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Abstract. This article surveys works in 3–manifold topology after the
proof of the virtual Haken conjecture. It reviews the virtual specializa-
tion of 3–manifold groups, and some following development of methods,
and applications in recent years.

1. Introduction
A topological space is said to virtually have a certain property if it

admits a finite cover with that property. A compact orientable irreducible
3–manifold is called a Haken manifold if it contains a properly embedded
two-sided incompressible subsurface. In the 1980s, as he proved his revolu-
tionary hyperbolization theorem for aspherical atoroidal Haken manifolds,
Thurston went on to ask whether every closed hyperbolic 3–manifold is vir-
tually a Haken manifold. This amazing question survived Perelman’s proof
of the geometrization in 2003, and stood for another decade until Agol even-
tually resolved it. Besides the core argument, Agol’s proof is built on Kahn
and Markovic’s surface subgroup theorem, Sageev’s construction of cubulat-
ing groups, Haglund and Wise’s special cube complex theory, Wise’s quasi-
convex hierarchy theory for special word hyperbolic groups, and Groves and
Manning’s malnormal filling theorems for word hyperbolic groups. In this
survey, we summarize some important ideas toward the solution of the vir-
tual Haken conjecture and its related conjectures, and then browse through
some more recent advances on various topics in 3–manifold topology, which
are inspired or motivated by the new theorems.

The organization of this survey is as follows. In Section 2, we provide
an introductory review on the virtual specialization of 3–manifold groups.
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In Section 3, we summarize some significant techniques that have been de-
veloped or utilized during the past few years. In Sections 4–10, we survey
applications of the new techniques to a list of topics, including separability
of finitely generated subgroups, virtual homological torsion, virtual domina-
tion, twisted Alexander invariants, virtual representation volume, profinite
completion, and quantitative aspects. While the topic sections are presented
generally independently from each other, we sort them out so that Section 4
is about topological characterization of group theoretic properties, and Sec-
tions 5–8 about construction of individual finite covers, and Sections 9–10
about all finite covers being a whole collection.

Throughout the survey, manifolds and complexes are all assumed to
be connected, unless otherwise declared. Basepoints are implicitly assumed
in the notations of fundamental groups. Kneser–Milnor prime decompo-
sition and prime summands are only considered for compact orientable
3–manifolds. Jaco–Shalen–Johanson (JSJ) torus decomposition, JSJ tori,
and JSJ pieces are only considered for compact orientable irreducible (hence
prime) 3–manifolds.

We adopt the following terminology in this survey. Caution that other
authors may use the same terms referring to a different range of objects. A
mixed 3–manifold is an orientable compact irreducible 3–manifold with at
least one JSJ torus and at least one non-elementary atoroidal JSJ piece. It is
allowed to have negative Euler characteristic in this survey, although many
articles assume mixed 3-manifolds have zero Euler characteristic (empty
or tori boundary). A graph manifold is an orientable compact irreducible
3–manifold whose JSJ pieces are all Seifert fibered. It is allowed to be a
Seifert fibered space or a virtual Anosov torus bundle over a circle. An
orientable thickened Klein bottle is a compact interval bundle over a Klein
bottle whose total space is orientable. It is unique up to homeomorphism,
and may occur as an elementary, Seifert fibered JSJ piece, which we do not
consider to be geometric.

For background review, we take advantage of several excellent surveying
works, including Agol [Ago14], Aschebrenner–Friedl–Wilton [AscFW15a,
AscFW15b], Friedl–Vidussi [FriV11b], Wang [Wan02], Reid [Rei18]. In
particular, one of our motivations is to provide a list of recent updates on
virtual properties of 3–manifold groups since [AscFW15a]. The reader is
furthermore referred to the classical references Hempel [Hem76] and Jaco
[Jac80] for 3–manifold topology, and Thurston [Thu79] for the topology
and geometry of hyperbolic 3–manifolds.

Although we have struggled to cover as many existing post-virtual-
specialization works in 3–manifold topology as possible, we claim no com-
pleteness of our scope. The exposition also reflects the taste and the com-
prehension of the authors unavoidably.
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2. From geometrization to virtual specialization
While the geometrization theorem successfully reduces the topological

classification of 3–manifolds to hyperbolic 3–manifolds, it is far from easy
to really understand the latter. Among the finite-volume ones, the unique
hyperbolic 3–manifold of the smallest volume was only provably identi-
fied in the first decade of this century, (see [GabMM10]). As for the
infinite-volume class, the study of the topology and geometry of hyperbolic
3–manifolds with finitely generated fundamental groups has led to the re-
markable resolutions to Marden’s tameness conjecture [Ago04, CalG06]
and Thurston’s ending lamination conjecture [Min10, BrocCM12].

Study on finite covers of hyperbolic 3–manifolds, along a different path,
has led to fascinating combination of deep insights from topology, geometry,
dynamics, and geometric group theory. The following Theorem 2.1 is a mile-
stone in 3–manifold topology after geometrization, and is also a prominent
achievement of a broad program in geometric group theory, known as virtual
specialization:

Theorem 2.1. The fundamental group of any finite-volume hyperbolic
3–manifold is virtually compact special.

The cusped case of Theorem 2.1 (and part of the Haken closed case) is
due to Wise [Wis12b, Wis12a]. The closed case in full generality is due to
Agol [Ago13].

Before we explain the result in more detail, let us list four consequences of
Theorem 2.1. They confirm four celebrated conjectures posed by Thurston
[Thu82, Section 6, the questions 15–18]. Those conjectures have been a
driving force in 3–manifold topology since the 1980s:

Theorem 2.2. For any finite-volume hyperbolic 3–manifold M , the fol-
lowing statements hold true:

(1) All finitely generated subgroups of π1(M) are separable. In other
words, π1(M) is LERF. (Separable and LERF will be defined in
Section 4.)

(2) Some finite cover of M contains a properly embedded essential sub-
surface. In other words, M is virtually a Haken manifold.

(3) Some finite cover of M has non-vanishing rational first homology.
In other words, M is virtually of positive first Betti number.

(4) Some finite cover of M is homeomorphic to a surface bundle over
a circle. In other words, M is virtually fibered.

The reader is referred to [AscFW15a, Corollary 4.2.3] for more informa-
tion about the proof of Theorem 2.2. We only emphasize that the statements
in Theorem 2.2 are not direct implications of virtual compact-specialness,
(except the third one). The actual proof of the first statement uses the cover-
ing theorem [Can96, Thu82] and the tameness theorem [Ago04, CalG06];
the second relies at least on classical theorems in 3–manifold topology (plus
virtual b1 > 0); the fourth uses Agol’s criterion for virtual fibering [Ago08].
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The content of Theorem 2.1 is about group actions on CAT(0) cube
complexes— their existence and well behavior. We unwrap its statement by
briefly explaining some terminology.

A cube complex is a finite-dimensional locally finite cell complex whose
n–cells are modeled on the standard Euclidean cube [−1, 1]n ⊂ Rn and whose
characteristic maps restricted to faces are isometries onto lower-dimensional
cubes. We furnish any connected cube complex with the canonical shortest-
path metric using the standard Euclidean metric on the cubes, so the com-
plex is said to be non-positively curved if its universal cover is CAT(0) as
a geodesic metric space. In this case, deck transformation on the universal
cover provides a typical example of a proper (isomorphic) group action on
a CAT(0) cube complex, which is indeed free.

A special cube complex is a non-positively curved complex whose hyper-
planes are positioned in a certain nice manner. Having a system of hyper-
planes is perhaps one of the most significant features of cube complexes,
which fundamentally distinguishes this subclass from general polyhedral
complexes. Observe that there are exactly n midcubes in any n–cube, namely,
[−1, 1]k × {0} × [−1, 1]n−k−1 ⊂ [−1, 1]n, k = 0, · · · , n − 1 in the standard
coordinates. Given any cube complex X, the disjoint union of midcubes of
X altogether form a new cube complex H, by gluing up according to the
partial order of inclusion between their faces. An (immersed) hyperplane of
X therefore refers the restriction of the obvious placing map H → X to
any connected component of H. Formally, a special cube complex is defined
as a non-positively curved cube complex whose hyperplanes avoid a list of
pathologies, (termed one-sided, self-intersecting, self-osculating, and inter-
osculating,) due to Haglund–Wise [HglW08]. (Haglund and Wise originally
introduced the terms A-special and C-special. The former became the term
special in its most commonly used sense in the literature.) For expository
purpose, we offer an equivalent, globalized description, as follows. A non-
positively curved cube complex is special, if and only if the following require-
ments are all satisfied: Every hyperplane is embedded; for every embedded
hyperplane, its closed 1–neighborhood is an embedded cube subcomplex
which is isomorphic to the product of a 1–cube with the hyperplane; and
for any intersecting pair of embedded hyperplanes, the intersection of their
closed 1–neighborhoods is an embedded cube subcomplex which is isomor-
phic to the product of a 2–cube with their intersection.

Definition 2.3. A finitely generated group G is said to be special if
there exists a special cube complex X with π1(X) ∼= G. Moreover, G is said
to be compact special if some such X is also compact.

Note that the special cube complex is not part of data, so Definition
2.3 is about a property of a finitely generated group itself. The following
characterization is due to Haglund and Wise [HglW08, Theorem 1.1]. It
gives one some idea how large the special group class is (and is not).
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Theorem 2.4. A finitely generated group is special if and only if it is
isomorphic to a finitely generated subgroup of a right-angled Artin group.

There is a repeatedly used two-step strategy for virtual specialization,
(that is, proving the virtual specialness of a suspected group): First, try
to construct a proper action of the group in question on a CAT(0) cube
complex, or to cubulate the group. After that, try to find a finite-index sub-
group which acts freely and whose orbit space is a special cube complex, or
to virtually specialize the cubulation. For virtual compact specialization, we
also want the action to be cocompact in the first step. In general, both of
the steps could be hopelessly difficult, but there are useful directions. The
first problem can be reduced to the existence of a certain efficient collec-
tion of codimension–1 subgroups, using Sageev’s construction [Sag95]. The
second problem can be characterized as the separability of hyperplane sub-
groups and hyperplane double-cosets, according to Haglund–Wise’s criterion
[HglW08, Theorem 9.19].

For closed hyperbolic 3–manifolds, the proof of Theorem 2.1 exhibits
a splendid, highly skillful example of the above two-step strategy. The first
step is done by a Sageev-type construction due to Bergeron–Wise [BerW12,
Theorem 1.5]. The participating codimension–1 subgroups are many quasi-
Fuchsian surface subgroups, as produced by Kahn–Markovic’s surface sub-
group theorem [KahM12a]. The second step is exactly [Ago13, Theorem
1.1], the main theorem in that work of Agol. Agol’s proof is inductive and re-
lies on Wise’s theory of quasi-convex virtual hierarchies for word-hyperbolic
groups [Wis12b, Wis12a]. In fact, Wise’s work also proves Theorem 2.1
for closed hyperbolic 3–manifolds which contain essentially embedded quasi-
Fuchsian closed subsurfaces.

For cusped hyperbolic 3–manifolds, the first proof of Theorem 2.1 is
due to Wise [Wis12b], (see also [Wis12a, Chapter 15]). His proof is an
application of a generalized hierarchy theory that he develops in a relatively
hyperbolic setting. For an alternative recent proof of the cusped case, which
more closely follows the two-step strategy, see Groves–Manning [GroM21].
The first step there is done by the recent work Cooper–Futer [CooF19].

Virtual specialization for general 3–manifolds has also been studied,
and there has been a clean and complete answer. We say that a compact
3–manifold is non-positively curved if its interior admits a complete Rie-
mannian metric of non-positive sectional curvature. This class of 3–manifolds
is known to consist of all aspherical virtually product 3–manifolds, hyper-
bolic 3–manifolds, mixed 3–manifolds, and some completely characterized
non-geometric graph manifolds, which include all the boundary-nonempty
ones, (see [Liu13, Section 2] and [AscFW15a, Section 4.7] for more infor-
mation and guides to the literature).

Theorem 2.5. An aspherical compact 3–manifold has a virtually special
fundamental group if and only if it is non-positively curved.
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For geometric 3–manifolds, Theorem 2.5 is not obvious only in the
hyperbolic case, but that case follows from the works of Agol and Wise
[Ago13, Wis12b]. For mixed 3–manifolds, Theorem 2.5 is due to Przytycki–
Wise [PrzW18]. For non-geometric graph manifolds, Theorem 2.5 is due
to Liu [Liu13], and also Przytycki–Wise [PrzW14a] assuming nonempty
boundary. Most proofs of these results actually follow the aforementioned
two-step strategy. Note that the characterization appears to reflect an under-
lying connection between two properties arising from very different contexts.
However, the above case-by-case proof does not offer sufficient explanation.

To characterize virtual compact-specialness, observe that any orientable
compact nonpositively curved 3–manifold is prime. Suppose moreover that
the 3–manifold contains no essential Klein bottles. Then every JSJ piece
under the JSJ torus decomposition is either atoroidal or Seifert fibered over
an orientable hyperbolic base 2–orbifold. A Seifert fibered piece is said to be
internal if it contains neither any boundary tori of the 3–manifold nor any
JSJ tori adjacent to atoroidal pieces. Define the charge of an internal Seifert
fibered piece to be the (unsigned) Euler number of the Seifert fibration
relative to the boundary framing given by the adjacent-piece fibers, and here
we consider charge as a rational number up to sign. Here the relative Euler
number is defined to be the Euler number of the closed Seifert manifold
obtained by Dehn filling of this piece along the slopes on its boundary.
An orientable compact non-positively curved 3–manifolds without essential
Klein bottles is said to be chargeless if its internal Seifert fibered pieces all
have zero charge. Since being chargeless and the opposite are both preserved
under passage to finite covers, we also speak of these properties for general
compact nonpositively curved 3–manifolds by considering their orientable
Klein-bottle-free finite covers.

Theorem 2.6. A compact non-positively curved 3–manifold with empty
or tori boundary has a virtually compact special fundamental group if and
only if it is chargeless.

The geometric case of Theorem 2.6 follows again from [Ago13, Wis12b]
and direct observation. The graph manifold case is due to Hagen–Przytycki
[HgePr15]. The mixed 3–manifold case is due to Tidmore [Tid18].

3. Summary of methods
A series of important techniques have been invented toward the virtual

specialization of 3–manifold groups. Some of them have been systematically
developed over the past years, and some of them have been applied to other
problems creatively. In this section, we provide a review of several methods
which are frequently used in the surveyed works of subsequent sections.

To motivate our discussion, consider how to prove the virtual Haken
conjecture (see Theorem 2.2 (2)). Given a non-Haken closed hyperbolic
3–manifold, one first produces a π1–injectively immersed closed subsurface,
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(using Kahn–Markovic’s surface subgroup theorem,) and then finds a fi-
nite cover to which the surface lifts to be embedded, (using separability of
quasiconvex subgroups). This will complete the proof since the finite cover
is Haken by definition. We see that such a proof is possible today basi-
cally because there are available (theoretical) constructions, for manageable
immersed sub-objects and for interesting finite covers. The methods to be
summarized below all belong to these two families.

3.1. Construction of subsurfaces. We review two kinds of construc-
tions for producing π1–injectively immersed closed subsurfaces in closed
3–manifolds. Both of them can be used to produce more general objects,
such as certain subsurfaces with boundary, or 2–subcomplexes. There are
also various extensions to serve particular technical purposes. To keep fo-
cused on the basic idea, we only briefly mention those related constructions,
even though they may very often contain significant contribution to the
whole subject. It should be emphasized that π1–injectivity is crucial and
will be insisted on. The point is that the output objects are supposed to
represent subgroups of the fundamental group of the 3–manifold in ques-
tion.

3.1.1. Constructions in closed hyperbolic 3–manifolds. Under extra hy-
potheses such as the Haken condition or arithmeticity, there are several
known ways to construct large amount of π1–injectively immersed subsur-
faces. The advantage of the good pants method lies in its generality and ma-
neuverability. This method was originally introduced by Kahn and Markovic
[KahM12a] to prove Theorem 3.1, also known as the surface subgroup the-
orem. The idea was applied by the same authors, shortly after, to prove
Ehrenpreis’ conjecture about Riemann surfaces [KahM15]. For a more de-
tailed introduction to the good pants method, see [KahM14].

Theorem 3.1. Every closed hyperbolic 3–manifold admits a π1–injectively
immersed closed subsurface of genus at least 2.

The subsurface as asserted in Theorem 3.1 is obtained by gluing up a
large finite collection of immersed pairs of pants along their common cuffs
(boundary components). To ensure π1–injectivity, geometric conditions must
be imposed on both the shape of the pants and the rule of the gluing. All the
immersed pants to be glued up are required to be intrinsically nearly isomet-
ric to a regular hyperbolic pair of pants with some large cuff length R � 1,
and extrinsically nearly totally geodesic with small bending in the normal
direction. Quantified suitably with some prescribed small error bound ε > 0,
such pants are called (R, ε)–good pants. Along any common cuff, two oriented
pairs of good pants should only be glued up with matching orientation and
small along-cuff bending, and slightly trickily, the seams (common perpen-
dicular geodesic segments of two cuffs) should mismatch with a relative shift
of distance ≈ 1 rightward, (viewed from either side measuring the other).
Kahn and Markovic show that any closed immersed subsurface obtained this
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way is π1–injective and quasi-Fuchsian. Using the fact that the frame flow
for any closed hyperbolic 3–manifold is exponentially mixing (see [Moo87]
and [Pol92]), Kahn and Markovic are able to produce a large finite col-
lection of oriented good pants, which are somehow evenly distributed and
orientation-type balanced. The technical conditions make sure that the col-
lection of pants admits a gluing as above, so a subsurface as asserted in
Theorem 3.1 can be constructed.

The effective use of frame flow dynamics brings about several unique
qualities of the good pants method. Firstly, it allows fine shape control
in constructing long geodesic segments, (see [LiuM15, Lemma 4.15] and
[Liu19, Theorem 3.1]). Secondly, it works regardless of the shape or the
homology of the closed hyperbolic 3–manifold in question. In fact, first ho-
mology classes all admit representative good curves, and second homology
classes all admit representative good panted subsurfaces for some finite mul-
tiple, (see [LiuM15, Theorem 5.2 and Corollary 1.1]). Thirdly, the method
tends to produce π1–injectively immersed objects in a ubiquitous fashion.
For example, limit sets of Kahn–Markovic surface subgroups can approxi-
mate any round circle on the sphere at infinity arbitrarily well, with respect
to the Hausdorff topology, (see [KahM12a, Theorem 1.1]). We refer the
readers to [KahM15, LiuM15, Liu19] for further developments of the
good pants method regarding homological control, and [Liu19, Sun15a,
Sun15b, LiuS18] for examples of object design in utilizing the method,
and [KahM12b] for following study on the quantitative aspects. For quick
reviews on the good pants method and more references, see the preliminary
sections [LiuS18, Section 2], [Liu19, Section 2].

For cusped hyperbolic 3–manifolds, good pants constructions are not
fully available yet. One major issue is that [KahM12a, Theorem 3.4] would
fail to work if the injectivity radius became zero. A very recent generalization
to the cusped case is given by Kahn–Wright [KahW21]. Another recent
work Cooper–Futer [CooF19] provides a substitutional solution for certain
interest of applications.

3.1.2. Constructions in mixed 3–manifolds. The virtual specialization of
mixed 3–manifolds is obtained by Przytycki–Wise [PrzW18]. In the course
of cubulation with Sageev’s construction, Przytycki and Wise develop a set
of tools to produce sufficiently many π1–injectively immersed closed subsur-
faces, which are all virtually embedded. Their constructions are extended
by Derbez–Liu–Wang [DerLW15, Section 4] to a relative version.

Let us illustrate some central ingredients with a sample problem. Sup-
pose that M is an orientable closed mixed 3–manifold, and R ⊂ J is a
properly embedded, essential and ∂–essential, connected subsurface of a JSJ
piece J ⊂ M . In general, it is impossible to extend R to be an essential
closed subsurface S of M . However, we may ask whether some finite cover
R′ of R admits some inclusion R′ ⊂ S′, where S′ is a virtually embedded
closed surface immersed π1–injectively in M , and where the inclusion lifts
the immersion R′ → M . In other words, we wonder if R can be virtually
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complemented to make a closed, virtually essentially embedded subsurface.
This question has a positive answer. If every JSJ piece adjacent to J is
hyperbolic, it can be solved using [PrzW14b, Proposition 4.6], which in-
vokes Wise’s omnipotence theorem for cusped hyperbolic 3–manifolds, (see
[Wis12b, Theorem 16.15]). If no graph submanifold of M contains J , (so
J is hyperbolic,) it can be solved using [PrzW14a, Corollary 3.3]. In gen-
eral, it follows from [DerLW15, Theorem 4.4], which invokes [PrzW14b,
Proposition 4.6] and strengthens [PrzW14a, Corollary 3.3].

We see in the above sample that in order to construct π1–injectively
immersed subsurfaces in mixed 3–manifolds, one may start with some con-
structions in the JSJ pieces, (or more precisely, the hyperbolic pieces and the
maximal graph-submanifold parts). Then one may proceed by pasting finite
covers of the piecewise constructions together, as sometimes called merging.
Extra care will be needed to keep the resulting subsurface virtually embed-
ded, or maybe the otherwise, depending on what is being looked for. The
subtlety here comes from the fact that non-geometric 3–manifolds do not
have LERF fundamental groups, (see Section 4 for more on this topic).

We also mention that there has been extensive study on π1–injectively
immersed subsurfaces in graph manifolds, thanks to works prior to the vir-
tual specialization, (see Buyalo–Svetlov [BuyS04] for an exposition).

3.2. Construction of finite covers. We collect some powerful tech-
niques that can be used to build finite covers with specific properties. They
all arise from the study of virtual specialization for 3–manifolds.

Theorem 3.2. Let M be a closed hyperbolic 3–manifold. Then for any
geometrically finite subgroup H of π1(M), there exists a finite index subgroup
G′ of π1(M) which contains H, and moreover, some homomorphism G′ → H
fixes every element of H. In other words, geometrically finite subgroups of
π1(M) are virtual retracts.

This is a particular case of the virtual retract property for quasicon-
vex subgroups of virtually compact special word-hyperbolic groups. See
[HglW08, Theorem 7.3 and the proof]. The virtual retract property im-
plies that the inclusion of the subgroup virtually induces injective homomor-
phisms on homology groups, and any cohomology class of the subgroup can
be virtually extended to the whole group. These nice properties on (co)ho-
mology groups are very useful in topological applications, see Sections 4,
5, 6.

Theorem 3.3. Let M be a closed hyperbolic 3–manifold. Then for any
infinite-index geometrically finite subgroup H of π1(M), there exists a quo-
tient homomorphism π1(M) → Q of π1(M) onto a virtually compact special,
non-elementary word-hyperbolic group Q, and moreover, H has finite image
in Q.

This is a particular case of the virtually compact-special filling theo-
rem for quasiconvex subgroups of virtually compact special word-hyperbolic
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groups. See [Ago13, Theorem A.1], (and also the proof of [Liu19, Lemma
8.4] for more explanation). For applications, see Theorems 5.6.

Theorem 3.4. Let M be a non-positively curved compact 3–manifold
with empty or incompressible tori boundary. Then there exists a finite cover
M ′ of M , and for any nontrivial cohomology class φ ∈ H1(M ;Z) which is
not fibered, the pull-back class φ′ ∈ H1(M ′;Z) lies on the boundary of a
fibered cone for M ′. In other words, non-fibered cohomology classes of M
are virtually quasi-fibered.

See [Ago08, Theorem 5.1 and Corollary 2.3], and also Theorem 2.4.
Here we recall some terminology for the reader’s reference. For any ori-
entable compact irreducible 3–manifold M with empty or incompressible
tori boundary, there exists a (possibly empty) finite collection of mutually
disjoint open linear cones in H1(M ;R), and they are determined by the fol-
lowing property: A nontrivial cohomology class φ ∈ H1(M ;Z) lies in one of
the cones if and only if φ is homotopically represented by a bundle projec-
tion M → S1, (possibly having disconnected fiber when φ is non-primitive),
[Thu86]. These cones are therefore called the fibered cones for M . It is known
that each fibered cone is convex, finite polyhedral, and has only rationally
coordinated faces. Nontrivial integral classes in the fibered cones are called
fibered classes, and those on the point-set boundary of fibered cones are
called quasi-fibered classes. In general, fibered classes are better cohomology
classes than non-fibered class. For example, the norm minimizing surface
dual to a fibered class is unique, and it is easy to compute the twisted
Alexander polynomial of a fibered class. Sometimes, these nice properties
on fibered classes can be extended to quasi-fibered classes, then Theorem
3.4 virtually realizes all non-zero cohomology classes as quasi-fibered classes
with such nice properties. For applications, see Section 7.

Theorem 3.5. Let M be a compact orientable irreducible 3–manifold
with empty or incompressible tori boundary. Suppose that J ′

1, · · · , J ′
s are

finite covers of the JSJ pieces J1, · · · , Js of M , respectively. Then there
exists a finite cover M̃ of M , and any JSJ piece J̃ of M̃ covers a JSJ piece
Ji of M factoring through J ′

i. Moreover, M̃ can be required to be regular over
M and characteristic restricted over the JSJ tori.

This result says that finite covers of a 3–manifold can be built by merging
given finite covers of the JSJ pieces. See [DerLW15, Proposition 4.2], which
relies on Wise’s omnipotence theorem for cusped hyperbolic 3–manifolds,
(see [Wis12b, Theorem 16.15]). Theorem 3.5 is in particular useful for con-
structing some finite cover of a non-geometric 3-manifold that contains some
pre-chosen Seifert or hyperbolic pieces (actually their finite covers). For ap-
plications, see Sections 4 and 8.

3.3. Utility of the constructions. The methods summarized above
have a wide spectrum of applications. These are surveyed by topics in the
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subsequent sections, with an emphasis on the contribution of the new tech-
niques. Generally speaking, constructions developed during the virtual spe-
cialization of 3–manifold groups are particularly good at producing individ-
ual finite covers of 3–manifolds with certain desired properties under fairly
general topological assumptions. We also observe that most of the construc-
tions do not make explicit use of a cube complex, even though the proofs of
their existence do. On the other hand, the constructions usually lose track
of the covering degree and the deck transformation group. Furthermore,
despite the success of the virtual specialization in studying the topology
and geometry of (hyperbolic) 3-manifolds, several important topics in 3-
manifold theory remain completely disconnected from the new techniques.
These include various gauge theories on 3–manifolds and quantum invariants
of 3-manifolds (especially the volume conjecture). It would be very exciting
if one can apply virtual specialization techniques to these fields.

4. Subgroup separability
One of the most influential methods in 3–manifold topology is to study

incompressible subsurfaces and their induced decomposition of 3–manifolds
[Hem76]. This method has inspired geometric group theory in certain as-
pects, notably the Bass–Serre theory about group actions on trees [Ser80]
and the Haglund–Wise theory about special cube complexes [HglW08].
At cost of passage to finite covers, one is often able to produce incompress-
ible subsurfaces (and other analogous objects) from π1–injectively immersed
ones downstairs, and the important notion here is subgroup separability. In
fact, subgroup separability is used for proving many, if not all, post-virtual-
specialization results. On the other hand, by applying virtual specialization
techniques, subgroup separability of 3–manifold groups can be understood
in quite satisfactory details. In this section, we review separability of finitely
generated subgroups, LERF groups, and summarize their recent develop-
ments in 3–manifold groups.

For any group G, a subgroup H is said to be separable in G if for every
g ∈ G with g �∈ H, there exists a finite index subgroup G′ ≤ G with H ≤ G′

and g �∈ G′. For example, the trivial subgroup {1} being separable in G
means exactly that G is residually finite. Subgroup separability is related
to virtual embedding for the following topological interpretation: Let X

be a Hausdorff topological space and X̃ → X be a regular covering with
a deck transformation group G. Then a subgroup H is separable in G if
and only if for every compact subset K of X̃/H, there is a finite covering
X ′ → X such that the projection X̃/H → X factors through X ′ and maps
K homeomorphically into X ′, (see Scott [Sco78, Lemma 1.4 and the proof]).

For example, suppose that G is the fundamental group of an aspherical
3–manifold M , and H a separable subgroup isomorphic to the fundamental
group of an aspherical closed surface S. Then the topological interpretation
implies that the inclusion H → G is induced by a map S → M which lifts
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to be an embedding S → M ′. This is because any lifted map S → M̃/H is
a homotopy equivalence and is homotopic to an embedding.

The above simple example is actually quite illuminating. We see that
subgroup separability serves as a condition that helps promoting immer-
sions virtually to be embeddings. In this way, a topological (or homotopy-
theoretical) problem is turned into a group-theoretical one. As we explain
below, the latter can be addressed in 3–manifold groups by virtual special-
ization techniques. (We also point out that 3–manifold topology is involved
even in such a simple example.)

A group G is said to be locally extended residually finite, or LERF, if
all finitely generated subgroups are separable in G. (Besides LERF, there is
the term extended residually finite, or ERF, which requires all subgroups to
be separable. Both LERF and ERF mean to strengthen the notion of resid-
ual finiteness.) This property is inherited by all subgroups. Polycyclic-by-
finite groups [Mal58], free groups [Hall49], and finitely generated Fuchsian
groups [Sco78] are all LERF. A finitely generated right-angled Artin group
is LERF if and only if the defining graph contains no complete subgraphs
which are four-vertex cycles or four-vertex strings [MetR09, Theorem 2].

The following Theorems 4.1, 4.2, and Remark 4.3 provide a complete
solution to effective characterization of LERF and non-LERF 3–manifold
groups.

Theorem 4.1. Let M be an orientable prime closed 3–manifold. Then
π1(M) is LERF if and only if M supports one of Thurston’s eight geometries.

Theorem 4.2. Let M be an orientable prime compact 3-manifold with
nonempty incompressible boundary. Hence M is irreducible. Adopt the JSJ
torus decomposition of M , possibly trivial. Then π1(M) is LERF if and only
if every JSJ torus is adjacent to at least one JSJ piece of negative Euler
characteristic.

Remark 4.3. The assumptions in Theorems 4.1 and 4.2 are added to
simplify statements. For any compact 3–manifold N , one may pass to the
canonical orientable cover of degree at most 2, fill up the spheres on the
boundary with 3–balls, and inspect the LERF property for the sphere-disc
decomposition summands. Then π1(N) is LERF if and only if all the sum-
mands have LERF fundamental groups.

The geometric case for Theorem 4.1 is due to Scott [Sco78] for the six
Seifert fibered geometries, and due to Agol [Ago13] for the hyperbolic ge-
ometry, and elementary for the Sol geometry (as polycyclic-by-finite groups
are LERF). Although the main ingredient of Scott’s proof in [Sco78] was
2–dimensional hyperbolic geometry, it can be interpreted as a special cube
complex proof. The seminal idea is generalized in [Ago13] by using virtual
specialization for hyperbolic 3–manifold groups in full power, (see Theo-
rem 2.2 and the comments). The non-geometric case of Theorem 4.1 and
Theorem 4.2 are due to Sun [Sun19a] and [Sun20] respectively, relying on
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[Ago13, Wis12b]. The proof makes use of characterization of separabil-
ity for finitely generated subgroups obtained in [Liu17a] and [Sun20] (see
Theorem 4.6), along with construction of non-separable finitely generated
surface subgroups or free subgroups. Former examples of 3–manifolds with
non-LERF fundamental groups include the first such graph manifold due to
Burns–Karrass–Solitar [BurKS87] (which is the mapping torus of a Dehn
twist on the one-punctured torus), and all non-geometric graph manifolds
due to Niblo–Wise [NibW01], and certain mixed 3–manifolds due to Liu
[Liu17a], see [AscFW15a, Section 5.2 (H.11) and Section 7.2.1] for more
references. The proofs in [BurKS87, NibW01] are algebraic, while the
proofs in [Liu17a, Sun19a, Sun20] are topological.

Let us mention some clues to suggest why Theorems 4.1 and 4.2 are pos-
sible. Since the geometric case follows already from the virtual specialization,
it is reasonable to infer that failure of subgroup separability comes from the
gluing of the geometric pieces. In [RubW98], Rubinstein and Wang dis-
covered certain horizontally immersed subsurfaces in certain closed graph
manifolds. (Being horizontal means that the immersion is transverse to the
Seifert fiberation in every Seifert fibered piece.) They showed that those sub-
surfaces cannot lift to be embedded in any finite cover. They also identified
the obstruction in terms of certain intersection numbers on the JSJ tori.
To extend their construction to mixed 3–manifolds, (which essentially prove
Theorems 4.1 and 4.2), one would expect some generalized constructions
of non-separable subgroups and some similar characterization of subgroup
separability. The first part becomes possible by the methods described in
Section 3.1.2. (The non-separable subgroups in [Liu17a, Sun19a, Sun20]
are all obtained topologically by pasting virtual-fiber subsurfaces in the JSJ
pieces in a certain designed way. In particular, they are either surface groups
or free groups.) The second part is what we explain in the rest of this section.

We characterize separability of surface subgroups in 3–manifold groups,
before addressing the general case. Suppose that f : S → M is a π1–injective
map of closed surface S to an orientable prime closed 3–manifold M . By
homotopy, f can be arranged to be immersed, intersecting the JSJ tori
transversely and minimizing the total number of their preimage components.
Then the JSJ decomposition of M induces via f a decomposition of S along
essential curves into essential subsurfaces, called the JSJ curves and the JSJ
subsurfaces, respectively. Up to isotopy of S the decomposition depends only
on the homotopy class of f .

Every JSJ subsurface of S is properly immersed in a JSJ piece of M via f .
It is either vertically or horizontally immersed in a non-elementary Seifert
fibered piece; it is either geometrically finitely or geometrically infinitely
immersed in a non-elementary hyperbolic piece; otherwise, it is an annulus
or a Möbius band properly immersed in an orientable thickened Klein bottle.
Note that a JSJ subsurface is a virtual fiber of the carrying piece precisely
in the Seifert-fibered-horizontal case, the hyperbolic-geometrically-infinite
case, and thickened-Klein-bottle case. Therefore, we obtain a distinguished
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(possibly empty or disconnected) subsurface Φ(S) ⊂ S by taking all the
virtual-fiber type JSJ subsurfaces and gluing along their common JSJ curves.
We call Φ(S) the almost fiber part of S with respect to f .

With the above notations, Liu [Liu17a] introduces a homotopy invariant
s(f) ∈ H1(Φ(S);Q×) for π1–injective maps f : S → M , called the spirality
character for (S, f). This invariant can be explicitly expressed, in terms of
some boundary covering degrees associated to the JSJ subsurfaces of Φ(S)
and their carrying pieces. It behaves naturally under finite coverings κ : S′ →
S, in the sense that κ∗(s(f)) = s(f ◦ κ) holds with respect to the natural
identification κ−1(Φ(S)) = Φ(S′) up to isotopy. We say that the surface map
(S, f) is aspiral with respect to f if s(f) lies in the subgroup H1(Φ(S); {±1}),
or equivalently, as a homomorphism of abelian groups, s(f) : H1(Φ(S);Z) →
Q× takes values in {±1}. Being aspiral intuitively means that there is no
obstruction to virtually embedding the almost fiber part, (up to homotopy
relative to ∂Φ(S) and their carrying covering tori).

Theorem 4.4. Let M be an orientable prime closed 3–manifold. For
any π1–injective map f : S → M of a closed surface S, the image of π1(S)
in π1(M) is separable if and only if the surface map (S, f) is aspiral.

Remark 4.5.
(1) If f is π1–injective, Przytycki and Wise [PrzW14b] show that

f is virtually homotopic to an embedding if and only if π1(S) is
separable in π1(M). Moreover, S can be lifted to some finite cover of
M as a leaf of a taut foliation, up to homotopy, [Liu17a, Theorem
1.1].

(2) If M is a closed graph manifold and f is an immersion of S as
a horizontal subsurface, the spirality character coincides with the
invariant s introduced in Rubinstein–Wang [RubW98]. Rubin-
stein and Wang used this invariant to discover the first example
of π1–injectively immersed subsurfaces which are not virtually em-
bedded.

Theorem 4.4 is due to Liu [Liu17a]. The proof invokes Wise’s omnipo-
tence theorem for cusped hyperbolic 3–manifolds, (see [Wis12b, Theorem
16.15]).

The idea for proving Theorem 4.4 is to generalize Rubinstein–Wang
[RubW98], taking virtual fibers of hyperbolic pieces as the analogue of
horizontally immersed subsurfaces in Seifert-fibered pieces. As mentioned in
4.5 (2), the spirality character is the suitable generalization of the original
obstruction discovered by Rubinstein and Wang. Once it is correctly for-
mulated, its triviality will imply by definition that the almost fiber part is
virtually embedded, and vice versa. The virtual embedding property of the
whole surface can be obtained by the methods described in Theorems 3.2
and 3.5. Then the characterization of Przytycki–Wise [PrzW14b] (Remark
4.5 (1)) implies Theorem 4.4.
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For finitely generated subgroups of general 3–manifold groups, Sun
[Sun20] obtains the following Theorem 4.6, which generalizes Theorem 4.4.
Let M be an orientable irreducible compact 3–manifold with empty or in-
compressible boundary. For any finitely generated subgroup H of π1(M)
(fixing a basepoint), denote by MH the covering space corresponding to H.
There is a canonically induced decomposition of MH from the JSJ decom-
position of M . For M not supporting the Sol geometry, Sun introduces a
generalized almost fiber surface Φ(H) and an (unsigned) generalized spiral-
ity character s(H) ∈ H1(Φ(H);Q×/{±1}). Therefore, H is said to be aspiral
if s(H) is trivial. For convenience, we define Φ(H) = ∅ for M either a vir-
tual Anosov torus bundle over a circle (the Sol–geometric case) or a product
of a sphere with a circle (the reducible prime case). A toy model of Theo-
rem 4.6 is the first non-separable subgroup of 3-manifold group constructed
in [BurKS87], which is actually not a subgroup of a properly immersed
π1–injective subsurface.

Theorem 4.6. Let M be an orientable prime compact 3–manifold with
empty or incompressible boundary. Then a finitely generated subgroup is
separable in π1(M) if and only if it is aspiral.

We also mention that based on similar ideas as [Liu17a, Sun20], Sun
[Sun19b] shows that nontrivial geometrically finite amalgamations of hy-
perbolic 3–manifold groups are not LERF. This result is applied in the same
paper to show that most arithmetic hyperbolic manifolds of dimension ≥ 4
have non-LERF fundamental groups.

It seems natural to wonder if the failure of double coset separability
in 3–manifold group is also due to a topological reason, since double coset
separability is also an important ingredient in the theory of cube complexes.
We pose the following question for completeness of the theory.

Question 4.7. Let M be an orientable prime compact 3–manifold with
empty or incompressible boundary. For any finitely generated subgroup H,
H ′ of π1(M) and any element g ∈ π1(M), is there a topological character-
ization for separability of the double coset HgH ′ in π1(M), namely, when
HgH ′ is closed with respect to the profinite topology of π1(M)?

5. Virtual homological torsion
In this section, we survey on homological torsion for finite covers of

3–manifolds. The results that we mention here and in the next section ex-
hibit a typical strategy to employ virtual specialization techniques. A mo-
tivating problem is as follows: Given a hyperbolic integral homology sphere
M (which has the same integral homology as a 3–sphere), does there exist
a finite cover M ′ of M such that H1(M

′;Z) contains torsion? The problem
looks as difficult as the virtual positive first Betti number conjecture (The-
orem 2.2 (3)). However, good pants constructions allow us to make effective
use of hyperbolic geometry, and subgroup separability arguments allow us



230 Y. LIU AND H. SUN

to obtain pretty strong positive solutions to the problem, (see Theorems 5.4
and 5.5). To retrieve the origin of the problem, we first review a conjec-
ture on the growth of virtual homological torsion, which has been drawing
increasing attention during the past years, (see Conjecture 5.3). Then we
mention some attempts in 3–manifold topology using techniques from vir-
tual specialization.

Unlike the fundamental group, the homology is related to the topol-
ogy of a 3–manifold in a remote and loose manner. However, experiments
and heuristics suggest that homology of finite covers may still contain a
dominating amount of topological information, and that the asymptotic be-
havior may be somewhat predictable. Theorem 5.1 below, which is an easy
consequence of virtual specialization, indicates that Tits’ alternative for the
fundamental group can be characterized through the boundedness of virtual
first Betti numbers, (implied by the facts of [AscFW15a, Chapter 5, Flow-
chart 4 and (H.13)]). The next Theorem 5.2 describes the linear gradient
of the growth of virtual first Betti numbers, which is a special case of the
Kazhdan equality due to Lück [Lüc94], (see also [Lüc02, Theorem 4.1]).

By a cofinal tower of pointed covers {(X ′
n, x

′
n)}n∈N of a pointed topo-

logical space (X, ∗), we mean an ascending sequence of pointed covering
projections

· · · −→ (X ′
n, x

′
n) −→ · · · −→ (X ′

2, x
′
2) −→ (X ′

1, x
′
1) −→ (X, ∗)

with the property
⋂

n∈N π1(X
′
n, x

′
n) = {1}, as subgroups of π1(X ′, ∗). If all

the covers X ′
n are regular over X, choices of basepoints will no longer affect

the intersection, so we simply omit mentioning the basepoints.

Theorem 5.1. Let M be an aspherical compact 3–manifold. Then either
π1(M) is virtually solvable, or exclusively, there exists a cofinal tower of finite
regular covers {M ′

n}n∈N of M with unbounded first Betti number b1(M
′
n).

Theorem 5.2. Let M be an aspherical compact 3–manifold with an
infinite fundamental group. Then for any cofinal tower of finite regular covers
{M ′

n}n∈N of M , the first Betti number grows at most linearly, and indeed,

lim
n→∞

b1(M
′
n)

[M ′
n : M ]

= −χ(M).

Here χ(M) stands for the Euler characteristic of M , (which equals the first
L2–Betti number of M under the assumption).

It is therefore natural to ask about the existence and the growth of
homological torsion in finite covers of 3–manifolds. The following conjecture
is an average sample of its various versions, which are formulated by many
authors including Bergeron–Venkatesh [BerV13, Conjecture 1.3], Lê [Lê18,
Conjecture 1.3], and Lück [Lüc02, Question 13.73]:

Conjecture 5.3. Let M be an aspherical compact 3–manifold of Euler
characteristic 0. Then for any cofinal tower of finite regular covers {M ′

n}n∈N
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of M , the growth of the logarithmic homological torsion size satisfies

lim
n→∞

log |H1(M
′
n;Z)tors|

[M ′
n : M ]

=
v3
6π

· ‖M‖.

Here ‖M‖ stands for the simplicial volume of M and v3 =∑∞
m=1 sin(mπ/6)/m2 ≈ 1.0149 stands for the volume of a hyperbolic regular

ideal tetrahedron.

The right-hand side of the formula in Conjecture 5.3 equals −1 times the
L2–torsion of M , (see [Lüc02, Theorem 4.5]). It is known to be an upper
bound of the left hand-side with the limit replaced by the limit superior, due
to Lê [Lê18]. In particular, the conjecture holds true for graph manifolds.
For 3–manifolds of nonzero simplicial volume, Conjecture 5.3 remains widely
open. Indeed, by the time the present survey is written, there have been
no known examples of 3–manifolds with exponential growth of homological
torsion size for even some cofinal towers of regular finite covers. On the other
hand, for certain abelian towers or certain twisted homological torsions,
analogous convergence results to Conjecture 5.3 have been obtained, see
Lê [Lê14, Theorem 5] and Bergeron–Venkatesh [BerV13, Section 8.2], for
example. We refer the reader to [AscFW15a, Section 7.5.1] for further
references on this topic, and [BrocD15] and [AbéBBGNS17, Section 8]
for some more recent discussion about virtual homological torsion growth.

For closed hyperbolic 3–manifolds, the good pants constructions and vir-
tual specialization techniques are powerful tools for producing homologically
interesting finite covers. Although the output covers are usually irregular,
the following Theorems 5.4 and 5.5 do agree with our intuition that a finite-
volume hyperbolic 3–manifold should be complicated enough to exhibit nu-
merous virtual homological torsion of unlimited patterns. In particular, the
theorems appear to vote up for Conjecture 5.3.

Theorem 5.4. Let M be a closed hyperbolic 3–manifold. Then for any fi-
nite abelian group A, there exists a finite (irregular) cover M ′ of M for which
the homological torsion subgroup H1(M

′;Z)tors contains a direct summand
isomorphic to A.

Theorem 5.5. Let M be a closed hyperbolic 3–manifold. Fix an auxiliary
basepoint. Then there exists a cofinal tower of finite (irregular) pointed covers
{M ′

n}n∈N of M for which the homological torsion size grows exponentially,
namely,

lim
n→∞

log |H1(M
′
n;Z)tors|

[M ′
n : M ]

> 0.

Theorem 5.4 is due to Sun [Sun15a]. The proof develops the good
pants constructions [KahM12a], and invokes virtual specialization of closed
hyperbolic 3–manifolds [Ago13, Wis12a] and virtual retract property of
quasiconvex subgroups [HglW08]. Theorem 5.5 is due to Liu [Liu19]. In
addition to the above ingredients, the proof develops the constructions of
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[LiuM15], and invokes the malnormal special quotient theorem [AgoGM16,
Wis12a].

To prove Theorem 5.4, the key idea is to produce a quasiconvex
π1–injectively immersed 2–complex f : X → M , designing so that A occurs
as a direct summand of H1(X;Z). It will follow that X embeds into some
finite cover M ′ and that π1(X) also embeds as a retract of π1(M

′). Then
H1(X;Z)tors embeds into H1(M

′;Z)tors as a direct summand. For a spe-
cial (but essential) case, assume that A is a finite cyclic group Z/nZ. Then
the 2–complex X constructed in [Sun15a] is homeomorphic to the quotient
of a surface with two boundary components, such that on each boundary
component the points are identified by a cyclic rotation of order n. The
construction of X is basically as described in Section 3.1.1, using a large
collection of good pants, but some technical control is added to make the
desired homeomorphism type. Theorem 5.5 also starts with a similar idea by
producing a π1–injectively immersed closed nonorientable subsurface of odd
Euler characteristic. Then deep consequences of the virtual specialization
theorem can be applied to construct finite (irregular) covers of hyperbolic
3-manifolds, so that liftings of the odd Euler characteristic subsurface con-
tribute enough homological torsion comparable with the covering degree.

For cusped hyperbolic 3–manifolds or mixed 3–manifolds of Euler char-
acteristic 0, generalizations of Theorems 5.4 and 5.5 are expected true, but
still unknown. The major difficulty lies in the good pants constructions,
as they are not yet available for cusped hyperbolic 3–manifolds. One may
hope that the new techniques in the recent work Kahn–Wright [KahW21]
provide a key to unlock the generalizations.

We mention another recent result, Theorem 5.6, which reaches a par-
tial extension of Theorem 5.4 to cusped hyperbolic 3–manifolds and mixed
3–manifolds of Euler characteristic 0.

Theorem 5.6. Let M be an aspherical compact 3–manifold of Euler
characteristic 0 and of nonzero simplicial volume. Then there exists a tower
of finite covers {M ′

n}n∈N of M with unbounded homological torsion size
|H1(M

′
n;Z)tors|. The finite covers can be taken to be regular if M fibers over

a circle.

Theorem 5.6 is due to Liu [Liu20, Corollary 1.4]. It also follows from
Hadari [Had20] assuming nonempty boundary. It would be overwhelming
to explain the proof in this survey. We only point out that the method for
proving Theorem 5.6 is very different from those of Theorems 5.4 and 5.5.
In particular, it does not employ good pants constructions, (except implic-
itly in the closed hyperbolic case applying virtual specialization). However,
[Liu20] still relies on virtual specialization. In fact, it combines dynam-
ics of (pseudo-Anosov) surface automorphisms with virtual special filling
techniques (Theorem 3.3). The work [Had20] does not rely on virtual spe-
cialization.
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Question 5.7. Given any finite-volume hyperbolic 3–manifold, what
are the possible growth types of the first Betti number for cofinal towers of
regular finite covers, with respect to the covering degree?

Question 5.8. As in Question 5.7, how about the possible growth types
of the first mod p Betti number, for any prime p?

Question 5.9. Given any finite-volume hyperbolic 3–manifold, does ev-
ery finite abelian group embed into the first integral homology of some reg-
ular finite cover?

Remark 5.10. For a weaker form of Question 5.9, we also ask if it holds
for a generic finite abelian group, for example,

⊕k(Z/mZ) where k,m ∈ N
satisfy p � m for all p ∈ S and where S is a finite set of primes that depend
on the 3–manifold.

6. Virtual domination
In this section, we survey on construction of virtual dominations for

oriented closed hyperbolic 3–manifolds onto other 3–manifolds. The strategy
for the results of this section is very similar of Theorem 5.4.

For any integer k �= 0 and any pair of closed oriented n–manifolds M ,
N , we say that M k–dominates N if there exists a map f : M → N of
mapping degree k, namely, such that f∗ : Hn(M ;Z) → Hn(N ;Z) satisfies
f∗[M ] = k[N ]. We say that M dominates N if M k–dominates N for some
integer k �= 0. The general philosophy on (1–)domination between manifolds
is that, if M (1–)dominates N , then the topology of M is more complicated
than the topology of N . This philosophy can be made explicit and be rigor-
ously proved for some invariants, e.g. rank of fundamental group, homology
groups, simplicial volume, etc; while it is still mysterious for some other in-
variants, e.g. Heegaard genus and Heegaard Floer homology in dimension 3,
etc.

For dominations between manifolds, results in dimension 2 and 3 are
more fruitful. In dimension 2, all domination results can be deduced by con-
sidering the simplicial volume and doing simple topological constructions.
If M k–dominates N , it is known that their simplicial volumes satisfy the
comparison

‖M‖ ≥ |k| · ‖N‖,
which is an equality if M covers N of degree |k|. For a closed orientable
surface S of genus g ≥ 1, its simplicial volume equals 2π|χ(X)|.

For closed orientable 3–manifolds, its simplicial volume equals the sum
of the simplicial volume of its prime summands, and for each prime sum-
mand, the simplicial volume equals the sum of the hyperbolic volumes of
its hyperbolic pieces divided by v3 (the volume of a hyperbolic regular ideal
tetrahedron). By covering space argument, any ±1–domination map is all
π1–surjective. Since 3–manifold groups are Hopfian (any surjective endomor-
phism is an isomorphism) and the fundamental group almost determines a
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3-manifold, the existence of ±1–domination provides a partial ordering for all
oriented closed aspherical 3–manifolds. Moreover, since the geometrization
theorem gives a (partial) classification of 3-manifolds, dominations between
3-manifolds can be investigated by considering dominations between geomet-
ric 3-manifolds (which have special structures), and it makes the domination
problem in dimension 3 more accessible.

We refer the readers to the slightly early survey Wang [Wan02] for basic
facts about nonzero degree maps between 3–manifolds.

Theorem 6.1. For any closed oriented hyperbolic 3–manifold M and
any closed oriented 3–manifold N , there exists a degree–1 map f : M ′ → N
for some finite cover M ′ of M . In other words, M virtually 1–dominates N .

Corollary 6.2. Under the same assumption as Theorem 6.1, for any
integer k �= 0, M virtually π1–surjectively k–dominates N .

Theorem 6.1 is due to Liu–Sun [LiuS18], (see the same work for the
proof of Corollary 6.2). The virtual (π1–surjective) 2–domination, and hence
2k–domination, were obtained earlier by Sun [Sun15b]. The work [Sun15b]
relies on the good pants method of [KahM12a, LiuM15], and [LiuS18]
relies on [Liu19] besides [KahM12a, LiuM15, Sun15b].

The construction of the virtual 1–(or 2–) domination map is roughly
as the following. First take a cell structure of the target manifold N , and
denote its 2–skeleton N (2). After replacing each 2-cell in N (2) by a higher
genus surface to get a 2–complex Z, we construct a π1–injective immersion
Z � M . By hyperbolicity of M , π1(M) is LERF and there exists a finite
cover M ′ of M such that Z embeds into M ′. Then a neighborhood of Z in
M ′ may admits a pinching to a neighborhood of N (2) in N , and the virtual
domination map is an extension of the pinching. In this construction, one
actually need to control the geometry of N (2) carefully, so that the desired
pinching from a neighborhood of Z in M ′ to a neighborhood of N (2) exists.

The degree 2 in the earlier construction is a technical effect of a Z/2Z–val-
ued obstruction in the relative good pants method discovered in [LiuM15].
Roughly speaking, as one attempts to build a desired π1–injectively im-
mersed 2–complex in a closed hyperbolic 3–manifold using good pants, one
starts by building some 1–complex of controlled shape using long geodesic
segments. This can be done with a fundamental construction called the con-
nection principle. Next, instead of attaching 2–cells to cycles of edges, one
moves on to attach some subsurfaces built from good pants with boundary,
making sure that the boundary good curves are freely homotopic to the
cycles wanted. It is shown in [LiuM15] that a null-homologous good curve
bounds a good panted subsurface precisely when a Z/2Z–valued obstruction
vanishes. However, the original connection principle does not provide control
of the obstruction to that accuracy. In [Sun15b], the difficulty is overcomed
by passing to a double of the 1–complex before attaching the good panted
subsurfaces, and this extra operation accounts for the degree 2 of the fi-
nal output. Among other modifications, [LiuS18] improves the method of
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[Sun15b] by invoking an enhanced version of the connection principle, as
introduced by [Liu19]. With this new ingredient and more careful control
of the obstruction, Theorem 6.1 is proved.

Similar as commented in the virtual homological torsion case (see Section
5), for oriented closed mixed 3–manifold M , the work in [KahW21] may
lead to a virtual domination result like Theorem 6.1. However, for cusped
hyperbolic 3–manifolds M and virtual proper dominations, it remains in
doubt whether a similar statement would still hold, as there are apparently
more topological constraints such as the number of boundary components.

Question 6.3. Does every oriented closed mixed 3–manifold virtually
1–dominate every closed oriented 3–manifold?

Question 6.4. Does every oriented cusped hyperbolic 3–manifold vir-
tually properly dominate every topologically finite oriented 3–manifold with
nonempty toral ends? If so, what are the possible mapping degrees?

We also mention the following question from [Ago14].

Question 6.5. Does every closed oriented hyperbolic 3–manifold vir-
tually dominate any other oriented closed fibered 3–manifold by a fibered
cover and a fiber-preserving map?

Given these virtual domination results in dimension 3, one may also won-
der whether for arbitrary dimension n, all closed orientable hyperbolic n-
manifolds virtually dominates all closed orientable n-manifolds. It is proved
in [Gai13] that for any dimension n, there exists a particular closed ori-
entable n-manifold that virtually dominates everything, but the manifolds
in [Gai13] are not hyperbolic.

7. Twisted Alexander invariants
In this section, we collect some recent results in twisted Alexander poly-

nomials, twisted Reidemeister torsion, and related invariants. These results
represent another family of applications of virtual fibrations and other vir-
tual techniques, which are quite different from those of Sections 5 and 6.
The study of twisted Alexander invariants started at early stages of topol-
ogy and remained active in the past few decades. It was known that twisted
Alexander polynomials and twisted Reidemeister torsion yield lower bounds
for the Thurston norm of the defining integral first cohomology class, and
exhibit certain features when the cohomology class is fibered. Consequences
of virtual specialization supply desired constructions of finite covers for im-
proving those results, and indeed, they enable one to detect the Thurston
norm and the fiberedness. These are the contents of Theorems 7.1, 7.3 and
Corollary 7.2.

We recall some notations and relevant facts in order to make precise
statements. For a comprehensive survey on twisted Alexander polynomials,
see Friedl–Vidussi [FriV11b]. In this section, M is always an orientable
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compact 3–manifold with empty or tori boundary. Suppose that R is a Noe-
therian unique factorization domain (UFD), and k a positive integer, and
t an indeterminant. For any representation ρ : π1(M) → GL(k,R) and any
cohomology class φ ∈ H1(M ;Z) ∼= Hom(π1(M),Z), the n–th (ρ, φ)–twisted
homology Hρ⊗φ

∗ (M ;R[t, t−1]) is a finitely generated R[t, t−1]–module, which
is well-defined up to isomorphism for each n ∈ Z, and which vanishes unless
n ∈ {0, 1, 2, 3}. The n–th (ρ, φ)–twisted Alexander polynomial Δρ⊗φ

M,n of M is
defined to be the order of Hρ⊗φ

∗ (M ;R[t, t−1]), which is treated as an element
of R[t, t−1] up to a monomial factor with invertible coefficient in R. (Recall
that the order of any finitely generated module over a Noetherian UFD is
any generator of the smallest principal ideal that contains the zeroth elemen-
tary ideal of that module, which is unique up to multiplication by a unit.) It
is customary to denote Δρ⊗φ

M,1 as Δρ⊗φ
M , called particularly the (ρ, φ)–twisted

Alexander polynomial of M . It is known that Δρ⊗φ
M �= 0 implies Δρ⊗φ

M,n �= 0

for all n ∈ Z. In this case, the (ρ, φ)–twisted Reidemeister torsion τρ⊗φ
M of

M can be expressed explicitly by the formula

τρ⊗φ
M

.
=

∏
n odd Δ

ρ⊗φ
M,n∏

n even Δ
ρ⊗φ
M,n

,

where the dotted equal means an equality in the field of rational functions
R(t) up to a monomial with invertible coefficient in R. Note that the prod-
ucts are finite, since Δρ⊗φ

M,n
.
= 1 holds for n �∈ {0, 1, 2, 3}. (The convention

τρ⊗φ
M = 0 is often adopted for ΔM = 0.)

Theorem 7.1. Let M be a compact orientable irreducible 3–manifold
with empty or incompressible tori boundary. Then the following statements
hold true:

(1) For any nontrivial cohomology class φ ∈ H1(M ;Z) and any repre-
sentation ρ : π1(M) → GL(k,R) of rank k > 0 over a Noetherian
UFD R, the following comparison holds,

xM (φ) ≥ 1

k
· deg

(
τρ⊗φ
M

)
,

unless Δρ⊗φ
M = 0.

(2) There exists a unitary representation ρ : π1(M) → U(k) of some
finite dimension k > 0 and with the following property: For every
nontrivial cohomology class φ ∈ H1(M ;Z), the twisted Alexander
polynomial Δρ⊗φ does not vanish, and the following equality holds:

xM (φ) =
1

k
· deg

(
τρ⊗φ
M

)
.

Moreover, ρ can be taken to have finite image in U(k).
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Corollary 7.2. Under the same assumption as Theorem 7.1, for any
nontrivial cohomology class φ∈H1(M ;Z), the following maximum is achieved
and the equality holds true:

xM (φ) = max
(ρ,V )

⎧⎨
⎩
deg

(
τρ⊗φ
M

)
dim(V )

⎫⎬
⎭ ,

where (ρ, V ) runs over all the (isomorphism classes of) finite-dimensional
complex linear representations ρ : π1(M) → GL(V ).

The part of Theorem 7.1 about degree bound is known without ge-
ometrization, due to Friedl–Kim [FriK06], (see also Friedl [Fri14]). The
second part of Theorem 7.1 is due to Friedl and Vidussi [FriV15] when
M is not a closed graph manifold. In fact, their proof also works for non-
positively curved 3–manifolds. For the extension to graph manifolds, see
Friedl–Nagel [FriN15].

The fibered case of Theorem 7.1 can be obtained by direct calculation
with a suitable cell decomposition. For non-positively curved 3–manifolds,
virtual specialization implies that any non-fibered class is virtually quasi-
fibered, (see Theorem 3.4). As quasi-fibered classes can be virtually ap-
proached by rational fibered classes, the degree equality follows from a conti-
nuity argument. See also [FriL19, Liu17b] for generalized results on twisted
L2–Alexander torsions of 3–manifolds.

Theorem 7.3. Let M be an orientable compact irreducible 3–manifold
with empty or incompressible tori boundary. Then for any nontrivial coho-
mology class φ ∈ H1(M ;Z), the following statements hold true:

(1) If φ is fibered, for every representation ρ : π1(M) → GL(k,R) of
rank k > 0 over a Noetherian UFD R, the twisted Alexander poly-
nomial Δρ⊗φ

M is monic. In this case, the following equality holds
true:

xM (φ) =
1

k
· deg

(
τρ⊗φ
M

)
.

(2) If φ is not fibered, there exists some finite quotient γ : π1(M) → Γ

and the twisted Alexander polynomial Δγ⊗φ
M vanishes.

The fibered case of Theorem 7.3 is again known without geometriza-
tion, see [FriK06, Fri14] and the references thereof. The converse of the
fibered case was first proved by Friedl and Vidussi [FriV11a] based on
geometrization, but without virtual specialization. It was applied in the
same work to resolve a well-known conjecture motivated by Taubes’ work
[Tau94, Tau95], which asserts that any closed 4–manifold of the form
S1×M admits a symplectic structure (if and) only if M fibers over a circle.
The non-fibered case of Theorem 7.3 is due to Friedl–Vidussi [FriV13]. It
also implies the converse of the fibered case obviously. The proof for the
non-fibered case carries out a plan as proposed earlier by the same authors
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[FriV08]. It is done by employing new ingredients about subgroup separa-
bility, including results of [Ago13, PrzW14b].

We mention the following questions from [Ago14] and [AscFW15a,
Question 7.5.5]:

Question 7.4. Does every finite-volume hyperbolic 3–manifold virtually
fibers over a circle with an orientable invariant foliation for the pseudo-
Anosov monodromy?

Question 7.5. Does every compact orientable non-positively curved
3–manifold with empty or incompressible tori boundary admit a finite cover
whose Thurston norm ball has all faces being fibered?

8. Virtual representation volume
In this section, we survey on virtual representation volumes of closed

oriented 3–manifolds. In view of the techniques, the recent results that we
mention below employ ingredients of virtual specialization for 3–manifold
groups in a similar way as with Theorems 4.4, 4.6, and the non-geometric
cases of Theorem 2.5. On the other hand, they exhibit yet another appli-
cation of the new methods to a topic of independent interest. For a rather
quick introduction, we only recall some basic facts that are necessary for
understanding the update. We refer the readers to Derbez–Liu–Sun–Wang
[DerLSW19] for an exposition and a more complete background review.

Let G be a connected Lie group. Fix a maximal compact subgroup K
of G, and a G–invariant volume form on the homogeneous space X = G/K.
For any closed oriented smooth manifold M of dimension the same as X and
any representation ρ : π1(M) → G, Goldman [Gol82] introduces a quantity
volG(M,ρ) ∈ R, called the volume of (M,ρ). The G–representation volume
of M is therefore defined as

V(M,G) = sup
ρ

|volG(M,ρ)| ,

which lies in [0,+∞]. One of the motivations for studying representation
volumes lies in the domination property. That is, for any map f : M → N
between closed oriented manifold of the same dimension as X, the following
comparison holds true:

V(M,G) ≥ |deg(f)| ·V(N,G).

Note that the equality does not necessarily hold even if f is a finite covering.
For dimension 3, there are essentially two interesting representation vol-

umes, coming from the identity components of the isometric transformation
groups of the hyperbolic geometry H3 and the Seifert geometry S̃L(2,R).
The former is called hyperbolic representation volume, corresponding to
G = PSL(2,C), and the latter is called Seifert (representation) volume, cor-
responding to G = Isom( ˜SL(2,R)) ∼= S̃L(2,R)×Z R. For any closed oriented
3–manifold M , we denote these two representation volumes by HV(M) and
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SV(M), accordingly. It is known that HV(M) and SV(M) are both finite
values. With the standard hyperbolic volume form on H3, HV(M) equals
the hyperbolic volume of M when M is hyperbolic. With a suitably nor-
malized volume form on S̃L(2,R), SV(M) equals 4π2|χ|2/|e| when M is
S̃L(2,R)–geometric, where χ ∈ Q stands for the Euler characteristic of the
base 2–orbifold and e ∈ Q×/{±1} is the (unsigned) Euler number of the
(unoriented) Seifert fibration.

It is hard to compute HV(M) and SV(M) in general if M fails to support
the correct geometry. There are no known topological characterizations for
their non-vanishing occasions either. However, we know significantly better
about their behavior in finite covers.

Theorem 8.1. Let M be a closed oriented prime 3–manifold. Adopt the
geometric decomposition of M , possibly trivial.

(1) If M contains at least one hyperbolic geometric piece, then HV(M ′)>
0 holds for some finite cover M ′ of M .

(2) If M contains at least one S̃L(2,R)–geometric piece, then SV(M ′)>
0 holds for some finite cover M ′ of M .

(3) If M contains at least one hyperbolic geometric piece, then SV(M ′)>
0 holds for some finite cover M ′ of M .

Corollary 8.2. A closed oriented 3–manifold has virtually non-van-
ishing hyperbolic representation volume if and only if the simplicial volume
is nonzero.

Corollary 8.3. A closed oriented 3–manifold has virtually non-van-
ishing Seifert volume if and only if no closed oriented 3–manifold admits a
sequence of maps onto this 3–manifold with unbounded mapping degrees.

See [DerLW15] (and also [DerLSW17, Remark of Theorem 1.7]) for
proving Corollary 8.2, and [DerLSW17, Corollary 1.6] for Corollary 8.3.
The first two statements in Theorem 8.1 are due to Derbez–Liu–Wang
[DerLW15]; for graph manifolds, the second statement was originally proved
by Derbez–Wang [DerW12]; the third statement is due to Derbez–Liu–Sun–
Wang [DerLSW17].

To prove the first two statements of Theorem 8.1, one need to be able
to virtually extend a representation of the given geometric piece. The ac-
tual construction in [DerLW15] uses a representation that factors through
some Dehn filling of the piece and has positive volume. The virtual exten-
sion part relies on virtual specialization as it constructs a virtually embedded
π1–injectively immersed 3–complex by attaching immersed compact surfaces
along their boundary to a (disjoint) cover of given piece. Besides, one need
to be able to calculate the representation volume by summing up the con-
tribution from the pieces. This is done with a formula called the additivity
principle, as established in [DerLW15]. Observe that the third statement of
Theorem 8.1 would follow from the domination property if we knew closed
oriented mixed 3–manifold dominates another 3–manifold of positive Seifert
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volume, (see Question 6.3). The proof in [DerLSW17] takes a substitute
approach, and invokes the virtual extension theorem for representations in
[DerLW15] and the virtual domination theorem for closed oriented hyper-
bolic 3–manifolds in [Sun15b].

Theorem 8.4. For any closed oriented 3–manifold M of nonzero sim-
plicial volume, the following set of values is unbounded:{

SV(M ′)

[M ′ : M ]
∈ [0,+∞)

∣∣∣∣M ′ any finite cover of M
}
.

Theorem 8.4 is again proved in Derbez–Liu–Sun–Wang [DerLSW17].
Replacing SV with HV, the similar value set is known to be bounded by
v3‖M‖, (see [DerLSW17, Remark of Theorem 1.7]; for the notation, see
Conjecture 5.3).

Theorem 8.4 is clearly much stronger than Theorem 8.1 (3), as it claims
a large amount of virtual Seifert volume compared to the covering degree.
The efficiency comes from a crucial ingredient due to Gaifullin [Gai13]. In
fact, the results of [Gai13, Sun15b] implies that given any closed oriented
hyperbolic 3–manifold M and any closed oriented 3–manifold N , there is a
degree–d cover of M that k–dominates N , and the ratio d‖M‖/k(‖N‖+ ε)
does not exceed some constant that depends only on M .

We mention the following questions from [DerLSW17, Section 6].

Question 8.5. Given any closed mixed 3–manifold, what is the fastest
linear growth rate of virtual hyperbolic representation volume, among all
cofinal towers of regular finite covers?

Question 8.6. Given any prime compact closed 3–manifold with posi-
tive simplicial volume, what are the possible growth types of Seifert volume,
among all cofinal towers of regular finite covers?

Question 8.7. Given any non-geometric closed graph 3–manifold, what
is the fastest linear growth rate of virtual Seifert volume, among all cofinal
towers of regular finite covers?

9. Profinite completion
The research on profinite completions of 3–manifold groups is a rela-

tively new topic and represents certain trends of the study. This topic lies
on the intersection of two different areas: profinite groups and 3-manifold
topology. In this section, we collect some applications of virtual specializa-
tion techniques to profinite completion of 3–manifold groups. For a more
detailed and comprehensive introduction to profinite properties of discrete
groups, see the survey article [Rei18] of Reid.

Let Γ be a group. Denote by C(Γ) the set consisting of all the finite
quotients of Γ (as isomorphism classes of finite groups), sometimes called
the genus of Γ. Then one can study the situations when C(Γ) determines Γ
up to isomorphism, which is an interesting problem from both theoretical
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and computational viewpoint. As all infinite simple groups have only trivial
finite quotients, it is reasonable to restrict the domain to smaller classes of
groups. Among finitely generated residually finite groups, the abelian ones
are all determined by their finite quotients, (see [Rei18, Proposition 3.1]). It
is known that any finitely generated 3–manifold group (or equivalently, the
fundamental group of a compact 3–manifold) is residually finite [Hem87],
and in fact, virtually residually p for all but finitely many primes p [AscF13].
However, even among finitely generated 3–manifold groups, there are non-
isomorphic Sol–geometric pairs [Fun13], H2×E1–geometric pairs [Hem14],
and non-geometric graph manifold pairs [Wlk18] that have pairwise the
same sets of finite quotients. The following open question is an instance of
profinite rigidity problems for torsion-free lattices of PSL(2,C).

Question 9.1. For any pair of finite-volume hyperbolic 3-manifolds M1,
M2, does C(π1(M1)) = C(π1(M2)) imply π1(M1) ∼= π1(M2)?

The profinite completion of a group Γ is defined as

Γ̂ = lim←−
N

Γ/N

where N runs over the inverse system of finite-index normal subgroups of Γ.
This is a totally disconnected compact topological group with respect to the
profinite topology, namely, the coarsest topology to keep all finite quotient
homomorphisms continuous. The naturally induced homomorphism Γ → Γ̂
has dense image. It is injective if and only if Γ is residually finite. For any
pair of finitely generated residually finite groups Γ1, Γ2, it is known that
C(Γ1) = C(Γ2) holds if and only if there is a group isomorphism between Γ̂1

and Γ̂2. Moreover, the group isomorphism is necessarily continuous forward
and backward, thanks to a deep result of Nikolov and Segal [NikS07]. In
this sense, complete data for recovering the topological group Γ̂ is already
stored in C(Γ), only Γ̂ is more organized as a mathematical object.

Hyperbolic once-punctured-torus bundles provide the first, and currently
the only known family of infinitely many positive examples for Question 9.1:

Theorem 9.2. Let M be a hyperbolic once-punctured-torus bundle over
a circle. If N is any compact 3–manifold with π̂1(N) ∼= π̂1(M), then N is
homeomorphic to M .

Theorem 9.2 is due to Bridson–Reid–Wilton [BriRW17]. Before, the
first two authors proved the theorem for M being the figure-eight knot
complement [BriR20]. Both of the proofs rely on virtual specialization
and separability of (surface) subgroups. For any finitely generated subgroup
H < π1(M) of a hyperbolic 3-manifold group, the LERFness of π1(M) im-
plies that the image of H under the inclusion π1(M) → π̂1(M) is isomorphic
to Ĥ. Another important fact here is that almost one-punctured-torus bun-
dles have b1 = 1. So there is essentially a unique homomorphism π1(N) → Ẑ
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that factors through a surjective homomorphism π̂1(N) → Ẑ. These facts
are used to proof that fiberedness can be determined through profinite com-
pletions in the b1 = 1 case. This is also confirmed by [BriRW17] under
some condition on the isomorphism between profinite completions, while in
general by [Jai20]. See also [BoiF20, Uek18] for similar results on profi-
nite rigidity and profinite detection of fiberedness among knot groups. More
recently, it is known that PGL(2,Z[ω]) and PSL(2,Z[ω]) are profinitely rigid
among finitely generated residually finite groups, where ω stands for a prim-
itive cubic root of unity, [BriMRS20].

Theorem 9.3. Suppose that M , N are closed orientable 3-manifolds
with a given isomorphism π̂1(M) ∼= π̂1(N). Then the following statements
hold true.

(1) In the prime decompositions of M and N , there are the same num-
ber of S2 × S1 summands. There is a bijective correspondence be-
tween the irreducible prime summands determined by the following
property: For each irreducible prime summand Mi of M and the
corresponding Ni of N , π̂1(Mi) is conjugate to π̂1(Ni) under the
given isomorphism.

(2) If M and N are both prime, then M supports one of Thurston’s
eight geometries if and only if N does, and they support the same
geometry.

(3) If M and N are both prime and non-geometric, then the dual graphs
of the JSJ decompositions of M and N are isomorphic to each
other, while corresponding vertex groups have isomorphic profinite
completions.

Theorem 9.3 is due to Wilton and Zalesskii, see [WltZ17] for the sec-
ond statement, and the more recent [WltZ19] for the first and the third
statements. The proof for the hyperbolic case of the second statement relies
heavily on device from virtual specialization [Ago13, HglW08, Wis12b].
For certain closed subgroups of profinite completions of hyperbolic virtu-
ally special groups, Wilton and Zalesskii actually prove a structure theorem
[WltZ17, Theorem D]. In particular, they prove that the profinite comple-
tion of a closed hyperbolic 3-manifold group does not contain a subgroup
isomorphic to Ẑ2. Although closed hyperbolic 3-manifold groups do not con-
tain a subgroup isomorphic to Z2, it requires substantial work to pass it to
the profinite completion. The proof makes use of a malnormal hierarchy, be-
sides other geometric group theoretic tools including profinite trees. For the
first and third statements of Theorem 9.3, Wilton and Zalesskii used tech-
niques on profinite trees to prove that profinite completions of 3–manifold
groups do not have unexpected splittings, other than the ones induced by the
prime and JSJ decompositions. We refer to [Wlk18, WltZ19] for some ex-
tensions of Theorem 9.3 to compact orientable 3–manifolds with nonempty
tori boundary.
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One important ingredient in most of the proofs of results on profinite
completions is the goodness of 3-manifold groups. Among various different
tools invoked to study profinite completions of 3–manifold groups, the co-
homology theory is in particular very useful. An isomorphism between two
profinite completions of 3-manifold groups induces isomorphisms between
their closed subgroups, as well as isomorphisms on the cohomology of cor-
responding subgroups. In general, it is difficult to visualize the cohomology
of these closed subgroups, while it is easier to visualize the cohomology of
the corresponding subgroups of 3–manifold groups, since they have more
explicit topological meanings. The following theorem establishes a relation
between the cohomology of a 3-manifold group π1(M) and the cohomology
of its profinite completion π̂1(M).

Theorem 9.4. For any compact 3–manifold M and any finite π1(M)–
module V , the natural embedding π1(M) → π̂1(M) induces an isomorphism
of twisted group cohomology

H∗(π̂1(M);V ) ∼= H∗(π1(M);V ).

In other words, π1(M) is good in the sense of Serre.

Theorem 9.4 is due to Wilton–Zalesskii [WltZ10] for graph manifolds,
and due to Cavendish [Cav12] for hyperbolic and mixed 3–manifold, in-
voking virtual specialization, especially virtual fiberedness for hyperbolic
3–manifolds [Ago13, Wis12b]. The rest cases are derived by simple argu-
ments.

10. Quantitative aspects
Most results that we have mentioned so far, especially Theorems 2.1 and

2.2 in Section 2, assert the existence of certain finite covers without giving
any degree bound. If one attempted to follow the proofs in [Ago08, Ago13,
KahM12a, Sag95, Wis12b], making all the constants explicit, and even
if that actually worked out, it is not hard to imagine that the resulting
bound would be terrible. By contrast, Dunfield and Thurston tested 10,986
samples in the Hodgson–Weeks census of small-volume closed hyperbolic
3-manifolds. According to their report, 42% of the samples have covers of
degree at most 6 and b1 at least 1, and the percentage goes up to 95% for
degree at most 100, [DunT03]. So it seems that having a huge minimal
degree for a b1–positive cover (or a Haken cover) is a comparatively rare
phenomenon among hyperbolic 3–manifolds of a bounded volume.

There have been a number of works concerning quantified answers to
virtual problems. As the last topic of this survey, we collect miscellaneous
results on quantitative aspects that are related to 3–manifold topology. They
shed light on the vast land of finite covers and also offer fresh perspectives
to existing theorems.
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Quantitative residual finiteness has been considered for many familiar
discrete groups. Given a residually finite group G, for any nontrivial element
g ∈ G, define the quantities

kG(g) = min
H�G, g �∈H

[G : H], dG(g) = min
H<G, g �∈H

[G : H].

Note dG and kG are both conjugacy invariant. Given any generating set S
of G, for any natural number n ∈ N, define the quantities

KS
G(n) = max

g∈G, |g|S≤n
kG(g), DS

G(n) = max
g∈G, |g|S≤n

dG(g).

Note KS
G(n) ≥ DS

G(n). For two functions f, f ′ : N → N, we adopt the com-
parison notations f � f ′ if f(n) ≤ Cf ′(Cn) holds for some constant C > 0
and for all n ∈ N, and f � f ′ if f � f ′ and f ′ � f both hold. For any finitely
generated group G, it is elementary to check KS

G � KS′
G and DS

G � DS′
G for

any pair of finite generating sets S, S′. So we simply write KG and DG in
this case when considering their growth type in the above sense.

Theorem 10.1.
(1) For any finitely generated free group Fr, KFr(n) � n2/3 holds.
(2) DS

Fr
(n) ≤ n

2 + 2 holds for the standard generating set S.
(3) For any field finite extension L over Q and its ring of integers OL,

KSL(k,OL)(n) � nk2 −1 holds for k ≥ 2, and KSL(k,OL)(n) � n holds
for k ≥ 3.

(4) DSL(k,Z)(n) � nk−1 holds for k ≥ 3.
(5) For any right-angled Artin group AΓ with a defining finite simplicial

graph Γ, DS
AΓ

(n) ≤ n+ 1 holds for the standard generating set S.
(6) For any geometrically finite hyperbolic manifold M which admits

a totally geodesic immersion into a compact, right-angled Coxeter
orbifold of dimension 3 or 4, dπ1(M)(g) � lM (g) holds for all non-
trivial g ∈ π1(M). Here lM (g) stands for the length of the geodesic
representative of g.

(7) For any topologically finite surface S of negative Euler characteris-
tic, dπ1(S)(g) ≤ 32.3 lΣ(g) holds for some complete hyperbolic struc-
ture Σ on S and for all nontrivial g ∈ G.

The statements in Theorem 10.1 are proved in Kassabov–Matucci
[KasM11] for (1), Buskin [Bus09] for (2), Bou-Rabee [Bou10] for (3),
Bou-Rabee–Hagen–Patel [BouHP15] for (4) and (5), Patel [Pat16] for (6),
and Patel [Pat14] for (7).

In a topological flavor, it is interesting to consider the minimal covering
degree for virtually embedding a homotopically nontrivial loop on a surface,
up to homotopy, since subgroup separability is closely related with lifting
immersed objects to be embedded in finite covers. For any topologically
finite surface S of negative Euler characteristic, and for any homotopically
nontrivial loop γ of S, denote by deg(γ) the smallest covering degree among
all finite covers S′ → S which admits an embedded homotopy lift of γ.
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For all n ∈ N, denote by fS(n) the maximum for deg(γ) as γ runs over all
immersed loops of S with at most n self-intersections. Given any complete
hyperbolic structure Σ on S, we also consider the metric analogue of fS(n).
For all L > 0, denote by fΣ(L) the maximum for deg(γ) among all immersed
closed geodesics γ of Σ of length at most L.

Theorem 10.2. Let S be a topologically finite surface of negative Euler
characteristic.

(1) For some complete hyperbolic structure Σ on S and for all L > 0,
fΣ(L) ≤ 16.2L holds.

(2) For all n ∈ N, fS(n) ≥ n + 1 holds. Moreover, for any complete
hyperbolic structure Σ on S, and for all sufficiently large L > 0,
C1L ≤ fΣ(L) ≤ C2L holds if Σ has no cusps, and fΣ(L) ≥ eL/(2+ε)

holds if Σ has at least one cusp. Here the constants C1, C2, ε > 0
depend only on Σ.

(3) For all n ∈ N, C1n ≤ fS(n) ≤ C2n holds, where C1, C2 > 0
depend only on S. Moreover, for any complete hyperbolic structure
Σ on S with at least one cusp, and for all sufficiently large L > 0,
C1e

L/2 ≤ fΣ(L) ≤ C2Le
L/2 holds, where C1, C2 > 0 depend only

on Σ.
Theorem 10.2 is due to Patel [Pat14] for (1), and Gaster [Gas16] for

(2), and Aougab–Gaster–Patel–Sapir [AouGPS17] for (3).
The next theorem considers quantitative separation of group elements

from a quasiconvex subgroup, in virtually special word hyperbolic groups.
Theorem 10.3. Let G be a word hyperbolic group having a compact

special subgroup of index J , and S be a finite generating set of G. Then
there exists a constant P = P (G,S) with the following property:

For any K–quasiconvex subgroup H of G and any element g �∈ H in G
of word length ≤ n, there exists a subgroup G′ of G that contains H but not
g, and satisfies

[G : G′] ≤
(
nePK

)J !
P.

Here quasiconvexity and word length are considered with respect to S.
Theorem 10.3 is due to Hagen–Patel [HgePa16]. In fact, Hagen and

Patel give a quantitative proof of a result of Haglund–Wise [HglW08] that
any local isometry from a compact cube complex to a Salvetti complex has
a virtual completion.

Quantitative virtual specialness has been studied for certain arithmetic
groups. Authors in this direction are interested in the smallest index of
C-special subgroups, namely, subgroups that can be embedded into a right-
angled Coxeter group, (see [HglW08]). In general, a finitely generate group
is virtually C-special if and only if it is virtually (A-)special. However, arith-
metic groups often have a better chance to contain small-index C-special
subgroups, as many reflections occur as their commensurators. For exam-
ple, Γ6 = SO0(〈1, 1, 1, 1, 1, 1,−1〉;Z) contains a C-special index–2 subgroup
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in its level–2 principal congruence subgroup [EveRT12]. It is also known
that all Bianchi groups PSL(2, Od) can be virtually embedded into Γ6, where
Od stands for the ring of integers in the imaginary quadratic field Q[

√
−d],

[AgoLR01].

Theorem 10.4.
(1) The Bianchi group PSL(2, Od) contains a C-special subgroup Δd of

index given as follows:

[PSL(2, Od) : Δd] =

⎧⎪⎨
⎪⎩
48 d ≡ 1, 2 mod 4

120 d ≡ 3 mod 8

72 d ≡ 7 mod 8

(2) Let M = H3/Γ be an arithmetic hyperbolic 3–orbifold that is com-
mensurable with SO+(q;Z), where q is a bilinear form over Q of
signature (3, 1). Then for any ε > 0, there exists some constant
K = K(q, ε), and M has a C-special finite cover of covering degree
at most K · vol(M)ε.

Theorem 10.4 is due to Chu [Chu20] for (1), and DeBlois–Miller–Patel
[DebMP20] for (2). Their proofs explore ideas from the above mentioned
works [AgoLR01, EveRT12].
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