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Foliations, contact structures and their
interactions in dimension three

Vincent Colin and Ko Honda

Abstract. We survey the interactions between foliations and contact
structures in dimension three, with an emphasis on sutured manifolds
and invariants of sutured contact manifolds. This paper contains two
original results: the fact that a closed orientable irreducible 3-manifold
M with nonzero second homology carries a hypertight contact structure
and the fact that an orientable, taut, balanced sutured 3-manifold is
not a product if and only if it carries a contact structure with nontrivial
cylindrical contact homology. The proof of the second statement uses the
Handel-Miller theory of end-periodic diffeomorphisms of end-periodic
surfaces.
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1. Introduction
Codimension one foliations are a powerful tool for probing the topol-

ogy of an ambient manifold of dimension three. Since the work of Gabai
[Ga1], taut foliations have been identified as a particularly relevant class
of foliations, at the epicenter of many breakthroughs such as the resolu-
tion of the Property R and P conjectures for knots respectively by Gabai
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[Ga2] and Kronheimer-Mrowka [KM2]. The theory of sutured manifolds
and their decompositions [Ga1] provides a (finite depth) taut foliation on
every closed orientable irreducible 3-manifold with nontrivial integral sec-
ond homology. The existence of a taut foliation on an irreducible 3-manifold
M is currently conjectured to be equivalent to the left-orderability of the
fundamental group of M [BGW].

Contact structures are more flexible in nature, but the results of
Eliashberg-Thurston [ET] and Vogel [Vo1] give a correspondence between
the two worlds, namely an essentially unique way to approximate a taut
foliation of class C2 without a torus leaf by a tight contact structure. The
stability of contact structures makes them appear as a discrete version of
foliations. It is also important that tight contact structures might exist when
taut foliations do not (for example on S3), extending the possible range of
investigations.

More interesting is that they are well-adapted to pseudo-holomorphic
curve techniques. Amongst those, two invariants emerge: embedded contact
homology and (cylindrical) contact homology. Both are homologies of chain
complexes generated by finite products of periodic orbits of a Reeb vector
field for a contact structure and whose differentials count certain pseudo-
holomorphic curves in the symplectization of the contact manifold. Embed-
ded contact homology (ECH) was defined by Hutchings [Hu1, Hu2, Hu3]
and Hutchings-Taubes [HT1, HT2] and was shown to be a topological
invariant [T2] isomorphic to the Heegaard Floer homology of Ozsváth-
Szabó [OSz1, OSz2] in [CGH0]–[CGH3]. Contact homology, proposed
by Eliashberg-Givental-Hofer [EGH] and defined in full generality by Par-
don [Par] and Bao-Honda [BH2], is a contact invariant which is sensitive
to the particular choice of contact structure on a given manifold.

The theory of convex surfaces in contact 3-manifolds, developed by
Giroux [Gi1], is also surprisingly close to the theory of sutured 3-manifolds,
invented by Gabai to construct taut foliations. Indeed both interact in a
nested way, making it possible to define invariants of sutured contact man-
ifolds and develop a gluing theory for contact manifolds parallel to that
of foliated sutured ones [HKM1]–[HKM6], [Co1, Co2], [CH, CGHH].
This combination of foliation theory and contact geometry through its holo-
morphic invariants — and in particular the contact class associated to a
contact structure in the Heegaard Floer homology group of the ambient
manifold [OSz3] — has expanded the applicability of Gabai’s work and
provided striking new results such as the proof of the Gordon conjecture
by Kronheimer, Mrowka, Ozsváth and Szabó [KMOS] or the characteriza-
tion of fibered knots by Ghiggini [Gh] and Ni [Ni]. The existence of a taut
foliation on an irreducible rational homology sphere M is now conjectured
to have a complete characterization in terms of Heegaard Floer homology
(or equivalently ECH): the rank of the Heegaard Floer hat group of M is
strictly larger than the order of H1(M ;Z).



FOLIATIONS, CONTACT STRUCTURES AND THEIR INTERACTIONS 73

The goal of this paper is to survey these interactions, with an emphasis
on sutured manifolds and invariants of sutured contact manifolds. We also
discuss some open problems. The paper contains two original results: the
fact that a closed orientable irreducible 3-manifold M with nonzero second
homology carries a hypertight contact structure (Theorem 3.14) and the fact
that an orientable, taut, balanced sutured 3-manifold is not a product if
and only if it carries a contact structure with nontrivial cylindrical contact
homology (Theorem 4.14). The proof of Theorem 4.14 uses the Handel-
Miller theory of end-periodic diffeomorphisms of end-periodic surfaces. We
also discuss work in progress with Ghiggini and Spano [CGHS] to prove
the isomorphism between the sutured versions of Heegaard Floer homology
and ECH.

2. A brief overview of foliations and contact structures
2.1. Definitions. On a 3-manifold M , there are two classes of homo-

geneous plane fields of class C1. Given a local nonvanishing 1-form α with
kernel a homogeneous plane field ξ, either the 3-form α∧dα vanishes every-
where or is nonzero everywhere. In the first case, the plane field ξ integrates
into a foliation and is locally defined by an equation dz = 0 in R3. It is
the tangent space to the local surfaces {z = const}. In the second case, it
is locally given by an equation dz − ydx = 0 and is a contact structure. In
these coordinates, the vector field ∂y is tangent to the contact plane and the
slope of the line field ξ ∩ {dy = 0} in the (x, z) coordinates is y: the plane
field ξ rotates with y, a manifestation of its maximal nonintegrability. When
ξ is a contact structure, the sign of the 3-form α ∧ dα is independent of the
choice of α and hence ξ induces an orientation of M .

In this article we assume that all plane fields are cooriented and 3-
manifolds oriented. Moreover, we assume that all plane fields are of class
C1, unless stated otherwise.

The topology of a 3-manifold is often probed by looking at its sub-
manifolds of dimensions 1 and 2. In the presence of a plane field ξ, one
distinguishes horizontal curves (i.e., curves everywhere tangent to ξ) and
transverse ones. Whether ξ is integrable or contact makes a huge difference:
every horizontal curve of a foliation must stay in a leaf, whereas any two
points can be connected by a horizontal (or transverse) arc in a contact man-
ifold. If ξ is contact, a horizontal curve will usually be called Legendrian.
Also in the contact case, there is a preferred class of transverse vector fields
called Reeb vector fields: given a contact form α for ξ, the associated Reeb
vector field Rα is obtained as the unique solution to the equations:

α(Rα) = 1 and dα(Rα, .) = 0.

One easily verifies that the class of Reeb vector fields coincides with the
class of transverse vector fields whose flows preserve ξ.

If S is a surface in (M, ξ), we define its characteristic foliation to be the
singular foliation ξS of S generated by the singular line field ξ ∩ TS. The
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singularities are the points p ∈ S where ξp = TpS. For a generic S, they are
isolated. Generically the singularities of ξS are either saddles or centers when
ξ is integrable, and saddles or sources/sinks when ξ is a contact structure.
If both ξ and S are oriented, then the foliation ξS is also oriented.

The main tool for analyzing a 3-dimensional contact manifold is convex
surface theory, which was developed by Giroux [Gi1]. When ξ is a contact
structure, a closed surface S ⊂ (M, ξ) is convex if there exists a vector field
X transverse to S and whose flow preserves ξ. The convexity condition is a
C∞-generic condition. If S is convex, the dividing set

ΓS = {x ∈ S | X(x) ∈ ξ(x)}

is an oriented embedded 1-submanifold of S (i.e., a multicurve) transverse
to the characteristic foliation ξS. It decomposes S into regions R+ and R−
such that X is positively (resp. negatively) transverse to ξ on R+ (resp. R−).
It turns out that the dividing set ΓS does not depend on the choice of the
vector field X up to isotopy through curves transverse to the characteristic
foliation ξS. The dividing set ΓS completely determines the germ of ξ near
S. When ∂M is convex, the dividing set Γ∂M gives M the structure of a
sutured manifold; see Sect. 3.2.

2.2. Flexibility vs. rigidity. We review the boundary between flexi-
bility and rigidity both for foliations and contact structures.

2.2.1. Foliations. We first discuss the situation for foliations. A Reeb
component is a foliation of the solid torus S1 ×D2 such that the boundary
S1 × ∂D2 is a leaf and int(S1 × D2) is foliated by an S1-family of planes
which “winds around” in such a way that the characteristic foliation of each
meridian disk {θ}×D2 consists of concentric circles with one singularity at
the center. The presence of Reeb components makes foliations flexible and
subject to an h-principle. In fact Thurston [Th] showed that on a given 3-
manifold every plane field is homotopic to an integrable one, typically with
many Reeb components. Along the same lines, by inserting Reeb components
Eynard-Bontemps [E-B] showed that two generic integrable plane fields that
are homotopic as plane fields are homotopic through integrable plane fields,
and the same also holds for taut foliations without the genericity assumption.

One gets more rigidity by considering foliations without Reeb compo-
nents, or the more restrictive class of taut foliations, for which there is a
closed transverse curve that passes through every leaf. This condition pre-
vents Reeb components from existing. The existence of a taut foliation im-
poses strong restrictions on the ambient manifold: its universal cover is R3

by Palmeira [Pa] and all the leaves are π1-injective by Novikov [No]. An
equivalent definition for a foliation to be taut is to have a volume-preserving
transverse vector field. Moreover, a vector field transverse to a taut foliation
has no contractible periodic orbit. Finally, taut foliations only exist in a
finite number of homotopy classes of plane fields [KM1].
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2.2.2. Contact structures. On the contact side, a contact structure ξ is
overtwisted if there exists an embedded disk D such that ξ = TD along
∂D; otherwise it is tight. In this paper we emphasize two subclasses of tight
contact structures, mostly due to their close connections with taut foliations:

(1) universally tight contact structures, i.e., tight contact structures
that remain tight when pulled back to the universal cover; and

(2) hypertight contact structures, i.e., contact structures that admit
Reeb vector fields with no contractible periodic orbit.

By a theorem of Hofer [Hof] that states that an overtwisted contact form
on a closed manifold always admits a contractible periodic Reeb orbit, a
hypertight contact structure is always universally tight. The hypertightness
condition also insures that the cylindrical contact homology is well-defined
[HuN, BH1] and hypertight contact forms are typically easier to deal with
when computing holomorphic invariants; see Sect. 4.

Similar to foliations with Reeb components, overtwisted contact struc-
tures are subject to an h-principle which was discovered by Eliashberg [El1]:
there is exactly one homotopy class of overtwisted contact structures in every
homotopy class of 2-plane fields. However, rigidity shows up again when con-
sidering higher homotopy groups in the space of overtwisted contact struc-
tures. For example, we have the following:

Theorem 2.1 (Chekanov-Vogel [Vo2]). If ξ is an overtwisted contact
structure of S3 whose Hopf number is 1, then there exists a loop of overtwisted
contact structures based at ξ that is contractible in the space of plane fields,
but not in the space of overtwisted contact structures.

Problem 2.2. Does the same phenomenon hold for foliations with Reeb
components?

Tight contact structures have strong rigidity properties and admit a
roughly classification in dimension three [Co4, CGiH, HKM2]: They exist
in a finite number of homotopy classes of plane fields. If M is atoroidal (e.g.,
hyperbolic), it carries finitely many — this number may be zero — tight
contact structures up to isotopy. If M is toroidal and irreducible, it carries
infinitely many tight contact structures up to diffeomorphism. Finally, the
class of tight contact structures is stable under connected sum [Co1].

Problem 2.3. Does every hyperbolic 3-manifold carry a tight contact
structure?

Compare this to the situation for taut foliations where Roberts-
Shareshian-Stein [RSS] showed that there are infinitely many hyperbolic
3-manifolds without taut foliations; there are other obstructions due to
Calegari-Dunfield [CD] and Kronheimer-Mrowka-Ozsváth-Szabó [KMOS].

3. From foliations to contact structures
3.1. Perturbing foliations and torsion. The link between foliations

and contact structures was discovered by Eliashberg and Thurston [ET].
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Theorem 3.1 (Eliashberg-Thurston). Every C2-foliation on a closed
3-manifold different from the foliation by spheres of S1 × S2 is a limit of
a sequence of positive contact structures and also a sequence of negative
contact structures. Moreover, if the foliation is taut, then every contact
structure C0-close to it is semi-fillable and universally tight.

A contact 3-manifold (M, ξ) is semi-fillable if there exists a symplectic
manifold (W,ω) with contact boundary ∂W = (M, ξ) � (M ′, ξ′) such that
ω|ξ�ξ′ is symplectic. The symplectic manifold (W,ω) is called a semi-filling
of (M, ξ).

Theorem 3.1 was extended by Bowden [Bo1] and Kazez-Roberts [KR]
to the case of C0-foliations and it was shown in [Bo2, Co5] that every
contact structure close to a Reebless foliation is universally tight. In the
presence of a torus leaf, Giroux noticed that the torsion phenomenon could
provide different contact structures approximating the same foliation. The
following is the basic example:

Example 3.2. On the 3-torus

T 3 = {(x, y, t) ∈ R/Z× R/Z× R/(2πZ)},

for any positive integer n and real number ε �= 0, the plane field

ξεn = ker(dz + ε(cos(nx)dt− sin(ny)dt))

is a contact structure, positive when ε > 0 and negative when ε < 0. By
Gray’s stability theorem, for a fixed n all the structures ξεn with ε > 0 are
isotopic, and similarly for ε < 0. Moreover, by Kanda [Ka] and Giroux [Gi2],
two different n give two nondiffeomorphic contact structures and every tight
contact structure on T 3 is contactomorphic to some ξεn. Finally we observe
that when ε goes to 0, all these contact structures converge to the integrable
plane field ξ0n = ker dz.

More generally, let ξn be the contact structure defined on the thickened
torus

T 2 × I = {(x, y, t) ∈ R/Z× R/Z× [0, 2π]}
by the equation cos tdx−sin tdy = 0. We define the torsion τ(M,ξ) of a contact
manifold (M, ξ) to be the supremum of the integers n for which there exists
a contact embedding

(T 2 × I, ξn) ↪→ (M, ξ).

One can also specify the torsion τη in a given isotopy class η of embeddings
of T 2. It is immediate from Eliashberg’s classification of overtwisted contact
structures that τη is infinite for every η. When ξ is tight, τη = 0 in every
compressible class η.

The following is still open:

Problem 3.3. Prove that τ(M,ξ) < ∞ whenever (M, ξ) is tight.
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It was shown in [Co3] that supη∈D τη < ∞ when (M, ξ) is universally
tight, where D is the set of isotopy classes of incompressible tori that do not
appear in the Jaco-Shalen-Johannson (JSJ) decomposition of M . However,
we still do not know whether τη < ∞ for the JSJ classes and whether
τ(M,ξ) < ∞ if (M, ξ) is tight but not universally tight.

It was conjectured in [Co6] that the torsion phenomenon which appears
in the presence of a torus leaf was the only reason for the nonuniqueness of
the approximation. The answer to this problem was given by Vogel:

Theorem 3.4 (Vogel [Vo1]). If F is a C2-foliation on a closed 3-
manifold which does not have a torus leaf, is not a foliation by planes,
and is not a foliation by cylinders, then it has a C0-neighborhood in the
space of 2-plane fields in which all positive (or negative) contact structures
are isotopic.

The strength of this result is that it implies that if I is an invariant of a
contact structure up to isotopy (e.g., contact homology), then I immediately
becomes an invariant of a foliation satisfying the conditions of Theorem 3.4.

It was already known by Honda-Kazez-Matić [KHM3] that:

Theorem 3.5. If π : M → S1 is a fibered hyperbolic 3-manifold (and
hence has pseudo-Anosov monodromy), then there is a unique positive con-
tact structure ξπ up to isotopy that is homotopic to TFπ, where Fπ is the
foliation by fibers.

The contact homology of ξπ is thus an invariant of the pseudo-Anosov
map.

Problem 3.6. Compute the contact homology in this case. What does it
tell us about the pseudo-Anosov map? Study its behavior under composition
of monodromies, provided they stay pseudo-Anosov. A first step was taken
in Theorem 3.17, which provides a convenient Reeb vector field.

Problem 3.7. Given a fibration π : M → S1 with pseudo-Anosov mon-
odromy, is every taut foliation which is homotopic in the space of 2-plane
fields to TFπ homotopic through taut foliations to Fπ? For example, is it
the case for the taut foliation constructed in Remark 3.21?

3.2. Sutured manifold decompositions. One way to construct taut
foliations and tight contact structures on a given 3-manifold M is to proceed
as follows:

(i) Decompose M into basic pieces.
(ii) Starting from model foliations/contact structures on these basic

pieces, inductively glue them together to construct foliations/con-
tact structures on the desired manifold M .

It is nontrivial to ensure that at each step the gluing is compatible with the
foliation/contact structure, and even more difficult in the contact case to
ensure that tightness is preserved.
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Figure 1. A portion of a sutured manifold M near its suture
Γ. One can view the front and back vertical sides as being
identified

In this subsection we discuss decomposing M into basic pieces. A suitable
decomposition, called a sutured manifold decomposition, was discovered by
Gabai [Ga1].

Definition 3.8. A sutured 3-manifold is a triple (M,Γ, U(Γ)), where
M is a compact 3-manifold with corners, Γ is an oriented 1-manifold in ∂M
called the suture, and U(Γ) = [−1, 0] × [−1, 1] × Γ is a neighborhood of
Γ = {(0, 0)} × Γ in M with coordinates (τ, t) ∈ [−1, 0] × [−1, 1], such that
the following hold:

• U(Γ) ∩ ∂M = ({0} × [−1, 1]× Γ) ∪ ([−1, 0]× {−1, 1} × Γ).
• ∂M − ({0} × (−1, 1) × Γ) is the disjoint union of two submani-

folds which we call R−(Γ) and R+(Γ), where the orientation of ∂M
agrees with that of R+(Γ) and is opposite that of R−(Γ), and the
orientation of Γ agrees with the boundary orientation of R±(Γ).

• The corners of M are precisely {0} × {±1} × Γ.
We refer to A(Γ) = {0}× [−1, 1]×Γ as the vertical annular neighborhood of
Γ in ∂M . See Fig. 1.

Our definition is slightly different from Gabai’s original one from [Ga1]:
we introduced the neighborhoods U(Γ) and use smooth manifolds with cor-
ners instead of ones with boundary. We often suppress the data of the neigh-
borhood U(Γ), since it is usually understood.

Definition 3.9. A product sutured manifold is a sutured manifold of
the form

(S × [−1, 1],Γ = ∂S × {0}),
where S is a compact oriented surface, each of whose components has nonempty
boundary. Here A(Γ) = ∂S × [−1, 1].

Definition 3.10. A sutured 3-manifold (M,Γ, U(Γ)) is taut if
(1) M is irreducible;
(2) R+(Γ) and R−(Γ) are incompressible in M ; and
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(3) R+(Γ) and R−(Γ) have minimal Thurston norm, i.e., minus the sum
of the Euler characteristics of its non-spherical and non-disk com-
ponents, amongst properly embedded surfaces realizing the same
homology class in H2(M,Γ).

It is balanced if χ(R+) = χ(R−), M has no closed components, and
π0(A(Γ)) → π0(∂M) is surjective.

We now describe how to apply a sutured manifold decomposition of a
sutured manifold (M,Γ) into (M ′,Γ′) along a surface S. In what follows
N(B) denotes a sufficiently small tubular neighborhood of B.

Let S ⊂ (M,Γ) be an oriented properly embedded surface such that
S � A(Γ), ∂A(Γ) and:

• each arc component c of S ∩A(Γ) is nonseparating in A(Γ);
• each closed component c of S∩A(Γ) is homologous to Γ∩A, where
A is the component of A(Γ) containing c;

• no component of S is a disk with boundary in R±(Γ); and
• no component of ∂S bounds a disk in R±(Γ).

Let M ′ = M \int(N(S)) and let S′
+ (resp. S′

−) be the portion of ∂N(S)∩
∂M ′ where the orientation induced from S agrees with (resp. is opposite to)
the boundary orientation on ∂M ′.

We then set
A(Γ′) := (A(Γ) ∩M ′) ∪N(S′

+ ∩R−(Γ)) ∪N(S′
− ∩R+(Γ)),

R+(Γ
′) := ((R+(Γ) ∩M ′) ∪ S′

+)− int(A(Γ′)),

R−(Γ
′) := ((R−(Γ) ∩M ′) ∪ S′

−)− int(A(Γ′)),

where we smooth and introduce corners as appropriate.
A sutured manifold hierarchy is a sequence of such decompositions

(M,Γ) = (M0,Γ0)
S0� (M1,Γ1)

S1� · · · Sn−1� (Mn,Γn)

along π1-injective surfaces Si ⊂ Mi, i = 1, . . . , n − 1, such that (Mn,Γn) is
a product sutured manifold. Gabai [Ga1] showed that:

Theorem 3.11. A taut balanced sutured manifold admits a sutured man-
ifold hierarchy.

Figure 2 depicts the reverse operation called sutured gluing which iden-
tifies S− ⊂ R−(Γ) and S+ ⊂ R+(Γ).

3.3. Construction of hypertight contact structures. Next we dis-
cuss the construction step in the contact case.

Definition 3.12. A sutured contact manifold (M,Γ, U(Γ), ξ) is a su-
tured 3-manifold (M,Γ, U(Γ)) together with a contact form λ for ξ such
that:

(i) the Reeb vector field Rλ for λ is positively transverse to R+(Γ) and
negatively transverse to R−(Γ);
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Figure 2. Sutured gluing along S− ⊂ R−(Γ) and S+ ⊂ R+(Γ)

(ii) λ = Cdt + β in U(Γ), where β is independent of t. In particular,
Rλ = 1

C ∂t in U(Γ).
A contact form λ satisfying (i) and (ii) is adapted to (M,Γ, U(Γ)).

The initial step in the construction is a product sutured contact manifold,
i.e., a product sutured manifold (S × [−1, 1],Γ = ∂S × {0}) with contact
form λ = dt+ β, where dβ is an area form on S.

The reverse process of a sutured manifold decomposition is called “su-
tured manifold gluing”. By “going back up” the sutured manifold hierarchy
and gluing carefully, we obtain the following:

Theorem 3.13 ([CH]). If (M,Γ) is a taut balanced sutured manifold,
then it carries an adapted hypertight contact form.

In the rest of this subsection we upgrade Theorem 3.13 to:

Theorem 3.14. If M is a closed, oriented, connected, irreducible 3-
manifold with H2(M ;Z) �= 0, then M carries a hypertight contact structure.

Let S be an embedded genus-minimizing surface in a closed M such
that 0 �= [S] ∈ H2(M ;Z). The first step of a sutured hierarchy starting with
(M,Γ = ∅) yields the sutured manifold (M1 = M \ int(N(S)),Γ1 = ∅) with
R± = S±, which is taut but not balanced since π0(A(Γ1)) → π0(∂M1) is not
surjective. In order to remedy this we choose nonseparating simple closed
curves δ+ and δ− on R± ⊂ ∂M1 and take

R′
+ := (R+ −N(δ+)) ∪N(δ−),

R′
− := (R− −N(δ−)) ∪N(δ+),

Γ′
1 := ∂R′

+ = ∂R′
−.

The need to make this modification is a reflection of the fact that a Reeb
vector field cannot be made transverse to a closed surface. Indeed, since the
Reeb vector field associated with a contact form λ generates the kernel of
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dλ, the 2-form dλ would be nondegenerate on a closed surface, contradicting
Stokes’ theorem. This creates some difficulties; in particular we risk losing
control of the dynamics of the Reeb vector field. We have a way around
this and still retain control of the dynamics by making the Reeb vector field
transverse to a branched surface.

At this point we recall the following definition; see [Li] for an explanation
of the terms:

Definition 3.15 ([Li]). A branched surface is laminar if the horizontal
boundary of fibered neighborhood of the branched surface is incompressible,
there is no monogon, there is no Reeb component, and there is no sink disk.

It was shown in [Li] that a laminar branched surface carries an essential
lamination, which can be thought of as a simultaneous generalization of an
incompressible surface and a taut foliation.

The key fact about essential laminations that we need is [GO, Theo-
rem 1(d)]:

Theorem 3.16 (Gabai-Oertel [GO]). Let L be an essential lamination
on M . If γ is a closed curve which is efficient for L and γ ∩ L �= ∅, then γ
is not contractible in M .

Here a curve γ is efficient for L if no arc c of γ ∩ (M −L) (or rather its
closure c) can be pushed into a leaf of L relative to its endpoints.

As a warm-up we prove the following:

Theorem 3.17. If M is a closed 3-manifold which admits a fibration
π : M3 → S1 with fibers of genus g ≥ 1, then it carries a hypertight contact
structure. When the monodromy is pseudo-Anosov and g > 1, then the
unique tight contact structure ξπ homotopic to the tangent plane of the fibers
is hypertight.

Proof. The case of g = 1 is straightforward and was observed by
Giroux: there exists a contact form such that the characteristic foliation
on each torus fiber is linear and the Reeb vector field is tangent to the fibers
and “orthogonal” to the characteristic foliation.

We consider the g ≥ 2 case. We show that ξπ has a contact 1-form whose
Reeb vector field is transverse to a laminar branched surface B and has no
contractible periodic orbit in M \N(B).

Lemma 3.18. Let T be a compact, connected, oriented surface of genus
> 1 with two boundary components γ1 and γ2 and let δ−, δ+ ⊂ T be two
nonseparating oriented simple closed curves. Then there exists a contact
form α on T × [−1, 1] with the following properties:

(1) The Reeb vector field R of α is positively transverse to T × {t},
t ∈ [−1, 1], and is tangent to the interval fibers of (∂T )× [−1, 1].

(2) ξ = kerα is positively transverse to γi × {t} for t ∈ [−1, 1] and
i = 1, 2, and to δ− × {−1} and δ+ × {1}.
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(3)
∫
γ1×{t} α =

∫
γ2×{t} α =

∫
δ−×{−1} α =

∫
δ+×{1} α = 1.

Proof of Lemma 3.18. The contact structure will be a modification
of the [−1, 1]-invariant contact structure on T × [−1, 1]. By a relative version
of the Flexibility Lemma [CH, Lemma 5.1], it suffices to construct a contact
form α near T × {±1} that satisfies the properties of the lemma.

We perform this construction near T = T × {1} for an arbitrary non-
separating simple closed curve δ = δ+; the situation for T ×{−1} and δ− is
analogous. As all nonseparating simple closed curves in T are diffeomorphic
by a diffeomorphism of T which is the identity near ∂T , it suffices to do the
construction for some δ.

Let F be an oriented singular Morse-Smale foliation on T such that:
• its singularities are all positive;
• F has no periodic orbits; and
• F exits from T along its boundary.

Then there exists a (Liouville) 1-form λ such that F = kerλ and dλ is an
area form on T . The form dt+λ on T×Rt is contact, its Reeb vector field is ∂t
and the characteristic foliation on T = T ×{0} agrees with F . By attaching
a cylindrical collar ∂T × [0, 1] to T along ∂T = ∂T × {0} and extending λ,
we can increase the λ-lengths of each component of the boundary at will
and thus assume that they are both equal to a certain value κ  0.

Now, since δ is not nullhomologous in T , there exists a closed 1-form η
that is compactly supported in the interior of T and is strictly positive on δ
(for example we can take η to be the differential of some S1-valued Morse
function). Adding a large multiple of η to λ, we obtain a new 1-form whose
integral over δ is exactly κ without changing dλ. The normalization (3) is
then obtained by rescaling. �

We state without proof a classical result on the connectedness of the
(nonseparating) curve complex; see [Lic] and [FM, Sect. 4.1.2] for a more
complete account:

Fact 3.19. For every pair of nonseparating simple closed curves δ−,
δ+ on a closed oriented surface S, there exists a sequence of nonseparating
simple closed curves δ0, . . . , δn such that δi∩δi+1 = ∅, δ0 = δ−, and δn = δ+.

Now let S be a fiber of the fibration π : M → S1 and let φ : S
∼→ S

be the monodromy. Let δ0, . . . , δn be the sequence of nonseparating oriented
simple closed curves on S given by Fact 3.19 for δ0 = φ(δ+) and δn = δ+.
We consider the surfaces Si = S × { i

n}, i = 0, . . . , n, in S × [0, 1].
We briefly comment on orientations of δi: Choose an orientation for δn =

δ+. Then the orientation for δ0 = φ(δ+) is determined. Choose orientations
on δ1, . . . , δn−1 arbitrarily.

Let S′
i = Si \Ui, where Ui = N(δi×{ i

n}) ⊂ Si, and let γ1i and γ2i be the
two components of ∂S′

i. Suppose the orientation on γ1i agrees with that of
δi.
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We apply Lemma 3.18 to a small neighborhood S′
i × [−ε, ε] of S′

i to
obtain a contact form αi on S′

i × [−ε, ε], for which the curves δi−1 × {−ε}
in S′

i × {−ε} and −δi+1 × {ε} (note the orientation reversal) in S′
i × {ε} are

αi-positively transverse and have αi-length 1, and γ1i ×{±ε} and γ2i ×{±ε}
have αi-length 1.

We then identify a neighborhood of γ2i × {−ε} ⊂ S′
i × {−ε} with a

neighborhood of −δi × {ε} ⊂ S′
i−1 × {ε} and a neighborhood of γ1i × {ε} ⊂

S′
i × {ε} with a neighborhood of δi × {−ε} ⊂ S′

i+1 × {−ε}, in a manner
compatible with the forms αi.

After smoothing we obtain a fibered neighborhood N(B) ⊂ M of a
branched surface B whose vertical fibers are tangent to the Reeb vector field
R of a contact form α. As an extra technical step, we remove from N(B) a
small interval-fibered neighborhood of ∪iS

′′
i , where S′′

i is a slight retract of
S′
i × {0}; the result is a fibered neighborhood N(B′) of a branched surface

B′ obtained by “splitting B”.
By construction, B′ is a laminar branched surface. In particular, as a

result of the splitting procedure, B′ has no triple branch points, which in
turn implies that there are no disk sectors including sink disks.

It remains to extend α to the exterior of N(B′). By construction, M \
int(N(B′)) is diffeomorphic to Σ×[0, 1], where Σ is a (disconnected) compact
oriented surface with boundary. The Reeb vector field is positively transverse
to Σ × {0, 1} for a suitable orientation of Σ and tangent to (∂Σ) × [0, 1].
Hence, using the Flexibility Lemma, we can extend the contact form α and
the Reeb vector field R to Σ0 × [0, 1] so that the Reeb vector field gives a
fibration by intervals. Let us write ξ = kerα.

Claim 3.20. The Reeb field R has no contractible periodic orbit, i.e., ξ
is hypertight.

Proof of Claim 3.20. Every periodic orbit ζ of R must intersect B′.
Since B′ is laminar, ζ is also transverse to an essential lamination L carried
by B′. The curve ζ is efficient with respect to L, for example since L is
orientable. Theorem 3.16 then implies that ζ is not contractible. �

One easily checks that 〈e(ξ), [F ]〉 = −χ(F ). Since ξ is hypertight by the
claim, it is tight, and is therefore contact isotopic to ξπ by Theorem 3.5.
This completes the proof of Theorem 3.17. �

Remark 3.21. As pointed out by the referee, R is in fact transverse to a
(transversally C0) taut foliation F , which gives an alternative simpler proof
of the hypertightness: Since the branched surface B′ does not have any triple
branch points, it fully carries a lamination L which is obtained by taking
the product of the regular locus (i.e., the complement of the branch locus)
with a Cantor set, and then gluing these elementary pieces together along
the branch locus using the fact that a Cantor set is homeomorphic to two
copies of itself. Since L is transverse to R, it has no closed leaves. Also, since
the complement of L is a product, L extends to a foliation F which again
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has no closed leaves and is thus taut. By construction, F is transverse to R
which therefore has no contractible orbits. The property of being hypertight
is moreover robust under C0-small perturbations.

This strategy extends to control the dynamics in the last gluing of a
sutured manifold hierarchy in the general case:

Proof of Theorem 3.14. Let S be an embedded genus-minimizing
surface in M with [S] �= 0. We first cut M along S to obtain (M1,Γ1) with
boundary R+(Γ1) = S+ and R−(Γ1) = S− and Γ1 = ∅. Next we cut M1 along
the surface S1 ⊂ M1, with ∂S1 intersecting S+ and S− along multicurves
δ+ and δ−, respectively, to obtain (M2,Γ2) such that A(Γ2) corresponds to
thickenings of δ±. We may take each of δ+ and δ− to be a union of parallel
oriented nonseparating simple closed curves, since Gabai’s construction of
the sutured manifold hierarchy guarantees such “well-grooming” [Ga2, Def-
inition 0.2] of δ± = S1 ∩ S±. Theorem 3.13 constructs a hypertight contact
form on (M2,Γ2).

The rest of the proof is similar to that of Theorem 3.17: We take a
sequence δ0, . . . , δn of curves in S from δ0 = δ+ to δn = δ− furnished by
Fact 3.19; here δ+ and δ− are unions of parallel curves and each δi, i =
1, . . . , n−1 is connected. Following the proof of Theorem 3.17, we construct
contact forms αi on S′

i × [−ε, ε] for i = 1, . . . , n− 1 and glue the pieces S′
i ×

[−ε, ε], i = 1, . . . , n−1, in the same way. We also glue M2 and S′
1× [−ε, ε] so

that a neighborhood of δ0 ⊂ R+(Γ2) is identified with a neighborhood of δ0×
{−ε} ⊂ S′

1×{−ε} and a neighborhood of γ21×{−ε} ⊂ S′
1×{−ε} is identified

with a neighborhood of −δ1 ⊂ R+(Γ2) and analogously glue M2 and S′
n−1×

[−ε, ε]. Note that since δ+ (also δ−) is not necessarily connected we need to
make the appropriate adjustments to Lemma 3.18(3). We then extend the
contact form to the exterior of M2 ∪ (∪n−1

i=1 S
′
i × [−ε, ε])/ ∼, which is of the

form Σ × [0, 1]. All the periodic orbits must efficiently intersect a laminar
branched surface and hence are not contractible by Theorem 3.16. �

We would like to extend Theorem 3.14 in two directions. The first is
to eliminate the homological condition [S] �= 0 and can be viewed as a
subproblem of Problem 2.3.

Problem 3.22. Does every Haken manifold carry a tight or hypertight
contact structure?

This problem is related to Problem 4.13, where we expect/hope that
Floer-type homologies detect incompressible surfaces, perhaps via the con-
tact class [OSz3] of an auxiliary tight structure. It would be even better if
the auxiliary tight contact structure was hypertight, to be able to compute
part of its contact homology.

A second possible extension of Theorem 3.14 is the following:

Problem 3.23. Is every universally tight contact structure on a 3-
manifold with universal cover R3 hypertight?



FOLIATIONS, CONTACT STRUCTURES AND THEIR INTERACTIONS 85

4. Invariants of contact manifolds
4.1. Sutured contact homology and sutured ECH. For more de-

tails see [EGH], [Hu1, Hu2, Hu3], [CGHH] for contact homology, ECH,
and sutured versions of these theories, respectively.

There are two main invariants of a contact manifold (M, ξ), obtained
as the homology of chain complexes generated by finite products γ =

∏
i γi

of periodic orbits of a Reeb vector field Rλ, ξ = kerλ, subject to some
conditions and whose differentials count (Fredholm or ECH) index 1 J-
holomorphic curves that limit to cylinders over collections of periodic or-
bits at the s → ±∞ ends in the symplectization (Rs × M,d(esλ)) for
some “adapted” almost complex structure J , modulo translation in the s-
direction. In this text we use F = Z/2-coefficients.

The first invariant contact homology is sensitive to the particular choice
of contact structure. In the case of a hypertight contact form λ, there is a
simpler version where the chain complex can be taken to be the free F-vector
space generated by the (good) periodic orbits of Rλ and the differential to
be a count of J-holomorphic cylinders; this yields the cylindrical contact
homology of (M,λ).

The second invariant embedded contact homology (ECH) is a topological
invariant of the ambient manifold M and is isomorphic to the Heegaard
Floer homology of −M , i.e., M with the orientation reversed. In particular,
the contact class c(M, ξ), associated to the contact structure (M, ξ) in the
Heegaard Floer hat group ĤF (−M) [OSz3], is defined in the ECH hat
group ÊCH(M) to be the homology class of the empty set of orbits.

In the case of a sutured contact manifold (M,Γ, ξ = kerλ), the hypothe-
sis that λ is a contact form adapted to (M,Γ), together with the choice of a
tailored almost complex structure J on the symplectization from [CGHH],
prevents a sequence of holomorphic curves from exiting the symplectization
R×M along its boundary R×∂M and allows us to extend the definition of
contact homology and ECH to sutured manifolds [CGHH]. The resulting
groups are the sutured contact homology and sutured ECH groups and are
denoted by HC(M,Γ, ξ) and ECH(M,Γ, ξ).

The following gluing theorem holds for both:

Theorem 4.1 ([CGHH]). If (M ′,Γ′, ξ′) is obtained from (M,Γ, ξ) by a
sutured gluing, then there are injections

ECH(M,Γ, ξ) ↪→ ECH(M ′,Γ′, ξ′),

HC(M,Γ, ξ) ↪→ HC(M ′,Γ′, ξ′).

Let M be a closed manifold and K ⊂ M be a knot. We define the knot
ECH of (M,K) as follows: Let N(K) be a small tubular neighborhood of
K, Γ two parallel meridian sutures on ∂N(K), and ξ a contact structure
adapted to (M \ int(N(K)),Γ). Then the knot ECH is

ECH(M \ int(N(K)),Γ, ξ),
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defined in analogy with Juhász’ observation that the knot Heegaard Floer
homology group ĤFK(M,K) satisfies:

ĤFK(M,K) � HF (M \ int(N(K)),Γ).

Here we denote the sutured Heegaard Floer homology of a sutured manifold
S (in a slightly nonstandard manner) by HF (S).

Let (M, ξ) be a closed contact manifold and Λ ⊂ (M, ξ) a Legendrian
knot. We define the contact homology Legendrian invariant of Λ to be

HC(M \ int(N(Λ)),ΓΛ, ξ),

where N(Λ) is the standard tubular neighborhood of Λ and ΓΛ has two
parallel sutures whose slope is induced by the framing along Λ given by ξ.

Problem 4.2. Compute this Legendrian knot invariant on significant
examples, e.g., the conormal LN in the unit cotangent bundle (ST ∗M,pdq)
of a submanifold N ⊂ M or non-loose knots in overtwisted manifolds.

4.2. ECH and Heegaard Floer homology for a sutured mani-
fold. In work in progress with Ghiggini and Spano [CGHS], we study the
extension of the isomorphism between ECH and Heegaard Floer homology
from [CGH0, CGH1, CGH2, CGH3] to sutured manifolds.

The ECH group ECH(M,Γ, ξ) admits a decomposition into homology
classes A ∈ H1(M ;Z) of “orbit sets” γ as follows:

ECH(M,Γ, ξ) = ⊕A∈H1(M ;Z)ECH(M,Γ, ξ, A).

The sutured Heegaard Floer homology group HF (M,Γ) admits a decompo-
sition into relative Spinc-structures which form an affine space over H2(M,
∂M ;Z):

HF (M,Γ) = ⊕s∈H2(M,∂M ;Z)HF (M,Γ, s).

We expect to prove the following:

Conjecture 4.3. If (M,Γ, ξ = kerα) is a sutured contact manifold,
then

ECH(M,Γ, ξ, A) � HF (−M,−Γ, sξ + PD(A)).

In the rest of this subsection we will refer to consequences of the conjec-
ture and its expected proof as “corollaries”.

4.2.1. Case of a knot. The sutured isomorphism specializes to an iso-
morphism between knot ECH and knot Heegaard Floer homology.

Corollary 4.4. Let M be a closed manifold, K ⊂ M a knot, N(K) its
tubular neighborhood, and Γ two parallel meridian sutures on ∂N(K). Also
let ξ be a contact structure adapted to (M \ int(N(K)),Γ). Then, assuming
Conjecture 4.3 holds,

ECH(M \ int(N(K)),Γ, ξ) � HF (−(M \ int(N(K))),−Γ)

� ĤFK(−M,−K).
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Suppose that K ⊂ M is nullhomologous. Fix a minimum genus Seifert
surface S for K with genus g. Then we can decompose ECH(M \int(N(K)),
Γ, ξ) according to the homological intersection number ι(γ) = 〈γ, S〉. Simi-
larly,

ĤFK(−M,−K) = ⊕g
j=−gĤFK(−M,−K, j)

where the decomposition is according to the relative Spins-structure, nor-
malized so that its graded Euler characteristic

∑
j rk ĤFK(−M,−K, j) · tj

agrees with the Alexander polynomial of K. Corollary 4.4 can be written
more precisely as:

(4.2.1) ECH(M \ int(N(K)),Γ, ξ, ι) � ĤFK(−M,−K, g − ι).

By Equation (4.2.1), the ECH of a knot is supported in grading 0 ≤ ι ≤
2g. Combined with the work of Ghiggini [Gh] and Ni [Ni],
(4.2.2) ECH(M \ int(N(K)),Γ, ξ, ι = 0) � F〈∅〉
if and only if the knot is fibered.

4.2.2. Relationship to symplectic Floer homology. If K ⊂ M is fibered,
then ECH(M \ int(N(K)),Γ, ξ, ι = 1) is the symplectic Floer homology of
a special representative of the monodromy.

More precisely, let K ⊂ M be a fibered knot with fiber S and monodromy
h : S

∼→ S such that h|∂S = id. Let N(∂S) = ∂S × [0, 1] be a neighborhood
of ∂S = ∂S × {0} in S. We isotop h to h′ on S so that:

(1) during the isotopy ∂S × {0} is rotated at most ε, and
(2) h′ is a rotation by an angle φ(r) on ∂S × {r} (here we are viewing

∂S � S1 using the boundary orientation), where φ : [0, 1] → R
satisfies φ(0) = −ε, φ(12) = 0, φ(1) = ε, and φ′(r) > 0.

We are also assuming that ε > 0 is sufficiently small so that the only periodic
points of period 1 in N(∂S) are along {r = 1

2}. We then perturb h′ to a flux
zero area-preserving map h′′ with respect to some area form ω so that all
the fixed points are nondegenerate. In particular, two fixed points appear
along {r = 1

2}, an elliptic one e and a hyperbolic one h.
Let SF �(S, h′′) be the symplectic Floer homology of h′′, whose chain com-

plex is generated by all its fixed points but e. By the methods of Hutchings
and Sullivan [HS] combined with [CGHH, Theorem 10.3.2],
(4.2.3) ECH(M \ int(N(K)),Γ, ξ, ι = 1) � SF �(S, h′′).

Combining Equations (4.2.1) and (4.2.3), we immediately obtain:

Corollary 4.5. Conjecture 4.3 implies ĤFK(−M,−K, g−1) � SF �(S,
h′′).

This result was implicitly conjectured by the two authors and Ghiggini as
a combination of [CGHH, Conjecture 1.5] and [CGH0, Theorem 10.3.2],
precisely formulated in the thesis [Sp], and first proven using a different
argument in [GS]. Recently, Kotelskiy [Ko] reformulated this conjecture in
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the language of bordered Heegaard Floer homology and gave some evidence
for it.

4.2.3. Dynamical characterization of product sutured manifolds. Using
Conjecture 4.3, one can transfer results from the Heegaard Floer side to
the ECH side. The following is obtained by transferring the corresponding
Heegaard Floer characterization (due to Juhász [Ju2, Ju4]) to ECH.

Corollary 4.6. If Conjecture 4.3 holds, then an irreducible sutured
contact manifold (M,Γ, ξ) satisfies

ECH(M,Γ, ξ) � F

if and only if (M,Γ) is a product sutured manifold.

Here is another formulation, which answers a question of John Pardon
and can be thought of as an extension of the Weinstein conjecture [T1] to
sutured contact 3-manifolds.

Corollary 4.7. If Conjecture 4.3 holds and if (M,Γ, ξ) is a sutured
contact manifold with adapted contact form λ whose Reeb vector field Rλ has
no periodic orbit, then (M,Γ, ξ) is a tight product sutured contact manifold
(S × [−1, 1],Γ = ∂S × {0}, ξ), where ξ is [−1, 1]-invariant. If S is planar in
addition, then every orbit of Rλ flows from S×{−1} to S×{1}; in particular
Rλ has no trapped orbits.

If Rλ has no periodic orbit then by Hofer [Hof], M is irreducible. The
proof of the second part of Corollary 4.7 relies on the technique of foliating
R × int(S) × [−1, 1] by holomorphic curves, due to Eliashberg and Hofer
[EH] when S is a disk and to Wendl [We] when S is a more general planar
surface.1 View int(S)× [−1, 1] as a part of an open book decomposition

M(S,id) := (S × [−2, 2])/ ∼,

(x, 2) ∼ (x,−2) ∀x ∈ S; (x, t) ∼ (x, t′) ∀x ∈ ∂S, t, t′ ∈ [−2, 2].

For a suitable R-invariant almost complex structure J on R×M(S,id), there
exist lifts of int(S)×{±1} to Fredholm index ind = 2 planar J-holomorphic
curves in R ×M(S,id) that are asymptotic to the binding and transverse to
the given Reeb vector field Rλ. This can be continued to a foliation F of
R×M(S,id) by planar holomorphic curves, using the automatic transversality
results of Wendl [We]. Even if the contact form is not a priori invariant in
the [−1, 1]-direction,

• curves in the family F do not limit to (nontrivial) two-level build-
ings;

• curves in F are embedded; and
• all the orbits of Rλ must intersect the curves in F positively, if they

intersect.
1Here we will be a little sloppy and will not distinguish between S and S with a small

collar neighborhood attached to it.
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By projecting the curves in F to M(S,id), we “re-foliate int(S) × [−1, 1]”
by fibers diffeomorphic to int(S). Since the Reeb flow is transverse to the
“re-foliation”, every orbit of Rλ flows from int(S)× {−1} to int(S)× {1}.

When S is not planar, ind ≤ 0 and automatic transversality no longer
holds, so we cannot argue in this manner.

Problem 4.8. Can one prove that if there is no periodic orbit in S×[0, 1],
then there is also no trapped orbit even when S is not planar?

In the higher-dimensional case, there can be trapped orbits without pe-
riodic ones, as proven by Geiges, Röttgen and Zehmisch [GRZ].

Recall the depth of a sutured manifold is the minimum number of steps
in a sutured hierarchy needed to get to a product sutured manifold. We have
the following dynamical characterization of depth k sutured manifolds:

Corollary 4.9. If Conjecture 4.3 holds and if (M,Γ, ξ = kerλ) is a
taut sutured contact manifold of depth greater than 2k with H2(M) = 0 and
if Rλ is nondegenerate and has no elliptic orbit, then it has at least k + 1
hyperbolic orbits.

Proof. Under the hypothesis of the theorem, Juhász [Ju3, Theorem 4]
shows that

rkHF (−M,−Γ) ≥ 2k+1.

By Conjecture 4.3, the ECH chain complex must have rank ≥ 2k+1. When
there are no elliptic orbits, this implies the existence of at least k+1 hyper-
bolic orbits for Rλ. �

Note that every Reeb vector field can be perturbed so that it only has
hyperbolic orbits up to a certain action threshold L [CGH1, Theorem 2.5.2]
and the number of hyperbolic orbits seems to go to ∞ as L → ∞ whenever
there is an elliptic orbit to start with.

4.2.4. Nonvanishing of contact invariants. One of the central tools in
recent years for finding nontrivial elements in Heegaard Floer homology (and
in turn obtaining highly nontrivial results in low-dimensional topology) has
been the following:

Theorem 4.10 (Ozsváth-Szabó [OSz4]). If (M, ξ) is a symplectically
semi-fillable contact structure, then the contact invariant c(ξ) in ĤF (M ;
F[H2(M ;Z)]) with respect to “twisted coefficients” is nonzero. In particular,
it is the case when ξ is the deformation of a taut foliation.

This result contrasts with the fact that c(ξ) = 0 when ξ is overtwisted.

Proof. We explain how to prove Theorem 4.10 in the equivalent setting
of ECH, assuming the exactness of the semi-filling and the existence of
cobordism maps that are defined on the chain level and count J-holomorphic
curves. This is work in progress of Jacob Rooney [Ro].
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Let (W,dβ) be an exact symplectic semi-filling of (M, ξ) such that ∂W =
(M, ξ)� (M ′, ξ′). The semi-filling W , together with an adapted almost com-
plex structure J on W , induces a cobordism map

Φ : ECC(M)⊗ ECC(M ′) → ECC(∅) � F,

where ECC denotes the ECH chain complex; it satisfies Φ∂ = 0 since ∂Φ =
0. Recall that the contact class c(ξ) is represented by the empty set ∅ of
orbits; Φ is defined so it satisfies Φ(∅ ⊗ ∅) = ∅. If c(ξ) = 0, then there exists
x ∈ ECC(M) such that ∂x = ∅. Then

Φ∂(x⊗ ∅) = Φ(∅ ⊗ ∅) = ∅,
which contradicts Φ∂ = 0. �

Moreover Ozsváth-Szabó [OSz4] showed that if M admits a taut folia-
tion, then

rk ĤF (M) > |H1(M ;Z)|,
i.e., M is not an L-space, leading to the following conjecture [BGW, Ju4]:

Conjecture 4.11. A closed rational homology 3-sphere M carries a
taut foliation if and only if M is not an L-space.

It is also conjectured that the existence of a taut foliation is equivalent
to the left-orderability of π1(M) for a rational homology sphere M . In one
direction, Calegari-Dunfield [CD, Corollary 7.6] showed that the existence
of a taut foliation on a atoroidal manifold implies the left-orderability of π1
of a finite cover of M .

Problem 4.12. Find a relationship between contact geometry and the
left-orderability of π1(M). In particular, can one characterize the contact
structures that approximate taut foliations, e.g., using their contact homol-
ogy groups HC(M, ξ)? Can one detect the left-orderability of π1(M) from
HC(M, ξ)?

Problem 4.13. Show that if M is Haken and ξ is a contact structure
on M , then rk(ÊCH(M, ξ)) ≥ 2. One might want to find tight contact
structures with nonvanishing contact class; see Problem 3.22.

4.3. Cylindrical contact homology of sutured manifold. In this
subsection, we prove another contact characterization of product sutured
manifolds:

Theorem 4.14. A taut balanced sutured manifold (M,Γ) is not a product
if and only if it carries an adapted hypertight contact form whose cylindrical
contact homology has rank ≥ 1.

First recall from [CGHH] that when (M,Γ, U(Γ), ξ = kerλ) is a sutured
contact manifold, we can define its vertical completion by gluing

• ([1,+∞) × R+(Γ), dt + λ|R+(Γ)) to (M,λ) along R+(Γ) = {1} ×
R+(Γ) and
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• ((−∞,−1] × R−(Γ), dt + λ|R−(Γ)) to (M,λ) along R−(Γ) = {1} ×
R−(Γ).

Proof. If (M,Γ) is a taut balanced sutured manifold, then it admits a
sutured manifold hierarchy by Gabai [Ga1] and carries a hypertight contact
structure by Theorem 3.13; this is obtained from the product sutured contact
manifold by successive gluing. By Theorem 4.1 we know that, at each gluing
step of the hierarchy, the cylindrical contact homology of the previous piece
injects into the cylindrical contact homology of the next one.

In order to prove the theorem, it suffices to show that the gluing step
corresponding to the decomposition (P ′,Γ′)

S� (P,Γ), where (P,Γ) is a
product and (P ′,Γ′) is not a product, produces (P ′,Γ′, ξ′) with nontrivial
cylindrical contact homology.

We first give a brief description of this gluing step: Let (P,Γ, ξ) be a
product sutured contact manifold with contact form dt+ λ where

P = [−1, 1]t ×R and R±(Γ) = {±1} ×R = {±1} ×R±(Γ).

Let S± be a compact subsurface with corners in R±(Γ) such that ∂S+ is
the concatenation of arcs a1+, b1+, . . . , ak+, bk+ and ∂S− is the concatenation of
arcs b1−, a

1
−, . . . , b

k
−, a

k
−, both in cyclic order, where

(4.3.1) int(ai±) ⊂ int(R±(Γ)) and bi± ⊂ ∂R±(Γ).

Let φ : S+
∼→ S− be a diffeomorphism such that φ(ai+) = bi− and φ(bi+) = ai−.

Then, modulo some adjustments to the contact form that we need to make
near S+ and S−, we can glue (P,Γ, ξ) along S+ and S− using φ and apply
smoothing operations to obtain the sutured contact manifold (P ′,Γ′, ξ′); see
[CGHH].

Another way to construct (P ′,Γ′, ξ′) is as follows and is described in
detail in [CGHH, Sect. 4.3, Steps 1–3]:

(1) Glue (P,Γ, ξ) along S+ and S− using φ.
(2) Glue ([1, 3] × (R+(Γ) \ S+), dt + λ|R+(Γ)) to the result of (1) by

identifying

{1} × (R+(Γ) \ S+) and R+(Γ) \ S+

[1, 3]× a+ and [−1, 1]× b−,

where we are writing a± = ∪k
i=1a

i
± and b± = ∪k

i=1b
i
±.

(3) Iterate the process to glue fibered pieces

([2n+ 1, 2n+ 3]× (R+(Γ) \ int(S+)), dt+ λ|R+(Γ)), n ≥ 1

([−2n− 1,−2n+ 1]× (R−(Γ) \ int(S−)), dt+ λ|R−(Γ)), n ≥ 1.

This leads us to the vertical completion (P ′
∞,Γ′

∞, ξ′∞) of (P ′,Γ′, ξ′); see
Fig. 3.
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Figure 3. The construction of S∞

The noncompact surface S∞ ⊂ P ′
∞ given by

S∞ = ({1} ×R) ∪ (∪n≥1{2n+ 1} × (R+(Γ) \ int(S+)))

∪ (∪n≥1{−2n− 1} × (R−(Γ) \ int(S−)))

divides (P ′
∞,Γ′

∞, ξ′∞) into a noncompact sutured manifold (P∞,Γ∞, ξ∞),
which is a horizontal extension of (P,Γ, ξ) by product pieces. Conversely,
(P ′

∞,Γ′
∞, ξ′∞) is obtained from (P∞,Γ∞, ξ∞) by gluing R+(Γ∞) � S∞ to

R−(Γ∞) � S∞ by a diffeomorphism φ∞ : S∞
∼−→ S∞.

An analysis of the situation shows that the surface S∞ is an end-periodic
surface and φ∞ an end-periodic diffeomorphism of S∞. We refer to [Fe] for
precise definitions. End-periodic diffeomorphisms of end-periodic surfaces
have a Thurston-Nielsen theory which was discovered by Handel-Miller, de-
scribed by Fenley [Fe], and developed by Cantwell-Conlon [CC].

The construction given in [CGHH] comes with a Reeb vector field which
gives the vertical (fiber) direction of the product P∞. We note that, since
we will only use an Euler characteristic argument, we do not need to write
down a specific contact form or, equivalently, a representative of φ∞ with
zero flux.

Recall that two periodic points x and y of a diffeomorphism ψ : Σ
∼−→ Σ

with the same period k are in the same Nielsen class C if they are connected
by a path δ such that ψk(δ) is homotopic to δ relative to its endpoints x and
y. Now if x is a nondegenerate periodic point of period k, then the Lefschetz
index ind(x, k, ψ) = ±1 depending on the sign of det(dψk(x)− id). Then the
total Lefschetz number

ind(C,ψ) :=
∑

x∈C ind(x, k, ψ)

depends only on the isotopy class of ψ.
In our case, the relevant fact is the following:
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Fact 4.15. If (P ′
∞,Γ′

∞) — or equivalently its compactification (P ′,Γ′)
— is not a product, then φ∞ : S∞

∼−→ S∞ is isotopic to an end-periodic
diffeomorphism ψ∞ : S∞

∼−→ S∞ which has a finite number > 0 of periodic
points of minimum period, say k, and with nonzero total Lefschetz number
in their Nielsen classes.

We now briefly explain Fact 4.15: if (P ′
∞,Γ′

∞) is not a product, then
φ∞ is not isotopic to a translation and there exist ψ∞ isotopic to φ∞ and
a pair of transversely intersecting geodesic laminations Λ+,Λ− ⊂ S∞ [CC,
Proposition 4.28] that are preserved by ψ∞ [CC, Theorem 4.54], such that:

(1) Λ+ ∩ Λ− �= ∅.
(2) There is a union P+ (resp. P−) of components of S∞\Λ+ (resp. S∞\

Λ−) such that all the points of S∞\(Λ+∪P+) (resp. S∞\(Λ−∪P−))
belong to the “negative (resp. positive) escaping set” (i.e., the set
of points that go to the negative (resp. positive) end under iterates
of ψ∞) and hence are not periodic points [CC, Lemma 5.15].

Roughly speaking,
Λ+ = lim

n→+∞
φn
∞(b+), Λ− = lim

n→−∞
φn
∞(a+),

where a+ = ∪k
i=1a

i
+, b+ = ∪k

i=1b
i
+ ⊂ S∞ are as before and we are taking

φn
∞(a+) and φn

∞(b+) to be geodesic representatives rel boundary. We briefly
explain (1): Since φ∞ is not isotopic to a translation, for n sufficiently large
φn
∞(b+) ∩ a+ �= ∅. This implies that for n, m sufficiently large

(4.3.2) φn
∞(b+) ∩ φ−m

∞ (a+) �= ∅
and passing to the limit we have Λ+ ∩ Λ− �= ∅. Here the condition “ �= ∅”
survives to the limit since the intersections in Equation (4.3.2) lie in the
compact region S+.

A compact region of the form cl(Q+∩Q−), where Q± is a component of
P±, whose piecewise smooth boundary alternates between arcs of Λ+ and
arcs of Λ− and which is left invariant by some ψk

∞, is called a nucleus [CC,
Definition 6.41]. If a nucleus is a rectangle, then there is a hyperbolic orbit
which is isolated in its Nielsen class. Nuclei that are not rectangles are finite
in number (possibly empty) and we can apply the usual Thurston-Nielsen
decomposition to (cl(Q+∩Q−), ψk

∞) for some k. If there is a pseudo-Anosov
component, then there are infinitely many Nielsen classes with nonzero total
Lefschetz number. If all the components are periodic, at least one component
has negative Euler number, again giving rise to a Nielsen class with nonzero
total Lefschetz number.

Now we recall the following theorem [CC, Theorem 9.2]:

Theorem 4.16. The dynamical system
ψ∞ : Λ+ ∩ Λ− → Λ+ ∩ Λ−

is conjugate to a two-sided Markov shift of finite type.
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The theorem is proved by constructing a Markov partition, a collection

{R1, . . . ,Rs}

(cf. called a Markov family in [CC, Definition 9.6]) of rectangles in S+. The
vertical edges of the rectangle Ri lie in Λ+ and the horizontal edges lie in Λ−
and Ri is maximal amongst such rectangles R in S+ that admit extensions
to rectangles R′ satisfying the following:

(1) the vertical edges of R′ are in Λ+ and horizontal edges are in
∪k
i=1b

i
+;

(2) the two vertical edges of R′ are isotopic in S+ relative to ∪k
i=1b

i
+;

and
(3) each vertical edge of R′ contains a vertical edge of R.

Here we are allowing degenerate rectangles (cf. the remark after Theorem 9.2
in [CC]). For example, if R is a disk and S± ⊂ R are thickenings of properly
embedded arcs γ± that intersect transversely in one point, then Λ+ and Λ−
are lines that intersect at one point and the point is viewed as a degenerate
rectangle. If there are no non-rectangular nuclei, then there is at least one
Markov rectangle (and equivalently the existence of a periodic orbit); this
is a consequence of (1).

In summary, there exists at least one Nielsen class for which φ∞ which
is compatible with the contact structure has periodic points with nonzero
total Lefschetz number. Those periodic points correspond to closed orbits of
the corresponding Reeb vector field. The differential in cylindrical contact
homology counts holomorphic cylinders, and hence preserves the splitting
of the orbits into Nielsen classes. Moreover, the total Lefschetz number in
a Nielsen class corresponds to the Euler characteristic of the corresponding
subcomplex, so every Nielsen class with nonzero Lefschetz number gives at
least one generator in cylindrical contact homology.

Conversely, if (M,Γ) is a product sutured manifold and if a contact struc-
ture ξ adapted to (M,Γ) has a well-defined cylindrical contact homology,
then ξ is tight by Hofer [Hof]. Since (M,Γ) is product disk decomposable,
we can normalize the contact structure on a collection of compressing disks
and apply Eliashberg’s classification of tight contact structures on the re-
maining ball [El2] to show that there is a unique tight contact structure
adapted to (M,Γ), namely the [−1, 1]-invariant one. Hence ξ has a Reeb
vector field without periodic orbits and its cylindrical contact homology is
trivial. �

Remark 4.17. The above proof allows us to estimate the size of HC(M,
Γ, ξ) depending on φ∞. For example, if φ∞ is reducible with a pseudo-
Anosov component, then rkHC(M,Γ, ξ) = ∞ and the rank of the subspace
generated by orbits of action less than L > 0 grows exponentially with L.

Problem 4.18. Show that a hypertight contact structure on a closed
hyperbolic 3-manifold has infinite rank cylindrical contact homology and that
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the rank of the subspace of its contact homology generated by orbits of action
less than L > 0 grows exponentially with L. See Problem 3.6.

5. From contact structures to foliations
As we have already seen, a taut foliation F without sphere leaves can

be approximated by a positive and a negative contact structure ξ+ and ξ−.
Both are used to construct a weak filling and thus prove the nonvanishing
of the contact invariant.

In [CF], the first author and Firmo studied the converse construction,
based on prior results of Eliashberg-Thurston [ET] and Mitsumatsu [Mi].
Since the contact structures approximate the same foliation, they are C0-
close to each other, and in particular they have a common positively trans-
verse vector field.

This motivates the following definition:

Definition 5.1. A contact pair is a pair (ξ+, ξ−) consisting of a positive
contact structure ξ+ and a negative contact structure ξ− such that there
exists a nonvanishing vector field Z which is positively transverse to both
ξ+ and ξ−.

A contact pair is tight if both ξ+ and ξ− are tight.

In particular, if ξ+ and ξ− are everywhere transverse, then (ξ+, ξ−) is a
contact pair.

Let (ξ+, ξ−) be contact pair. Generically ξ+ and ξ− are transverse to
each other away from a link Δ in M , on which they coincide as oriented
2-planes. One can further normalize ξ+ and ξ− on a neighborhood of Δ so
it becomes a normal contact pair ; see [CF, Sect. 2.3] for the definition and
[CF, Prop. 2.1] which shows that any contact pair can be isotoped into a
normal one. In particular, for a normal pair, the link Δ is transverse to ξ±
away from a finite number of points.

If α± is a contact form for ξ±, then the smooth vector field X ∈ ξ− given
by

iXdα−|ξ− = α+|ξ−
directs ξ+ ∩ ξ− and is zero along Δ. For x ∈ M and t ∈ R, denote by φt(x)
the image of x by the time-t flow of X.

Lemma 5.2 ([CF]). If (ξ+, ξ−) is a normal contact pair on a closed
3-manifold M , then the plane fields

λt
±(x) := (φt)∗ξ±(φ−t(x))

limit to a common plane field λ as t → +∞. Moreover λ is continuous and
invariant by the flow of the smooth vector field X.

The plane field λ is then locally integrable, but not uniquely since λ is
only continuous. This difficulty gives also rise to various notions of tautness
that are analyzed in [CKR].
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Problem 5.3. Try to improve λ so it becomes a genuine foliation. One
possible approach is to apply the work of Burago-Ivanov [BI] to prove that λ
gives a branching foliation, in which case it could always be deformed into
a genuine foliation.

The integral leaves of λ nevertheless reflect the properties of ξ+ and ξ−.
Proposition 5.4 ([CF]). If (ξ+, ξ−) is a normal tight contact pair on

a closed 3-manifold M , then λ has no integral 2-sphere.
Moreover, we have:
Theorem 5.5 ([CF]). Let (ξ+, ξ−) be a normal tight contact pair on a

closed 3-manifold M . If λ is uniquely integrable, then the integral foliation
F of λ does not contain a Reeb component whose core c is zero in H1(M ;Q).
Moreover, M carries a Reebless foliation.

Remark 5.6. Conversely, if the integral foliation F of λ is taut, then the
structures ξ± are universally tight, since they can be deformed continuously
to F .

Problem 5.7. Show that under the hypotheses of Theorem 5.5, the fo-
liation F has no Reeb components (even when 0 �= [c] ∈ H1(M ;Q)).

A contact pair (ξ+, ξ−) is strongly tight if any two points in M can
be joined by an arc that is positively transverse to both ξ+ and ξ−. This
condition is equivalent to the property that any two points in M can be
joined by an arc positively transverse to λ.

Suppose (ξ+, ξ−) is strongly tight. If λ is uniquely integrable, then its
integral foliation F is taut and ξ+ and ξ− are universally tight and semi-
fillable. The key step in the construction of a semi-filling is the existence
of a closed 2-form ω, called a dominating 2-form, which satisfies ω|F >
0. The usual construction of a dominating 2-form ω (i.e., summing well-
chosen Poincaré duals ωγ supported on small tubular neighborhoods of
closed transversals γ to ξ±) works even when λ is not integrable. Hence
ξ+ and ξ− are semi-fillable even when λ is not assumed to be uniquely inte-
grable.

In certain situations, one can prove the integrability of λ and derive
strong constraints, as in this version of the Reeb stability theorem.

Theorem 5.8 ([CF]). Let M be a compact connected oriented 3-manifold
with ∂M = S2. If M carries a normal tight contact pair (ξ+, ξ−) such that:

(1) Δ intersects ∂M transversely in two points N and S; and
(2) X exits transversely from M along ∂M \ {N,S};

then the foliation λ is integrable, the leaves are disks, and M � B3.
Problem 5.9. Show that if M carries a tight contact pair, then it is

irreducible.
In general, it is not easy to verify the condition in the definition of a

contact pair that ξ+ and ξ− have a common transverse vector field Z.
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Problem 5.10. Let ξ+ be a positive contact structure and ξ− be a neg-
ative contact structure such that ξ+ and ξ− are homotopic as plane fields.
Can one isotop ξ− to ξ′− so that (ξ+, ξ′−) is a contact pair? Can this be done
with parameters?

The parametric version of Problem 5.10 can be solved on the ball, where
it is in fact equivalent to Cerf’s theorem or Hatcher’s theorem: Let ζ0,+ and
ζ0,− be the standard contact structures on the unit ball B3, with equations
dz ± r2dθ = 0 in cylindrical coordinates. In this case X = r∂r and λ =
{dz = 0}. Now take a diffeomorphism φ of B3 which is the identity on the
boundary and consider ξ1,± = φ∗ξ0,±. By Eliashberg [El2], we know that the
space of (positive or negative) tight contact structures on B3 that agree with
ξ0,± along ∂B3 is contractible, so we can find paths of contact structures
ξt,±, t ∈ [0, 1], from ξ0,± to ξ1,±. If we could make (ξt,+, ξt,−) into a path of
contact pairs by deforming ξt,−, this would immediately give a path λt of
integral foliations by disks from λ0 to λ1 and then, by standard arguments,
an isotopy from φ to the identity, i.e., an alternative proof of Cerf’s theorem
— and with more parameters, a proof of Hatcher’s theorem. On the other
hand, we know that such a deformation is possible: it can be constructed by
an application of Hatcher’s theorem.

Problem 5.11. Prove Hatcher’s theorem using the parametric version
of Problem 5.10.

Problem 5.12. Try to use families of contact pairs to solve Problem
3.7 (the classification of taut foliations in a fibration π : M → S1 that are
homotopic to as 2-plane fields to the foliation by fibers).

Acknowledgements. We are grateful to the anonymous referee who
suggested many improvements to the paper, including better proofs.
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