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Geometric methods in Heegaard theory
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Abstract. We survey some recent geometric methods for studying
Heegaard splittings of 3-manifolds

Introduction
A Heegaard splitting of a closed orientable 3-manifold M is a decom-

position of M into two handlebodies H0 and H1 which intersect exactly
along their boundaries. This way of thinking about 3-manifolds (though in
a slightly different form) was discovered by Poul Heegaard in his forward
looking 1898 Ph. D. thesis [Hee1]. He wanted to classify 3-manifolds via
their diagrams. In his words1: Vi vende tilbage til Diagrammet. Den Opgave,
der burde løses, var at reducere det til en Normalform; det er ikke lykkedes
mig at finde en saadan, men jeg skal dog fremsætte nogle Bemærkninger
angaaende Opgavens Løsning. “We will return to the diagram. The problem
that ought to be solved was to reduce it to the normal form; I have not
succeeded in finding such a way but I shall express some remarks about the
problem’s solution.” For more details and a historical overview see [Go], and
[Zie]. See also the French translation [Hee2], the English translation [Mun]
and the partial English translation [Prz]. See also the encyclopedia article
of Dehn and Heegaard [DH].

In his 1932 ICM address in Zurich [Ax], J. W. Alexander asked to de-
termine in how many essentially different ways a canonical region can be
traced in a manifold or in modern language how many different isotopy
classes are there for splittings of a given genus. He viewed this as a step
towards Heegaard’s program.

Most of this survey paper is about the geometric and topological tech-
niques that have been recently used towards answering Alexander’s problem
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1See the first paragraph of chapter 11 of [Hee1]
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for irreducible splittings of non Haken hyperbolic manifolds. In particular
we give the key ideas behind the proofs of the following results.

Theorem 0.1 ([CG]). If M is a closed non-Haken 3-manifold, then
there exists an effective algorithm to produce a finite list of Heegaard surfaces
which contains all the irreducible Heegaard splittings up to isotopy.

This result is an effective version of theorems of Tao Li [Li2], [Li3]. To es-
sentially answer Alexander’s question for irreducible splittings one must root
out the reducible splittings and duplicate splittings from this list. Achieving
that gives the following.

Theorem 0.2 ([CGK]). Let N be a closed non-Haken hyperbolic 3-
manifold. There exists an effectively constructible set S0, S1, · · · , Sn such
that if S is an irreducible Heegaard splitting, then S is isotopic to exactly
one Si.

Both results make crucial use of the recent resolution of the circa 1987
Pitts-Rubinstein conjecture.

Conjecture 0.3 (Pitts-Rubinstein). A strongly irreducible Heegaard
surface in a Riemannian three-manifold is either

(1) isotopic to a minimal surface of index at most 1
(2) isotopic after a single compression to the boundary of a tubular

neighborhood of a stable one-sided Heegaard surface.
Theorem 0.4 (K-Liokumovich-Song [KLS]). The Pitts-Rubinstein con-

jecture is true.

For excellent earlier surveys on Heegaard theory see [Zie], [Sc2], [So],
[SSS]. See also the bibliography which includes many references to papers
not discussed in this survey.

1. Summary of this paper
Section §2 gives basic definitions and now classical results about Hee-

gaard splittings. §3 surveys min-max methods to construct minimal surfaces
from k-parameter sweepouts. Section §4 outlines the recent resolution of the
Pitts-Rubinstein conjecture, asserting roughly speaking that strongly irre-
ducible Heegaard surfaces can be isotoped to index at most 1 minimal sur-
faces. Section §5 outlines the proof that there are finitely many η-negatively
curved branched surfaces that carry all index-≤ 1 minimal surfaces in hy-
perbolic 3-manifolds and hence the strongly irreducible Heegaard surfaces
in these manifolds. §6 is about mean convex foliations. §7 and §8 outline
a proof of an effective version of Tao Li’s finiteness theorem for irreducible
splittings of non-Haken 3-manifolds. §9 outlines an effective algorithm for
enumerating without duplication the irreducible Heegaard splittings of a
hyperbolic non-Haken 3-manifold. In §10 we state some open questions. In
the Appendix we very briefly mention some speculative thoughts of the first
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two authors on the geometry of hyperbolic handlebodies V such that ∂V is
an index-1 minimal surface, vol(V ) >> 0 and V has a uniformly bounded
Cheeger constant.

There are many results and techniques that we do not discuss in this
paper, though they appear in the references. E.g. geometric topological tech-
niques for putting Heegaard splittings into a normal form with respect to
some other structure, normal and almost normal surfaces, connections with
the curve complex, hierarchies, the Rubinstein - Scharlemann graphic, thin
position, Tao Li’s work on geometric vs algebraic rank of closed 3-manifolds,
and some aspects of minimal surfaces. In addition there are unmentioned
algebraic techniques for distinguishing Heegaard splittings, e.g. invariants of
a certain double coset of the mapping class group of the Heegaard surface
and Nielsen Equivalence.

2. Basic Definitions and Facts
Definition 2.1. An effective algorithm is one that produces an output

as a computable function of the initial data.

It is interesting to note that the algorithms behind the results in this
paper are elementary and combinatorial, yet the proofs that they work often
require sophisticated geometric arguments, e.g. Theorem 9.1 requires a 2-
parameter sweepout argument and a mulit-parameter min-max argument.

For the definitions of basic notions related to branched surfaces see [O]
and §1 [CG].

Definition 2.2. A Heegaard splitting of a closed orientable 3-manifold
M consists of an ordered pair (H0, H1) of handlebodies whose union is M
and whose intersection is their boundaries. This common boundary S is
called a Heegaard surface. Two Heegaard splittings (H0, H1), (H ′

0, H
′
1) are

isotopic if there exists an ambient isotopy of M taking H0 to H ′
0. The genus

of the splitting is the genus of the splitting surface and the Heegaard genus
of M is the smallest g for which there is a Heegaard splitting of that genus.
Stabilization is the process of increasing a genus-n splitting to a genus-n+1
splitting by adding a handle in the obvious manner. The inverse operation
is called destabilization. A splitting is irreducible if it is not a stabilization.

Remarks 2.3. i) In this paper we consider equivalence classes up to
isotopy. One can also consider splittings up to orientation preserving home-
omorphism, or up to isotopy or homeomorphism, orientation preserving or
not, without regard to whether the sides are preserved.

ii) Here are a few results. The 3-dimensional Schoenflies theorem of
Alexander implies that the 3-sphere has a unique splitting of genus-0. Wald-
hausen [Wa1] showed that every positive genus Heegaard splitting of the
3-sphere is a stabilization, hence the genus-0 splitting is the unique one up
to stabilization. Note that there is an isotopy that switches the sides of the
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splitting. Engmann [Eng] and Birman [Bir] independently first showed that
there exist manifolds with non homeomorphic Heegaard splittings, even for
allowing the switching of sides. Bonahon - Otal [BoOt] and Hodgeson - Ru-
binstein [HR] independently classified Heegaard splittings of lens spaces. In
particular, the genus-1 Heegaard surface is unique up to isotopy, but some
manifolds have isotopies that switch sides and some do not. Further, all
higher genus splittings are stabilizations.

Existence of Heegaard Splittings. Heegaard [Hee1] proved that
every triangulated 3-manifold has a Heegaard splitting, more or less, by
showing that after removing a neighborhood of a point it deformation re-
tracts to a 2-complex. The boundary of a neighborhood of the 1-skeleton of
this 2-complex gives a Heegaard surface. Alternatively, the boundary of the
neighborhood of the 1-skeleton of the triangulation is a Heegaard surface.
More generally Moise [Mo] proved that every 3-manifold has a triangulation
and hence a Heegaard splitting.

Uniqueness up to Stabilization. The Reidemeister-Singer theorem,
see [Re], [Si], [Cr], [Sie], [Lau] asserts that given two Heegaard splittings
of a closed 3-manifold, then after stabilizing each a finite number of times,
the resulting Heegaard splittings are isotopic. A consequence of this is that
associated to a 3-manifold is the tree of Heegaard splittings. Here vertices
are the isotopy classes of splittings and there is a directed edge from v to v′

if v is obtained from v′ by a single stabilization.

Connect Sums. Haken [Ha3] showed that if S is a Heegaard surface
in M = M1#M2, then a summing sphere Q can be isotoped to intersect the
Heegaard surface S in a single circle and hence after isotopy the Heegaard
splitting restricts to a Heegaard splitting of each with Heegaard surfaces S1

and S2 and hence genus is additive under connect sum. Bachman [Ba2] and
Qiu–Scharlemann [QS] further showed that if S is stabilized, then one of S1

and S2 is stabilized.

Definition 2.4 (Casson–Gordon [CaGo1]). The Heegaard splitting
H = (H0, H1) is weakly reducible if there exist essential compressing discs
Di for Hi, i = 0, 1 such that ∂D0 ∩ ∂D1 = ∅. The splitting H is strongly
irreducible if it is not weakly reducible.

The following theorem of Casson–Gordon [CaGo1] plays a central role
in this paper.

Theorem 2.5. If M is a closed irreducible 3-manifold with an irre-
ducible, weakly reducible Heegaard splitting, then M has an embedded in-
compressible surface and hence is Haken.

Compact Manifolds with Boundary. The theory of Heegaard split-
tings naturally extends to connected compact manifolds with boundary. Let
M be such a manifold with ∂M the disjoint union of ∂0M and ∂1M with
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possible ∂1M = ∅. Then a Heegaard splitting (H0, H1) of (M,∂0M,∂1M) is
a decomposition where each Hi is a compression body with ∂−(Hi) = ∂iM
and ∂+(H0) = ∂+(H1). The above results and their proofs directly extend to
Heegaard splittings of compact manifolds. This paper will restrict itself to
closed manifolds, though most results extend to the compact case. See the
earlier survey papers and many of the papers in the references for results on
manifolds with boundary.

3. Minimal surfaces and min-max theory
A closed surface Σ in a 3-manifold N is a minimal surface if the first vari-

ation of area is zero for all variations. Equivalently, Σ is minimal if its mean
curvature is identically equal to zero. On a small enough scale, a minimal
surface minimizes area. There may however be global deformations which
bring the area down. To that end, on a minimal surface we can consider the
second variation of area. Let φ be a function on Σ and n the unit normal of
Σ. When Σ is minimal and Σs is a normal variation of Σ with Σ0 = Σ and
variational vector field φn, then the second variation of area is

d2

ds2

∣∣∣∣
s=0

area(Σs) = −
∫
Σ
φLφ .(3.1)

Here L is the second variational operator given by that
Lu = ΔΣ u+ |A|2 u+ RicN (n,n)u ,(3.2)

A is the second fundamental form of Σ, and RicN (n,n) is the Ricci curvature
of N in the normal direction. The operator L is a Schrödinger operator and
has only finitely many negative eigenvalues since Σ is closed. The Morse
index of a minimal surface is the number of negative eigenvalues of L. It is
said to be stable when the index is zero and strictly stable if the index is
zero and 0 is not an eigenvalue.

Meeks-Simon-Yau [MSY] proved that one can always minimize area
in some non-trivial isotopy class to obtain a stable minimal surface. Many
three-manifolds (such as the three-sphere) contain no such non-trivial classes,
and min-max methods are necessary to construct higher Morse index critical
points of the area functional.

The idea of min-max theory is the following. For some fixed g, consider
the space of embedded genus g surfaces in a Riemannian three-manifold.
On this space one can define the area functional, associating to each surface
its area. As in analogy with finite-dimensional Morse theory, non-trivial
topology in the space of all genus g surfaces should force the existence of
critical points of the area functional, or minimal surfaces. The simplest such
genus g families arise from considering Heegaard foliations. This infinite
dimensional Morse theory was begun by Almgren in the 60s, completed by
Pitts [Pi] and Simon-Smith [SS] in the 80s. There were further works by
Pitts-Rubinstein ([PR1] [PR2]) and Frohman-Hass [FH]. Let us now give
more details.
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Let Xk be a k-dimensional manifold with boundary. A sweepout param-
eterized by X is a family of closed sets {Σt}t∈X continuous in the Hausdorff
topology such that

(1) Σt is an embedded smooth surface for t in the interior of X
(2) Σt varies smoothly for t in the interior of X
(3) For t ∈ ∂X, Σt is a (possibly empty) smooth surface together with

some 1-dimensional arcs.
The simplest example of such a sweepout is a Heegaard foliation, where

X = I is the unit interval, and the endpoints of I correspond to spines in
the two handlebodies.

If Λ is a collection of sweepouts, we say that the set Λ is saturated if
given a map φ ∈ C∞(I×M,M) such that φ(t,−) ∈ Diff0M for all t ∈ I, and
a family {Σt}t∈X ∈ Λ, we have {φ(t,Σt)}t∈I ∈ Λ. Denote by Λ the smallest
saturated family of sweepouts containing {Σt}t∈X .

The width associated to Λ is defined to be

(3.3) W := W (M,ΛH) = inf
{Σt}∈Λ

sup
t∈I

H2(Σt),

where H2 denotes 2-dimensional Hausdorff measure.
Suppose that

(3.4) W > sup
t∈∂X

area(Σt).

In this case we say that the sweep-out {Σt}t∈X is non-trivial.
We can now define a sequence of sweepouts in the saturation “pulled

tight” in the sense that their maximal areas are approaching the width.
Namely, a minimizing sequence is a sequence of families {Σn

t } ∈ ΛH such
that

(3.5) lim
n→∞

sup
t∈[0,1]

area(Σn
t ) = W.

A min-max sequence is then a sequence of slices Σn
tn , tn ∈ (0, 1) such that

(3.6) area(Σn
tn) → W.

The main result of Simon-Smith 80s [SS] (c.f. [CD], [DP]) is that some
min-max sequence converges to a minimal surface (potentially disconnected,
and with multiplicities):

Theorem 3.1 (Simon-Smith). LetM be a closed oriented Riemannian 3-
manifold and Σt t ∈ X a k-parameter sweepout, and Λ the smallest saturated
set containing {Σt}t∈X . Suppose

(3.7) W > sup
t∈∂X

area(Σt).

Then some min-max sequence Σi
ti converges as varifolds to

∑k
j=1 njΓj,

where Γj are smooth embedded pairwise disjoint minimal surfaces and where
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nj are positive integers. Moreover,

(3.8) W =
k∑

j=1

njarea(Γj).

One also has the following genus bounds for the limiting minimal sur-
faces, expressing that the limit is achieved after surgeries. Namely, after
finitely many compressions on a min-max sequence, one obtains a surface
isotopic to ni parallel copies about each Γi:

Theorem 3.2 (Genus bounds [Ke]). The genus of the limiting minimal
surface (in the notation of the previous theorem) can be controlled as follows:

(3.9)
∑
i∈O

nig(Γi) +
1

2

∑
i∈N

ni(g(Γi)− 1) ≤ g,

where O denotes the set of i such that Γi is orientable, and N the set of i
such that Γi is non-orientable, and g(Γ) denotes the genus of Γ. The genus
of a non-orientable surface is the number of cross-caps one must attach to
a two-sphere to obtain a homeomorphic surface.

Recently Marques-Neves [MN] obtained the following upper Morse in-
dex bounds:

Proposition 3.3 (Upper Index Bounds [MN]). Suppose all components
of the min-max limit are orientable. Then

(3.10)
∑
i∈O

index(Γi) ≤ k,

where k denotes the dimension of the parameter space X.

4. Pitts-Rubinstein Conjecture
Given a Heegaard splitting of a three-manifold, a natural question is

when one can isotope the Heegaard surface to be a minimal surface. A
Heegaard surface gives a sweepout of a three-manifold (parameterized by
X equal to the unit interval I where at the two points of ∂I the surface
is fixed to degenerate to one-dimensional spines of the handlebodies). It
is a consequence of the isoperimetric inequality that W > 0. Thus (3.7) is
satisfied and this family is non-trivial and the Min-Max Theorem 3.1 applies.

The difficulty is that the minimal surface obtained may contain several
connected components, some with positive integer multiplicities. In fact, if
one starts with a random stabilized Heegaard surface, one does not expect
to produce a minimal surface isotopic to the surface. For instance, in round
S3, if one runs a min-max procedure with respect to the stabilized genus 1
splitting by Proposition 3.3 one obtains a minimal surface of index at most
1, which must be an equator of genus 0.

However, in the 80s Pitts-Rubinstein conjectured that if one begin with
a strongly irreducible splitting, one has much better control. Namely,
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Conjecture 4.1 (Pitts-Rubinstein). A strongly irreducible Heegaard
surface in a Riemannian three-manifold is either

(1) isotopic to a minimal surface of index at most 1
(2) isotopic after a single compression to the boundary of a tubular

neighborhood of a stable one-sided Heegaard surface.

Recall that a one-sided Heegaard surface is a surface Σ in a three-
manifold whose complement is an open handlebody. The simplest example
is RP

2 ⊂ RP
3 as RP

3 \ RP
2 is a three-ball. After a single compression on

a Heegaard torus in RP
3 one obtains a two-sphere bounding an I-bundle

about an RP
2.

The third-named author together with Y. Liokumovich and A. Song
recently proved Conjecture 4.1:

Theorem 4.2 (K-Liokumovich-Song [KLS]). The Pitts-Rubinstein con-
jecture is true.

It is shown in [KLS] that the dichotomy in Theorem 4.2 is sharp in that
one can find a metric on RP

3 for which (2) and not (1) occurs. Namely,
there exist metrics on RP

3 of positive scalar curvature containing no index
1 minimal Heegaard tori.

The assumption of strong irreducibility in Theorem 4.2 is essential. The
three-torus has a genus 3 irreducible but not strongly irreducible splitting.
In flat tori given by quotients of R3 by nearly degenerate lattices, however,
Ritore-Ros [RR] have shown that there do not exist index 1minimal surfaces
of genus 3 (and nor can case (2) occur).

Why is strong irreducibility so important? Firstly, essential compressions
on such a surface can only be into one of the handlebodies. Secondly, if one
runs the min-max process relative to such splittings, all orientable surface
obtained (except for two-spheres) must have multiplicity 1:

Proposition 4.3 (Multiplicity One). Suppose a min-max procedure is
performed relative to a strongly irreducible splitting to obtain minimal sur-
faces Γ1, ..., Γk occurring with multiplicities n1, ...nk. If any Γi is orientable
and of positive genus, then ni = 1.

Proof. By Theorem 3.2 it follows that after finitely many compressions
on Σ we obtain for each i, ni parallel sheets S1, ... Sni in a neighborhood of
Γi. By strong irreducibility, all essential compressions on Σ must be into the
same handlebody H1 giving rise to handlebodies of smaller genera J1, ... Jk.
We claim ni = 1. If ni ≥ 3, then either the region bounded between S1 and
S2 is a handlebody among the Ji or else the region between S2 and S3 is a
handlebody among the Ji. But both of these regions are homeomorphic to
{surface} × I, and thus not handlebodies. Thus ni ≤ 2. If ni = 2, then the
three-manifold consists of three components: J1, J2 and the region between
S1 and S2 (where ∂J1 = S1 and ∂J2 = S2). It follows from Scharleman-
Thompson’s classification of Heegaard splittings of {surface}× I [ST1] that
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the only way to obtain an irreducible splitting by adding handles back to
S1 ∪ S2 is by attaching a single vertical handle joining S1 to S2. But if this
is the case one can find two disjoint curves on the resulting surface giving a
weak reduction. Thus ni = 1. �

Remark 4.4. Strong irreducibility is essential here. In the genus three
splitting of T 3 one can perform two compressions, one into each handlebody
and obtain two parallel tori. Thus the multiplicity of a torus obtained in a
min-max process might be two.

Let us now explain Pitts-Rubinstein’s sketch of Conjecture 4.1. Since
in Theorem 3.1 the minimal surface obtained by min-max methods could
consist of several components, the idea of Pitts-Rubinstein was to iterate
the min-max procedure until one obtained a surface isotopic to H. Roughly
speaking, their argument was as follows (cf. [Ru, Theorem 1.8])). By strong
irreducibility, any degeneration of the min-max sequence could only be along
compressions into one of the handlebodies and the positive genus surfaces
have multiplicity 1 by Proposition 4.3. If such degeneration occurs, one then
can remove the handlebodies bounded by the several minimal surfaces to ob-
tain a manifold with minimal boundaryM ′. As one of the minimal boundary
components should have index 1, one could minimize area for the unstable
component of ∂M ′ into M ′ to obtain a new manifold M ′′ with stable bound-
ary. One then applies min-max to the compression body M ′′ and iterates.
Since M ′′ has stable boundary, and the min-max limit should always have
an unstable component, at each stage of the iteration the manifold shrinks.
If the process does not stop, one obtains infinitely many nested minimal
surfaces with bounded genus, giving rise to a Jacobi field. If the metric is
bumpy (which White proved is a generic condition) then this gives a con-
tradiction. Thus the process stops after finitely many steps at a minimal
surface isotopic to the Heegaard surface.

The argument sketched by Pitts-Rubinstein was incomplete on two
points. First, they assumed that the limit is achieved after compressions.
This was proved by the third-named author in Theorem 3.2. Secondly, in
order to run the iteration, one needs to apply the min-max theorem to a
subdomainM ′′ of the manifold with stable minimal boundary ∂M ′′. The key
claim is that one can obtain a minimal surface in the interior of such a sub-
domain. What could go wrong is that the min-max procedure just gives rise
to the boundary ∂M ′′ where some two-sphere component may have positive
integer multiplicity2.

Proposition 4.5 (Min-max with stable boundary [KLS]). Let M be a
manifold with boundary consisting of two compression bodies C1 and C2 glued

2In hyperbolic manifolds there are no minimal two-spheres (see Lemma 9.3) and thus
the proof of the conjecture is much simpler.
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together along a strongly irreducible Heegaard surface Σ. Suppose each com-
ponent of ∂M is strictly stable. Then M contains in its interior a minimal
surface obtained from surgeries on Σ of index at most 1.

In fact, to sketch the proof of Proposition 4.5, let us assume the manifold
M is as simple as possible, namely a three-ball bounded by a strictly stable
minimal two-sphere Γ.

Sketch of Proof: Let {Σt}t∈[0,1] be a sweepout of M by two-spheres so
that Σ0 = Γ and Σ1 is the trivial point surface. We consider the saturation of
{Σt}t∈[0,1] and the corresponding min-max problem. Because the boundary
Γ is strictly stable, it is not hard to show that W > area(Σ0). Thus the
sweepout is non-trivial and the Min-Max Theorem 3.1 applies. We must
rule out obtaining from Theorem 3.1 the surface ∂M = Γ counted with
multiplicity k > 1. We argue by contradiction. If this happens, we will
construct a competitor sweepout of M , also beginning at Γ and ending at
a point surface, but with all areas strictly less than W , contradicting the
definition of W .

Consider a sequence of sweepouts {Σi
t}t∈[0,1] so that supt∈[0,1] area(Σi

t)
approaches the min-max value W as i → ∞. Suppose that for i large and
some t0 ∈ (0, 1), the surfaces {Σi

t}t∈[t0−εi,t0+εi] are within a fixed η > 0
neighborhood of the varifold N = kΓ. Suppose for simplicity that [t0−εi, t0+
εi] is the only such interval. Using the strict stability of the boundary, one
can arrange

(4.1) area(Σi
t0−ε) < W

and

(4.2) area(Σi
t0+ε) < W.

The key observation is that either {Σi
t}t∈[0,t0−εi] or {Σi

t}t∈[t0+εi,1] must
itself be a sweepout of the entire manifold M apart from a tiny tubular
neighborhood of ∂M . If k is even, then the first is a sweep-out, and if k is
odd, then the second is. Roughly speaking, the only way a family of spheres
in the ball can begin at Γ and end up close to 2Γ, is if the family sweeps out
the entire ball in the process. Let’s assume k is even.

We then need to construct a sweepout supported near ∂M that begins
at the surface Σi

t0−εi (which looks like k copies of Γ) and ends at the zero or
trivial point surface. More precisely, given any δ > 0 we need an interpolating
family of surfaces {Γt}t∈[0,1] satisfying:

(a) Γ0 = Σi
t0−εi

(b) Γ1 = trivial point surface
(c) area(Γt) ≤ area(Σi

t0−εi) + δ.
Choosing δ appropriately small, we can concatenate {Σi

t}t∈[0,t0−εi] and
{Γt}t∈[0,1] to obtain a new sweepout of M with all areas less than W (thanks
to (4.1) and (4.2)). This gives a contradiction to the definition of width. The
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conclusion is that M contains in its interior a minimal surface (with index
at most 1 by earlier work of Marques-Neves [MN]).

To make the desired interpolation, a key point is that by the strict
stability of Γ, by pushing off by the lowest eigenfunction of the stability
operator, one can find a neighborhood of it Nh(Γ) (diffeomorphic to S

2 ×
[0, 1]) in which Γ is the unique stable surface. It would be natural to use the
mean curvature flow to flow any essential two-sphere in this neighborhood
toward the core stable sphere (and flow inessential spheres toward a point)
but it is not yet known how to flow past singularities that the flow may
develop.

Nevertheless, we have the following:

Proposition 4.6 (Mean Curvature Flow “By Hand”, [KLS]). Let Γ be
a strictly stable two-sphere. Let Σ be a smooth embedded two-sphere contained
in Nh(Γ) = S

2 × [0, 1]. For every δ > 0 there exists an isotopy Σt ⊂ Nh(Γ)
with

(1) Σ0 = Σ
(2) Σ1 is either equal to Γ or else Σ1 is contained in a ball of arbitrarily

small radius
(3) area(Σt) ≤ area(Σ) + δ for all t.

The idea in the proof of Proposition 4.6 is motivated by the following.
Suppose one asks an analogous question in R

3. That is, suppose one is given
two embeddings of two-spheres in Σ0 and Σ1 in R

3 and one seeks an isotopy
joining them that does that not increase area along the way. By Alexander’s
theorem, there exists some isotopy joining them (the trouble is that areas
may have to go quite high in order to achieve this). But we can enclose both
surfaces in a large ball, shrink the ball to be tiny, do the isotopy in the tiny
ball, and then rescale to unit size.

In Proposition 4.6 we must work in Nh(Γ) (diffeomorphic to S
2 × [0, 1])

and thus we do not have such radial isotopies to exploit. We can however
press any sphere in Nh(Γ) arbitrarily close to Γ in an area-decreasing fashion
(again using the lowest eigenfunction of the stability operator). Once it is
pressed close enough, we cover Γ with balls, and can then use the squeezing
trick above in each ball to simplify the surface, opening any necks and folds
in the process until the surface consists of some number m parallel copies of
Γ joined by a thin set of possibly badly linked and nested “necks.” Using the
Lightbulb theorem, we can then open any knotted necks to bring m down
and iterate until m = 1 or m = 0.

This completes the sketch of the interpolation result Proposition 4.6 and
thus the proof of Pitts-Rubinstein’s conjecture.

5. Minimal surfaces with index at most one in 3-manifolds
For an index at most one minimal surface in a 3-manifold, near most

points, the surface is stable and pointwise curvature estimates apply. Those
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curvature estimates show that on a small scale the surface looks like a small
almost flat piece of a plane. However, for a surface with index ≤ 1 there can
be a single small unstable neighborhood. If there is, then we show that in
that neighborhood, the surface looks like a scaled down catenoid centered
around the neck. The two sheets of the catenoid extend and remain almost
flat and graphical over each other past the small scale and up to a fixed scale.
This is the content of the next theorem [CG] that is stated for a unit ball
in Euclidean space but holds with obvious modifications for a sufficiently
small ball in any fixed 3-manifold.

Theorem 5.1. There exists δ, c > 0 such that the following holds:
Given C > 1, μ > 0, there exists ε > 0 so that if Σ ⊂ B1 ⊂ R3 is a compact
embedded minimal surface with ∂Σ ⊂ ∂B1, index one and Bε∩Σ is unstable,
then there is a simple closed geodesic γ ⊂ B2 ε ∩ Σ of length 	 so that

• Σc \Anδ �(γ) consists of two graphical annuli of functions with gra-
dient at most one.

• AnC �(γ) is μ-C2 close to the corresponding annulus in an rescaled
catenoid with neck of length 	.

In this theorem Σc is the connected component of Bc ∩ Σ containing γ
and Ans(S) are the points in Σ with intrinsic distance at most s to a subset
S of Σ.

This result gives a basic local structure for index ≤ 1 minimal surfaces.
It is important that this theorem gives information all the way up to the
fixed scale c and the entire all Bc, where the radius c is independent of 	.
This theorem implies that locally such surfaces look like one or multiple
almost flat and parallel sheets in addition to possibly a single pair of almost
flat sheets joined by a tiny catenoidal neck. This gives essentially immedi-
ately: Any sequence of closed embedded index one minimal surfaces has a
subsequence that converges to a smooth minimal lamination with possibly
one unstable leaf. An unstable leaf can only occur if the index of the surfaces
themselves does not concentrate. When index concentrates different parts of
the surfaces collapse to a sheet with multiplicity two. This is the following
theorem (cf. Corollary 2.2 [CG]).

Theorem 5.2. Let N3 be a complete hyperbolic 3-manifold and Σi ⊂ N
a sequence of closed embedded minimal surfaces with index ≤ 1. Then a
subsequence converges to a smooth minimal lamination L. Moreover, at
most one leaf of L is unstable and if L is an unstable leaf, then it is isolated.

Theorem 5.2 actually holds for any 3-manifold, compact or not, and
without any assumption on the curvature. To prove this result for complete
finite volume hyperbolic 3-manifold we needed to know that index-1 surfaces
lie in a bounded set. Indeed, there is the following result independently
proved in [CG] and [CHMR], [CHMR2]. Actually the result in [CHMR]
holds for any closed minimal surface.
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Figure 1. The two scales: (1) The structure on the scale
where the index concentrates. (2) The larger fixed scale.

Figure 2. If Σ is closed and penetrate into a cusp, then it
would begin to spiral if the index ≤ 1. This leads to a con-
tradiction.

Theorem 5.3. Let N3 be a finite volume hyperbolic 3-manifold and
x ∈ N be a fixed point, then there exists an R > 0 so that any closed
embedded index-1 minimal surface is contained in the ball BR(x).

Here is the idea of the proof. We will use the local structure theorem,
Theorem 5.1, to show that any closed index one minimal surface must lie
within a bounded set. Recall that the ends of a finite volume hyperbolic 3-
manifold are cusps. Cusps are topologically a product of a torus with a half
line. The metric is such that the induced metric on the tori is flat, but as one
goes further into the cusp, along the half line, the tori shrinks exponentially.
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The reason why such a surface cannot penetrate into a cusp is that if it
did, since the surface is closed, there would be a point where it is deepest into
the cusp. From the convexity of horospheres it follows that the surface cannot
be entirely contained in a cusp. Following the surface around, starting at the
point of deepest penetration, we move locally nearly orthogonal to the end of
the cusp. Beginning at the point of deepest penetration, as we move along, in
one direction we would after a while come back further inside the thick part
of the manifold; it cannot come back to itself since the surface cannot be
entirely contained in the cusp. However, in the opposite direction, we would
come back nearly parallel to where we started off but further into the cups.
This contradicts that we started off at the deepest point of penetration.

These results are used in [CG] to show that for a hyperbolic 3-manifold
with finite volume there are finitely many branched surfaces that carry all
closed index one embedded minimal surfaces. The branched surfaces can
be chosen to have curvature almost less than −1 and can be effectively
constructed. To quantify this we say that a branched surface is η-negatively
curved if all the sheets have sectional curvature < η. Recall that minimal
surfaces themselves in a hyperbolic manifold have curvature ≤ −1 by the
Gauss equation. So the branched surfaces can be constructed to have almost
the same upper curvature bound.

Theorem 5.4. If N is a complete finite volume hyperbolic 3-manifold
and η > −1, then there exists finitely many effectively constructible η-
negatively curved branched surfaces B1, · · · , Bn such that any index ≤ 1
closed embedded surface is carried by some Bi. In particular any strongly
irreducible Heegaard surface or is carried by one of these branched surfaces.

For the proof we show first that there are finitely many branched surfaces
that carry all closed stable embedded surfaces or more generally that carry
all closed embedded minimal surfaces with |A|2 ≤ C for some large but fixed
C. The general case makes use of this, together with Theorem 5.2, and a
few additional arguments. See [CG] for more details.

6. Mean Convex Foliations
Any closed orientable 3-manifold with a strongly irreducible Heegaard

splitting and bumpy metric has a natural singular mean convex foliation,
[CG]. This section provides the precise statement and an idea of the proof.

A mean convex foliation in a Riemannian n-manifold with boundary is
a smooth codimension one foliation, possibly with singularities of standard
type, such that each leaf is closed and mean convex.

In a 3-manifold a foliation with singularities of standard type means that
almost all leaves are completely smooth (i.e., without any singularities). In
particular, any connected subset of the singular set is completely contained
in a leaf. Moreover, the entire singular set is contained in finitely many
(compact) embedded C1 curves with cylinder singularities together with a
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countable set of spherical singularities. In higher dimensions there are direct
generalizations of this.

Theorem 6.1. Any closed orientable bumpy Riemannian 3-manifold
M with a strongly irreducible Heegaard splitting, supports a mean convex
foliation.

Bumpy is known to be a generic property. In particular, it is known that
there is a Baire category set of such metrics. Bumpy is just the assertion that
there does not exist an infinitesimal one-parameter family of closed minimal
surfaces. Said more precisely, bumpy means that the second variational op-
erator of any closed minimal surface has trivial kernel so all weakly unstable
closed minimal surfaces must be (strictly) unstable. We will see next that
as a consequence, for a bumpy metric, there is a mean convex foliation of
a small neighborhood of a closed embedded min-max surface. This follows
from the fact that a small neighborhood of any unstable minimal surface
can always be foliated whether or not the metric is bumpy. To see this note,
that if Σ ⊂ N is a closed embedded unstable minimal surface, then the
lowest eigenvalue λ of the second variation operator L is negative. If φ is
an eigenfunction for L with eigenvalue λ, then |φ| > 0 and so after possibly
replacing φ by −φ we may assume φ > 0. By the second variation formula
if Σs = F (x, s) is a variation of Σ = Σ0 with Fs ⊥ Σs, Fs(·, 0) = φn, then
d
dss=0

HΣs = −Lφ = λφ < 0. Here H is the mean curvature scalar in the
direction of the unit normal n. It follows from this that for s > 0 sufficiently
small the hypersurface Σs lies on one side of Σ and is mean convex. If fact,
it follows that, the surfaces Σs for |s| small gives a mean convex foliation of
a neighborhood of Σ with Σ as one of the leaves.

To extend the foliated neighborhood of an unstable minimal surface
to an larger region we flow the surface by the mean curvature flow. Mean
curvature flow is the negative gradient flow of area, so any surface in a 3-
manifold flows through surfaces in the direction of steepest descent for area.
When the initial surface is mean convex, then the movement is monotone; it
moves only in one direction and keeps moving in that direction. Thus, as it
evolves it foliates a region. As the surface evolve singularities can occur and
the surface is not anymore smooth everywhere. However, the flow is known
to make sense past such singularities and the singularities are of standard
type. The movement only stops when the surface either collapses to a point,
a simple closed curve, or another lower dimensional set, or the surface flows
toward a stable minimal surface.

The proof of Theorem 6.1 follows from a more general statement that
roughly goes as follows. For a closed orientable 3-manifold, divide first the
manifold into two along a closed embedded minimal surface obtained as the
min-max surface of a sweep-out (obtained in Theorem 4.2). Assuming that
the metric on the 3-manifold is bumpy we can, as described above, foliate a
small neighborhood of either side of the min-max surface by strictly mean
convex surfaces nearly parallel to the min-max surface. Flow such a strictly
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Figure 3. A mean convex foliation of a 3-manifold with
three min-max surfaces.

mean convex surface by the mean curvature flow to get a possibly singular
foliation with closed leaves that are mean convex. If the flow does not sweep-
out the “entire side” of the min-max surface, then it gets held up at a stable
minimal surface. If it sweeps out the entire side, then we have the desired
singular foliation of that side. However, when it gets held up, then we can
obtain a new min-max surface on the side of the 3-manifold that is bounded
by the stable minimal surface. Using Proposition 4.5 we then repeat the
process and either foliate a side or get held up by yet another stable minimal
surface. This process must stop after finitely many iterations and when it
does, we have constructed a possibly singular foliation but with closed mean
convex leaves.

7. Polynomial vs Exponential Growth
By Theorems 4.1 every strongly irreducible Heegaard surface or its 1-

sided associate is isotopic to an index-≤ 1 minimal surface. In a hyperbolic
3-manifold such a surface has intrinsic sectional curvature ≤ −1. Thus, such
a Heegaard surface of genus-g, or its 1-sided associate could conceivably have
an embedded disc with radius on the order of log(g). This section shows
that for a fixed hyperbolic 3-manifold N , there is an effectively computable
uniform upper bound on the radius of an embedded disc on such a surface
H. In fact for fixed L ∈ N, there exists a uniform r such that if R ⊂ H is
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a connected surface containing a metric ball of radius r, then χ(R) ≤ −L.
See Remarks 7.6 i).

In what follows we make use of branched surfaces and laminations. For
precise definitions of related notions see [O] and §1 [CG]. Roughly speaking
a measured lamination is one for which one can associate a real number
to arcs transverse to the lamination that are invariant under small per-
turbations through transverse arcs. As an example, consider a foliation or
lamination arising from a non singular 1-form. Given a branched surface B,
there is a natural way to take a regular neighborhood N(B) whose boundary
is a surface with corners. Here ∂N(B) = ∂vN(B)∪ ∂hN(B), where ∂vN(B)
is a union of thin annuli parallel to the cusps of the branched surface and
∂hN(B) is a union of smooth surfaces with boundary locally parallel to the
sheets of the branched surface. A monogon is a compact disc with a single
cusp on its boundary. It may arise as a properly embedded disc in the closed
complement of a branched surface B. A monogon for N(B) is a properly
embedded disc in the closed complement of N(B) which intersects ∂N(B)
in two arcs lying respectively in ∂vN(B) and ∂hN(B).

Definition 7.1. Let S be a Riemann manifold and f : R → R. We say
that S has growth at most f if for each x ∈ S and r > 0, area(NS(x, r)) ≤
f(r). If f is a polynomial, then we say that S has at most polynomial growth,
though usually just polynomial growth for short. If ecr < area(NS(x, r)) for
r sufficiently large and c > 0, then we say S has exponential growth.

Remarks 7.2. i) Since the area of a Euclidean (resp. hyperbolic) disc of
radius r is πr2 (resp. πsinh(r)2) their growth rates are respectively quadratic
and exponential.

ii) It can be deduced from [CC1], [CC2] that there exists a foliation on
S × I, transverse to the I-fibers, where S is the surface of genus-3, having
leaves of exponential growth and leaves of polynomial growth of all degrees.
Note that the closed surface of genus-3 carries the foliation.

On the other hand we have the following result Theorem 4.2 [CG],
extending Plante’s theorem [Pl], that leaves of measured foliations on closed
manifolds have polynomial growth.

Theorem 7.3. Let B be a branched surface embedded in the Riemannian
3-manifoldM . There exists an effectively constructible polynomial p(B), such
that if S is a leaf of a measured lamination carried by B, then the growth of
S is bounded by p(B).

Corollary 7.4. Let M be a closed hyperbolic 3-manifold. There exists
an effectively computable polynomial p(t) such that any index-≤ 1 minimal
surface has growth bounded by p(t).

Proof. By Theorem 5.4 there is an effectively constructible set of
branched surfaces that carry all such surfaces. Now apply Theorem 7.3. �
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These results together with Remarks 7.2 i) yield the following result
proved in §5 [CG]. By a regular splitting of a branched surface we mean one
that corresponds to splitting along the branch locus, as opposed to splitting
to create a new complementary region.

Proposition 7.5. Let B be an η-negatively curved branched surface in
the Riemannian 3-manifold M that fully carries a surface and let r > 0. Then
there exist effectively constructible branched surfaces B1, · · · , Bn obtained by
regularly splitting B such that every surface carried by B is carried by some
Bi and each Bi fully carries a surface. Furthermore, if E is a subbranched
surface of a regular splitting of some Bi, possibly Bi itself, then for each
component H of ∂hN(E) there exists x ∈ H such that NH(x, r) ⊂ int(H).

Remarks 7.6. i) The crucial consequence of this result is that by 7.2
i) given N > 0, there exists an effectively computable r > 0 such that
χ(H) < −N for each H as in the Proposition.

ii) It follows that we can assume that the branch surfaces under consid-
eration are horizontally large, i.e. no component of ∂hN(B) is a disc or an
annulus.

8. On the Classification of Heegaard Splittings I: Finiteness
The long-standing classification problem is to exhibit for each closed 3-

manifold a complete list, without duplication, of all its Heegaard splittings,
up to isotopy. In this section and the next two we survey the classification
problem for irreducible splittings in irreducible 3-manifolds as well as the
authors’ solution for non Haken closed hyperbolic 3-manifolds. This problem
for reducible splittings as well as reducible manifolds is also interesting. See
§10 for statements of some results in that direction.

Let M be a closed Haken 3-manifold. In 1990 Klaus Johannson, an-
nounced the following result, Theorem 4 [Jo1], stated here for closed mani-
folds, asserting proof in the 446 page book [Jo2].

Theorem 8.1. Let M be a closed Haken 3-manifold. Modulo twisting
along essential tori, the set of all genus-g Heegaard splittings of M is finite
and constructible.

In particular, ifM is also hyperbolic, there are only finitely many genus-g
Heegaard surfaces and they are constructible. For Haken manifolds, this
resolved a corrected form of Waldhausen’s [Wa1] conjecture: that a closed
3-manifold supports only finitely many Heegaard surfaces of a fixed genus.

Now assume that M is a closed non-Haken 3-manifold. We have the
following result, the last piece being done in [CG].

Theorem 8.2. If M is a closed non-Haken 3-manifold, then there exists
an effective algorithm to produce a finite list of Heegaard surfaces which
contains all the irreducible Heegaard splittings up to isotopy.
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Remarks 8.3. i) Note that this list may contain reducible splittings and
duplicates, i.e. pairwise isotopic splittings.

ii) The result for Seifert fibered spaces follows from the 1998 paper of
Moriah and Schultens [MS].

iii) In 2006 Tao Li [Li1], [Li2] proved that M has only finitely many
isotopically distinct irreducible Heegaard splittings, thereby establishing a
strong form of Waldhausen’s conjecture. In 2011 he showed that given g > 0,
there exists an effective algorithm to produce a finite list, possibly with
duplication, of all the Heegaard surfaces of genus-g, up to isotopy.

iv) Since by Perelman’s geometrization theorem a closed non-Haken 3-
manifold is either hyperbolic or Seifert fibered it remained to effectively
bound the genus of non Haken irreducible splittings of hyperbolic 3-mani-
folds. This is done by the first two authors in the 2018 paper [CG].

Theorem 8.4. If N is a closed non-Haken hyperbolic 3-manifold, then
there exists an effectively computable G(N) such that any irreducible Hee-
gaard splitting of N has genus bounded above by G(N).

Remarks 8.5. i) The paper [CG] also effectively finds, for each g, a
finite list of genus-g splittings which contains the irreducible splittings. It
makes essential use of the negative curvature as well as deep results from
minimal surface theory. Tao Li [Li2] on the other hand only starts with a
triangulation. With bare hands, armed only with normal surface theory, he
proves his result.

ii) An effectively computable algorithm, is one that produces an output
within some function of the input data. In Theorem 8.4 the input is a tri-
angulation by hyperbolic simplices, each of which has uniformly bounded
dihedral angles and edge lengths. Such a triangulation exists by [Br].

iii) An effective algorithm starting from a combinatorial triangulation
would follow from §7 [CG] and a positive solution to Conjecture 10.4.

Idea of the proof of Theorem 8.4. To start with [CaGo1] implies that
the irreducible splittings are also strongly irreducible. By [KLS] a strongly
irreducible Heegaard surface S is isotopic to either an index-≤ 1 minimal
surface or by attaching an unknotted tube between the sheets of the double
cover of a non orientable index-0 surface. By Theorem 5.4 these index-≤ 1
surfaces are carried by finitely many η-negatively curved branched surfaces
B1, · · · , Bn. By Theorem 7.5 and Remark 7.6 we can assume that each sub
branched surface B of each Bi has the property that ∂h(N(B)) contains a
π1-injective pair of pants. Let F1, · · · , Fq represent the fundamental solutions
to the normal surface equations of Bi. The goal is to find an Ni ∈ N such that
if S = n1F1 + · · ·+ nqFq, some nj ≥ Ni and S is a Heegaard surface then S
is weakly reducible. Suppose that 0 < n1 ≤ n2 ≤ · · · ≤ nq. It turns out that
we can then assume n1 = 1 or we readily find a weak reduction. Also we can
assume that for some very large Ni, if j is the smallest value with nj ≥ Ni,
then nj−1/nj is very small. Let S2 = njFj+· · ·nqFq. If B is the subbranched
surface that fully carries S2, then either B is incompressible and hence N
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is Haken or ∂hN(B) is compressible. Since N is non Haken, the former
case does not occur. Let D denote a compressing disc. We can assume that
P ⊂ ∂hN(B) is an essential pair of pants where one component of ∂P = ∂D.
For simplicity assume that it projects to an embedded surface P ′ in B. It
follows that S2 contains at least Ni parallel copies of P that project to P ′. In
the most interesting situation, a compressing disc D for ∂hN(B) intersects
Bi in a single arc α which decomposes D into two monogons. Also S passes
through the sector σ of Bi which contains α exactly once. These monogons
then extend to isotopically disjoint compressing discs for S, one on each side
of S. Each such disc consists of two copies of a monogon and a strip that
lies in the interstitial bundle of S and which penetrates only a uniformly
bounded amount. The projection of this strip to Bi is a properly immersed
arc in P ′.

Remark 8.6. The ideas of using branched and normal surface theory
are already in [Li1] and [Li2] as is the idea of extending monogons to find
disjoint compressing discs. The hyperbolicity enabled us to effectively find
finitely many η-negatively curved branched surfaces which in combination
with Theorem 7.3 enabled us to split a controlled amount to find ones with
large horizontal boundaries, e.g. the P ⊂ ∂hN(B). A detailed understanding
of S near N(P ′) enabled us to effectively find the desired strips that built
the weakly compressing discs.

9. On the Classification of Heegaard Splittings II:
The Thick Isotopy Lemma

The goal of this section is to outline a proof of the following result.

Theorem 9.1. Let N be a closed non-Haken hyperbolic 3-manifold.
There exists an effectively constructible set S0, S1, · · · , Sn such that if S
is an irreducible Heegaard splitting, then S is isotopic to exactly one Si.

By Theorem 8.2 we can effectively construct a set of Heegaard surfaces
containing all the irreducible ones. To prove Theorem 9.1 we need to effec-
tively weed out duplications as well as reducible splittings from this set.

Let us first focus on the elimination of duplicate irreducible splittings.
The main point is that when two strongly irreducible surfaces are isotopic
in a hyperbolic manifold, we can apply the following Thick isotopy Lemma
I to find a path connecting them with controlled geometry in the sense that
the areas of surfaces in the isotopy are bounded from above by a computable
amount and the surfaces never get too thin to either side. To formalize the
notion of thinness, let us say a surface Σ embedded in a three-manifold N is
δ-incompressible if there exists no essential simple closed curve of diameter
(in N) at most δ that bounds a disk in a complementary region. A finite net
in the family of such surfaces is effectively constructible and gives rise to a
graph G whose vertices are elements of the net and where two vertices are
connected by an edge if they correspond to close surfaces. An isotopy with
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controlled geometry gives rise to a path in this graph. Thus, two strongly ir-
reducible splittings are isotopic if and only if they lie in the same component
of the graph. See [CGK] §3 for details. For technical reasons the proof is
conducted in the PL category. It uses the notions of crudely normal surface
and pinched isotopy which may be of independent interest.

Lemma 9.2 (Thick Isotopy Lemma I [CGK]). Let N be a hyperbolic
non-Haken three-manifold of injectivity radius δ0. Suppose Σ0 and Σ1 are 8δ-
incompressible isotopic Heegaard surfaces where δ < δ0/16. Then there exists
an isotopy Σt joining Σ0 to Σ1 so that each surface Σt is δ-incompressible
and the area of all intermediate surfaces Σt is bounded by a computable
constant C.

To start with, given the Heegaard surfaces Σi, i = 0, 1, we can explicitly
construct, e.g. by Haken’s algorithm [Ha2], a Heegaard foliation Fi with Σi

as a leaf and hence compute an upper bound C1 for the area of any surface
in either F0 or F1. Since Σ0, Σ1 are isotopic Heegaard surfaces, there exists
an extension to an isotopy of F0 to F1. Thus, there exists some 2-parameter
sweepout Σs,t parametrized by X = I × I where Σi,t, t ∈ I corresponds to
Fi for i = 0, 1 and each Σt,0, Σt,1 is a 1-complex.

The areas of the surfaces in the sweepout Σs,t a priori may be arbi-
trarily large. Using min-max theory we claim that there exists a sweepout
parametrized by X with the same boundary values as Σs,t such that:

(*) for each s, t, area(Σs,t) < C = max{C1 + 1, 4π(g − 1) + 1}, where
g = genus(Σi).

To prove (*), we will also need the following fact (which follows from
the Gauss equation and Gauss-Bonnet formula):

Lemma 9.3 (Area bounds for minimal surfaces). Let Γ be a genus g
minimal surface immersed in a hyperbolic three-manifold. Then
(9.1) area(Γ) < 4π(g − 1).

The genus bounds together with Lemma 9.3 imply:
Lemma 9.4. The width of a non-trivial k-parameter family of genus g

surfaces in a hyperbolic three-manifold is at most 4π(g − 1).
Proof: By the min-max theorem, we obtain the existence of a collection

of minimal surfaces Γ1, ..., Γk as well as positive integers n1..., nk so that
W =

∑
niarea(Γi). Let us assume for simplicity the Γi are all orientable.

Then we have:
W =

∑
niarea(Γi) < 4π

∑
ni(genus(Γi)− 1)

≤ −4π + 4π
∑

ni(genus(Γi)) ≤ 4π(g − 1).(9.2)
The first inequality is from Lemma 9.3 and the last inequality follows from
the Genus Bounds (3.2). �
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Roughly speaking, Lemma 9.4 asserts that no matter how complicated
topologically a genus g sweep-out might be in a hyperbolic manifold, by
pulling the entire family as tightly as possible, the areas of the surfaces can
be controlled just in terms of the genus g.

Proof of (*):
We consider the saturation Λ of the sweepout Σs,t and the corresponding

min-max value WΛ. There are two cases: either WΛ > C1 or else WΛ ≤ C1.
In the second case, from the definition of width we have sweepouts with
areas satisfying (*). In the first case, the family is non-trivial and Lemma
9.4 together with the definition of width then gives (*). �

We now continue the proof of Lemma 9.2. Suppose the sweepout ob-
tained from (*) has been parametrized so that for i = 0, 1, Σi = Σi,1/2.
Thus, any properly embedded path α(t) in X from (0, 1/2) to (1, 1/2) gives
rise to an isotopy defined by Σt = Σα(t). By construction area(Σt) < C.
To complete the proof of Lemma 9.2 we need to show that there exists a
path α(t) so that each Σt is δ-incompressible. Suppressing the details, the
idea of the proof is contained in the following figure. The figure shows that
the failure of finding the desired path implies that Σ0 is weakly reducible
and hence reducible [CaGo1], since N is non-Haken. (In reality, [CGK] the
green region G is compact with piecewise smooth boundary and contains all
the parameters (r, s) such that Σr,s has a ≤ δ short compression to the H0

side and if (r, s) ∈ G, then Σr,s has some ≤ 1.5δ compression to the H0 side.
Also (0×[1/2, 1]∪1×[1/2, 1])∩G = ∅. Analogous statements hold for the red
region R, with H0 replaced by H1 and (0× [0, 1/2]∪ 1× [0, 1/2])∩R = ∅. If
(r, s) ∈ G∩R, then Σr,s is 1.5δ-bicompressible and hence the corresponding
Heegaard splitting is weakly reducible as we discuss below.)

Let us now focus on the elimination of reducible splittings. Here we
introduce the notion of Σ being η-bicompressible. This means that there exist



GEOMETRIC METHODS IN HEEGAARD THEORY 55

essential simple closed curves of diameter ≤ η which respectively compress
to distinct sides of Σ. A simple fact is that if 2η < the injectivity radius of
N , and N is not the 3-sphere, then an η-bicompressible Heegaard surface is
weakly reducible. The key geometric result needed is Lemma 9.5, an analogue
of Lemma 9.2 which roughly says that if Σ is weakly reducible, then for δ
sufficiently small, it is isotopic to an 4δ-bicompressible surface through δ-
incompressible surfaces whose areas are uniformly bounded above. Using
the same graph G we see that Σ is reducible if and only if it is in the
same component as an η-bicompressible one. See [CGK] §3 for details. In
both cases, i.e. the weeding out of duplications and reducibles, the path
in G corresponds to a pinched crudely normal isotopy with respect to a
triangulation Δ3 such that the weights of the interpolating surfaces remain
uniformly bounded above. That we can uniformly bound the weights follows
from the area bound in Lemmas 9.2, 9.5. The δ-incompressibility condition
allows us to work in the category of crudely normal and crudely almost
normal surfaces. The number of such surfaces of uniformly bounded weight
is finite, hence the finiteness of G. By construction Δ3 is a subcomplex of a
much coarser Δ2. It is at the level of Δ2 that bicompressibility is effectively
detected. Very heuristically, from the eyes of Δ3, a path in G looks like an
isotopy of an incompressible surface, while the vision of Δ2 is sufficiently
broad to detect weak reducibility.

Lemma 9.5 (Thick Isotopy Lemma II [CGK]). Let N be a closed non-
Haken hyperbolic 3-manifold with injectivity radius δ0. If Σ0 is weakly re-
ducible and 8δ-locally incompressible, then there exists an effectively com-
putable C and an isotopy Σt from Σ0 to a Σt1 such that for each t ≤ t1,
area(Σt) < C and Σt is δ-incompressible. Finally Σt1 is 4δ-bicompressible.

This means that at the scale of δ, each Σt looks incompressible, while
at the scale of 4δ, Σt1 is weakly reducible. Note that the compressing discs
need not have small diameter.

Here is the idea of the proof of Lemma 9.5. As before we let F0 be
a Heegaard foliation extending Σ0 and C1 the maximal area of its leaves.
If Σ0 is weakly reducible, then it is reducible, so it is isotopic to Σ1 with
Heegaard foliation F1 such that each leaf of F1 is δ-bicompressible. Indeed
Σ1 can be taken to be a stabilization of a strongly irreducible splitting and
so F1 can be constructed so that the curves in the trivial handle part of the
stabilization have diameter < δ. Further using Theorem 6.1 or Theorem 4.2
and two applications of Lemma 9.4, F1 can be also constructed so such that
the area of each leaf is < 4π((g − 1)− 1) + 1 < 4π(g − 1). Thus there exists
a 2-parameter sweepout parametrized by X = I × I such that for i = 0, 1,
Σi,t are leaves of F0 and F1 and for t ∈ [0, 1], i ∈ {0, 1},Σt,i is a 1-complex.
Thus for x ∈ ∂X, area(Σx) < C = max{C1 + 1, 4π(g − 1) + 1}. As in the
proof of Lemma 9.2, there exists a sweepout Σs,t parametrized by X taking
on the same boundary values as the original one, such that for each x ∈ X,
area(Σx) < C.
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Now parametrize F0 so that Σ0 = Σ0,1/2. To complete the proof it suffices
to find a smooth path α(t) ⊂ X, t ∈ [0, t1] such that α0 = (0, 1/2), α∩∂X =
α0, each Σα(t) is δ-incompressible and Σα(t1) is 4δ-bicompressible. The idea
of the proof that such an α(t) exists, is contained in the following figure. See
§3 [CGK] for the details.

10. Problems
10.1. The Heegaard tree. Associate to a 3-manifold M a directed

graph T ′ whose vertices are isotopy classes of Heegaard splittings of M and
an edge points from v to v′ if a splitting representing v is a stabilization of one
representing v′. The Reidemeister - Singer theorem [Re], [Si] implies that
any two Heegaard splittings have a common stabilization. Since stabilization
is unique up to isotopy, T ′ is a tree. We define the Heegaard tree of M to be
the minimal subtree T (M) that contains all the irreducible splittings.

Problem 10.1. Give an effective algorithm to construct the Heegaard
tree for a closed irreducible non-Haken 3-manifold M . In particular find an
effective algorithm to compute how many stabilizations are needed to make
distinct Heegaard splittings isotopic.

Remarks 10.2. i) Rubinstein and Scharlemann [RS3] show that 5p+7q-
9 stabilizations suffice where q (resp. p) is the larger (resp. smaller) genus of
the Heegaard splittings. See [Tak] for an approach using singularity theory.
Combining these results with [Li2] and [CG] it follows that T (M) is finite
and the number of vertices is bounded by an effectively computable function.

ii) Johannson [Jo2] gave a polynomial upper bound on the number of
stabilizations needed for splittings of Haken manifolds to become equivalent.

iii) More than one stabilization may be needed [HTT], [Ba4], [Jon2].
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iv) For reducible 3-manifolds there are the foundational results of Bach-
man [Ba2] and Qiu-Scharlemann [QS] solving what was known as the Gor-
don conjecture. They showed that if the closed 3-manifold M is the connect
sum of M1 and M2, then the sum of unstabilized splittings in M1 and M2 is
unstabilized. Bachman [Ba2] further showed that an unstabilized splitting
in M has a unique expression as the connect sum of Heegaard splittings of
prime 3-manifolds.

10.2. Effective splitting of branched surfaces.

Definition 10.3. We say that the branched surface B ⊂ M is quasi-
hyperbolic if it does not carry any sphere or torus, but fully carries a surface.
A regular splitting of B is one which opens up B along its branch locus.

Note that fully carrying η-negatively curved branched surfaces are quasi-
hyperbolic.

Conjecture 10.4. Let B be a branched surface in the compact trian-
gulated atoroidal irreducible 3-manifold N . Then there exist finitely many
effectively constructible quasi-hyperbolic branched surfaces B1, · · · , Bn such
that each Bi is the result of passing to a subbranched surface of some regular
splitting of B and every strongly irreducible or incompressible surface carried
by B is carried by some Bi.

Remarks 10.5. i) In 2007 Tao Li proved the non effective version of this
conjecture [Li1]. There the passage from B to B1, · · · , Bn is obtained via a
compactness argument. See Proposition 8.1 [Li1].

ii) §7 [CG] shows that a proof of this conjecture would complete an
effective proof of Theorem 9.1 starting only with a combinatorial triangula-
tion.

10.3. Index of common stabilizations. The following is a special
case of a conjecture of David Bachman [Ba3].

Conjecture 10.6. If M is a non-Haken Riemannian 3-manifold, then
the minimal common stabilization surface S of distinct irreducible Heegaard
splittings is isotopic to a surface of index-≤ 2.

Remarks 10.7. i) In [Ba3] Bachman defined the topological index of
certain surfaces H �= T 2, S2 as follows. Define the disc complex Δ(H), the
complex whose vertices are isotopy classes of embedded discs inM that inter-
sectH exactly along their boundaries and in essential curves. Itsm-simplices
are m+1-tuples of distinct vertices representable by pairwise disjoint discs.
Define H to have topological index 0 if Δ(H) = ∅, and topologically of
index-k, for k ≥ 1, if πk−1(Δ(H)) is the first non trivial homotopy group of
Δ(H). He conjectured that a surface of topological index-k is isotopic to a
surface of index-≤ k. For k = 0, this is true by [FHS]. A Heegaard surface of
topological index-1 is strongly irreducible [CaGo1] and hence isotopic to an
index-≤ 1 surface by [KLS]. Note that by McCullough the disc complex of a
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handlebody is contractible [Mc], hence does not have a defined topological
index.

ii) In 2010 Daniel Appel [Ap] proved that the Heegaard surface of genus
g ≥ 2 in the 3-sphere has topological index 2g−1. See also [CaTo]. Further-
more these are the only connected surfaces in the 3-sphere with non trivial
topological index. On the other hand the minimal index for a Heegaard sur-
face of genus-2 is at least 6 [Ur]. Appel’s results disprove Conjectures 5.6
and 5.9 of [Ba3] and give positive solutions to Questions 5.3, that there is a
non Haken 3-manifold with surfaces of topological index ≥ 3 and Question
5.5, that there is a 3-manifold with surfaces of arbitrarily high topological
index. Can Bachman’s conjectures be modified to take account of the special
nature of S3?

10.4. The Goeritz conjecture.
Definition 10.8. Define the genus-g Goeritz group Hg as the group

of isotopy classes of orientation preserving diffeomorphisms of the 3-sphere
that leave the standard genus-g Heegaard splitting invariant.

Problem 10.9. IsHg finitely generated and if so find a set of generators?
[Gor2], [Po], [Sc3].

Remarks 10.10. i) For g = 0, 1 this is the trivial group. L. Goeritz
[Gor2] answered this question for g = 2. A modern proof can be found in
[Sc3].

ii) J. Powell [Po] proposed a set of generators for the general Hg. His
argument that they sufficed, had a gap. See [Sc3].

iii) M. Freedman and M. Scharlemann recently proved that Powell’s
generators suffice for H3, [FS]. E. Akbas [Ak] and S. Cho [Cho] showed
that H2 is finitely presented.

iv) Results on the analogous Goeritz group in 3-manifolds can be found
in [JM].

10.5. More problems. For other problems and questions see the Ap-
pendix of this paper, [Li5], [So], [Go1] and [BDS].

11. Appendix: On the Geometry of Handlebodies, David Gabai
and Tobias Holck Colding

Motivated by the following remarkable result, this appendix speculates
on the geometry of ultra large volume handlebodies with Cheeger constant
uniformly bounded below.

Theorem 11.1 (Long - Lubotzky - Reid [LLR], Bourgain - Gamburd
[BoGa]). Let N be a closed, connected hyperbolic 3-manifold. Then there
exists an infinite tower · · · → N2 → N1 → N0 = N such that

i) For all i, Ch(Ni) > c1 > 0,
ii) injrad(Ni) → ∞ and
iii) Nj is regular cover of Ni if j > i.
Here Ch(Ni) denotes the Cheeger constant of Ni.
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In addition we have

Theorem 11.2 (Lackenby [La2]). iv) For all i, g(Ni)/ vol(Ni) > c2 > 0,
where g(Ni) denotes the Heegaard genus of Ni.

Remarks 11.3. 1) Recall that the Cheeger constant (M) = inf{area(A1∩
A2)/min{vol(A1), vol(A2)}} where A1∪A2 = M and A1∩A2 = ∂A1 = ∂A2.

2) Clozel [Cl] proved that congruence covers of a given closed arithmetic
3-manifold have a uniform lower bound for their Cheeger constants.

Question 11.4. Given a sequence {Ni} as above, is Nj Haken for j
sufficiently large?

Remarks 11.5. 1) We investigated this question in an attempt to ad-
dress the now resolved virtual Haken conjecture due to I. Agol [Agol], D.
Wise and his collaborators e.g. [Wi], and J. Kahn - V. Markovic [KM]. As
far as we know, Question 11.4 is still open.

2) In general either the Ni’s are eventually Haken or by [CaGo1] there
is a sequence (H i

0, H
i
1) of minimal genus strongly irreducible Heegaard split-

tings of the Ni’s. By the Pitts - Rubinstein conjecture 4.1, [KLS] we can
assume that Si = H i

0 ∩ H i
1 is minimal of index-≤ 1. By i) and iv) both

Ch(Ni) and g(Ni)/ vol(Ni) are uniformly bounded below.
3) This leads to the following question which we think is of independent

interest and worthy of further study. Papers [CG] and [CGK] had its origins
in efforts to understand this question.

Question 11.6. Let (H0, H1) be a strongly irreducible Heegaard split-
ting of the closed hyperbolic 3-manifold N with H0 ∩H1 = S. What is the
geometry of H0 and H1 if S is a minimal surface of index-≤ 1 and Ch(N)
and g(N)/ vol(N) are uniformly bounded below where vol(N) >> 0.

We now briefly describe four types of handlebodies and for the larger of
H0 and H1 offer a potential model. The first three describe known construc-
tions.

Neighborhoods of 1-complexes. This is the way we usually first
think of handlebodies. Here the neighborhood is not meant to be too large,
so that each element of a complete set of compressing discs, i.e. a set that
cuts the handlebody into a ball, has both small area and boundary length.

Generalized Cannon - Thurston handlebodies. i) Let S be a closed
surface of genus g with two transverse binding measured foliations (or geo-
desic laminations) (μ1, dx) and (μ2, dy). Binding means that every essential
simple closed curve γ has positive measure with respect to one of μ1 or μ2,
where the measure of a curve is calculated as the infimum over all curves in
its homotopy class. This defines a natural pseudo-metric ds20 = dx2+dy2 on
S. Given λ > 0 and k > 1, J. Cannon and W. Thurston [CT] define an infin-
itesimal pseudo-metric ρ on S×(−∞,∞) by ds2 = k2tdx2+k−2tdy2+λ2dt2,
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where t comes from the second factor. They showed that if μ1, μ2 are the in-
variant foliations of a pseudo-Anosov mapping f with stretch factor k, then
ρ is quasi-comparable with the hyperbolic metric ρ̂f on S × (−∞,∞). The
latter is the pull back to the infinite cyclic cover, of the hyperbolic metric
ρf on the closed manifold Mf that fibers over S1 with monodromy f . Here
the infinite cyclic cover S × (−∞,∞) is parametrized so that S × [i, j] is
the manifold obtained by gluing j − i fundamental domains. See [CT] for a
detailed analysis of ρ on S × (−∞,∞) and its pull back to H

2 × (−∞,∞).
Given g pairwise disjoint simple closed curves in S × 0 cutting it into

a planar surface, and i ∈ N construct a handlebody Hi by restricting the
ρ metric to S × [0, i] and attaching 2-handles to the S × 0-side along these
curves and capping off the resulting 2-sphere with a 3-ball. We call such a
handlebody a Cannon - Thurston Handlebody.

ii) Let f : S → S be a pseudo-Anosov mapping of a closed surface
of genus-g and Mf the mapping torus. Let ρf be the hyperbolic metric
on Mf and ε > 0. Let Hi be the handlebody of genus-g parametrized as
S × [0, i] with a handlebody attached to the S × 0-side. H. Namazi and J.
Souto [NaSo] showed that if i is sufficiently large, then one can construct
a hyperbolic structure on Hi whose restriction to S × [0, i] is ε-close to the
restricted metric ρ̂f defined in i). J. Hass, A. Thompson and W. Thurston
[HTT] showed by modifying the Namazi - Souto construction, that for j
sufficiently large, there exists a Riemannian metric ρj on Hj with sectional
curvatures between −1− ε and −1 + ε such ρj coincides with ρf near S × j
and hence, for k > j one can construct ρk on Hk which coincides with ρj on
Hj and ρ̂f on S × [j, k].

iii) The following is a very rough approximation of a special case of a
construction of [BMNS1] due to J. Brock, Y. Minsky, H. Namazi and J.
Souto. Construct a handlebody K by gluing together finitely many com-
pression bodies, where the −-side of one is glued to the +-side of another.
Geometrically, there is a long product region between any two compression
bodies whose fiberwise metric is given by a segment of a thick Teichmuller
geodesic. The compression bodies themselves have fixed Riemannian met-
rics.

Remark 11.7. Note that i) yields handlebodies with either small Cheeger
constant C or compressing discs whose boundary lengths are of the order
log(g). Here we assume that short curves are used on S × 0. In ii) and iii)
either there is a small Cheeger constant or the geometric complexity of the
manifold is mostly in the unknown compression bodies. For us, these are the
regions of interest.

Neighborhoods of Gropes. Let H be a handlebody inductively con-
structed as follows. Start with G1 = S×I, where S is a compact surface with
non empty connected boundary. Construct the second stage G2 as follows.
Glue T1×I, · · · , Tn×I to S×0∪S×1 where T1, · · · , Tn are compact surfaces
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with non empty connected boundary and the (∂Ti)× I’s are glued to pair-
wise disjoint neighborhoods of simple closed curves γ1, · · · , γm on S×{0, 1}.
We require that if P2 is the projection to S of the union of the γi’s, then S
deformation retracts to a 1-complex that includes P2. In a similar manner for
some k ∈ N construct G3, G4, · · ·Gk where each Gp is obtained from Gp−1

by attaching thickened surfaces to Gp−1 \Gp−2 as above. It is an exercise to
show that Gk is a handlebody and to find systems of compressing discs. Gk

naturally deformation retracts to a 2-complex called a grope. See [FQ].

Remark 11.8. Suppose that for each Ti × I of Gp \ Gp−1, length(∂Ti)
and the total length of a set of arcs cutting Ti into a disc are uniformly
bounded, as is the length of the I-fibers. Since for i < j annuli of uniformly
bounded area separate off components of Gk \Gi, neighborhoods of gropes
generally have very small Cheeger constant. Also, Gk has some compressing
discs with boundaries of uniformly bounded length, but a complete set of
compressing discs contains discs whose lengths grow exponentially in k. For
example, let T denote the torus with an open disc removed. Let G1 = T × I
and Gi+1 be obtained from Gi by attaching a single T × I to the i’th stage.
Suppose that vol(T × I) = 1 and the length of ∂T and the lengths of two
disjoint essential arcs in T have length 1. Then vol(Gk) = k and Gk has a
compressing disc of approximate boundary length 2, but a complete system
requires a disc of boundary length approximately 2k.

This brings us to our thoughts towards addressing Question 11.6.

Conjecture 11.9. There exists C > 0 such that if H i
0, H i

1 are as in
Remark 11.5, then by switching if necessary H i

0 andH i
1, if D is a compressing

disc for H i
0, then length(∂D) > Cg.

Zipped up Handlebodies. Let K be a compact connected 1-complex
each of whose edges has length 1. Let V0 denote a small 3-dimensional neigh-
borhood of K with {Dj} a family of standard compressing discs for V0, one
for each edge of K. Let γ ⊂ ∂V0 denote an embedded arc which intersects
eachDj at least twice. Let z0 be the midpoint of γ. Parametrize by arc length
the closure α0, α1 of the components of γ\z0 by [0, L], where α0(0) = α1(0) =
z0. Identify N(αi) ⊂ ∂V0 with [0, L]× [0, ε]. Let B = [0, L−1]× [0, ε]× [0, 2].
Now glue B to V0 to obtain V1 so that, after rounding corners γ × [0, ε] is
identified with [0, L− 1]× [0, ε]× {0, 2} ∪ 0× [0, ε]× [0, 2] where z × [0, ε] is
identified with 0 × [0, ε] × 1. See Figure A1. If the gluing is essentially arc
length preserving, then metrically, V1 is close to the handlebody obtained
by gluing α0 × [0, ε] to α1 × [0, ε]. We say that V1 is obtained from V0 by
zipping along γ and that V1 is a zipped up handlebody.

Remark 11.10. It is not difficult to construct such a γ that hits each
Dj exactly two times.

The obvious compressing disc Ei ⊂ V1 arising from Di is obtained by
extending Di ⊂ V0 into B and attaching a feeler from each component of
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Figure A1.

B∩∂Di to (L−1)× [0, ε]× [0, 2]. See Figure A2. It follows that length(∂Ei)
is approximately twice the total length of its feelers. If genus(V0) = g, and
K is degree 3, then K has about 3g edges. So, if γ intersects each Di 8 times,
then the average length of a ∂Ei is about 96g. To see this observe that L is
approximately 12g, so the average feeler is of length 6g.

Figure A2.

Question 11.11. Is it possible to construct evenly distributed γ’s? If so,
how?

Question 11.12. For g sufficiently large, does there exist a genus-g
zipped up handlebody V1 arising from a degree-3 graph and a length < 24g
zipping arc, such that if E is a compressing disc, then length(∂E) > 10g?

Remark 11.13. Notice that zipping up a handlebody V0 adds a small
multiple of the zipping arc length to its volume. Thus it costs relatively
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Figure A3.

little, measured by volume, to go from the conventional looking handlebody
to one with very complicated compressing discs.

Disclaimer. Here and in what follows, we are very heuristic regarding
the metric which determines the volume of the handlebody and the boundary
length of compressing discs. The metric should be natural with respect to
the construction, e.g. a combinatorial metric where volume is measured by
the number of 3-simplices and length by intersection number with the 1-
skeleton on the boundary. We guess that if γ goes over all the Di’s many
times, say approximately r, and V1 is the zipped up handlebody, then a
hyperbolic handlebody H with index-≤ 1 boundary that approximates V1

would have a fairly thick V0, i.e. the radius of the Di’s would be O(log r).

Multi-Zipped up Handlebodies. We can generalize zipping as fol-
lows. Let M be a manifold with boundary and γ ⊂ ∂M an embedded arc.
Zip up M along γ by gluing in a B = [0, L− 1]× [0, ε]× [0, 2] as we did with
handlebody zipping. Thus if M is the handlebody V0, then we can zip up
V0 k times to obtain V1, V2, · · · , Vk. If D is a standard compressing disc for
V0, then the obvious associated compressing disc F2 ⊂ V2 is a spiny 2-disc
as in Figure A3.

Question 11.14. Fix n ∈ N. For g sufficiently large is it possible to
construct a genus-g handlebody Vg arising from a multi-zipped thickened
degree-3 graph, such that vol(Vg) < 1000ng and for every compressing disc
D, length(∂D) > gn.

Remark 11.15. We see this phenomena both in minimal and normal
surface theory. Suppose M has the Heegaard splitting (H0, H1) with the
index-1 Heegaard surface S. Let the mean convex surface S0 be obtained
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by pushing S slightly into the H0. Suppose that S0 becomes extinct after
applying mean curvature flow for finite time. Reversing the process we seeH0

built up from balls, 1-handles and expansion. The expansion may correspond
to zipping. We also see this in normal surface theory. If S is an almost
normal Heegaard surface, then normalization to the H0 side collapses H0

to H ′
0 where ∂H ′

0 is a possibly empty normal surface. Reversing the process
one may see zipping in addition to creation of 0 and 1-handles.

Question 11.16. Let {Ni} be a tower T of covers as in Theorem 11.1.
Let mgi(T ) be the number of distinct minimal genus Heegaard splittings of
Ni. What is lim infmgi/di where Ni → N0 is a degree-di cover? Fix an
irreducible Heegaard splitting H of N0. Let Hi denote its preimage in Ni

and ri denote the number of distinct irreducible Heegaard splittings of Ni

obtained by destabilizing Hi. What is lim inf ri/di?

Summary. In this appendix we presented constructions of geometri-
cally different families of handlebodies. Through the multi-zipped handle-
body construction, we offer a conjectural approach towards Question 11.6,
including ideas for constructing, for g sufficiently large and n fixed, hyper-
bolic or simplicial handlebodies Vg of genus g with volume(Vg) < C0g such
that all compressing discs have length > C1g

n.
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