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Abstract. This is an introduction to Legendrian contact homology
and the Chekanov–Eliashberg differential graded algebra, with a focus
on the setting of Legendrian knots in R

3.
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1. Introduction
Legendrian knots have been an integral part of three dimensional con-

tact geometry for a long time. They can be used to construct all contact
manifolds from the standard contact structure on S3 through surgery oper-
ations. They can be used to distinguish and understand contact structures:
for example the famous tight versus overtwisted dichotomy can be expressed
in terms of Legendrian knots, and contact structures on many manifolds can
be distinguished using Legendrian knots. A fundamental problem in the the-
ory of Legendrian knots is the classification problem: completely characterize
Legendrian knots up to the natural equivalence relation, Legendrian isotopy.
This is finer than the classification of smooth knots, as follows from the ex-
istence of two long-established “classical” invariants of Legendrian knots,
the Thurston–Bennequin invariant and rotation number, which are algebro-
topological numerical invariants that can distinguish between Legendrian
knots of the same underlying smooth knot type.

It was only about 20 years ago that other, “non-classical” invariants of
Legendrian knots were developed. There are now a number of non-classical
invariants. The first of these, and in many regards the most important, is
Legendrian contact homology (LCH), introduced by Chekanov [Che02] and
Eliashberg [Eli98]. LCH, which is a cousin of Lagrangian intersection Floer
homology, is the homology of what has become known as the Chekanov–
Eliashberg differential graded algebra (DGA), and we will sometimes abuse
notation and use the terms LCH and Chekanov–Eliashberg DGA inter-
changeably. In the past 20 years, LCH has been shown to be a powerful
invariant of Legendrian knots, but it also has revealed a beautiful inter-
nal structure and deep connections with smooth topology and symplectic
geometry.

Our goal in this paper is to present a fairly thorough overview of Leg-
endrian contact homology, and the network of ideas radiating from it, in
the setting where the theory is most fully developed: for Legendrian knots
in the standard contact structure in R

3. We will discuss several points of
view on the Chekanov–Eliashberg DGA and indicate the development of its
properties over the years since its introduction. This discussion begins in
Section 3 with a description of the Chekanov–Eliashberg DGA from both
combinatorial and geometric perspectives and an exploration of some basic
properties of the DGA.

Trying to directly compare the Legendrian contact homology of two Leg-
endrian knots is notoriously difficult (as are many noncommutative algebra
problems), and as soon as the theory was developed, tools for extracting
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meaningful and computable information were also developed. Chief among
these are augmentations of the Chekanov–Eliashberg DGA, which can be
thought of as representations of LCH. In Section 4, we introduce augmen-
tations and describe how Chekanov used them to “linearize” Legendrian
contact homology, producing an invariant that is much easier to use to dis-
tinguish between Legendrian knots than the full DGA.

Augmentations have now emerged beside LCH as an important tool in
the study of Legendrian knots, in many different ways. In one direction,
simply counting augmentations over finite fields leads to surprisingly inter-
esting invariants of Legendrian knots. Shortly after the introduction of the
Chekanov–Eliashberg DGA, Chekanov and Pushkar defined another Leg-
endrian invariant, namely the collection of rulings of Legendrian front dia-
grams. It turns out (see Section 4.3) that the count of augmentations and
the count of rulings for a Legendrian knot give the same information about
a Legendrian knot. Moreover there are beautiful connections with topology:
Rutherford discovered that the appropriate count of rulings determines a
portion of the Kauffman and HOMFLY-PT polynomials of the underlying
smooth knots, thus providing a subtle connection between contact geometry
and smooth knot theory.

In another direction, given an augmentation, one can build on Chekanov’s
construction of linearized LCH to construct a more elaborate algebraic struc-
ture, which takes the form of an A∞ algebra and can be shown to be a
stronger invariant than linearized LCH (see Section 4.2). This can further
be extended to an entire A∞ category called the augmentation category,
which we discuss in Section 5. The objects of this category are augmenta-
tions and the A∞ morphisms can be read off from the Chekanov–Eliashberg
DGA, and the category imposes a rather rich structure on the set of aug-
mentations. In R

3 it has been proven that the augmentation category is
isomorphic to a category of sheaves associated to a Legendrian knot, thus
providing a connection between Legendrian knots and algebraic geometry
that also touches on mirror symmetry.

Augmentations are algebraic in nature but are closely related to a geo-
metric construction, namely Lagrangian cobordisms between Legendrian
knots. In Section 6 we discuss how Lagrangian cobordisms induce maps
between Chekanov–Eliashberg DGAs. In particular, a “filling” of a Legen-
drian knot, which is an exact Lagrangian surface bounding the knot, gives an
augmentation of the DGA of the knot. Although not all augmentations arise
in this fashion, one can often use augmentations as an algebraic stand-in for
fillings. The augmentation category described earlier is then an algebraic
analogue of a type of Fukaya category generated by fillings of a Legendrian
knot.

Although one can study Legendrian contact homology on its own merits,
a large amount of recent interest in the subject comes from its relation to
various invariants of symplectic manifolds. In particular, there is a large class
of symplectic 4-manifolds with boundary, Weinstein domains, which can be
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obtained from a standard symplectic 4-ball (or other standard pieces) by
attaching Weinstein handles to Legendrian knots in the boundary. It follows
from the work of Bourgeois, Ekholm, and Eliashberg that the symplectic
homology of these Weinstein 4-manifolds, as well as some invariants of their
contact boundary, are essentially determined by the Chekanov–Eliashberg
DGA of these Legendrian knots. This picture is still being developed but we
give a brief introduction in Section 7.

Our focus in this paper on LCH in R
3 unfortunately forces us to omit

generalizations to Legendrian knots in other contact 3-manifolds and to
higher dimensions, though we discuss these briefly in Section 3.6. In partic-
ular, we do not consider knot contact homology, an invariant of smooth knots
in R

3 that is given by the Legendrian contact homology of the unit conormal
bundle to the knot, which is a Legendrian 2-torus in the 5-dimensional unit
cotangent bundle of R

3. Readers interested in knot contact homology are
referred to the surveys [EE05, Ng06, Ng14, Ekh17].

Another subject that is related to the material in this survey but be-
yond its scope is the rich subject of generating families, which provide an-
other way to construct invariants of Legendrian knots. Given a function
f : Rn × R → R one can consider the plot of the “fiberwise critical set”
{(t0, ∂f∂t (x0, t0), f(x0, t0))} for points (t0, x0) such that ∂f

∂x0
(x0, t0) = 0. Un-

der some transversality conditions this set will be a Legendrian knot Λ in
the standard contact structure on R

3 and we say that f is a generating fam-
ily for Λ. The existence of generating families for a Legendrian knot in R

3

turns out to be equivalent to the existence of augmentations, by the com-
bined work of a number of authors [Fuc03, FI04, FR11, Sab05, PC05],
and furthermore there is a natural notion of homology associated to a gen-
erating family [FR11, JT06, Tra01, ST13] that turns out to be the same
as linearized contact homology for the appropriate augmentation [FR11].

2. Preliminaries
Throughout this paper we will focus on Legendrian knots in the standard

contact 3-manifold (R3, ξstd), where
ξstd = ker(dz − y dx).

These are knots with a regular parameterization γ : S1 → R
3 such that

γ′(t) is tangent to ξstd at γ(t) for all t ∈ S1. We will generally be interested
in equivalence classes of Legendrian knots under Legendrian isotopy, which
means smooth isotopy through Legendrian knots. We will assume the reader
is familiar with the basics of the subject as presented in [Etn05, Gei08],
but recall a few ideas and notation for the reader’s convenience.

2.1. Projections of Legendrian knots. If Λ is a Legendrian knot in
(R3, ξstd) there are two important projections to consider; see Figure 1 for
examples. The first is the Lagrangian projection

Π : R3 → R
2
xy : (x, y, z) �→ (x, y).
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Figure 1. On the left are examples of the front projection
of the unknot and the right handed trefoil knot. On the right
are examples of the Lagrangian projection of the same knots;
cf. Lemma 2.1.

The image Π(Λ) of Λ will be an immersed curve with, generically, transverse
double points. This is called the Lagrangian projection since Π(Λ) is an im-
mersed Lagrangian submanifold of the symplectic manifold (R2

xy, dα) (and
more generally if Λ is a Legendrian submanifold of a 1-jet space J1(M) =
T ∗M × R then the projection Π to T ∗M maps Λ to an immersed La-
grangian in T ∗M). Notice that Λ is determined up to Legendrian isotopy
by its Lagrangian projection. Specifically if Λ is parameterized by γ(t) =
(x(t), y(t), z(t)) then the projection Π(Λ) is parameterized by the curve
t �→ (x(t), y(t)) and the z-coordinate can be recovered from Π ◦ γ by

z(t) = z0 +

∫ t

0
y(t)x′(t) dt

for the appropriate choice of z0, and different choices of z0 give Legendrian
knots isotopic to Λ.

We will see in the next section that this projection is very useful to define
the Chekanov–Eliashberg DGA of Λ, but we point out a difficulty with this
projection. An immersed closed curve in R

2
xy only lifts to a Legendrian knot

in R
3 if the total integral of y dx around the curve is zero; furthermore, even

if this total integral is zero and the immersion has transverse double points,
the sign of the integral of y dx along a section of the curve from a double point
back to itself will determine the over- and under-crossing information at the
double point. In practice one draws Lagrangian projections of Legendrian
knots modulo planar isotopy of R2

xy, and the crossing information determines
a collection of inequalities involving the areas of the regions enclosed by the
immersion. See [Che02] for a fuller discussion.
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Figure 2. Reidemeister moves in the Lagrangian projection.
On the left is the double point move and on the right is the
triple point move. (These diagrams can be arbitrarily rotated
or reflected.)

A consequence of these area inequalities is that not every knot diagram
in R

2
xy (is planar isotopic to a diagram that) represents a Legendrian knot.

In particular, whereas any sequence of Reidemeister moves will turn the di-
agram of a smooth knot into the diagram of a knot that is smoothly isotopic
to the original, this is not true for Lagrangian projections of Legendrian
knots and Legendrian isotopy. Nevertheless, any Legendrian isotopy can be
realized by a sequence of Reidemeister moves for Π(Λ), where the Reide-
meister moves are restricted to double point and triple point moves (i.e.,
the usual Reidemeister II and III moves, but not I), along with ambient
planar isotopies of an immersed curve. We will refer to these Legendrian
Reidemeister moves when discussing invariance of the Chekanov–Eliashberg
DGA in Section 3.2. See Figure 2.

The front projection is the map

F : R3 → R
2
xz : (x, y, z) �→ (x, z).

The front projection F (Λ) of a Legendrian knot Λ is quite nice in that the
y coordinate can completely be recovered from the projection by y = dz

dx .
Notice that the finiteness of the y coordinate implies that no tangent lines
to the projection can be vertical (parallel to the z-axis), and thus the front
projection of Λ cannot be immersed. Instead, the front projection contains
semicubical cusps (modeled on z2 = ±x3) where the x coordinate changes
from increasing to decreasing or vice versa. We can also see that given a
crossing in F (Λ) one can always determine the over- and under-strand: the
strand with the more negative slope will be in front of the one with the more
positive slope. To see why this is the case we note that if the front projection
is drawn with the z axis vertical and x axis horizontal, then to give R

3 its
standard orientation we must have that the positive y axis is behind the
plane of the projection and the negative axis is in front.

The front projections of Legendrian knots are particularly easy to deal
with since any diagram in R

2
xz meeting the above mentioned properties (no

vertical tangencies, immersion away from semicubical cusps) lifts to a unique
Legendrian knot. As a consequence, it is usually easier to construct Legen-
drian isotopies through a sequence of moves on their front projections than
through moves on their Lagrangian projections (as mentioned before, it can
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Figure 3. Resolution: changing a front projection of a Leg-
endrian knot to a Lagrangian projection.

be tricky to check that the latter actually corresponds to an isotopy of Leg-
endrians). There is a set of “Legendrian Reidemeister moves” that relate the
front projections of any Legendrian isotopic knots [Sa92].

Because Legendrian contact homology is easier to describe in the La-
grangian projection, while Legendrian isotopies are easier to see in the front
projection, it will be convenient to be able to go between the two projections.
This can be done through a process called Morsification or resolution (see
[Ng03], or [Etn05] for a brief discussion; Figure 1 illustrates two examples).

Lemma 2.1 ([Ng03]). Given the front projection of a Legendrian knot,
one can produce a diagram planar isotopic to the Lagrangian projection of
a Legendrian isotopic knot by replacing the right and left cusps of the front
as shown in Figure 3.

2.2. Classical invariants of Legendrian knots. There are three
classical invariants of the Legendrian isotopy type of a Legendrian knot Λ.
The first is the underlying topological knot type. The second is the framing
of Λ given to it by the contact planes. This is called the Thurston–Bennequin
invariant and denoted tb(Λ). In the front projection this is easily computed
by

tb(Λ) = writhe (F (Λ))−#(right cusps in F (Λ)),
where the writhe of a knot diagram is simply the number of positive crossings
minus the number of negative crossings. In the Lagrangian projection tb(Λ)
is simply the writhe of Π(Λ).

The final classical invariant of an oriented Legendrian knot Λ is its ro-
tation number rot(Λ). It is defined as a relative Euler class, but can again
easily be computed in the various projections for Λ in (R3, ξstd). In the front
projection

rot(Λ) =
1

2
(D − U),

where U and D are the number of up and down cusps of F (Λ); these are
the cusps where the z coordinate is increasing or decreasing, respectively,
when we traverse F (Λ) in the direction of its orientation. In the Lagrangian
projection of Λ the rotation number is just the degree of the Gauss map for
Π(Λ).

Given a Legendrian knot Λ, one can create another Legendrian knot in
the same smooth knot type by one of two operations called “stabilizations”.
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The ±-stabilization S±(Λ) of Λ is a Legendrian knot whose front projection
is obtained from the front projection F (Λ) by replacing a small arc of the
front with a zigzag. The front of S±(Λ) has two more cusps than F (Λ), and
the two stabilizations are distinguished by orientation: for S+, both of the
zigzag cusps are down cusps, while for S−, both are up cusps. By the above
formulas for the classical invariants, we have tb(S±(Λ)) = tb(Λ) − 1 while
rot(S±(Λ)) = rot(Λ)± 1.

It can be shown that each of S±(Λ) is well-defined up to Legendrian iso-
topy, independent of the position of the zigzag. In the Lagrangian projection,
S±(Λ) is obtained from Λ by replacing a small arc of the knot diagram by
a small loop with a positive crossing. An important property of Legendrian
contact homology is that it vanishes for stabilizations; see Section 3.4.

3. The Chekanov–Eliashberg DGA
In this section we discuss the definition of the Chekanov–Eliashberg dif-

ferential graded algebra of a Legendrian knot in R
3. We begin with the

classical definition in terms of the Lagrangian projection, followed by dis-
cussion of the geometric intuition behind the proof that it is a DGA and is
invariant under Legendrian isotopy, and an alternate formulation in terms
of the front projection. We then turn to a discussion of what the Chekanov–
Eliashberg DGA can and cannot tell about Legendrian knots. Finally, we
consider a third definition of the Chekanov–Eliashberg DGA in terms of
symplectizations that will be necessary for our later discussions, and briefly
discuss extensions of the theory to other manifolds and dimensions.

3.1. The Chekanov–Eliashberg DGA in the Lagrangian projec-
tion. Let Λ be an oriented Legendrian knot in (R3, ξstd). We present here
the definition of the Chekanov–Eliashberg DGA (AΛ, ∂Λ) of Λ, or to be pre-
cise, the “fully noncommutative” version of the Chekanov–Eliashberg DGA.
We first note that by a generic perturbation of Λ through Legendrian knots
we can assume the only singularities of the Lagrangian projection Π(Λ) are
transverse double points. To define the DGA, we also fix a base point ∗ on
Λ distinct from the double points.

On any contact manifold equipped with a contact 1-form α, there is
a vector field Rα, the Reeb vector field, determined by iRα(dα) = 0 and
α(Rα) = 1; on standard contact R3, this is just the vector field ∂/∂z. Define
a Reeb chord of Λ to be an integral curve for the Reeb vector field with
both endpoints on Λ. In our setting, the Reeb chords of Λ ⊂ R

3 correspond
precisely to the (finitely many) double points of Π(Λ), and we label them
a1, . . . , an.

We define (AΛ, ∂Λ) in stages: algebra, grading, and differential. The alge-
bra AΛ is the associative, noncommutative, unital algebra over Z generated
by a1, . . . , an, t, t

−1, with the only relations being t · t−1 = t−1 · t = 1. We
write this as

AΛ = Z〈a1, . . . , an, t±1〉.
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Figure 4. On the left we see the Reeb chord signs for each
quadrant. On the right we see the orientation signs, which are
− in the shaded quadrants and + in the other quadrants. The
orientation signs depend on whether the crossing is positive
(right) or negative (left).

This is generated as a Z-module by words in the (noncommuting except for t,
t−1) letters a1, . . . , an, t, t−1, with multiplication given by concatenation; the
empty word is the unit 1. See Remark 3.3 for a discussion of other versions
of this algebra.

The grading on AΛ is defined as follows. It suffices to associate a degree
to each generator of AΛ; then the grading of a word in the generators is the
sum of the gradings of the letters in the word. The grading of t is determined
by the rotation number of Λ: |t| = −2 rot(Λ) and |t−1| = 2 rot(Λ). To define
the gradings of the ai we define the path γi in R

2
xy to be the path running

along Π(Λ) from the overcrossing of ai to the undercrossing and missing the
base point ∗. By perturbing the diagram, we can assume that all the strands
of Π(Λ) meet orthogonally at the crossings, so that the (fractional) number
of counterclockwise rotations of the tangent vector to γi from beginning to
end, which we denote by rot(γi), will be an odd multiple of 1/4. We then
define the grading on ai to be

|ai| = 2 rot(γi)− 1/2.

To define the differential on the algebra, we first decorate the Lagrangian
projection of Λ. Near each crossing of Π(Λ), R2

xy is broken into four quad-
rants. We associate Reeb signs to the quadrants as follows: we label a quad-
rant with a + if traversing the boundary of a quadrant near ai in the coun-
terclockwise direction one moves from an understrand to an overstrand and
otherwise we label it with a −. See Figure 4. We will also need an orientation
sign for each quadrant. The orientation sign for a quadrant will be negative
if it is shaded in Figure 4 and positive otherwise.

Definition 3.1. For n ≥ 0, let D2
n = D2 − {x, y1, . . . , yn} where D2

is the closed unit disk in R
2 and x, y1, . . . , yn are points in its boundary

appearing in counterclockwise order. We call the points removed from D2
n

boundary punctures. Now if a, b1, . . . , bn each take values in {a1, . . . , an}
then we define the set
Δ(a; b1, . . . , bn) = {u : (D2

n, ∂D
2
n) → (R2

xy,Π(Λ)) : satisfying (1) – (4)}/ ∼,
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where ∼ is reparameterization of the domain, and
(1) u is an immersion,
(2) u sends the boundary punctures to the crossings of Π(Λ),
(3) u sends x to a and a neighborhood of x is mapped to a quadrant

of a labeled with a + Reeb sign,
(4) for i = 1, . . . , n, u sends yi to bi and a neighborhood of yi is mapped

to a quadrant of bi labeled with a − Reeb sign.

Examples of such disks may be seen in Figures 6 and 7. One may check
that if Δ(a; b1, . . . , bn) is nonempty then

|a| −
n∑

i=1

|bi| = 1.

Given u ∈ Δ(a; b1, . . . , bn) notice that the image of ∂D2
l is a union of n+ 1

paths η0, . . . , ηn in Π(Λ) where η0 starts at a and ηi starts at bi (here the
ηi inherit an orientation from D2

n). Let t(ηi) be tk where k is the number
of times ηi crosses the base point ∗ counted with sign according to the
orientation on Λ. Associated to u we have a word in AΛ,

w(u) = t(η0)b1t(η1)b2 · · · bnt(ηn),
along with a sign,

ε(u) = ε(a)

n∏
i=1

ε(bi),

where ε(c) for a corner c is the orientation sign of the quadrant that u covers
at c.

We can now define the differential ∂Λ : AΛ → AΛ. For a ∈ {a1, . . . , an},
define

∂Λ(a) =
∑

n ≥ 0, b1, . . . bn double points
u ∈ Δ(a; b1, . . . , bn)

ε(u)w(u).

Define ∂Λ(t) = ∂Λ(t
−1) = 0 and now extend ∂Λ to all of AΛ by the signed

Leibniz rule
∂Λ(ww

′) = (∂Λw)w
′ + (−1)|w|w(∂Λw

′).

Remark 3.2. The fact that ∂Λ(a) is a finite sum essentially comes from
considering heights of Reeb chords. If a is a double point in Π(Λ), define the
height h(a) > 0 to be the difference of the z coordinates of the two points
on Λ over a. If u ∈ Δ(a; b1, . . . , bn), then by Stokes’ Theorem,

h(a)−
n∑

i=1

h(bi) =

∫
D2

n

u∗(dx ∧ dy) > 0.

It follows that for fixed a, Δ(a; b1, . . . , bn) can be nonempty only for finitely
many choices of b1, . . . , bn, and from there that ∂Λ(a) is finite.
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This completes the definition of the Chekanov–Eliashberg DGA (AΛ, ∂Λ).
We will state the main invariance result for this DGA in Section 3.2 below.
First we make some comments about the history of versions of this DGA
and present a few examples.

Remark 3.3. The Chekanov–Eliashberg DGA was first introduced as
a DGA over Z2 by Chekanov [Che02]; to obtain the original version from
the version described above, set t = 1 and reduce mod 2. The DGA was
subsequently lifted to a DGA over Z[t, t−1] in [ENS02] (note that the cap-
ping paths used there are slightly different from here, but yield an isomor-
phic DGA). Another choice of signs was discovered in [EES05c] and the
two choices were subsequently proven to give isomorphic DGAs [Ng10]. In
the DGA over Z[t, t−1], t commutes with Reeb chord generators (though
Reeb chords do not commute with each other), but this condition does not
need to be imposed to produce a Legendrian invariant. If we stipulate that
t does not commute with Reeb chords, we obtain the fully noncommuta-
tive DGA presented here, which has certain advantages over the various
quotients discussed in this remark that we will mention later. Some of the
first appearances of the fully noncommutative DGA in the literature are in
[EENS13, NR13].

Finally, we note that there is another version of the DGA, the “loop
space DGA”, which is more elaborate than the fully noncommutative DGA
described here. This is due to Ekholm and Lekili [EL17], and powers of t are
replaced by chains in the loop space of the Legendrian Λ. Roughly speaking,
there is a relation between this loop space DGA and the usual Chekanov–
Eliashberg DGA corresponding to passing to homology in the loop space.
See [EL17] for details.

Remark 3.4. To streamline the discussion, we have restricted our def-
inition of the DGA to single-component Legendrian knots. However, this is
easily extended to oriented Legendrian links in R

3, with a few modifications.
The main change is that we now need to choose a base point on each com-
ponent, and the algebra is now Z〈a1, . . . , an, t±1

1 , . . . , t±1
r 〉 where a1, . . . , an

are the crossings of the link diagram and r is the number of components.
The differential is as usual, with the parameters t1, . . . , tr counting instances
where disk boundaries pass through the r marked points.

One other difference from the knot case is that the grading for the
Chekanov–Eliashberg DGA of a link is not well-defined, because the paths
γi are only defined for crossings involving a single component. One com-
mon way to fix a grading on the DGA of a link Λ is to choose a Maslov
potential on its front projection F (Λ). This is a locally constant map m :
Λ − (F−1(cusps) ∪ {base points}) → Z that increases by 1 when we pass
through a cusp of F (Λ) going upwards, and decreases by 1 when we pass
through a cusp going downwards. Given a Maslov potential, we can grade
the DGA associated to the front projection of Λ, see Section 3.3 below, as
follows. Generators of this DGA are crossings and right cusps of F (Λ), along
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Figure 5. The standard Legendrian unknot Λ, in the front
(left) and Lagrangian (right) projections. On the right, we
have added a base point, and drawn the Reeb signs at the
unique double point a; because a is a negative crossing, all
orientation signs are +.

with t±1
i . We define the grading of ti to be 2 rot(Λi) where Λi is the i-th com-

ponent; the grading of all right cusps to be 1; and the grading of a crossing
a to be m(a−) − m(a+), where a− is the strand at a with more negative
slope and a+ is the strand with more positive slope. See e.g. [Ng03] for a
version of this approach.

Example 3.5. Let Λ denote the Legendrian unknot shown in Figure 5.
This is the “standard Legendrian unknot” with tb(Λ) = −1 and rot(Λ) = 0.
There is one double point a, with grading |a| = 1, and AΛ is generated by a
and t±1 with |t| = 0. The differential ∂Λ is completely determined by ∂Λ(a),
and this in turn has contributions from two disks corresponding to the two
lobes of the figure eight. One of these does not pass through the base point
∗, while the other passes through ∗ once, opposite to the orientation of Λ.
It follows that

∂Λa = 1 + t−1.

Example 3.6. We next consider the right handed trefoil Λ shown in
Figure 6, which has tb(Λ) = 1 and rot(Λ) = 0. The DGA is generated by
the five double points labeled a1, . . . , a5 with gradings

|a1| = |a2| = 1

|a3| = |a4| = |a5| = 0.

Figure 6 depicts the four disks that contribute to ∂Λa1, yielding terms (left
to right, top to bottom) 1, a5, a3, and a5a4a3. One can similarly calculate
the differential of a2 (here 3 of the 4 disks pass through the marked point
in a direction agreeing with the orientation of Λ, contributing a t factor to
the corresponding terms in ∂Λa2), with the conclusion that the differential
∂Λ is given as follows:

∂Λa1 = 1 + a3 + a5 + a5a4a3,

∂Λa2 = 1− a3t− a5t− a3a4a5t,

∂Λa3 = ∂Λa4 = ∂Λa5 = 0.
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Figure 6. The Lagrangian projection of a Legendrian trefoil
knot Λ is shown on the left. For each of the double points, the
Reeb sign of one of the quadrants is shown (from which the
others are easily deduced), and orientation signs are indicated
by the shaded quadrants. On the right, the disks that go into
the computation of ∂Λa1.

Figure 7. The Lagrangian projection of the two Chekanov
knots. On the left is Λ1 and on the right is Λ2. For each of
the double points, the Reeb sign of one of the quadrants is
shown, and quadrants with negative orientation signs are
shaded.

Example 3.7. Here we consider the Chekanov m(52) knots, a famous
pair of Legendrian knots that were the first examples of Legendrian knots
with the same classical invariants to be proved to be distinct [Che02]. These
are shown in Figure 7; they are both of topological type m(52) (the mirror
of 52), and it is easy to check that they both have tb = 1 and rot = 0. Each
knot diagram has nine crossings. The gradings for the crossings of Λ1 are

|a1| = |a2| = |a3| = |a4| = 1,

|a5| = 2,

|a6| = −2,

|a7| = |a8| = |a9| = 0
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Figure 8. The five disks that go into the computation of
∂Λa1 for the Chekanov example knot Λ2 from Figure 7. The
disk on the left of the bottom row is immersed, and the darker
shaded part indicates where the immersion is two-to-one. The
final picture on the bottom row is another view of this im-
mersed disk: the boundary of the disk is slightly offset where
the immersion is two-to-one to better indicate the overlap-
ping region.

and the differential is
∂Λ1a1 = 1 + a7 + a7a6a5,

∂Λ1a2 = 1− a9 − a5a6a9,

∂Λ1a3 = 1 + a8a7,

∂Λ1a4 = 1 + a9a8t
−1,

∂Λ1ai = 0, i ≥ 5.

For Λ2, the gradings are
|a1| = |a2| = |a3| = |a4| = 1,

|a5| = |a6| = |a7| = |a8| = |a9| = 0

(for future reference, note the lack of crossings of degree ±2, cf. Λ1). The
differential for Λ2 is a bit trickier to visualize than in the previous examples
because one of the immersed disks is not embedded. Specifically, Figure 8
shows the 5 disks that contribute to ∂Λ2a1, and the last of these is not
embedded. The full differential is:

∂Λ2a1 = 1 + a5 + a7 + a7a6a5 + t−1a9a8t
−1a5,

∂Λ2a2 = 1− a9 − a5a6a9,

∂Λ2a3 = 1 + a8a7,

∂Λ2a4 = 1 + a8t
−1a9,

∂Λ2ai = 0, i ≥ 5.
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3.2. ∂2 = 0 and invariance. We now state the two basic properties of
the Chekanov–Eliashberg DGA (AΛ, ∂Λ), which can be summarized as “∂2 =
0” and “invariance”. Versions of these results were proved combinatorially
in [Che02, ENS02] and analytically in [EES05a].

Theorem 3.8. Given an oriented Legendrian knot Λ in (R3, ξstd) and
a base point ∗ ∈ Λ, we have that ∂Λ lowers degree by 1 and ∂Λ ◦ ∂Λ = 0.
Thus (AΛ, ∂Λ) has the structure of a differential graded algebra with gradings
taking values in Z.

Remark 3.9. All of the examples given in Section 3.1 trivially satisfy
∂2
Λ = 0. An example where this nontrivially holds is given in Appendix A;

for a simpler example, see the figure eight knot in [Etn05, Example 4.17].
If we change Λ by Legendrian isotopy, the DGA (AΛ, ∂Λ) changes in a

prescribed way called stable tame isomorphism, a somewhat involved notion
due to Chekanov that we now define. First, an elementary automorphism
of a DGA (Z〈a1, . . . , an, t±1〉, ∂) is a chain map φ : Z〈a1, . . . , an, t±1〉 →
Z〈a1, . . . , an, t±1〉 for which there is some 1 ≤ j ≤ n such that the map has
the following form:

φ(aj) = ±tkajt
� + u, u ∈ Z〈a1, . . . , âj , . . . , an, t±1〉, k, 	 ∈ Z

φ(ai) = ai, i �= j

φ(t) = t.

Note that elementary automorphisms are in particular invertible. A tame
isomorphism between two DGAs (Z〈a1, . . . , an, t±1〉, ∂) and (Z〈a′1, . . . , a′n,
t±1〉, ∂) is a chain map given by a composition of some number of elementary
automorphisms of (Z〈a1, . . . , an, t±1〉, ∂) and the algebra map sending t �→ t
and ai �→ a′i for all i.

The grading k stabilization of the DGA (Z〈a1, . . . , an, t±1〉, ∂) is the al-
gebra Z〈ek, ek−1, a1, . . . , an, t

±1〉 where |ek| = k and |ek−1| = k−1, equipped
with the differential ∂ agreeing with the original differential ∂ on the ai and
satisfying ∂(ek) = ek−1, ∂(ek−1) = 0.

Finally, two DGAs are stable tame isomorphic if after each is stabilized
some number of times, they become tame isomorphic. We can now state the
invariance result.

Theorem 3.10. The stable tame isomorphism type of (AΛ, ∂Λ) is an
invariant of Λ under Legendrian isotopy and choice of base point.

One may readily check (see e.g. [ENS02]) that stable tame isomorphism
is a special case of chain homotopy equivalence and thus quasi-isomorphism.
(See Remark 3.13 for an example where quasi-isomorphism does not imply
stable tame isomorphism.) It follows that the homology H∗(AΛ, ∂Λ), the
Legendrian contact homology of Λ, is invariant under Legendrian isotopy.

We now provide a sketch of the proofs of the ∂2 = 0 (Theorem 3.8) and
invariance (Theorem 3.10) results. We begin with invariance. There is a com-
binatorial proof of invariance, originally due to Chekanov, that checks that if
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the Lagrangian projection Π(Λ) undergoes ambient isotopy in R
2, a double

point move, or a triple point move (see Figure 2 and the discussion around
it), then (AΛ, ∂Λ) changes by a stable tame isomorphism. Clearly ambient
isotopy does not change any relevant data in the definition of (AΛ, ∂Λ). It
turns out there are several triple points moves one must consider depending
on the Reeb sign of the quadrants one sees in the local picture of the move,
Figure 2. One may check that in each case the DGA is unchanged or un-
dergoes a tame isomorphism. For a double point move one may also check
that the algebra undergoes a stabilization followed by a tame isomorphism.
See [Che02, ENS02]. We remark that there is also a more geometric proof
of Theorem 3.10 that closely resembles a standard bifurcation argument for
invariance of Floer homology, see [EES05a].

The proof of ∂2 = 0 in Theorem 3.8 is a fairly standard “Morse–Floer”
type argument that is less technical than invariance, and we discuss it more
fully here. Recall ∂Λ is computed by computing “rigid” (i.e., appearing in
0-dimensional moduli spaces) immersions of a disk with boundary on Π(Λ).
We will see below that if one considers (the closure of) a 1-dimensional space
of immersed disks, then in their boundaries one sees terms contributing to
∂2
Λ, and indeed all such terms are in the boundary of some 1-dimensional

space of disks. Thus since the signed count of the points in the boundary of
an oriented 1-dimensional manifold is 0, it follows that ∂2Λ = 0.

To give some details on ∂2 = 0, suppose we consider the space

Δ̂(a; b1, . . . , bn) = {u : (D2
n, ∂D

2
n) → (R2

xy,Π(Λ)) : satisfying (1) – (4)}/ ∼,

where ∼ is reparameterization, and
(1) u is an immersion on the interior of D2

n and has a finite number of
branched points on ∂D2

n,
(2) u sends the boundary punctures to the crossings of Π(Λ),
(3) u sends x to a and a neighborhood of x is mapped to a quadrant

of a labeled with a + or covers three quadrants with two labeled
with a +,

(4) u sends yi to bi and the image of a neighborhood of yi either covers
one quadrant at bi labeled with a −, or covers three quadrants with
two quadrants labeled with a −.

Notice that this is the same space as Δ(a; b1, . . . , bn) except we now allow
disks with locally non-convex corners and branched points along the bound-
ary. See Figure 9.

As with Δ(a; b1, . . . , bn), the dimension of Δ̂(a; b1, . . . , bn) is given by(
|a| −

n∑
i=1

|bi|
)

− 1,

see [ENS02]. One may also check that the dimension of Δ̂(a; b1, . . . , bn) is
simply the number of branch points plus the number of non-convex corners.
It is easy to see that the branch point can slide along Π(Λ) and hence such
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Figure 9. The new types of disks in Δ̂(a; b1, . . . , bn). Along
the top row we see a disk with a branch point on the right
and left, and in the center we see a non-convex corner; the
result is that a disk with such a non-convex corner is in the
interior of a moduli space of dimension larger than 0. On
the bottom row we see a disk with a branch point moving
toward the boundary of the disk, at which point it limits to
the union of two disks.

a disk will be in a family of disks with a degree of freedom coming from the
branch point. Moreover, as shown in Figure 9, a non-convex corner is part
of a family of disks with branch points.

We now notice that if a sequence of disks has a branch point that ap-
proaches an edge of the disk, as shown in the bottom row of Figure 9, then
it will limit to the union of the image of two disks, each of which has fewer
branch points that the disks in the original sequence. We call the union of
these two disks a broken disk. So if Δ̂(a; b1, . . . , bn) is one dimensional then
we can compactify it by adding broken disks. With a little thought one can
see that any term in ∂2

Λa is a broken disk that is in the boundary of some
1-dimensional Δ̂(a; b1, . . . , bn). The boundary components cancel in pairs in
∂2
Λa and it follows that ∂2

Λa = 0.

Remark 3.11. Those familiar with standard Floer theory for pairs of
embedded Lagrangian submanifolds might expect that instead of an algebra
we could just define our chain complex to be a vector space generated by the
double points in Π(Λ), with the differential counting immersed disks with
one positive and one negative puncture. However, we are forced to consider
the full algebra because the two cancelling ends of a 1-dimensional moduli
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Figure 10. The top diagram is a portion of some La-
grangian projection Π(Λ). On the bottom are disks contribut-
ing to ∂Λa. On the left we see u1 contributes b to ∂Λa, while
u2 contributes d to ∂2

Λa. On the left ũ1 contributes dc to ∂Λa
while ũ2 shows the differential of dc has a term d in it. The
two resulting d terms in ∂2

Λa cancel.

space may have different combinatorics. As an example, see Figure 10. The
figure on the left consists of a broken disk where each of the two disks has
one positive and one negative corner, as in Lagrangian Floer theory. It is
however cancelled by the figure on the right, which is a broken disk where
one disk has two negative corners and the other has none. This illustrates the
need for disks with arbitrary numbers of negative corners to ensure ∂2

Λ = 0.
One could then ask why we can restrict to disks with exactly one positive

corner. The essential reason is that by Stokes’ Theorem, there are no disks
with boundary on Π(Λ) with all convex corners where all of the corners are
negative, and so any broken disk in the compactification of Δ̂(a; b1, . . . , bn)
must be a union of two disks, each of which has one positive corner. The
general framework of Symplectic Field Theory [EGH00] suggests that we
could expand our disk count to include disks with multiple positive corners,
and indeed this can be done; see [Ekh12, Ng10]. From this viewpoint, we
can filter by the number of positive corners, and LCH is a filtered quotient
of a larger SFT invariant.

3.3. The Chekanov–Eliashberg DGA in the front projection.
While the Lagrangian projection is where the Chekanov–Eliashberg DGA
is naturally defined (cf. the geometric definition in Section 3.5 below), and
where it is easiest to prove ∂2 = 0 and invariance, it is frequently helpful to
have a version of (AΛ, ∂Λ) in terms of the front projection of Λ. With the aid
of Lemma 2.1, which converts front diagrams to Lagrangian diagrams, this
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Figure 11. Top row are cusps in the front projection and the
local image of the immersion u near the cusp point (darker
shading indicates the map is locally two to one). The bottom
row is the image of a corresponding immersion in the La-
grangian projection. The image of the boundary of the disk
is slightly offset for the sake of visibility.

is a simple task (see [Ng03] for more details). Specifically, given a generic
front projection F (Λ) of an oriented Legendrian knot Λ and a base point ∗
away from right cusps and double points, the algebra AΛ is generated over
Z by formal symbols t and t−1 and the set {a1, . . . , an} of double points and
right cusps in the diagram. The grading of the cusps are always 1 and the
gradings of a crossing a is again computed using a path γ in F (Λ) from the
overcrossing of a to the undercrossing of a that misses the marked point ∗.
Given γ we have |a| = D(γ)−U(γ), where D(γ) and U(γ) are the number of
downward and upward cusps one encounters while traversing γ. To compute
∂Λ we consider maps of the unit disk D2

n with (n+ 1) boundary punctures
x, y1, . . . , yn, u : D2

m → R
2
xz, that for generators a, b1, . . . , bn satisfy

(1) u is an immersion on the interior of D2,
(2) u along the boundary of ∂D2

n is an immersion except at cusps where
the image of u is as shown in Figure 11,

(3) u sends each boundary puncture to a crossing or right cusp of F (Λ),
(4) u sends x to a, and a neighborhood of x is mapped to a (leftward-

facing) quadrant of a labeled with a + Reeb sign if a is a crossing,
or to the leftward-facing region bounded by the cusp if a is a right
cusp,

(5) u sends yi to bi, and a neighborhood of yi is mapped to a quadrant
of bi labeled with a − Reeb sign if bi is a crossing, or to one of the
diagrams in the top row of Figure 12 if bi is a cusp.

The contribution of u to ∂Λa is
w(u) = t(η0)c(b1)t(η1)c(b2) · · · c(bn)t(ηn)
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Figure 12. The top row shows the local picture of the image
of u near a right cusp b. The bottom row shows the corre-
sponding immersion in the Lagrangian projection. In the left
and middle figures the contribution c(b) is b while in the right
figure the contribution is b2. The image of the boundary of
the disk is slightly offset for the sake of visibility.

where the ηi are the images of the arcs in ∂D2
n and t(ηi) are the powers

of t as defined in the original definition of the differential in Section 3, and
c(bi) = bi unless bi is a right cusp and the image of u near bi looks like the
rightmost diagram in Figure 12, in which case c(bi) = b2i . Now the differential
is

∂Λa =

{∑
ε(u)w(u) a is a crossing

1 +
∑

ε(u)w(u) a is a right cusp
where the sum is taken over all disks u, up to reparameterization, described
above, and ε(u) is ±1 depending on whether the number of − corners in u
that cover a downward-facing (bottommost) quadrant is even or odd. (This
choice of signs differs slightly from the orientation signs for the resolution of
the front as shown in Figure 4, but is equivalent via an automorphism that
negates some of the generators of the DGA, and is slightly more convenient
for computations.) See Section 3.4 and Appendix A for computed examples
of the DGA in the front projection.

3.4. Some observations about the Chekanov–Eliashberg DGA.
Here we qualitatively discuss what the Chekanov–Eliashberg DGA can and
cannot detect about a Legendrian knot.

Vanishing of the DGA. We begin with a simple observation: any
±-stabilization of a Legendrian knot has vanishing contact homology.

Proposition 3.12 ([Che02]). If Λ is a stabilized Legendrian knot then
the Legendrian contact homology of Λ is trivial.
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Proof. When stabilizing a knot we add a small loop to the Lagrangian
projection of the knot. The new double point a can be chosen to have small
height (see Remark 3.2), so that h(a) is smaller than h(b) for any other
double point. Then by the Stokes’ Theorem argument from Remark 3.2, the
only contribution to ∂Λa comes from the disk bounded by the loop; that is,
∂Λa = 1. Now if h is any element in the kernel of ∂Λ then ∂Λ(ah) = h, so
every cycle is a boundary. �

Remark 3.13. The DGA of a stabilized knot provides a negative an-
swer to the question: if two Chekanov–Eliashberg DGAs have isomorphic
homology, are they necessarily stable tame isomorphic? Indeed, define the
Euler characteristic of a DGA to be the difference between the numbers of
even-graded generators and odd-graded generators (for the DGA of a Leg-
endrian knot, this is just the Thurston–Bennequin number). It is clear that
Euler characteristic is invariant under stable tame isomorphism, while any
two stabilized knots have quasi-isomorphic DGAs even if they have different
tb.

There is one case where quasi-isomorphism implies stable tame isomor-
phism. If two Chekanov–Eliashberg DGAs have vanishing homology and the
same Euler characteristic, then they are stable tame isomorphic. To see this,
start with a DGA (A, ∂) with vanishing homology, so that ∂(x) = 1 for some
x ∈ A. Label the Reeb chord generators of A as a1, . . . , an in decreasing or-
der of height, so that ∂(ai) does not involve a1, . . . , ai. Stabilize by adding
two generators a0, b of degree 2, 1 respectively, with ∂(a0) = b, ∂(b) = 0,
and let (A′, ∂) denote the result. Apply the elementary automorphism φ of
A′ that sends b to b − x; the new differential ∂′ = φ∂φ−1 on A′ satisfies
∂′(a0) = b − x, ∂′(b) = 1. Now successively conjugate ∂′ by the automor-
phism sending ai to ai+b∂′(ai) for i = 0, . . . , n. The resulting differential ∂′′

is given by ∂′′(b) = 1 and ∂′′(ai) = 0 for all i = 0, . . . , n, and it is then easy
to check that the stable tame isomorphism type of (A′, ∂′′) is determined by
its Euler characteristic.

Proposition 3.12 brings up the interesting question of whether or not
vanishing of the LCH of a Legendrian knot implies that the knot is stabilized.
This was an open question for some time, but was finally answered negatively
by Sivek in [Siv13], using the Legendrian knot on the left hand side of
Figure 13. This knot is of topological type m(10132) and is non-destabilizable
because it has maximal tb, as calculated in [Ng12]. On the other hand, the
LCH of this knot vanishes. Indeed, if we label Reeb chords as in Figure 13
and choose a base point say near the bottom right cusp, the differential
satisfies:

∂(a1) = 1 + a8 + a8a4a3

∂(a2) = 1 + a5a7

∂(a6) = −a7a8

∂(a3) = ∂(a4) = ∂(a5) = ∂(a7) = ∂(a8) = 0;
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Figure 13. Two Legendrian representatives of the knot
m(10132) with maximal Thurston–Bennequin invariant. The
one of the left has trivial contact homology and the one on
the right has non-trivial contact homology.

Figure 14. Legendrian representative of the pretzel knot
P (3,−3,−3 − m) whose DGA is stable tame isomorphic to
the DGA of the standard unknot.

it follows that ∂(a2a8+a5a6) = a8 and so ∂(a1−(a2a8+a5a6)(1+a4a3)) = 1.
It is also interesting to note that Sivek also produced another Legendrian
knot in this knot type that has non-vanishing LCH; see Figure 13 again.

The DGA of the unknot. It is also interesting to note, as first ob-
served in [CNS16], that the Chekanov–Eliashberg DGA does not charac-
terize the standard Legendrian unknot.

Proposition 3.14 (cf. [CNS16]). For m ≥ 1, the Legendrian knot
shown in Figure 14, which is topologically the pretzel knot P (3,−3,−3−m),
has a DGA that is stable tame isomorphic to the DGA of the standard
Legendrian unknot.

The proof of Proposition 3.14 was omitted in [CNS16] (see also Re-
mark 3.15 below); however, in Appendix A, we provide an explicit stable
tame isomorphism in the case m = 1, which can be readily extended to
general m.
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Figure 15. A Legendrian twist knot. The box is replaced
with a tangle formed by concatenating m of the Z and S
tangles shown on the right, in any order.

Remark 3.15. The family of Legendrian knots in Figure 14 is actually
slightly different from the family given in [CNS16]. For m ≥ 2, both families
satisfy the statement of Proposition 3.14. For m = 1, which corresponds to
the topological knot m(10140), the atlas [CN13] depicts two Legendrian
representatives, which we denote here for concreteness by Λ1 and Λ2 in the
order given in the atlas. The knot shown in Figure 14 (for m = 1) is Λ1, while
the knot given in [CNS16, §4.3] is Λ2. Computations with Gröbner bases
suggest that the DGA for Λ2, unlike for Λ1, may in fact not be the same as
the DGA for the unknot. This does not affect the results of [CNS16] except
that the m(10140) diagram given there should be replaced by the one given
in Figure 14.

It can be shown that given any Legendrian knot Λ, one can produce
arbitrarily many distinct Legendrian knots whose DGA is stable tame iso-
morphic to the DGA for Λ, by taking the connected sum of Λ with any
number of disjoint copies of the P (3,−3,−3−m) knots shown in Figure 14.
See [Etn05] for the definition of connected sum for Legendrian knots.

Distinguishing arbitrarily many Legendrian knots. The previ-
ous two observations indicated the limits of the Chekanov–Eliashberg DGA,
but we now observe that the DGA can distinguish arbitrarily many Legen-
drian knots of a single topological type with the same tb and rot. Specif-
ically, consider a Legendrian twist knot as shown in Figure 15, where the
box contains m half-twists each represented by a Z or S, for even m ≥ 2.
For fixed m, this gives a family of Legendrian knots of the same topological
type and all with (tb, rot) = (1, 0). We will see in Section 4.1 that linearized
contact homology, which is derived from the DGA, recovers the unordered
pair {k, l}, where k and l are the number of Z’s and S’s in the box, with
k+ l = m. It follows that there are at least m

2 +1 distinct Legendrian knots
representing a single topological twist knot, all with (tb, rot) = (1, 0). This
was first proven in [EFM01], building on work of Eliashberg. For m = 2,
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the knots represented in the box by ZS and SS turn out to be the Chekanov
m(52) knots Λ1 and Λ2 respectively from Figure 7.

Remark 3.16. In fact for fixed m, there are exactly �m2

8 � isotopy classes
of Legendrian twist knots of the relevant topological type with (tb, rot) =
(1, 0). This is proven in [ENV13] using a combination of linearized contact
homology, knot Floer homology, and convex surface theory.

3.5. The Chekanov–Eliashberg DGA in the symplectization. In
this section we discuss an alternate way to define the Chekanov–Eliashberg
DGA using the symplectization of (R3, ξstd). This definition is much more
in the spirit of Symplectic Field Theory as set up by Eliashberg, Givental,
and Hofer [EGH00]. It also has the advantage of allowing one to consider
Lagrangian cobordisms between Legendrian knots, as we will do in Section 6.

As usual we start with a Legendrian knot Λ in (R3, ξstd) with a marked
point ∗ ∈ Λ. The symplectization of (R3, ξstd) is the symplectic manifold

(R× R
3, d(etα))

where α = dz − y dx and t is the variable on the first R factor. Inside the
symplectization the manifold L = R× Λ is a Lagrangian cylinder.

As in Section 3.1, let {a1, . . . , an} be the (generically finite) set of Reeb
chords of Λ, and define AΛ = Z〈a1, . . . , an, t±1〉. The grading on AΛ is
defined by choosing paths γi as before, but now they are paths in Λ that
start at the positive end of a Reeb chord, end at the negative end of the
Reeb chord, and do not pass through ∗. (Notice that these γi project to
the paths used in Section 3.1.) One can now define the gradings on the
generators using the Conley–Zehnder index associated to the γi [EES05a],
but in our current setup this is almost exactly the same as the definition
given in Section 3.1, so we will just take the gradings from there.

To define the boundary map for the DGA we need an almost complex
structure J on (R×R

3, d(etα)) that is compatible with d(etα). Here we can
take J : T (R× R

3) → T (R× R
3) to be

J(∂x) = ∂y + y∂t,

J(∂y) = −∂x − y∂z,

J(∂z) = −∂t,

J(∂t) = ∂z.

As before we consider D2
n = D2 − {x, y1, . . . , yn} where D2 is the unit

disk in C and x, y1, . . . , yn are points in its boundary appearing in counter-
clockwise order. We call a map u : D2

n → R× R3 J-holomorphic if
J ◦ du = du ◦ j

where j is the standard complex structure on C.
We will also need our maps to have nice asymptotics near the punctures.

To specify this we write uR and uR3 for u composed with the projections
of R × R

3 to its first and second factors respectively. Let p be one of the
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punctures on ∂D2
n and parameterize a neighborhood of p by (0,∞) × [0, 1]

with coordinate (s, t). Let a(t) be the parameterized Reeb chord a; then we
say u is asymptotic to a at ±∞ if

lim
s→∞

uR(s, t) = ±∞

lim
s→∞

uR3(s, t) = a(t).

Now if a, b1, . . . , bn are points in {a1, . . . , an} then we define the set

M(a; b1, . . . , bn)={u : (D2
n, ∂D

2
n) → (R×R

3,R×Λ):satisfying (1) – (4)}/ ∼,

where ∼ is holomorphic reparameterization, and
(1) u is J-holomorphic,
(2) u has finite energy: ∫

D2
n

u∗dα < ∞,

(3) near x, u is asymptotic to a at ∞,
(4) near yi, u is asymptotic to bi at −∞.

For a generic choice of Λ one can show that M(a; b1, . . . , bn) is a manifold of
dimension |a|−

∑n
i=1 |bi|. We also notice that M(a; b1, . . . , bn) has a symme-

try: given u ∈ M(a; b1, . . . , bn), adding any constant to uR gives another ele-
ment in M(a; b1, . . . , bn), and thus we have an R action on M(a; b1, . . . , bn).

Given u ∈ M(a; b1, . . . , bn), the image of ∂D2
l is a union of n+ 1 paths

η0, . . . , ηn in R × Λ where η0 is the path parameterized by the interval in
∂D2

n starting at x and ηi is the one starting at yi. We define t(ηi) to be tk

where k is the number of times ηi crosses R×∗ counted with sign. The word
associated to u is

w(u) = t(η0)b1t(η1)b2 · · · bnt(ηn).

There is also a sign ε(u) that can be associated to u using coherent ori-
entations, see [ENS02, EES05c]. This sign is somewhat complicated to
describe and will not be essential to us here so we refer to [EES05c] for
details. We finally define the differential of a ∈ {a1, . . . , an} to be

∂Λa =
∑

ε(u)w(u),

where the sum is taken over all u ∈ M(a; b1, . . . , bn)/R where n ≥ 0 and
b1, . . . , bn ∈ {a1, . . . , an} such that |a| −

∑n
i=1 bi = 1. As before, we define

∂Λt = ∂Λt
−1 = 0 and extend ∂Λ to all of AΛ by the signed Leibniz rule.

If we let πxy : R×R
3 → R

2 be the projection map, then one may easily
check that any element u ∈ M(a; b1, . . . , bn) will project to an element πxy◦u
in Δ(a; b1, . . . , bn) [ENS02]. From this observation and the above discussion
it should be clear that the DGA just defined is equivalent to the DGA from
Section 3.1.
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Remark 3.17. We note that the original definition of (AΛ, ∂Λ) was
purely combinatorial, while the above described definition requires some
difficult analysis to rigorously define M(a; b1, . . . , bn). Despite the increased
difficulty in the new definition, this is what must be used to see how the
DGAs of Lagrangian cobordant Legendrian knots are related. In addition,
the analysis needed for the latter definition is precisely what is needed to
generalize the Chekanov–Eliashberg DGA to higher dimensions.

3.6. Extensions of the Chekanov–Eliashberg DGA. According to
the general picture of Symplectic Field Theory [EGH00], Legendrian con-
tact homology should be defined for Legendrian submanifolds in any contact
manifold Y . In general the algebra will be generated not just by Reeb chords
but also by closed Reeb orbits in Y , and this gives LCH a module-like struc-
ture over the closed contact homology of Y . (One can remove the need to
consider closed contact homology if Y has no closed Reeb orbits, as is the
case in R

3 or more generally X×R, or by using an exact symplectic filling of
Y to map the closed contact homology of Y to the base field.) However, the
analytical underpinnings necessary to show that LCH is indeed well-defined
in general are a work in progress. Here we briefly discuss a few settings be-
sides R3 where the Chekanov–Eliashberg DGA and LCH has been rigorously
defined, both in dimension 3 and in higher dimensions.

In dimension three, the first example of such a generalization was in
Sabloff’s thesis, [Sab03]. Here LCH was defined for circle bundles over sur-
faces with contact structures that are transverse to the fibers of the bundle
and invariant under the natural S1 action. The definition in this case looks
at the projection of the Legendrian to the base manifolds and proceeds in
a similar fashion to our presentation in Section 3.1. The main difference
is that each double point in the projection corresponds to infinitely many
generators of the algebra (since there are infinitely many Reeb chords that
project to this double point). The differential also counts immersed poly-
gons, but again, there are some restrictions depending on what Reeb chords
one is considering for a given double point. Generalizing Sabloff’s work, Li-
cata and Sabloff [Lic11, LS13] defined LCH for Legendrian knots in the
universally tight contact structures on lens spaces L(p, q) and Seifert fibered
spaces with suitable contact structures. The definition in these cases are
similar to those given in [Sab03] except that care must be taken with the
topology coming form the singular fibers.

In another direction, Ekholm and the second author [EN15] gave a
combinatorial definition of LCH in connected sums of S1 × S2, building on
a construction of Traynor and the second author [NT04] for LCH in the
1-jet space J1(S1) (this latter space, which is topologically S1 × R

2, is a
local model for a neighborhood of any Legendrian knot, and is also con-
tactomorphic to the unit cotangent bundle of R2). The contact 3-manifolds
#k(S1×S2) considered in [EN15] naturally appear as the boundary of We-
instein 4-manifolds, and LCH in this setting is useful when applying surgery
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formulas from [BEE12] (see Section 7 below). The algebra developed in
[EN15] also appears in the work of An and Bae [AB18] defining the DGA
for Legendrian graphs in R

3.
In higher dimensions, Ekholm, Sullivan, and the first author gave a rig-

orous definition of LCH for Legendrian submanifolds in the standard contact
structure on R

2n+1 in [EES05a], and showed that it could be used to dis-
tinguish many Legendrian submanifolds that were “formally isotopic” in
[EES05b]. In [EES07] the same authors extended this definition to Leg-
endrian submanifolds of X × R where X is an exact symplectic manifold
with symplectic structure dλ and the contact structure is ker(dz+λ) where
z is the coordinate on R. Once again, in all these situations the LCH is de-
fined by projecting to X and generating an algebra by the double points of
the projection. The differential is defined by counting holomorphic curves,
instead of immersed polygons as above.

4. Augmentations and linearized LCH
To readers that are more familiar with Morse or Floer homologies than

with Legendrian contact homology, LCH has a major drawback that turns
out to have its own advantages. Unlike many Floer complexes, the Chekanov–
Eliashberg DGA is not finite rank, even in fixed degree: a single Reeb chord
generator a in degree 0 yields infinitely many generators an, all of degree
0, for the DGA as a Z-module. This can readily persist in homology: the
graded pieces of LCH are often infinite dimensional, and so the graded rank
of LCH would have limited utility even if this were easy to compute (which
it is not in general).

A solution to this problem, due to Chekanov, is to use an augmentation
of the DGA to produce a finite-dimensional linear complex, whose homology,
linearized LCH, is invariant in a suitable sense. The multiplicative structure
on the DGA, which descends to homology, then produces additional inter-
esting algebraic structures on linearized LCH, in the form of A∞ operations.
In this section we describe this story, as well as some interesting connections
to another collection of Legendrian invariants known as rulings.

4.1. Augmentations and linearizations. An augmentation of the
Chekanov–Eliashberg DGA (AΛ, ∂Λ) to a unital ring S is a DGA chain map

ε : (AΛ, ∂Λ) → (S, 0),

where S lies entirely in degree 0 and has the trivial differential. Notice that
this implies that ε(1) = 1, ε◦∂Λ = 0, and ε sends elements of nonzero degree
to 0. In addition, since ε(t) must be sent to an invertible (and thus nonzero)
element of S, this also implies that rot(Λ) = 0.

Remark 4.1. More generally, for Λ having arbitrary rotation number,
and any integer ρ dividing 2 rot(Λ), one can define a ρ-graded augmentation
to be a DGA map (AΛ, ∂Λ) → (S, 0), where S is in degree 0 as before
but now AΛ is given the grading over Z/ρZ induced by its grading over Z.
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That is, ε now only needs to send elements of degree not divisible by ρ to
0. The cases of most interest are when ρ = 1 (ε is “ungraded”), ρ = 2 (ε
is 2-graded), and ρ = 0 (this recovers the original notion of augmentation).
Unless otherwise specified, all augmentations will be 0-graded to simplify the
exposition, although a version of much of the discussion below still holds for
general ρ-graded augmentations.

Not all (AΛ, ∂Λ) admit augmentations, but admitting them is a property
of the stable tame isomorphism class of the DGA. We will now see how to use
augmentations to “linearize” (AΛ, ∂Λ) and illuminate other structures. To
this end, let Λ be a Legendrian knot with Reeb chords a1, . . . , an, and let k be
a field (a commutative unital ring would also work). If ε : (AΛ, ∂Λ) → (k, 0)
is an augmentation, then set

Aε
Λ =

AΛ ⊗ k
(t = ε(t))

.

As an algebra, Aε
Λ is simply the tensor algebra over k generated by a1, . . . , an.

This now inherits a differential ∂ from the differential ∂Λ on AΛ: replace each
occurrence of t in ∂Λai by ε(t) ∈ k× to get the new differential ∂ai. Now let
A be the graded k-vector space spanned by Reeb chords a1, . . . , an, so that

Aε
Λ =

⊕
n≥0

A⊗n.

The augmentation ε defines an automorphism φε : Aε
Λ → Aε

Λ sending each
generator a ∈ {a1, . . . , an} to φε(a) = a + ε(a), and conjugating by φε we
get a new differential ∂ε = φε ◦ ∂ ◦ (φε)−1 on Aε

Λ. It is easy to check that
the constant term of ∂ε(a) for each Reeb chord a is precisely (ε ◦ ∂)(a) = 0:
that is, (Aε

Λ, ∂
ε) is augmented. If we define (Aε

Λ)
k =

⊕
n≥k A

⊗n ⊂ Aε
Λ, then

∂ε maps (Aε
Λ)

k to itself for all k ≥ 0. In particular, ∂ε induces a map

∂ε
1 :

(
(Aε

Λ)
1

(Aε
Λ)

2

)
→

(
(Aε

Λ)
1

(Aε
Λ)

2

)
.

Since (Aε
Λ)

1/(Aε
Λ)

2 ∼= A, we find that ∂ε
1 maps A to itself and satisfies

(∂ε
1)

2 = 0. Thus (A, ∂ε
1) is a differential vector space over k; its graded

homology is called the linearized (Legendrian) contact homology of Λ with
respect to ε and is denoted LCHε

∗(Λ).
It turns out that the linearized homology itself is not an invariant of Λ,

especially as it may depend on the particular augmentation (see [MS05]),
but it is easy to fix this problem.

Theorem 4.2 ([Che02]). The collection

{LCHε
∗(Λ) : ε is an augmentation (AΛ, ∂Λ) → (k, 0)}
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is an invariant of Λ up to Legendrian isotopy. Put another way, the set of
Poincaré polynomials

P ε(z) =

∞∑
i=−∞

dimk (LCHε
i (Λ))z

i

over all augmentations ε : (AΛ, ∂Λ) → (k, 0) is an invariant of Λ.
Example 4.3. One may easily compute all augmentations to Z2 for the

DGAs of the Chekanov examples computed in Example 3.7. The Poincaré
polynomials for Λ1 are all of the form

z−2 + z + z2,

while for Λ2 there is a unique augmentation, which has Poincaré polynomial
2 + z.

Thus we see the linearized contact homology distinguishes those two exam-
ples.

Example 4.4. More generally, here we present the Poincaré polynomials
for the Legendrian twist knots in Figure 15, cf. [EFM01]. Let Λ be a knot
as shown in Figure 15, and let k and l denote the number of Z’s and S’s in
the box in that diagram, where k+ l = m. Then for any augmentation of Λ,
the Poincaré polynomial is z+ zk−l+ zl−k. It follows that linearized contact
homology detects |k − l| and thus (for fixed m) the unordered pair {k, l}.

Remark 4.5. If we subtract z from each of the above Poincaré polynomi-
als, we obtain polynomials that are symmetric under interchanging z ↔ z−1.
This phenomenon is true in general and is known as Sabloff duality [Sab06].
In its simplest form, Sabloff duality says that dimLCH ε

k = dimLCH ε
−k ex-

cept when k = ±1, and dimLCH ε
1 = dimLCH ε

−1 + 1. This can be up-
graded to an exact triangle relating LCHε

∗, its dual LCH∗
ε (see below), and

the homology of Λ; see [EES09]. Sabloff duality has been reinterpreted in
[NRS+15] as a Poincaré-type duality between positive and negative aug-
mentation categories (see Section 5 below), and indeed in the case where ε
comes from a filling L (see Section 6 below) it is precisely Poincaré duality
for L.

It will be useful to dualize this discussion and talk about linearized
cohomology. To this end we can set A∨ = Hom(A, k) and let δε1 be the dual
of the map ∂ε

1 : A → A. If A is generated by a1, . . . , an, then we denote
the dual basis fo A∨ by a∨1 , . . . , a

∨
n and grade them by |a∨i | = |ai|+ 1. (This

grading shift is for compatibility with A∞ conventions, cf. Definition 4.7
below.) As usual we have δε1 ◦δε1 = 0, and so we can consider the cohomology
of (A∨, δε1). This is called the linearized contact cohomology with respect to
ε and denoted LCH∗

ε (Λ). The Universal Coefficient Theorem implies that
the linearized cohomology over a field contains the same information as the
linearized homology, but we will see that the linearized cohomology can be
naturally endowed with significantly more structure.
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Example 4.6. In Example 3.6 we computed the DGA for the Legendrian
trefoil in Figure 6. One can compute that there are five augmentations of
the DGA to Z2. Let ε be the augmentation that sends a3 to 1 and every
other generator to 0. Then the induced differential ∂ε is given by

∂εa1 = a3 + a5 + a5a4 + a5a4a3,

∂εa2 = a3 + a5 + a4a5 + a3a4a5,

∂εa3 = ∂εa4 = ∂εa5 = 0.

The only nontrivial linear terms are ∂ε
1a1 = a3 + a5 and ∂ε

1a2 = a3 + a5.
Thus the dual map is

δε1a
∨
3 = a∨1 + a∨2

δε1a
∨
5 = a∨1 + a∨2

δε1a
∨
1 = δε1a

∨
2 = δε1a

∨
4 = 0

and we have LCH2
ε (Λ)

∼= Z2, LCH1
ε (Λ)

∼= (Z2)
2. (This is in fact true for all

five augmentations to Z2.)

4.2. Augmentations and A∞ algebras. Recall that A is the k-vector
space generated by Reeb chords a1, . . . , an. Since ∂ε has no constant terms,
∂ε maps A to ⊕n≥1A

⊗n, and we can write
∂ε = ∂ε

1 + ∂ε
2 + · · ·

where ∂ε
n : A → A⊗n is the map consisting of degreee n terms in ∂ε. The

differential for linearized contact cohomology is the dual of ∂ε1; dualizing ∂ε
n

for n ≥ 1 gives A the structure of an A∞ algebra.

Definition 4.7. An A∞ algebra is a graded k-vector space V together
with a sequence of operations mn : V ⊗n → V , n ≥ 1, of degree 1 − n,
satisfying the A∞ relations:

m1(m1(v1)) = 0

m1(m2(v1, v2)) = m2(m1(v1), v2) + (−1)|v1|m2(v1,m1(v2))

m1(m3(v1, v2, v3)) = m2(m2(v1, v2), v3)−m2(v1,m2(v2, v3))

−m3(m1(v1), v2, v3)− (−1)|v1|m3(v1,m1(v2), v3))

− (−1)|v1|+|v2|m3(v1, v2,m1(v3))

and generally ∑
r+s+t=n

±mr+1+t(1
⊗r ⊗ms ⊗ 1⊗t) = 0

for n ≥ 1. (See e.g. [NRS+15] for an explicit choice of signs that is adapted
for the setting of LCH.)

Proposition 4.8. (A∨,mn = (∂ε
n)

∨) forms an A∞ algebra. Here (∂ε
n)

∨ :
(V ∨)⊗n → V ∨ is the dual of ∂ε

n.
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Figure 16. A disk with positive end at a and negative ends
including ai1 and ai2 contributes an a∨ term to m2(a

∨
i2
, a∨i1).

To see this, dualize the components of the equation (∂ε)2 = 0, where
(∂ε)2 is viewed as a map from V to ⊕∞

n=1V
⊗n. As we have already discussed,

the component of (∂ε)2 from V to V is (∂ε
1)

2, and dualizing this gives m2
1 = 0.

The next component of (∂ε)2, from V to V 2, is (up to sign)
∂ε
2 ◦ ∂ε

1 + (∂ε
1 ⊗ 1 + 1⊗ ∂ε

1) ◦ ∂ε
2,

and dualizing this gives the second A∞ relation; and so on. Note regarding
signs that there are Koszul signs implicit in the definition of (∂ε

n)
∨; see e.g.

[NRS+15] for the explicit signs.

Remark 4.9. Here we give a more concrete description of the A∞ op-
erations mn, disregarding signs forsimplicity. Let ai1 , . . . , ain be Reeb chord
generators of AΛ, and suppose that a is another Reeb chord such that ∂Λa
contains a monomial term in which ai1 , . . . , ain appear in order, possibly in-
terspersed with other a generators or powers of t. In this monomial, replace
every appearance of t±1 by ε(t)±1 ∈ k, resulting in a coefficient α ∈ k times
a product of Reeb chords:

α a0ai1a1ai2a2 · · · an−1ainan,

where each aj represents a (possibly empty) word of Reeb chords. Then
in the twisted differential ∂ε(a), there is a term where each of a1, . . . ,an
is replaced by its value under ε, resulting in a contribution to ∂ε

n(a) of
αε(a0) · · · ε(an)ai1ai2 · · · ain . Dualizing gives

mn(a
∨
in , . . . , a

∨
i1) = αε(a0) · · · ε(an)a∨ + · · · .

Here the convention on the order of inputs is the reverse of the order in
∂ε
n(a); this allows for compatibility with standard A∞-category conventions

(see Section 5.1 below).
For an illustration, see Figure 16. Here the term ∂Λa = aj1aj2ai1aj3ai2

aj4 + · · · dualizes to m2(a
∨
i2
, a∨i1) = ε(aj1)ε(aj2)ε(aj3)ε(aj4)a

∨
k + · · · . (In fact,

this single disk could make 15 contributions to m2, corresponding to the
(
6
2

)
ways to choose two inputs from aj1 , aj2 , ai1 , aj3 , ai2 , aj4 .)
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Figure 17. A knot that can be distinguished from its Leg-
endrian mirror by the product on linearized cohomology.

Given an A∞ algebra (V,mn), we can define the graded homology H(V,
m1) = kerm1/ imm1, since m2

1 = 0 by the first A∞ relation. By the second
A∞ relation, we can view m2 as a multiplication operation on V for which
the differential m1 satisfies the Leibniz rule. It follows that m2 descends
to a well-defined product on H(V,m1). Furthermore, although m2 is not
necessarily associative as a product on V , the third A∞ relation implies
that it is associative on H(V,m1).

We conclude that H(V,m1) is a ring with multiplication given by m2. In
the case of interest to us, LCH ∗

ε is a ring where the product structure comes
from the second order terms in the differential ∂ε. This picture is entirely
analogous to how the cup product induces multiplication on the singular
cohomology for topological spaces.

Some Legendrian knots cannot be distinguished by their linearized co-
homologies LCH ∗

ε but can be distinguished by the product on LCH ∗
ε . An

example of such a pair of knots is the Legendrian knot Λ shown in Fig-
ure 17, along with its “Legendrian mirror” obtained by reflecting the front
projection for Λ in the x axis. These two knots have isomorphic LCH ∗

ε but
their products are opposite: m2(v1, v2) in one is m2(v2, v1) in the other. See
[CKE+11] for this computation, along with more general families of Leg-
endrian knots that require the use of higher order products mn to tell them
apart.

4.3. Rulings and augmentations. In this section we explore a geo-
metric invariant of front diagrams that is closely connected to augmenta-
tions. Given the front projection of a Legendrian knot Λ we call the arcs of
F (Λ) the closures of the components of F (Λ) minus the cusps and crossings.
A ρ-graded ruling of F (Λ) is a partition R = {R1, . . . , Rk} of the arcs of
F (Λ) so that

(1) each Ri bounds a disk,
(2) each Ri contains one left and one right cusp,
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Figure 18. Top row shows allowable switches. The bottom
row shows a disallowed switch. In each case the solid arcs are
paired by the ruling, as are the dotted arcs.

(3) the crossings where Ri is not smooth are called switches and the
grading of a switch must be divisible by ρ, and

(4) The disks associated to two Ri’s at a switch must locally have
interiors nested or disjoint. See Figure 18.

To a ρ-graded ruling R of F (Λ) we associate the number
θ(R) = k − s,

where k is the number of components of R (which is equal to half the number
of cusps of F (Λ)) and s is the number of switches in R. We can now define
the complete ρ-graded ruling invariant to be the multiset

Θρ(Λ) = {θ(R) : R a ρ-graded ruling of F (Λ)}.
One may check that the following is true.

Theorem 4.10 (Chekanov and Pushkar [PC05]). For any ρ that divides
2 rot(Λ), the complete ρ-graded ruling invariant Θρ(Λ) is an invariant of the
Legendrian isotopy class of Λ.

For example, one can use this invariant (with ρ = 0) to distinguish the
Chekanov examples from Figure 7.

Rulings turn out to be closely connected to augmentations. Indeed, by
combined work of Fuchs, Ishkhanov, and Sabloff, we have the following re-
sult.

Theorem 4.11 ([Fuc03, FI04, Sab05]). For any ρ dividing 2 rot(Λ),
the Legendrian knot Λ has a ρ-graded augmentation to Z2 if and only if it
has a ρ-graded ruling.
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Theorem 4.11 has been extended by Leverson [Lev16], who proved that
the existence of an augmentation to any field is equivalent to the existence
of a ruling. This is not true if we replace “field” by an arbitrary unital ring;
see Section 4.4 below.

It turns out there is a precise correspondence between rulings and aug-
mentations. To state the correspondence we need a bit more notation. We
restrict our discussion to augmentations to Z2, though see [HR15] for a
generalization to arbitrary finite fields.

Because of DGA stabilizations, the number of ρ-graded augmentations of
(AΛ, ∂Λ) to Z2 is not an invariant of Λ up to Legendrian isotopy, but there
is a normalized count that is. More specifically, given any ρ that divides
2 rot(Λ), let ak be the number of generators of AΛ (in the front projection,
that is, crossings and right cusps) with grading k modulo ρ. The shifted
Euler characteristic of (AΛ, ∂Λ) when ρ = 0 is defined to be

χ∗
0(AΛ) =

∑
k≥0

(−1)kak +
∑
k<0

(−1)k+1ak

and if ρ is odd then it is

χ∗
ρ(AΛ) =

ρ−1∑
k=0

(−1)kak.

We now define the normalized ρ-graded augmentation number1 to be
Augρ(Λ) = 2−χ∗

ρ(AΛ)/2 · (number of ρ-graded augmentations of AΛ).
This number can easily be checked to be an invariant of Λ up to Legen-
drian isotopy, and for instance it provides yet another way to distinguish the
Chekanov knots (Example 3.7): Aug0(Λ1) =

√
2 while Aug0(Λ2) = 3/

√
2.

We can now state the explicit connection between rulings and augmenta-
tions.

Theorem 4.12 ([NS06]). Given a Legendrian knot Λ and a number ρ
that divides 2 rot(Λ) and is either 0 or odd, then there is a many-to-one corre-
spondence between ρ-graded augmentations of (AΛ, ∂Λ) and ρ-graded rulings
of F (Λ). More specifically, there are 2θ(R)+χ∗

ρ(AΛ)/2 ρ-graded augmentations
corresponding to each ρ-graded ruling R.

This theorem moreover allows one to determine the normalized count of
augmentations from the rulings as follows: if ρ divides 2 rot(Λ) and is 0 or
odd then

Augρ(Λ) =
∑

θ∈Θρ(Λ)

2θ/2.

In 2005, Rutherford [Rut06] discovered a beautiful connection between
(ungraded) rulings and topology that says, among other things, that Θ1(Λ)

1There is also a related but more categorical notion of normalized augmentation
number in terms of the cardinality of the augmentation category; see [NRSS17].
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Figure 19. Diagram regions for the skein relations for FK(a, z).

only depends on the underlying topological knot type of Λ and tb(Λ). To
state his result we first recall the Kauffman and HOMFLY polynomials of a
knot K. The Kauffman polynomial FK(a, z) of a knot K is defined as

FK(a, z) = a−w(DK)ADK
(a, z),

where w(DK) is the writhe of the knot a diagram DK for K and ADK
is a

polynomial defined for the diagram DK , uniquely characterized by the skein
relations

DK+ −DK− = z(DK0 −DK∞),

DS+ = aDA, DS− = a−1DS ,

and D of the unknot is 1, where the diagrams are shown in Figure 19. The
HOMFLY polynomial PK(a, z) of a knot K is similarly defined using DK :

PK(a, z) = a−w(DK)BDK
(a, z),

where BDK
is a polynomial defined for the diagram DK and uniquely char-

acterized by the skein relations
BK+ −BK− = zHK0 ,

BS+ = aBS , BS− = aBS ,

and B of the unknot is 1, where the K+, K− and K0 are all oriented left to
right in Figure 19.

There are upper bounds on tb from both the HOMFLY-PT [FW87,
Mor86] and Kauffman [Rud90] polynomials: if dega means the maximal
degree of the polynomial in the variable a, then we have

tb(Λ) + | rot(Λ)| ≤ − dega PΛ(a, z)− 1

tb(Λ) ≤ − dega FΛ(a, z)− 1.
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Following Rutherford we now define the ruling polynomial of Λ to be
RΛ(z) =

∑
θ∈Θ1(Λ)

z−θ+1.

We can also define the oriented ruling polynomial of Λ. To this end consider
the subset Θ2(Λ) of Θ1(Λ). One may check that these are precisely the θ that
come from “oriented rulings”, that is, rulings where we only allow switches
at positive crossings in the diagram:

ORΛ(z) =
∑

θ∈Θ2(Λ)

z−θ+1.

It is a result of Sabloff [Sab05] that Λ can have an oriented ruling only if
rot(Λ) = 0.

Theorem 4.13 (Rutherford [Rut06]). For any Legendrian knot Λ of
topological type K, the ruling polynomial RΛ(z) and oriented ruling polyno-
mial ORΛ(z) agree with the (polynomial) coefficient of atb(Λ)−1 in FK(a, z)
and PK(a, z), respectively.

Notice that this theorem says that ungraded rulings (both oriented and
not) are entirely determined by the underlying knot type of the Legendrian
knot and the classical invariants. So in particular one will not be able to use
ungraded rulings to distinguish Legendrian knots with the same classical
invariants! Also notice that an immediate corollary of the theorem is that
the Kauffman bound on tb is sharp if and only if Λ admits an ungraded
ruling.

Moreover, if a Legendrian has an ungraded ruling then its Thurston–
Bennequin invariant is maximal for Legendrian representatives of its knot
type.

4.4. DGA representations. Much of the existing work on augmenta-
tions of Legendrian knots has focused on augmentations to a field. It is how-
ever also interesting to consider augmentations to other unital rings S that
are not fields. A particular case is when S = Matn(k), the algebra of n×n ma-
trices over a field k. We call an augmentation ρ : (AΛ, ∂Λ) → (Matn(k), 0) an
n-dimensional representation of the DGA (AΛ, ∂Λ). Note that 1-dimensional
representations are precisely augmentations to k and these all factor through
the abelianization of AΛ. An advantage of considering higher-dimensional
representations is that these allow us to use the noncommutativity of AΛ

in a more fundamental way, since these representations do not necessarily
factor through the abelianization. Here it is useful to use the fully noncom-
mutative DGA AΛ rather than the form of the DGA that appears in for
example [ENS02], where t commutes with Reeb chords, since stipulating
that ρ(t) and ρ(a) commute for all Reeb chords a significantly cuts down on
the set of representations. For example, Theorem 4.15 below, which relates
representations of the DGA to augmentations of a satellite, is only true if
we use the fully noncommutative DGA.
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Figure 20. A Legendrian knot of type T (3,−4).

The existence of a representation of (AΛ, ∂Λ), like the existence of an
augmentation, is an obstruction to the DGA being trivial, and thus to Λ
being stabilized. There are Legendrian knots that have no augmentations
but do have higher-dimensional representations. The earliest work on this
was by Sivek [Siv13], who found a family of Legendrian torus knots of
type T (p,−q), where q > p ≥ 3 and p is odd, that have 2-dimensional
representations but no augmentations to Z2. In particular, the knot 819 =
T (3,−4) falls into this family:

Theorem 4.14 ([Siv13]). The DGA of the Legendrian knot shown in
Figure 20 admits an ungraded 2-dimensional representation but not an un-
graded 1-dimensional representation over Z2.

Proof. For the DGA (AΛ, ∂Λ) of this knot in the front projection
(where the base point is placed anywhere), one can check that the map
ρ : AΛ → Mat2(Z2) sending t to ( 1 0

0 1 ), each dark-dotted crossing to ( 0 0
1 0 ),

each light-dotted crossing to ( 0 1
0 0 ), and the cusps to 0 satisfies ρ ◦ ∂Λ = 0.

On the other hand, the coefficient of atb(Λ)−1 = a−13 in the Kauffman poly-
nomial FT (3,−4)(a, z) is 0; so by Theorem 4.13, Λ has no rulings. It follows
from Theorem 4.11 that Λ has no ungraded augmentations. �

We close this section by noting that there is a correspondence between
n-dimensional representations of the DGA (AΛ, ∂Λ) and augmentations of a
certain Legendrian link consisting of n parallel copies of Λ. More precisely,
let Λ(n) denote the n-component Legendrian link whose front consists of n
copies of the front of Λ, pushed off from each other by small perturbations in
the Reeb, that is, the z direction, with one segment of the n parallel fronts
replaced by a full positive twist. We then have the following result.

Theorem 4.15 ([NR13]). The DGA for Λ has an n-dimensional rep-
resentation over Z2 if and only if the DGA for Λ(n) has an augmentation to
Z2.

Since the existence of an augmentation is equivalent to the existence of
a ruling by Theorem 4.11, one can reprove Theorem 4.14 by exhibiting an
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ungraded ruling of Λ(2) where Λ is the knot in Figure 20; see [NR13] for an
illustration of such a ruling. We also remark that one can count the number
of representations of the DGA of a Legendrian knot Λ over a finite field,
and this is related to rulings of satellites of Λ (generalizing Λ(n)) through
colored HOMFLY-PT polynomials; see [LR18].

5. Augmentation categories
In this section, we describe how the collection of augmentations of the

DGA of a Legendrian knot can be assembled into the algebraic structure of
an A∞ category, called the augmentation category. (There are in fact two
categories Aug− and Aug+, which we describe in turn.) The morphisms in
the category are a generalization of the linearized contact homology and A∞-
algebra operations discussed in Section 4, and the category itself is meant
to model a Fukaya category whose objects are exact fillings (see Section 6
below). One benefit of this categorical formulation is that it yields a natural
algebraic notion of equivalence for augmentations, generalizing the geometric
notion of isotopy of fillings. The augmentation category also has an intrigu-
ing relation to sheaf theory; a full description lies outside the scope of this
article, but we give a brief discussion at the end of this section.

5.1. Two A∞ categories. The A∞ algebra described in Section 4.2 is
associated to a choice of augmentation of the DGA (AΛ, ∂Λ). One can gen-
eralize this to incorporate multiple augmentations of (AΛ, ∂Λ), as was first
observed in this context by Bourgeois and Chantraine [BC14]. To see this,
consider a term in ∂Λa of the form αa0ai1a1ai2a2 · · · an−1ainan as in Re-
mark 4.9 above. If we now have not 1 but n+1 augmentations ε0, . . . , εn+1,
then we can replace a0, . . . ,an successively by ε0(a0), . . ., εn(an), and dual-
izing now gives
(1) mn(a

∨
in , . . . , a

∨
i1) = αε0(a0) · · · εn(an)a∨ + · · · .

These new mn operations depend on the choice of augmentations ε0, . . . , εn.
Where the mn formed an A∞ algebra when all of the εi were equal, they
now form the crucial ingredients to an A∞ category.

Definition 5.1. An A∞ category C consists of: a set of objects Ob C;
a graded k-vector space Hom(ε1, ε2) for any objects ε1, ε2 ∈ Ob C; and, for
n ≥ 1 and any objects ε0, . . . , εn ∈ Ob C, a map

mn : Hom(εn−1, εn)⊗ · · · ⊗Hom(ε1, ε2)⊗Hom(ε0, ε1) → Hom(ε0, εn)

of degree 1− n, such that the A∞ relations∑
r+s+t=n

±mr+1+t(1
⊗r ⊗ms ⊗ 1⊗t) = 0

hold for n ≥ 1.

We now have the following result, whose proof (omitted here) is a formal
algebraic consequence of the fact that ∂2

Λ = 0.
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Figure 21. A 3-copy of the Legendrian unknot, in the xy
projection. The perturbing Morse function on the unknot
that yields this 3-copy has two critical points, a maximum in
the upper right of the figure eight and a minimum in the lower
right. This yields two triple points in the xy projection, which
have further been perturbed to give two sets of 3 crossings
as shown.

Theorem 5.2 (Bourgeois–Chantraine [BC14]). Given a Legendrian
knot Λ ⊂ R

3 and a field k, there is an A∞ category Aug−(Λ, k) such that:
• ObAug−(Λ, k) is the set of augmentations (AΛ, ∂Λ) → (k, 0);
• for any ε1, ε2, Hom(ε1, ε2) = k〈R〉∨, the dual to the k-vector space

generated by the set R of Reeb chords of Λ;
• the mn operations for n ≥ 1 are given by Equation (1).

The A∞ category Aug−(Λ, k) is one of two A∞ categories that can be
constructed from augmentations. To set up the other category Aug+, we
first reformulate the definition of Aug−, following [BC14]. For n ≥ 1, the
n-copy Λ(n) of a Legendrian knot Λ is the n-component Legendrian link
given by Λ along with n−1 additional copies, perturbed to be distinct from
Λ and each other by small translations in the Reeb, that is, the z direction.
For now we number these copies Λ1, . . . ,Λn from bottom to top, so that Λk

is the result of translating Λ by (k − 1)ε in the z direction for ε � 1. The
xy projection of Λ(n) = Λ1 ∪ · · · ∪ Λn consists of n overlapping projections
of Λ; to make this generic, we perturb the xy projections of the components
so that they intersect transversely. To do this, we choose a positively-valued
Morse function f on Λ, identify a tubular neighborhood of Λ with the 1-
jet space J1Λ, and choose Λk to correspond to the 1-jet of the function
(k − 1)εf in J1Λ. The result in the xy projection is n parallel copies of Λ
that all intersect at each critical point of f . We then further perturb these
collections of

(
n
2

)
intersections to make them distinct from each other. See

Figure 21 for an illustration of a 3-copy, and [BC14, NRS+15] for more
details.

Let R and R(n) denote the set of Reeb chords of Λ and Λ(n), respectively.
Following Mishachev [Mis03], we can partition R(n) into n2 subsets Rij ,
1 ≤ i, j ≤ n, where Rij consists of Reeb chords that begin on Λj and end
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on Λi. From the description of the xy projection of Λ(n) above, we see that
Reeb chords in R fall into two types: for each crossing in πxy(Λ), there are
n2 crossings in πxy(Λ(n)), one in each Rij ; and for each critical point of f ,
there are

(
n
2

)
crossings in πxy(Λ(n)), one in each Rij for i > j. It follows

that there is a one-to-one correspondence between Rij and R for i ≤ j, and
between Rij and R together with critical points of f , for i > j.

Now let ∂(n) denote the LCH differential for Λ(n). For a ∈ Rij , every
term in ∂(n) is composable: disregarding homology coefficients, it is of the
form a1a2 · · · ak, where a1 ∈ Rii1 , a2 ∈ Ri1i2 , a3 ∈ Ri2i3 , . . ., ak ∈ Rik−1j for
some i1, . . . , ik−1 ∈ {1, . . . , n}. This comes from considering the piecewise-
smooth boundary of the relevant holomorphic disk, and in particular which
components of the n-copy it lies in. The same remains true if we twist the
differential by a pure augmentation of Λ(n), defined to be an augmentation
that sends all generators in Rij to 0 for i �= j.

We can now state an alternate definition for Aug−(Λ, k). As before, the
objects of Aug− are augmentations (AΛ, ∂Λ) → (k, 0), and the morphisms
Hom(ε1, ε2) are the k-vector space generated by (duals of) Reeb chords of Λ,
which we can now identify with the dual of the vector space k〈Rij〉 generated
by Rij for any i ≤ j. Let ε0, . . . , εn be augmentations in ObAug−. Then we
can define a pure augmentation ε = (ε0, . . . , εn) of Λ(n+1) by ε(a) = εj(a) if
a ∈ Rjj and ε(a) = 0 if a ∈ Rij for i �= j. The twisted differential ∂ε

(n+1)

consists of composable terms, and we can dualize it to obtain a map
(2) mn : (k〈Rn−1,n〉)∨ ⊗ · · · ⊗ (k〈R12〉)∨ ⊗ (k〈R01〉)∨ → (k〈R0n〉)∨.
More precisely, a degree n term aj1 · · · ajn in ∂(n)(a) for a ∈ R0n and ajk ∈
Rk−1,k for 1 ≤ k ≤ n dualizes to a term a∨ in mn(a

∨
jn
, . . . , a∨j1).

To see that this definition of mn agrees with the previous definition in
Equation (1), the idea is to look at a holomorphic disk contributing to ∂(n)
and mn, and note that in the limit that all copies of Λ(n) approach Λ, this
disk approaches a disk for the original differential ∂Λ. We leave the details
to the reader (or see [BC14, NRS+15]).

With a minor change, this formulation of Aug− in terms of n-copies
allows us to define another A∞ category Aug+ that has some nicer formal
properties than Aug−. The change is simply reversing the order of the com-
ponents in the n-copy Λ(n), so that Λ1 is on top in the z direction and Λn is
on bottom. The mn maps are then defined as before. However, note that the
sets Rij appearing in the definition of the mn maps in Equation (2) are no
longer in one-to-one correspondence with Reeb chords of Λ, and now have
additional elements corresponding to critical points of the Morse function
f . If we choose f on the knot Λ to have a single maximum x and a single
minimum y, then we can identify Rij with R ∪ {x, y}. We now have the
following.

Theorem 5.3 ([NRS+15]). Given a Legendrian knot Λ ⊂ R
3 and a

field k, there is an A∞ category Aug+(Λ, k) such that:
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• ObAug+(Λ, k) is the set of augmentations (AΛ, ∂Λ) → (k, 0);
• for any ε1, ε2, Hom(ε1, ε2) = k〈R ∪ {x, y}〉∨;
• the mn operations for n ≥ 1 are given as in Equation (2).

Remark 5.4. Note that whereas the definition of Aug−(Λ, k) by Bour-
geois and Chantraine (as we described at the beginning of this section) uses
the DGA of Λ, the construction of Aug+(Λ, k) we have just described in-
volves the DGAs of not just Λ but also its n-copies. However, it is also
possible to deduce the A∞ category Aug+(Λ, k) solely from the DGA of Λ
itself; see [NRS+15, §4] for details.

In higher dimensions, for Legendrian submanifolds Λ with dimΛ > 1,
one can again use [BC14] to construct an A∞ category Aug−(Λ, k) from
the DGA of Λ. It is expected that one can also construct the analogue
of Aug+(Λ, k) in this setting, but we caution that this likely involves more
data than the DGA of Λ, in contrast to the case of 1-dimensional Legendrian
knots that we have discussed here.

5.2. Properties of Aug+. There is a subtle but important distinction
between Aug− and Aug+, and it has to do with the presence of y∨ in Aug+.
In the n-copy Λ(n), it can be checked that the only holomorphic disks with
a negative corner at one of the crossings corresponding to y are triangles
that are “thin” in the sense that they lie entirely in a neighborhood of Λ. It
follows from this that in Aug+, m2(a

∨, y∨) and m2(y
∨, a∨) are (up to sign)

both equal to a∨ for any a ∈ R ∪ {x, y}. More precisely:
Definition 5.5. An A∞ category C is strictly unital if for all ε ∈ Ob C,

there is a morphism eε ∈ Hom(ε, ε) such that: m1(eε) = 0; any mn for n ≥ 3
involving eε is 0; and for any ε1, ε2 and any a ∈ Hom(ε1, ε2),

m2(a, eε1) = m2(eε2 , a) = a.

Theorem 5.6 ([NRS+15]). Aug+(Λ, k) is strictly unital.
The unitality of Aug+ allows us to construct a “usual” category, the

cohomology category H∗Aug+, from Aug+. The objects of H∗Aug+ are the
same as the objects of Aug+, and the morphisms are HomH∗Aug+(ε1, ε2) =
H∗(HomAug+(ε1, ε2),m1). In H∗Aug+, composition is the map induced from
m2 (by the A∞ relations, this is associative) and [eε] serves as the identity
morphism from ε to itself.

This leads to a notion of equivalence for augmentations: two augmenta-
tions ε1, ε2 are isomorphic in Aug+ if there are morphisms a ∈ H∗Hom(ε1, ε2)
and a′ ∈ H∗Hom(ε2, ε1) such that a′ ◦ a = [eε1 ] ∈ H∗Hom(ε1, ε1) and
a ◦ a′ = [eε2 ] ∈ H∗Hom(ε2, ε2), where Hom = HomAug+ . In this setting,
isomorphism of augmentations actually coincides with the notion of DGA
chain homotopy; see [NRS+15, Prop. 5.17].

Remark 5.7. If k is a finite field, then the number of isomorphism
classes of augmentations to k is a Legendrian-isotopy invariant of Λ. This
for instance gives another way to distinguish the Chekanov m(52) knots: Λ1
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from Figure 7 has 1 isomorphism class of augmentations to Z2, while Λ2 has
3. For more on counting augmentations, see for instance [NS06, HR15,
NRSS17].

Although augmentations and the augmentation category Aug+ are al-
gebraic in nature, we will see in Section 6 below that they can be mod-
eled on a geometric source, exact Lagrangian fillings. Fillings of Λ yield
augmentations, and isotopic fillings induce isomorphic augmentations; see
Theorem 6.3 below. The entire augmentation category Aug+(Λ, k) can be
loosely viewed as an algebraic manifestation of an “infinitesimally wrapped”
Fukaya category associated to Λ, whose objects are exact Lagrangian fillings
of Λ and whose morphisms are given by Floer homology groups HF ∗ for a
suitable perturbation of the Lagrangians. We refer the interested reader to
[NRS+15] for further discussion of this viewpoint.

We close this section by mentioning a surprising connection between
Aug+ and sheaf theory. Using techniques from algebraic geometry and in-
spired by work on microlocalization by Nadler–Zaslow [NZ09] and
Guillermou–Kashiwara–Schapira, Shende, Treumann, and Zaslow [STZ17]
defined A∞ categories Shn(Λ, k) associated to Legendrian knots Λ in R

3

or ST ∗
R
2. The objects of Shn(Λ, k) are rank n microlocal sheaves on R

2

with microsupport on Λ, and the morphisms are given by Ext groups; see
[STZ17] for the full definition. It was (essentially) conjectured in [STZ17],
and subsequently proven in [NRS+15], that the augmentation and sheaf
categories are equivalent for Legendrian Λ in R

3:
Aug+(Λ, k) ∼= Sh1(Λ, k).

It is natural to ask what the augmentation analogue of Shn is for n > 1.
In fact, for any n ≥ 1 one can assemble the set of n-dimensional represen-
tations of the DGA of Λ, as discussed in Section 4.4, into the objects of an
A∞ category Repn(Λ, k); for n = 1, we have Rep1(Λ, k) = Aug+(Λ, k). It
is conjectured that Repn(Λ, k) ∼= Shn(Λ, k) for all n. See [CNS18] for the
definition of Repn and some evidence for this conjecture.

6. Fillings and augmentations
In this section we consider Lagrangian cobordisms between Legendrian

knots and discuss how they induce maps on the Chekanov–Eliashberg DGA
of the Legendrian knots. We then see how these maps can be used to obstruct
cobordism and Lagrangian fillings of Legendrian knots. In particular, we will
discuss connections between Lagrangian fillings of Legendrian knots and
augmentations of the Chekanov–Eliashberg DGA.

6.1. Cobordisms and functoriality. One nice feature of LCH, as pre-
dicted by the framework of Symplectic Field Theory [EGH00], is that it is
functorial in a particular way. To state this precisely, we need the notion of
an exact Lagrangian cobordism between two Legendrian knots or links: see
Figure 22 for an illustration.
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Figure 22. On the left, a Lagrangian cobordism from Λ−
to Λ+. On the right, a disk contributing to the augmentation
εL induced by a filling L of Λ+.

Definition 6.1. Let Λ+, Λ− be Legendrian links in R
3. A Lagrangian

cobordism from Λ− to Λ+ is a Lagrangian submanifold L of the symplecti-
zation (R × R

3, d(etα)) such that for some T > 0, L ∩ ((−∞,−T ) × R
3) =

(−∞,−T )×Λ− and L∩ ((T,∞)×R
3) = (T,∞)×Λ+. A Lagrangian cobor-

dism L is exact if there is a function f : L → R such that (etα)|L = df and
f is constant on each individual end, (−∞,−T )× Λ− and (T,∞)× Λ+.

Remark 6.2. The notion of (exact) Lagrangian cobordism can be gener-
alized by replacing R

3 by an arbitrary contact 3-manifold (Y, α), and further
by replacing the symplectization R × Y by an exact symplectic cobordism
from (Y, α) to itself: that is, an exact symplectic manifold with two noncom-
pact ends that agree with the symplectization R × Y . The functoriality of
LCH extends to these more general circumstances; see [EHK16].

One can construct a “cobordism category” whose objects are Legendrian
links in R

3 and whose morphisms are exact Lagrangian cobordisms. (The
condition in Definition 6.1 that f is constant on the ends ensures that exact
Lagrangian cobordisms can be composed by concatenation, see [Cha15].)
The following result, roughly speaking, says that LCH gives a contravariant
functor from this cobordism category to the category of DGAs.

Theorem 6.3 (Ekholm–Honda–Kálmán[EHK16]). An exact Lagrangian
cobordism L from Λ− to Λ+ induces a DGA map between Chekanov–
Eliashberg DGAs

ΦL : (AΛ+ , ∂Λ+) → (AΛ− , ∂Λ−),

that is, an algebra map ΦL : AΛ+ → AΛ− such that ΦL ◦ ∂Λ+ = ∂Λ− ◦ ΦL.
The maps ΦL satisfy the following properties:

(1) if L = R× Λ is a trivial Lagrangian cylinder, then ΦL = idAΛ
;
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(2) if L1, L2 have the same ends Λ± and are isotopic through exact
Lagrangian cobordisms, then ΦL1, ΦL2 are chain homotopic;

(3) if L1, L2 are exact Lagrangian cobordisms from Λ0 to Λ1 and from
Λ1 to Λ2, respectively, and L is the cobordism from Λ0 to Λ2 obtained
by concatenating L1 and L2, then ΦL is chain homotopic to ΦL1 ◦
ΦL2.

There are some subtleties in the precise content of Theorem 6.3 that we
discuss in the following two remarks.

Remark 6.4 (coefficients). Theorem 6.3 is stated in [EHK16] with the
DGAs being over Z2 and with no homology coefficients. One can readily lift
Theorem 6.3 to include homology coefficients by choosing base points on Λ±
and paths on L connecting these base points; see e.g. [CNS16, Pan17]. To
lift Theorem 6.3 from Z2 to Z, one needs to coherently orient the moduli
spaces that are used in the proof. This can be done in general when L is
spin, and in particular for dimL = 2 when L is orientable; see [Kar17].

Remark 6.5 (gradings). If either of Λ± is a disconnected link, then
the grading on the corresponding DGA is not well-defined and relies on a
collection of choices; see Remark 3.4. For the map ΦL to preserve grading,
the choices for Λ± need to be compatible in a suitable sense involving L.

Even when both of Λ± are single-component knots, the extent to which
ΦL preserves grading depends on the Maslov number m(L) of the Lagrangian
L, defined to be the gcd of the Maslov numbers of all closed loops in L. If
m(L) = 0 then ΦL preserves the full Z grading on the DGAs; otherwise it
preserves only the induced quotient grading in Z/(m(L)Z). In particular,
an oriented cobordism preserves at least a Z2 grading, while an unoriented
cobordism need not preserve any grading at all. See [EHK16] for some
discussion of these grading issues.

6.2. Decomposable cobordisms. Here we briefly discuss how to con-
struct exact Lagrangian cobordisms between Legendrian links, following
[EHK16]. Say that a crossing in the Lagrangian projection of a Legendrian
link is contractible if the height of the corresponding Reeb chord can be made
arbitrarily close to 0 by a Legendrian isotopy of the link that corresponds
to a planar isotopy of the Lagrangian projection.

Theorem 6.6 ([EHK16]). Let Λ± be Legendrian links in R
3. There is

an exact Lagrangian cobordism from Λ− to Λ+ if Λ− is obtained from Λ+

by one of the following:
• Legendrian isotopy;
• deleting a component of Λ+ that is a standard Legendrian unknot

(with tb = −1) and is contractible in the complement of the re-
mainder of Λ+ (“unknot filling”);

• the “pinch move” shown in Figure 23, which is a saddle move in
the xz projection and a “0-resolution” of a contractible crossing in
the xy projection.
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Figure 23. Two local moves representing exact Lagrangian
cobordisms: the left two figures in each group are unknot
filling; the right two figures are a pinch move. The left most
group shows the Lagrangian projections and the right most
group shows the front projections. (Arrows indicate going
from the top of the cobordism towards the bottom.) For the
pinch move in the Lagrangian projection, it is crucial that
the crossing being resolved is contractible.

Any concatenation of the “elementary” cobordisms listed in Theorem 6.6
yields an exact Lagrangian cobordism, which we call decomposable. It is cur-
rently an open question whether any exact Lagrangian cobordism is (La-
grangian isotopic to) a decomposable cobordism.

Example 6.7. In practice, one constructs decomposable cobordisms
from top to bottom, starting with Λ+ and successively applying pinch moves
and unknot fillings. An illustrative example from [EHK16] is when Λ+ is the
standard Legendrian right-handed trefoil, shown in Figure 6. The crossings
a3, a4, a5 are all contractible: each of them can be made to have arbitrar-
ily small height. One can construct five decomposable cobordisms from the
empty set to Λ+ (“fillings”, see Section 6.3 below) as follows. Let i, j be
two distinct integers in {1, 2, 3}. Apply a pinch move to the crossing in the
xy projection of Λ+ labeled by i, followed by a pinch move to the crossing
labeled by j. The result is a standard Legendrian unknot, which we can then
delete by unknot filling, resulting in the empty set. Of the six decomposable
cobordisms corresponding to different choices of (i, j), it can be shown that
(i, j) = (1, 3) and (3, 1) yield isotopic cobordisms. It is proven in [EHK16]
that the remaining five cobordisms are pairwise non-isotopic; see Section 6.3.

6.3. Fillings. We now focus on a particular case of an exact Lagrangian
cobordism, when the negative end Λ− is empty. In this case the cobordism
is called an exact Lagrangian filling of the Legendrian link Λ+. With the
simplest possible choice of coefficients as in [EHK16], the DGA of the empty
link is (Z2, 0), and it follows from Theorem 6.3 that an exact Lagrangian
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filling of Λ+ gives an augmentation from (AΛ+ , ∂Λ+) to (Z2, 0). When L is
orientable, from [Kar17] we can lift the augmentation from Z2 to Z. Indeed,
we have the following result.

Theorem 6.8. Let L be a connected, orientable, exact Lagrangian filling
of a Legendrian link Λ. Then L induces an augmentation

εL : (AΛ, ∂Λ) → (Z[π1(L)], 0).

Here we sketch the definition of the map εL, following the more general
construction of cobordism maps in [EHK16]. Let a be a Reeb chord of Λ,
and let M(a) denote the moduli space of rigid holomorphic disks in R×R

3

with boundary on L and a single positive puncture asymptotic to a. For
Δ ∈ M(a), we can concatenate the oriented boundary ∂Δ with the capping
path for a in Λ to produce an element [Δ] ∈ π1(L). Now define

εL =
∑

Δ∈M(a)

(sgn(Δ))[Δ]

where sgn(Δ) ∈ {±1} is a sign coming from the orientation of M(a), and
extend εL to an algebra map on all of AΛ. See Figure 22 for an illustration.

A pictorial sketch of the proof of Theorem 6.8 is given in Figure 24.
Briefly, one follows standard Floer-type arguments by considering the com-
pactification of M1(a), the 1-dimensional moduli space of holomorphic disks
in R× R

3 with boundary on L and a positive puncture at a. Contributions
to the boundary of M1(a) come from a holomorphic disk in (R×R

3,R×Λ)
with positive puncture at a and some number of negative punctures, glued to
holomorphic disks in (R×R

3, L). Each of these contributions counts a term
in εL(∂(a)); for instance, in the left diagram in Figure 24, we have (disregard-
ing elements of π1(L)) ∂(a) = a1a2+ · · · and εL(∂(a)) = εL(a1)εL(a2)+ · · · .
Since the compactification of M1(a) is a compact 1-manifold, these terms
must cancel in pairs, yielding the theorem. It should be noted that the
exactness of L rules out one possibly problematic degeneration in M1(a),
“boundary disk bubbling”, as shown in the right diagram in Figure 24: there

Figure 24. Possible degenerations of disks in M1(a) (the
right one is actually forbidden).
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can be no nontrivial holomorphic disk Δ with boundary fully on L, because
the area of Δ would be

∫
Δ ω =

∫
∂Δ etα = 0 by exactness.

Example 6.9. Consider the trefoil Λ from Examples 3.6 and 6.7. Using
a combinatorial formula for the cobordism maps corresponding to pinch
moves, it is computed in [EHK16] that the five fillings of the Λ from produce
the five distinct augmentations (AΛ, ∂Λ) → (Z2, 0) (where we quotient the
augmentations from Theorem 6.8 by the map Z[π1(L)] → Z2). For grading
reasons, these augmentations are not chain homotopic to each other, and
it follows from Theorem 6.3 that the five fillings are all non-isotopic. In
[Pan17], Pan generalizes this result of Ekholm–Honda–Kálmán to produce
1

n+1

(
2n
n

)
distinct fillings of the Legendrian (2, n) torus knot for n ≥ 1; in the

general case, not all of these fillings induce distinct augmentations to Z2,
but they do induce all distinct augmentations to Z2[π1(L)].

Remark 6.10. When constructing Fukaya categories, one often con-
siders not exact Lagrangians but exact Lagrangians equipped with local
systems. In our context, a rank n local system on an exact filling L of a
Legendrian knot Λ consists of a representation π1(L) → GL(n, k) for some
n and some field k. If we compose this representation with the “universal”
augmentation given in Theorem 6.8, we obtain a DGA map (AΛ, ∂Λ) →
(Matn(k), 0). That is, in the terminology of Section 4.4, an exact filling of
Λ with a rank n local system induces an n-dimensional representation of
(AΛ, ∂Λ).

6.4. Augmentations not from fillings. From the preceding discus-
sion, any exact Lagrangian filling of a Legendrian knot Λ induces an aug-
mentation of the DGA (AΛ, ∂Λ), to say Z2 for simplicity. It is however not
the case that all augmentations come from fillings. As an example, consider
the Legendrian figure eight knot Λ shown in the left of Figure 25. It is read-
ily checked that the DGA for Λ has a unique augmentation to Z2. However,
there is a topological obstruction to Λ having an (embedded, orientable)
Lagrangian filling, exact or not. If L were such a filling, then by work of

Figure 25. Two Legendrian knots with augmentations that
do not come from fillings: the figure eight (left) and a knot
of type m(821) (right).
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Chantraine [Cha10], we would have tb(Λ) = 2g(L) − 1, where g(L) is the
genus of L; but tb(Λ) = −3.

A subtler obstruction to augmentations coming from fillings is provided
by the so-called Seidel isomorphism. This relates the homology of a filling
to the linearized LCH of the corresponding augmentation, and was for a
while a folk result in the subject derived from an observation of Seidel (see
[Ekh12] for a statement from the work of Ekholm) before being formally
proven by Dimitroglou Rizell [DR16].

Theorem 6.11 (Seidel isomorphism). Let L be an exact Lagrangian
filling of a Legendrian knot Λ, and let εL : (AΛ, ∂Λ) → (Z2, 0) be the induced
augmentation to Z2. Then

LCH ∗
εL
(Λ) ∼= H2−∗(L;Z2).

For example, for the trefoil Λ with filling L (topologically a punctured
torus), LCH ∗

ε (Λ) was computed in Example 4.6, and it agrees with H2−∗(L;
Z2).

The proof in [DR16] of Theorem 6.11 constructs an exact triangle relat-
ing the linearized LCH cochain complex of Λ, the Morse complex of L, and a
wrapped Floer complex associated to L, and then observes that the wrapped
Floer homology of L vanishes. Theorem 6.11 has been subsequently gener-
alized in several directions, notably to bilinearized LCH by Bourgeois and
Chantraine [BC14]; this fits in with a larger picture of Floer homology asso-
ciated to Lagrangian cobordisms, as developed by Chantraine, Dimitroglou
Rizell, Ghiggini, and Golovko [CDGG15a, CDGG15b].

Example 6.12. Consider the Legendrian m(821) knot shown on the right
of Figure 25. This knot was famously considered by Melvin and Shrestha
[MS05] and has the unusual property that it has augmentations with differ-
ent linearized LCH. For one set of augmentations, the Poincaré polynomial
for LCH ∗

ε is t2 +2t, while for another set it is 2t2 +4t+1. The first set can
(and indeed does) come from oriented exact Lagrangian fillings. We claim
that the second set cannot, because of the Seidel isomorphism. Indeed, any
oriented filling must have even Maslov number, whence the Seidel isomor-
phism holds at least for grading mod 2. Any oriented exact filling L must
be connected (by Stokes, there are no closed exact Lagrangian surfaces in
R× R

3) and thus satisfies Heven(L;Z2) ∼= Z2, while LCH even
ε

∼= (Z2)
3.

Theorem 6.11 is very useful at obstructing a Legendrian knot from hav-
ing an exact Lagrangian filling. For example in [LS19] Lipman and Sabloff
use this result to completely characterize which Legendrian “4-plat knots”
have fillings. In the opposite direction, Etgü [E18] has shown that there are
Legendrian knots with augmentations whose linearized contact homology is
isomorphic to the homology of a surface, in accordance with Theorem 6.11,
but which do not come from any filling.
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Remark 6.13 (Coefficients and gradings). As in Remark 6.4, the work
of Karlsson [Kar17] can be used to promote the Seidel isomorphism to ar-
bitrary coefficients in the case where the filling L is orientable; for some
discussion, see [CDGG15b]. As in Remark 6.5, the extent to which the
Seidel isomorphism is graded depends on the Maslov number of L. For in-
stance, in the setting where L is orientable but does not necessarily have
Maslov number 0, the isomorphism is only guaranteed to hold when the
gradings are taken in Z2.

Remark 6.14 (Interpretation in Aug+). It is observed in [NRS+15]
that the Seidel isomorphism can be reinterpreted in a natural way in the
augmentation category Aug+(Λ, k). Here the statement of Theorem 6.11
becomes: if L is an exact Lagrangian filling of Λ with augmentation εL, then

H∗Hom(εL, εL) ∼= H∗(L).

This version of the isomorphism bears a strong similarity to a foundational
property in Lagrangian intersection Floer homology, where (roughly speak-
ing) if L is a Lagrangian then we have HF ∗(L,L) ∼= H∗(L). This is in
accordance with the interpretation of Aug+ as a version of a Fukaya cate-
gory, as discussed previously in Section 5.2.

7. LCH and Weinstein domains
So far, we have tried to provide a self-contained introduction to Leg-

endrian contact homology and the Chekanov–Eliashberg DGA, viewed as
interesting invariants of Legendrian knots. However, Legendrian contact ho-
mology also occupies a key role in modern symplectic topology through its
role in studying Liouville and Weinstein domains. In this section we give
a very limited and rather sketchy discussion of this picture; more details
can be found in the references. The reader is cautioned that this story is
currently rapidly developing and parts of it are not entirely rigorous at the
moment.

The beginning point for this discussion is a certain type of symplectic
manifold with contact boundary called a Liouville domain [Sei08]. This is a
compact symplectic manifold (X,ω) such that ω = dλ is exact with primitive
1-form λ, resulting in the Liouville vector field Z on X defined by λ = iZω,
and such that Z points outwards along ∂X. The boundary Y = ∂X is then
a contact manifold with contact 1-form λ, and near the boundary X looks
like the symplectization of Y .

A Liouville domain X is called a Weinstein domain [EG91] if it is
equipped with a Morse function φ that is locally constant on ∂X and for
which the Liouville vector field Z is gradient-like. A nice feature of We-
instein domains is that one can adapt the standard topological handle-
decomposition picture for X from the Morse theory of φ to the symplectic
setting. If dimX = 2n, then each handle in the handle decomposition is of
index ≤ n, and each one is modelled by a standard symplectic handle called
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Figure 26. Attaching a critical Weinstein handle to a sub-
critical Weinstein domain X0 along a Legendrian sphere
Λ ⊂ Y0 = ∂X0 to produce a Weinstein domain X. Also
pictured are the Lagrangian core ΔΛ and cocore CΛ of the
handle.

a Weinstein handle. The handles of index < n and n are called subcriti-
cal and critical, respectively. One can then build up X by first attaching
all of the subcritical handles, resulting in a “subcritical Weinstein domain”
X0, and then attaching the critical handles. These critical handles are at-
tached to X0 along attaching spheres in the contact boundary ∂X0 which
are in fact Legendrian. The symplectic topology of the subcritical domain
X0 turns out to be fairly simple, and the interesting symplectic topology of
X is determined by the Legendrian attaching spheres in ∂X0.

This leads to the following picture. Let X0 be a subcritical Weinstein do-
main with contact boundary Y0, and let Λ be a Legendrian sphere in Y0. We
can then construct a Weinstein domain X by attaching a Weinstein handle
to X0 along Λ; the isotopy type of Λ determines X up to symplectomor-
phism, and the boundary ∂X is obtained from ∂X0 by Legendrian surgery
on Λ. See Figure 26 for a schematic picture.

There are various interesting symplectic invariants that one can asso-
ciate to X. Key among these are linearized contact homology CH∗(X), which
is the contact homology of the boundary ∂X linearized by the augmenta-
tion coming from the filling X, and symplectic homology SH∗(X). See e.g.
[BEE12] for definitions and a history of these invariants.

A key result announced by Bourgeois, Ekholm, and Eliashberg [BEE12]
is that both CH∗(X) and SH∗(X) are essentially determined by the
Chekanov–Eliashberg DGA (AΛ, ∂Λ) of Λ. For linearized contact homology,
there is an exact triangle

· · · → CH(X) → CH(X0) → LCHcyc(Λ) → · · ·
where LCHcyc(Λ) is the cyclic Legendrian contact homology of Λ: the ho-
mology of the complex generated by cyclic words in Reeb chords of Λ, with
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differential induced by ∂Λ. For symplectic homology, one can define another
homology LCHHo

∗ (Λ) derived from (AΛ, ∂Λ) using a construction analogous
to Hochschild homology; the precise definition of LCHHo

∗ (Λ) is a bit involved
and we refer the reader to [BEE12]. We then have the following result.

Theorem 7.1 ([BEE12, Corollary 5.7]). There is an isomorphism
SH∗(X) ∼= LCHHo

∗ (Λ).

We note that the proofs of the results announced in [BEE12], includ-
ing the above results about CH∗(X) and SH∗(X), have not yet appeared.
Nevertheless, the main takeaway is that both linearized contact homology
CH∗(X) and symplectic homology SH∗(X) are determined by the DGA
(AΛ, ∂Λ) of the Legendrian attaching sphere Λ.

In the special case where dimX = 4, the subcritical domain X0 can
be decomposed into 0-handles and 1-handles, and the boundary ∂X0 is a
connected sum #k(S1 × S2). The DGA of a Legendrian knot or link in
#k(S1 × S2) has been combinatorially described in [EN15], generalizing
the k = 0 case, which corresponds to the contact manifold S3 and where
it can be shown that the DGA is the same as the one we have considered
for Legendrian knots in R

3. It follows that for any Weinstein domain X of
dimension 4, there is a combinatorial description for CH∗(X) and SH∗(X)
in terms of a diagram for the Legendrian knot or link in #k(S1 × S2) along
which the critical handles are attached. As one sample consequence, it can
be shown using CH∗ that the contact 3-manifolds obtained from S3 by
Legendrian surgery on the Chekanov m(52) knots, while the same as smooth
manifolds, are distinct as contact manifolds; see [BEE12].

A more direct interpretation of LCH as it relates to Weinstein domains
is given by wrapped Floer homology. To set this up, we use the same setup
as before: let X0 be a Weinstein (or Liouville) domain, let Λ be a Legendrian
sphere in the contact boundary ∂X0, and let X be the Liouville domain ob-
tained from X0 by attaching a Weinstein handle along Λ. The core of the
handle is a Lagrangian disk ΔΛ and the handle itself is then symplectomor-
phic to T ∗Δ. A fiber of this cotangent bundle is another Lagrangian disk,
the cocore disk CΛ, which intersects ΔΛ once and whose boundary lies on
∂X. See Figure 26.

To the Lagrangian cocore CΛ one can associate an invariant called the
wrapped Floer homology HW∗(CΛ). The following result has been announced
in [BEE12], with a proof sketch given in [EL17]:

Theorem 7.2. There is an isomorphism between HW∗(CΛ) and the full
Legendrian contact homology LCH∗(Λ) = H∗(AΛ, ∂Λ).

One can interpret this result on the level of categories. The cocore CΛ is
an object in the wrapped Fukaya category of X and indeed generates this
wrapped category [CDGG17]. The endomorphism algebra of the full sub-
category corresponding to the single object CΛ is then A∞ quasi-isomorphic
to the DGA (AΛ, ∂Λ). See [EL17, Theorem 2].
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Figure 27. A Legendrian knot of type P (3,−3,−4) =
m(10140). Crossings and right cusps (corresponding to Reeb
chords for the resolution of this front) are labeled. A base
point is placed in the loop at a5 produced by the resolution.

There is (conjecturally) a similar interpretation of the loop space DGA
(see Remark 3.3) in terms of a partially wrapped version of Floer homology
[Syl16], cf. [EL17, Theorem 2], and this fits into a broader picture of Gana-
tra, Pardon, and Shende concerning partially wrapped Fukaya categories and
Liouville sectors. See [GPS18] for further results in this direction.

Appendix A. The DGA of the pretzel knot P (3,−3,−4)

Here we prove Proposition 3.14 for the case m = 1 by providing an ex-
plicit stable tame isomorphism between the DGA for the Legendrian pretzel
knot P (3,−3,−4) shown in Figure 27, which we call Λ, and the DGA for the
unknot from Example 3.5. The knot Λ has 15 Reeb chords, of the following
degrees:

2 : a8, a13

1 : a1, a2, a3, a4, a5, a10, a15

0 : a6, a7, a11, a14

−1 : a9

−2 : a12.

The DGA (AΛ, ∂ = ∂Λ) is generated by a1, . . . , a15, along with t±1 in
degree 0. The differential is given as follows:

∂(a1) = 1 + a14a6

∂(a2) = 1− a6a7 + a15a12a10

∂(a3) = 1− a7a11

∂(a4) = 1 + a10a9 − a14 − a8a12a14

∂(a5) = t−1 − a11 − a11a12a13 + a9a15
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∂(a8) = a10a11

∂(a9) = −a11a12a14

∂(a13) = −a14a15

and ∂(ai) = 0 for all other i ≤ 15.

Remark A.1. Before we present the stable tame isomorphism between
this DGA and the DGA for the unknot, we comment on the motivation for
this computation, which comes from the characteristic algebra [Ng03]. The
characteristic algebra C of (AΛ, ∂) is defined to be the quotient of AΛ by
the two-sided ideal generated by {∂(ai)}, and is generally easier to handle
than the homology of (AΛ, ∂) while still being invariant in a suitable sense
(see [Ng03]). Here C is generated by a1, . . . , a15, t

±1, and in C we have the
following relations
a14a6 = −1, a7a11 = 1, a11a12a14 = 0, a6a7 = 1 + a15a12a10

from ∂(a1), ∂(a3), ∂(a9), ∂(a2) respectively. It follows that in C, a12 =
−a7a11a12a14a6 = 0 and so a6a7 = 1. Together with a7a11 = 1, this implies
that a11 = a6a7a11 = a6 and so a6 = a11 and a7 are two-sided inverses of
each other. We can successively use the rest of the relations in C coming
from ∂(ai) to conclude that C can be reduced to generators a1, a2, a3, a4,
a5, a8, a9, a13, t±1 with a single relation 1 + t−1. This is equivalent to the
characteristic algebra for the unknot, which has generators a, t±1 with the
same single relation.

We now proceed to the stable tame isomorphism between DGAs. In
(AΛ, ∂), note that ∂(a7a9a6) = −a7a11a12a14a6 and so

∂(a7a9a6 − a3a12a14a6 + a12a1) = a12.

Now stabilize AΛ once by adding generators a16, a17 with |a16| = 0, |a17| =
−1 and ∂(a16) = a17, ∂(a17) = 0. Then if we conjugate by the elementary
automorphism that sends

a17 �→ a17 − (a7a9a6 − a3a12a14a6 + a12a1)

then the new differential, which we also write as ∂, agrees with the original
∂ except for ∂(a17) = a12 and ∂(a16) = a17 − a7a9a6 + a3a12a14a6 − a12a1.
We then use the following elementary automorphisms to remove a12 from
the differentials of all generators besides a17:

a2 �→ a2 − a15a17a10

a5 �→ a5 − a11a17a13

a9 �→ a9 − a11a17a14

followed by
a4 �→ a4 − a8a17a14

a16 �→ a16 − a3a17a14a6 − a17a1.
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The end result is the following differential:

∂(a1) = 1 + a14a6

∂(a2) = 1− a6a7

∂(a3) = 1− a7a11

∂(a4) = 1 + a10a9 − a14

∂(a5) = t−1 − a11 + a9a15

∂(a8) = a10a11

∂(a13) = −a14a15

∂(a16) = −a7a9a6

∂(a17) = a12

and ∂(ai) = 0 for all other i ≤ 17.
Next note that ∂(−a6a16a7 + a2a9a6a7 − a9a2) = a9. We stabilize AΛ

once more by adding generators a18, a19 with |a18| = 1, |a19| = 0 and
∂(a18) = a19, ∂(a19) = 0. Conjugate by the elementary automorphism

a19 �→ a19 − (−a6a16a7 + a2a9a6a7 − a9a2)

to get ∂(a19) = a9 and ∂(a18) = a19 + a6a16a7 − a2a9a6a7 + a9a2. Now
eliminate a9 from the differentials of everything besides a19 by applying

a4 �→ a4 − a10a19

a5 �→ a5 − a19a15

a16 �→ a16 − a7a19a6

followed by
a18 �→ a18 + a19a2 + a2a19a6a7.

The end result is:

∂(a1) = 1 + a14a6

∂(a2) = 1− a6a7

∂(a3) = 1− a7a11

∂(a4) = 1− a14

∂(a5) = t−1 − a11

∂(a8) = a10a11

∂(a13) = −a14a15

∂(a17) = a12

∂(a18) = a6a16a7

∂(a19) = a9

and ∂(ai) = 0 for all other i ≤ 19.
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It is now straightforward to reduce this DGA to the DGA of the unknot.
Successively apply the following elementary automorphisms:

a14 �→ a14 + 1

a1 �→ a1 − a4a6

a13 �→ a13 + a4a15

a6 �→ a6 − 1

a2 �→ a2 − a1a7

a7 �→ a7 − 1

a3 �→ a3 − a2a11

a11 �→ a11 − 1

a5 �→ a5 − a3

a8 �→ a8 − a10a3

a18 �→ a18 − a1a16 + a1a16a7 − a16a2

to give
∂(a1) = a6 ∂(a8) = −a10

∂(a2) = a7 ∂(a13) = −a15

∂(a3) = a11 ∂(a17) = a12

∂(a4) = −a14 ∂(a18) = a16

∂(a5) = 1 + t−1 ∂(a19) = a9

and ∂(ai) = 0 for all other i ≤ 19. Destabilize by removing generators in
pairs: a1, a6; a2, a7; a3, a11; a4, a14; a8, a10; a13, a15; a17, a12; a18, a16; a19,
a9. This produces the DGA generated by a5 alone, with differential ∂(a5) =
1 + t−1, and this is precisely the DGA of the unknot from Example 3.5.
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