theorem 5.6 asserts that Σ is a maximal elementary
splitting. The following is now immediate.

Corollary 5.7. If Γ is hyperbolic and ∂Γ contains a local cut point,
then Γ admits a splitting over a two-ended subgroup.

See Haulmark [28] for an extension of this to the relatively hyperbolic
case.

5.3. Algebraic and geometric features of the canonical split-
ting. We have noted that every local cut point belongs to some cut pair.
For a two-ended group H ≤ Γ, we define

e(H) := #π0(∂Γ \ Λ(H)).

For convention, we let e(h) := e(〈h〉) for a loxodromic h. If v ∈ V, then we
let δ(v) denote the set of incident edges on v and deg(v) := #δ(v).

Proposition 5.8 ([5]). The following hold for a one-ended nonelemen-
tary hyperbolic group Γ that is not quasi-isometric to a cocompact Fuchsian
group and for its canonical JSJ splitting Σ = (V = V1 ∪ V2 ∪ V3, E).

(1) Every local cut point x ∈ ∂Γ is contained in the limit set of some
u ∈ V1 ∪ V2; furthermore, if #[x] = 2, then u can be chosen to be
2-ended.

(2) If u ∈ V1, then we have e(u) = val(u) = deg(u) ∈ [2,∞); further-
more, if deg(u) = 2, then some vertex of V3 is adjacent to u.

(3) If u ∈ V2 ∪ V3, then deg(u) = ∞.
(4) Every loxodromic element γ ∈ Γ with e(γ) > 1 belongs to some

u ∈ V1 ∪ V2 such that val(u) = e(γ).

Definition 5.9. Each group u ∈ V2 is called a maximal hanging Fuch-
sian (MHF) group.

For an MHF group u ∈ V2, one can find a discrete representation with
finite kernel

ρ : u → Isom(H2)

and an equivariant cyclic-order-preserving homemorphism
h : Λ(u) → Λ(ρ(u)) ⊆ ∂H2.
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In particular, ρ(u) is naturally identified with the orbifold fundamental
group of a (not necessarily oriented) compact hyperbolic two–orbifold S.
We have a finite disjoint union

∂S =
m∐
i=1

∂iS,

where each component ∂iS is either a circle S1 = R/Z or a compact interval
with mirrors R/(Z2 ∗ Z2). Let us denote by Pi ≤ u the preimage of [∂iS] ∈
πorb
1 (S) = ρ(u), with an arbitrary choice of the base point. Then there exists

a natural one-to-one correspondence between the incident edges on u and
the u–conjugates of all Pi, which maps an edge e to its stabilizer group Γ(e).
In particular, deg(u) = ∞.

We call the collection of groups {P g
i | g ∈ u and i = 1, 2, . . . ,m} as

the peripheral structure of the MHF group u. Each element of P g
i is called

peripheral. This algebraic feature of u ∈ V2, along with quasi-convexity and
fullness, actually characterizes the maximal hanging Fuchsian groups. We
note that if the limit sets of two distinct MHF groups u, v ∈ V2 are not
disjoint, then they share a common missing jump in J0(Λu) ∩ J0(Λv). In
particular, the midpoint of the interval [u, v] in Σ has degree at least three.

Definition 5.10. Let Σ = (V, E) be an elementary splitting of Γ. We
say a vertex v of Σ is rigid (rel incident edges) if there does not exist a graph
of groups decomposition G of Γ(v) in such a way that each group in the set

{Γ(e) | e ∈ δ(v)}
is Γ(v)–conjugate into a vertex stabilizer group in Σ′ and that each edge
group of G is two-ended.

Remark. We note that Γ(v) is not required to be one-ended.
Each vertex u ∈ V3 is a quasi-convex, full, nonelementary, non-MHF

group such that it is rigid rel incident edges in the canonical splitting of Γ.
This algebraically characterizes the groups in V3. One can also see that a
rigid vertex group is rigid relative to the collection of incident two-ended
edge groups, in the sense of Definition 4.2.

For a two-ended subgroup H ≤ Γ, the value e(H) coincides with the
maximum number of ends of the group pair (Γ, H ′) where H ′ ranges over
finite index subgroups of H. In this context, one can realize V1 as the collec-
tion of maximal elementary groups containing loxodromics γ such that the
number of ends of a group pair (Γ, 〈γ〉) is larger than 1 and such that γ is
not contained in a MHF group as a non-peripheral element.

6. Concrete examples of the planarity conjectures
In this section, we illustrate the validity of planarity conjectures for

doubles and limit groups. These results follow from (among other places)
Haissinsky’s work [27] on planar boundaries. The most relevant result to
our discussion here is
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Theorem 6.1 ([27, Corollary 1.14]). Every hyperbolic group G with a
one-dimensional planar boundary and no elements of order two is virtually
Kleinian if and only if every carpet group is virtually Kleinian. In particular,
if G has no carpet subgroup, then G is virtually Kleinian.

A carpet subgroup is a quasi-convex subgroup H of a hyperbolic group
such that ∂H is a Sierpiński carpet. A Sierpiński carpet is a planar 1-
dimensional Peano continuum without local or global cut points. The Sier-
piński carpet occurs as the boundary of a hyperbolic group that is the fun-
damental group of a hyperbolic 3-manifold with totally geodesic boundary.
If a hyperbolic group H has boundary a Sierpiński carpet, then it does not
split over a finite or a cyclic group by our previous discussion. A hyperbolic
group with no elements of order two admits a finite hierarchy over cyclic
and finite groups [41].

Hyperbolic doubles of free groups and hyperbolic limit groups are ex-
amples of hyperbolic groups which do not contain a carpet subgroup. They
admit a hierarchy over finite and cyclic groups which terminates in free
groups. This hierarchy is particularly simple for doubles. The study of rel-
atively hyperbolic boundaries of free groups, where some words in the free
group are parabolic, was first initiated by Otal, although he did not use this
language.

6.1. Otal’s results. The main result of Otal [48, Theorem 1] concerns
collections of conjugacy classes in a free group F . Let P = {γ1, ..., γn} be
a multiword (i.e. a collection of conjugacy classes of root-free words) such
that no nontrivial powers of two such words are conjugate to each other.
Note that this implies the collection of infinite cyclic subgroups generated
by γ1, ...γn form an almost malnormal collection, as defined in Section 3.
We then let P be the collection of conjugates of words in P . Then the pair
(F,P) is a relatively hyperbolic group and the Bowditch boundary ∂B(F,P)
is a quotient of the Cantor set ∂F obtained by identifying the endpoints of
conjugates of words in P . Otal denoted this Bowditch boundary ∂B(F,P)
as KP , which Cashen also called the decomposition space of (F,P) [15].

We will also need the concept of a relative splitting of a relatively hy-
perbolic group pair (G,P). This is a splitting of G as a free product with
amalgamation A∗C B or HNN extension A∗C such that every P ∈ P is in A
or B. Putting Otal’s results in the language of relatively hyperbolic groups
we have:

Theorem 6.2 ([48, 15]). Let F be free of rank at least 2 and (F,P) a
relatively hyperbolic group pair where each P ∈ P is infinite cyclic. Suppose
that (F,P) does not admit a relative splitting over a virtually cyclic group.
Then if ∂B(F,P) is planar, F is the fundamental group of a handlebody H
where the conjugacy classes of P correspond to a multicurve which is isotopic
into ∂H.



SOME GROUPS WITH PLANAR BOUNDARIES 275

In other words, the collection of conjugacy classes P is geometric; see
Section 4.3.

6.2. Doubles and limit groups. Let us now consider an indecomposi-
ble, acylindrical, root-free word w in F , such that the (hyperbolic) group
boundary ∂D(F,w) is planar. We will show that planarity of the boundary,
along with Bowditch’s and Otal’s results, implies that the double D(F,w)
is convex cocompact Kleinian.

We let P denote the set of conjugates of 〈w〉. We have seen by work of
Tran that the Bowditch boundary ∂B(F,P) is obtained from ∂F by iden-
tifying the pair gw∞g−1 with gw−∞g−1 for each g ∈ F . Fix an embedding
∂D(F,w) ↪→ S2. Then there exists a D(F,w)–equivariant collection of arcs
γg joining the pair

Zg :=
(
gw∞g−1, gw−∞g−1

)
for each g ∈ F in such a way that γg belongs to the component of ∂D(F,w)\
Zg not containing ∂F . Indeed, F is the stabilizer of a vertex in the max-
imal splitting defined by Bowdtich described in Section 4, and we denote
this stabilizer by Fv. The pairs Zg are the edge groups associated to edges
emanating from v. Each of these pairs is an equivalence class of local cut
points and each pair separates the boundary into two (path connected) com-
ponents, with the limit set of Fv contained in one component. Each of these
cut pairs does not separate any of the other cut pairs by work of Bowditch,
see (1) of Proposition 5.5. Therefore we can connect each pair Zg in the
path component not containing Fv by a path which we call γg. The other Zg

pairs do not meet this path component, so the collection of arcs is disjoint.
Contracting γg to a point for each g, one sees from a classical result of Moore
that ∂B(F,P) is planar as realized in Lemma 3.6. See [48] and Cashen [15]
for more details on similar arguments.

Once we see that ∂B(F,P) is planar, we deduce from Otal’s result that
w is geometric. We have seen in Section 4.3 that the geometricity implies
that D(F,w) is actually a convex cocompact Kleinian group.

Hyperbolic doubles of free groups are special cases of limit groups. Recall
a finitely generated group L is called a limit group (or, a fully residually free
group) if for each finite subset A ⊆ L there exists a homomorphism

φA : L → F

to a fixed nonabelian free group F such that the restriction of φA to A is
injective.

A torsion–free finitely generated group G is said to admit a cyclic hier-
archy (of level at most d over free groups) if one of the following conditions
are satisfied.

(1) d = 0 and G is free;
(2) d > 0 and G splits as a finite graph of vertex groups {Gi} with

cyclic (possibly trivial) edge groups, so that each Gi admits a cyclic
hierarchy over free groups of level at most d− 1.
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In particular, the double of a free group admits a cyclic hierarchy of level
1. More generally, all hyperbolic limit groups admit cyclic hierarchies over
free groups; in fact, they are virtually free-by-cyclic [26].

Let L be a hyperbolic limit group. Then every nontrivial quasi-convex
subgroup admits a cyclic hierarchy as well. On the other hand, Sierpiński
carpet groups do not split over cyclic groups (including trivial groups) since
their boundaries are connected and do not have local cut points. In par-
ticular, L does not contain a carpet group. Haissinsky’s work, Theorem 6.1
here, implies that hyperbolic limit groups with planar boundary are virtually
Kleinian.

Even when a hyperbolic group is torsion free, and hence acts effec-
tively on its boundary, it may be virtually Kleinian without being Kleinian.
This can happen if the action does not extend to the whole of S2. Indeed,
Kapovich and Kleiner gave an example of such phenomenon in [35, Section
8]. See [32] for more examples. All of these examples have boundaries which
split over a two-ended group, and we remark that this condition is necessary.
A virtually Kleinian group is quasi-isometric to a Kleinian group.

Proposition 6.3. Let G be a torsion-free hyperbolic group that is quasi-
isometric to a Kleinian group. Then if G does not split over a finite or
2-ended group, G can be realized as a Kleinian group.

Suppose that G is a torsion-free hyperbolic group that is quasi-isometric
to a Kleinian group. Note that G acts effectively on its boundary since it
is torsion free. Since any Kleinian group that is hyperbolic can be realized
as a convex-cocompact Kleinian group, its boundary is planar. If ∂G � S1,
then G is virtually Fuchsian, by work of Tukia [58], Gabai [20] and Casson–
Jungreis [17], described above. In this case G can be realized as a Fuchsian
subgroup of Isom(H2) ≤ Isom(H3).

If ∂G is not S1, and G does not split over a 2-ended group, then ∂G
does not have any local cut points by Bowditch’s work (Corollary 5.7). We
now have that ∂G is a planar Peano continuum without local or global cut
points. Let us regard ∂G as a subspace of S2. Assume first that dim ∂G = 2.
Then since ∂G is a subset of a 2-dimensional manifold, ∂G contains an open
2–disk; see [33, Corollary 1, page 46]. Since G acts on ∂G with dense orbits
and by homeomorphisms, this implies that ∂G is open in S2. Since ∂G is
compact, we see that ∂G = S2. We have assumed that G is torsion-free and
quasi-isometric to a Kleinian group. It is a result of Cannon and Cooper
[13], using work of Sullivan [54], that G acts geometrically on H

3.
Finally, suppose that ∂G is 1-dimensional and not S1. See [35, Theorem

4] for a classification of boundaries of hyperbolic groups that do not split over
2-ended groups which are 1-dimensional. As we have noted, the boundary of
G is a Sierpiński carpet in this case. The double of G along the subgroups
(one for each conjugacy class) that stabilize the non-separating circles is
a hyperbolic group Ĝ with boundary S2 [35, Theorem 5 and Section 5].
Since G is quasi-isometric to a Kleinian group, so is Ĝ. Indeed, let G, acting
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geometrically on a hyperbolic space X, be quasi-isometric to a Kleinian
group K acting on X ′, the convex hull of a Sierpiński carpet. Since the
peripheral circles of a carpet are the only non-separating circles, the hull of
a peripheral circle in X maps within bounded distance of a plane spanned
by a peripheral circle in X ′. Also the Bass-Serre trees corresponding to the
splitting as a double are the same. Then by [16, Corollary 2.16], the groups
Ĝ and the double of K are quasi-isometric. By the above argument, Ĝ can
be realized as a Kleinian group. Since G is a subgroup of the Kleinian group
Ĝ, G is also Kleinian.
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