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Probing quantization via branes

Davide Gaiotto and Edward Witten

Abstract. We re-examine quantization via branes with the goal of un-
derstanding its relation to geometric quantization. If a symplectic man-
ifold M can be quantized in geometric quantization using a polarization
P, and in brane quantization using a complexification Y , then the two
quantizations agree if P can be analytically continued to a holomorphic
polarization of Y . We also show, roughly, that the automorphism group
of M that is realized as a group of symmetries in brane quantization of
M is the group of symplectomorphisms of M that can be analytically
continued to holomorphic symplectomorphisms of Y . We describe from
the point of view of brane quantization several examples in which geo-
metric quantization with different polarizations gives equivalent results.
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1. Introduction

There is no entirely satisfactory general theory of how to quantize a clas-
sical symplectic manifold, because there is an anomaly in the passage from
classical mechanics to quantum mechanics. The commutators of quantum
operators do not agree with the Poisson brackets of classical functions on
phase space, except to lowest order in � [1, 2, 3]. In practice, quantization
is usually carried out by, roughly, splitting the phase space coordinates into
positions and momenta and defining a Hilbert space of functions of the po-
sitions. In geometric quantization [4, 5, 6, 7, 8], this process is formalized
in the choice of a “polarization” of the phase space. The resulting quan-
tum theory does generically depend on the choice of polarization. In special
cases when different polarizations do lead to equivalent quantum theories,
this often leads to important results.

An alternative to geometric quantization is quantization via branes. This
was proposed in [9] following prior developments that had indicated a re-
lationship between the A-model of two-dimensional topological field theory
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and deformation quantization [10, 11, 12, 13, 14] and an analysis of some
informative examples [15]. Deformation quantization [16, 17, 18, 19, 20,
21, 22], which is an important part of the A-model story, is a cousin of
quantization that associates to a classical phase space a quantum-deformed
algebra of functions, but not a Hilbert space on which the algebra acts. As
formulated in [18], deformation quantization involves the choice of a sym-
plectic connection rather than a polarization.

In quantization via branes, the starting point, rather than the choice
of a polarization of a classical phase space M , is the choice of a suitable
complexification Y of M . Y should be a complex symplectic manifold, with
an antiholomorphic involution that has M as a component of its fixed point
set, and furthermore Y should have a well-defined A-model. Then a quantum
Hilbert space of M can be defined as the space of A-model states of (B,Bcc)
strings, where B is a Lagrangian A-brane supported on M and Bcc is a
certain coisotropic brane of the A-model. Coisotropic branes were originally
introduced in [10] and studied in a number of later papers [12, 13, 14, 15,
23, 24].

In geometric quantization of M based on a polarization P , the functions
on M that can be naturally quantized to quantum operators are the ones
that via Poisson brackets generate a canonical transformation ofM that pre-
serves the polarization. In quantization via branes using a complexification
Y of M , the functions on M that can be naturally quantized are the ones
that can be analytically continued to holomorphic functions on Y . Usually
Y is not compact and one places a condition on the growth of a function at
infinity on Y .

We were led to reconsider quantization by branes because of recent de-
velopments involving an analytic version of the geometric Langlands cor-
respondence [25, 26, 27, 28]. As we describe elsewhere [29], quantization
by branes is the additional ingredient that is needed to extend the gauge
theory approach to geometric Langlands [23] to the analytic version of this
subject.

In Section 2 of this article, we briefly review the difficulty in making a
general theory of quantization, and then briefly recall geometric quantization
and deformation quantization. Then we describe in more detail the idea of
quantization by branes. We explain some matters more precisely than in [9],
but on some topics the reader will find more detail in that previous article.

In Section 3, we explore the relation between geometric quantization
and quantization by branes. If the same phase space M can be quantized
in geometric quantization using a polarization P and in brane quantization
using a complexification Y of M , can one state conditions on P and Y such
that the two methods of quantization will agree? We formulate conditions
under which this is the case; roughly P should analytically continue to a
holomorphic polarization Π of Y .

In Section 4, we explore the use of Lagrangian correspondences between
M and itself, rather than functions on M , to define operators on the Hilbert
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space obtained by brane quantization of M . A Lagrangian correspondence
is simply a Lagrangian submanifold of M ×M (where the symplectic struc-
tures on the two factors are equal and opposite). There are at least two
reasons to define operators by quantizing correspondences rather than func-
tions. First, this gives an effective framework to study the symmetries of
brane quantization. Second, in some important examples, including the case
relevant to geometric Langlands, the complexification Y of M has relatively
few holomorphic functions and instead there are very important operators
associated to correspondences.

In Section 5, we consider the special case of quantization of a complex
symplectic manifold Y viewed as a real symplectic manifold. This case is
important in an application to geometric Langlands [29].

2. Review of quantization via branes

We begin with a review of quantization via branes, referring the reader
to [9] for a somewhat different exposition and more detail on some points.

2.1. The problem. Our starting point is a real symplectic manifold
M of dimension 2n, with symplectic form ω. We assume that M , which is
known as the phase space, is endowed with1 a “prequantum line bundle,”
which is a complex line bundle L → M that has a unitary connection with
curvature ω. Such an L exists if and only if the periods of ω are valued
in 2πZ. L is unique up to isomorphism if in addition H1(M,U(1)) = 0.
Quantization will depend on the choice of L.

Roughly speaking, the idea of quantization is to associate to this data
a Hilbert space H, such that functions on M become operators on H, with
Poisson brackets of functions corresponding to commutators of operators, in

the sense that if f̂ is the operator corresponding to a function f , then

(2.1) [f̂ , ĝ] = −i�{̂f, g}.
(here { , } is the Poisson bracket of functions, [ , ] is the commutator of
operators, and � is Planck’s constant). Real functions on M are supposed
to correspond to hermitian operators on H. The dimension of H is sup-
posed to be roughly the symplectic volume 1

(2π)n

∫
M eω, and in particular

this dimension is infinite if and only if M has infinite volume.
Without additional structure, the problem of quantization does not have

a natural solution. It is not possible to satisfy eqn. (2.1) (in a Hilbert space
of appropriate “size”) except for special classes of functions. In quantum
mechanics textbooks, this is called the “operator ordering problem,” but it
is not always emphasized that this problem does not have a general solution.
There is an anomaly in the passage from classical mechanics to quantum
mechanics.

1We here postpone the discussion of a “metaplectic correction” that necessitates a
slight refinement of this statement.
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The natural symmetries of classical mechanics are generated by real
functions on M , viewed as Hamiltonian functions. A function f generates
a symplectic transformation of M via the vector field vi = ωij ∂f

∂xj (here

the xi are local coordinates on M , ω = 1
2ωijdx

idxj , and ωijωjk = δik).
Such vector fields are called Hamiltonian vector fields and generate a group
G0. Elements of this group are called exact symplectomorphisms.2 In passing
from f to vi = ωij∂jf , we have lost some information, because vi is invariant
under adding a constant to f . To match classical mechanics with quantum
mechanics as accurately as possible, one should keep track of this constant,
which one can do by considering the symmetries not of M but of M together
with its prequantum line bundle L. The symmetries of the pair (M,L) make
a group G that we will view as the symmetry group of classical mechanics.
Concretely, an element of G is a symplectomorphism ϕ : M → M together
with an isomorphism β : L → ϕ∗(L). Including the isomorphism as part of
the definition may be unfamiliar, but actually leads to the closest possible
– though still highly imperfect – match between the symmetries of classical
and quantum mechanics. The component G1 of G that contains the identity
is a central extension by U(1) of the group G0 of exact symplectomorphisms:

(2.2) 1 → U(1) → G1 → G0 → 1.

Here U(1) acts trivially on M and acts on the fiber of L → M as mul-
tiplication by a complex constant eiα of modulus 1. G in general also has
components that are not continuously connected to the identity.

By contrast, the natural symmetry group of quantum mechanics is the
group U of unitary transformations of the Hilbert space H. The groups G
and U do not coincide and the discrepancy between them is not just a matter
of a central extension. G contains information on the topology of the phase
space M and U does not. This is an anomaly in the usual sense that the term
is used in quantum field theory: the symmetry group of a classical system
is modified when one quantizes the system.

For example, consider M = R2n with its standard symplectic structure.
Suppose one is given a notion of what is meant by a function on R2n that is
a polynomial of degree ≤ 1. It is important that there is no natural notion of
this; having such a notion is equivalent to being given a distinguished set of

coordinates 	x = (x1, x2, . . . , x2n), defined up to a transformation 	x → A	x+	b
with a symplectic matrix A and constant b. Such a transformation is called
an affine linear transformation, and if M is given a set of coordinates that
is uniquely defined up to an affine linear transformation, we say that M has
an affine linear structure. If we are given an affine linear structure on R2n,
then any nonlinear symplectomorphism of R2n will map this affine linear

2If M has a positive first Betti number, it also has symplectomorphisms that are
not exact; their generators are multi-valued Hamiltonians. Note that elements of G0 are
automatically homotopic to the identity, since such an element is obtained, roughly, by
exponentiating the action of a Hamiltonian function. Symplectomorphisms of M that are
not homotopic to the identity will be included in a moment when we replace G0 with G.
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structure to a different one. So the space of affine linear structures on R2n

is infinite-dimensional.
In a given affine linear coordinate system, the Hamiltonian functions that

generate affine linear transformations are the polynomials of degree ≤ 2. For
polynomials of degree ≤ 2, there is no anomaly. This is a well-known fact,
possibly not with precisely this phrasing. It is equivalent to saying that
affine linear changes of the phase space coordinates are realized as symme-
tries in quantum mechanics.3 (For example, the Fourier transform exchanges
coordinates and momenta.) However, an anomaly arises for polynomials of
degree > 2; no operator ordering or addition of lower order terms can make
their quantum commutators agree with their classical Poisson brackets. This
rather old result [1, 2, 3] is demonstrated explicitly in Appendix A for the
case n = 2.

Once an affine linear structure is given, one can quantize R2n in a fa-
miliar way, for example by splitting the x’s into p’s and q’s (chosen so that
ω =

∑
i dpidq

i) and defining a Hilbert space consisting of L2 functions of
the q’s. Standard arguments shows that it does not really matter how one
makes this splitting; there are natural identifications between the resulting
Hilbert spaces (up to an overall factor ±1, mentioned in footnote 3). This
statement is actually equivalent to the statement that there is no anom-
aly in the commutators of polynomials of degree ≤ 2. However, there are
no natural equivalences, even up to c-number factors, between the Hilbert
spaces that are constructed starting with different affine linear structures.
If there were, one would end up proving that the symmetry groups G and U
of classical and quantum mechanics are the same, which is not the case.

So any method of quantization requires additional structure on M , be-
yond its symplectic structure and prequantum line bundle. That is why Lud-
wig Faddeev used to say that quantization is “an art, not a science.” How-
ever, there is a good reason that these matters may not be familiar. Though
there are some notable exceptions, in physics the phase space usually has
enough additional structure (such as a natural affine linear structure) that
the issues described here are not prominent.

2.2. Polarizations. In practice, quantization is usually carried out by
separating the phase space variables into coordinates and momenta. Then
one defines a Hilbert space consisting of functions of the coordinates. We
discussed this already in the case of R2n. In geometric quantization [4, 5, 6,
7, 8], this process is formalized in terms of a choice of “polarization.” Though
there are more general possibilities, two basic cases, and the primary cases

3 There is a double cover involved. The linear transformations of phase space �x → A�x
form a group Sp(2n,R); the corresponding quantum symmetry group is a double cover of
this. In R2, an example of a quadratic Hamiltonian is the harmonic oscillator Hamiltonian
H = 1

2
(p2 + q2), which generates a rotation of R2. The quantum symmetry group is a

double cover of the classical symmetry group because the energy levels of H are half-
integers, so exp(2πiH), which corresponds to the identity element of G0, acts as −1 on the
quantum Hilbert space.
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that we will consider in this article, are a real polarization and a complex
polarization.

In the simplest form of a real polarization, one identifies M as the to-
tal space of a cotangent bundle T ∗N , for some N . One assumes that the
symplectic structure of M is the natural symplectic structure of T ∗N as a
cotangent bundle, or the sum of this and the pullback of a closed two-form
on N . In terms of local coordinates qi, i = 1, . . . , n on N , this means that the
symplectic form is ω =

∑
i dpidq

i+ 1
2

∑
i,j αij(q)dq

idqj , where pi are suitable

linear functions on the fibers of π : T ∗N → N , and α = 1
2

∑
i,j αij(q)dq

idqj

is a closed two-form on N . More briefly, ω =
∑

i dpidq
i + π∗(α) where

π : M = T ∗N → N is the natural projection. In this situation, the qi are
called coordinates and the pi are called momenta. The fibers of the cotan-
gent bundle are called the leaves of the polarization. One defines a Hilbert
space H consisting of half-densities4 on N with values in L, the prequantum
line bundle. In other words, if K1/2 is the real line bundle over N whose
sections are half-densities, then a vector in H is represented by a section ψ
of K1/2 ⊗ L → N , with the inner product 〈ψ, χ〉 =

∫
N ψχ. This definition is

sometimes restated as follows. First pull back K1/2 → N to a real line bundle
over T ∗N , which we also call K1/2. Then a vector in H can be described as
a section of K1/2 ⊗ L over T ∗N that is covariantly constant when restricted
to any fiber of T ∗N → N . This makes sense because (since its curvature is

ω) L is flat when restricted to any leaf of the polarization, and K1/2, as it is
a pullback from N , also has a natural flat connection along each leaf. The
Hilbert space inner product is then described as an integral 〈ψ, χ〉 =

∫
σ ψχ,

where σ is any section of T ∗N → N .
Now we discuss complex polarizations. A complex polarization of M is

defined as a choice of complex structure J on M such that the symplectic
form ω is of type (1, 1), so that the prequantum line bundle L becomes a
holomorphic line bundle. If ω is positive with respect to J as well as of type
(1, 1), and so represents a Kahler form onM , then the polarization is called a
Kahler polarization. This is the most frequently considered case in practice,
though we do not wish to restrict to this case. Let K be the canonical line
bundle of M and let K1/2 be a square root of K, assuming momentarily that

4In a system of local coordinates �q = (q1, q2, . . . , qn) on a real manifold N , a density
is just a real-valued function σ(�q). Under a change of local coordinates, σ transforms in
such a way that the measure |dq1dq2 · · ·dqn|σ(�q) is invariant. A half-density is an object
ψ(�q) such that σ = ψ2 is a density. Thus, in a given coordinate system, ψ(�q) is just a
function, and in a change of local coordinates, ψ(�q) transforms in such as way that the
measure |dq1dq2 · · · dqn|ψ(�q)2 is invariant. There is a trivial real line bundle K → N whose

sections are (real) densities; K has a square root K1/2, also trivial, whose sections are half-
densities. We generally write K for the real bundle of densities on a real manifold N , K
for the canonical bundle of a complex manifold X, and K for the complex conjugate of
K (equivalently, the canonical bundle of X viewed as a complex manifold with opposite
complex structure). If a complex manifold X is viewed as a real manifold, then its bundle

of densities K is related to its canonical bundle K by K = K ⊗K = |K|2.
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such a square root exists. Usually in Kahler quantization, one considers a
situation in which L is “sufficiently ample” so that Hr(M,K1/2 ⊗ L) = 0
for r > 0. (This is always true sufficiently near the classical limit, in other
words if the periods of ω are sufficiently large.) Then one defines a Hilbert

space of holomorphic sections of5 K1/2 ⊗ L,

(2.3) H = H0(M,K1/2 ⊗ L),

the Hilbert space inner product being

(2.4) 〈s, s′〉 =
∫
M

dμ ss′,

where dμ is the symplectic measure on M and the Kahler metric on K and
unitary structure of L are used to turn ss′ into a real-valued function. The
generalization of this if ω is not Kahler or L is not sufficiently ample is
discussed in Section 3.8.

Built into the last paragraph is that there is an anomaly in geomet-
ric quantization, related to what is known as the metaplectic correction.
In general the object K1/2 that was used in the definition of the Hilbert
space does not exist as a complex line bundle, and it may not be unique
if it exists. If K1/2 exists, it defines a spin structure on M ; conversely, a
spin structure determines a choice of K1/2. The obstruction to M admitting
a spin structure is w2(M), the second Stieffel-Whitney class of M . How-

ever, on any complex manifold, K1/2 always exists canonically as a spinc
structure. A spinc structure in general is the data required to define a Dirac
operator acting on a spin 1/2 field of “charge 1.” On a complex manifold
of dimension n, the Dirac operator that corresponds to the canonical spinc
structure K1/2 is the ∂ operator acting on ⊕n

r=0Ω
0,r(M), where Ω0,r(M) is

the bundle of (0, r)-forms. Since the obstruction to spin is of order 2, the
tensor product of two spinc structures is an ordinary complex line bundle.
Hence if the “prequantum line bundle L” of geometric quantization is really
a spinc structure, then K1/2⊗L is an ordinary complex line bundle and the
definition (2.3) of the quantum Hilbert space makes sense.

More generally, if S is any spinc structure on a manifold M (we do
not assume here that M is a complex manifold or that S is related to a
prequantum line bundle), then S2 is an ordinary line bundle. This line bundle
has a first Chern class x = c1(S2) and this is an integer lift of w2(M), in the

5In the case of a real polarization, the bundle K1/2 of real half-densities is part of
the definition of a quantum state because otherwise the definition 〈ψ, χ〉 =

∫
N
ψχ of the

Hilbert space inner product would not make sense. In the case of a Kahler polarization,
the canonical bundle K has a hermitian metric that comes from the Kahler metric of M ,
so a Hilbert space inner product could be defined whether or not one includes the factor
of K1/2 in the definition (2.3). This factor is usually included for two reasons: (1) this
makes possible a more uniform description of geometric quantization for polarizations of
different types; (2) it leads to more natural results in some cases, such as the computation
of the ground state energy of a harmonic oscillator quantized with a Kahler polarization
of the phase space. See for example Section 23.7 of [8].
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sense that the reduction mod 2 of x ∈ H2(M,Z) is w2(M) ∈ H2(M,Z2).
If S is a spinc structure with connection, then the ordinary line bundle S2

has a connection and curvature; we define the curvature of S to be one-half
the curvature of S2. We call a spinc structure flat if this curvature vanishes.
With this definition, the condition for S to admit a flat connection is simply
that x should be torsion; in other words, M has a flat spinc structure if
w2(M) has an integer lift that is torsion.

With these definitions, a “prequantum line bundle” L over a Kahler
manifold M with Kahler form ω should really be defined as a spinc structure
on M of curvature ω.

Once we reinterpret the “prequantum line bundle” of geometric quanti-
zation as a spinc structure, we should ask if this creates any difficulty in the
discussion of the quantization of a cotangent bundle M = T ∗N . In fact, the
anomaly does not affect the classification of prequantum line bundles over
T ∗N , because T ∗N always has a canonical flat spinc structure S0, and there-
fore a spinc structure on T ∗N with curvature ω is simply S0⊗L, where L is
an ordinary complex line bundle with a unitary connection of curvature ω.

To explain this, let us first understand topologically why T ∗N admits a
flat spinc structure. The tangent bundle to T ∗N is topologically the pullback
to T ∗N of the direct sum of two copies of TN , the tangent bundle to N .
The Whitney sum formula gives w2(TN⊕TN) = w1(TN)2, where w1(TN),
usually just denoted as w1(N), is the obstruction to an orientation of N .
So w2(T

∗N) is the pullback to T ∗N of w1(N)2. Let ε = det TN be the
orientation bundle of N , a real line bundle. Then w1(N) = w1(ε). The
object ε̂ = ε ⊕ ε ∼= ε ⊗R C is a complex line bundle over N . Its first Chern
class x = c1(ε̂) ∈ H2(N,Z) reduces mod 2 to w2(ε̂) = w1(ε)

2 = w2(T
∗N) ∈

H2(N,Z2). x is certainly a torsion class, since ε̂, as the direct sum of real
line bundles, admits a flat connection with finite structure group. So x is
an integer lift of w2(T

∗N) which moreover is torsion, and therefore T ∗N
admits a flat spinc structure.

To explicitly construct a flat spinc structure on T ∗N , we construct a flat
spinc structure on the bundle TN ⊕ TN → N ; its pullback to T ∗N is the
desired flat spinc structure on T ∗N . Picking a local orthonormal frame of
TN , we introduce two sets of gamma matrices ψk, χk, k = 1, . . . , n, satisfying
{ψk, ψl} = {χk, χl} = 2δkl, {ψk, χl} = 0. A spinc structure on TN ⊕ TN
is a vector bundle on which this Clifford algebra acts irreducibly. Introduce

annihilation and creation operators ak = (ψk+iχk)/2, a
†
k = (ψk− iχk)/2, so

{ak, a†l } = δkl, {ak, al} = {a†k, a
†
l } = 0. Locally we can construct a module

for the Clifford algebra by starting with a state |↓〉 annihilated by the ak and

adding states a†k1a
†
k2
· · · a†kr | ↓〉, r = 1, . . . , n. In particular, the state | ↑〉 =

a†1a
†
2 · · · a

†
n| ↓〉 is annihilated by the a†k. If N is orientable, this construction

gives a canonical spin structure on T ∗N . If N is unorientable, there is an
asymmetry globally between the two states | ↓〉 and | ↑〉; if one of them is
a section of a trivial bundle over N , then the other is a section of ε̂. The
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asymmetry implies6 that what we have constructed is a spinc bundle rather
than a spin bundle; however, because ε̂ has a natural flat structure, this
spinc structure is flat. So the general statement is that T ∗N always has a
canonical flat spinc structure.

The main limitation of geometric quantization is that, if a polarization
of M exists, then there are many different polarizations, since any generic
element of the symmetry group G will map a polarization P to a different
polarization P ′. Under reasonable conditions, one can define relatively nat-
ural maps between the Hilbert spaces defined using different polarizations.7

But these maps do not obey the conditions that one would want in order to
establish equivalences between the different quantizations. What one would
want is the following. Given polarizations Pi that lead to Hilbert spaces Hi,
one would like a family of unitary maps Φij : Hi → Hj , with Φii = 1, satis-
fying ΦijΦji = 1 (so that the Φij are isomorphisms) and ΦijΦjk = Φik (so
that these isomorphisms between different Hilbert spaces are compatible).
But these conditions are generically not satisfied; that statement is another
expression of the anomaly in the passage from classical to quantum physics.

The condition for compatibility between the different Hilbert spaces
could be slightly relaxed to allow ΦijΦjk = cijkΦik, where cijk is a cen-
tral factor, valued in U(1). In such a case, one would say that the Hi are
“projectively equivalent,” meaning that there are equivalences between them
that are naturally defined up to a scalar factor of modulus 1. This slightly
more relaxed condition for equivalence between different polarizations is also
generically not satisfied, since the anomaly in the passage from classical to
quantum mechanics does not simply involve a central extension.

There is no general theory of when different polarizations lead to equiv-
alent quantizations, but there are a number of important cases in which this
does occur. The most familiar and important example arises in quantizing
M = R2n. In this case, as we have already remarked, once an affine linear
structure is given, one does get a projective equivalence between the Hilbert
spaces defined with different linear polarizations. A linear polarization of
R2n is, in the real case, a separation of the linear functions on R2n into co-
ordinates and momenta, or in the complex case, a choice of which complex-
valued linear functions on R2n should be considered “holomorphic.” In this

6The structure group of TN⊕TN is SO(2n), and an associated spin bundle will have
structure group Spin(2n). Such a spin bundle will have a nondegenerate Spin(2n)-invariant
quadratic form (symmetric or antisymmetric depending on n). This invariant form will
restrict to a nondegenerate pairing | ↑〉 ⊗ | ↓〉 → C. If | ↓〉 is a section of a line bundle �,
then |↑〉 is a section of �⊗ ε, so the existence of the pairing implies that �2⊗ ε is trivial, so
that 2c1(�) + x = 0. This implies that the mod 2 reduction of x vanishes; since the mod 2
reduction of x is w2(T

∗N), we learn, as expected, that the construction in the text gives
a spin bundle only if w2(T

∗N) = 0. Otherwise it gives a flat spinc bundle.
7This is done using the Blattner-Kostant-Sternberg kernel of geometric quantization.

The definition is most straightforward for two polarizations that are suitably transverse.
See Section 23.8 of [8] for a brief introduction and [7] for much more detail. See also
footnote 8 below.
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article, we will see a few additional examples in which different polarizations
lead to quantizations that are at least projectively equivalent. In each case
this leads to important results.

A more exotic limitation of geometric quantization is that there are
symplectic manifolds that do not admit any polarization [30]. Can such
a symplectic manifold be quantized in any sensible way, at least in some
cases? That question is one motivation for seeking an alternative to geomet-
ric quantization.

2.3. A formal procedure and its uses. In this section, we discuss a
formal recipe for quantization that does not avoid the anomaly, which indeed
is inescapable, but nonetheless provides useful orientation for arguments we
give later. If we are given a prequantum line bundle L with connection T/�
and curvature ω = dT/� over a classical phase space M , then it is possible
to write a classical action whose associated path integral would formally
solve the problem of quantization of M . For a path γ ⊂ M between points
r, r′ ∈ M , the action is simply

(2.5) I =
1

�

∫
γ
T.

Alternatively, let I = [0, 1] be the unit interval and view γ as the image of
a map x : I → M . Then the action can be written

(2.6) I =
1

�

∫
I
x∗(T).

Note that I is invariant under reparametrization of the interval I. If the
endpoints 0, 1 of I are mapped to points r, r′ ∈ M , then to define the action
I as a number, one needs to trivialize the fibers of L at those points. We
denote these fibers as Lr, Lr′ . Let Pr,r′ be the space of maps x : I → M
with the endpoints mapped to r, r′. Consider the Feynman integral

(2.7) Z(r, r′) =

∫
Pr,r′

Dx exp(iI).

For a fixed x (before trying to integrate over x) the integrand eiI of the
path integral is a map from Lr to Lr′ , and one could hope that the integral
over x would give a map Zr,r′ : Lr → Lr′ from which the Hilbert space that
quantizes the phase space M could be constructed.

This cannot really be expected to work as stated because the points
r and r′ would correspond here to initial and final states, but initial and
final quantum states should only depend on one-half of the phase space
variables. It should not be possible without more input to construct a map
Zr,r′ associated to two arbitrary points in M . In fact the symmetry group G
of classical mechanics (exact symplectomorphisms with a lift to an action on
L, as described in Section 2.1) is so large that there can be no G-invariant
definition of Zr,r′ . The group G contains elements that map any pair r, r′ of
distinct points to any other such pair, with arbitrary lifts to the fibers of L.
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So in order to be G-invariant, Zr,r′ would have to be δ(r, r′) times a constant
map on the fibers of L. This is not a sensible answer. Formally, one would
interpret Zr,r′ as

(2.8) Zr,r′
?
=

∑
α∈S

ψα(r)ψα(r
′),

where the states ψα, α ∈ S, form a basis of the Hilbert space. To reconcile
such a formula with Zr,r′ ∼ δ(r, r′), one needs a Hilbert space of infinite
dimension, even if the phase space M is compact. This is not the expected
behavior of quantum theory. Moreover for M = R2 where we know what
quantization should mean, there is no formula like (2.8) (bearing in mind
that r, r′ are phase space points, labeled by both position and momentum).
Concretely, if we try to compute Zr,r′ in perturbation theory, the first thing
we find is that the classical Euler-Lagrange equations for the action I just
tell us that ẋ = 0, that is, the map x : I → M is constant. To com-
pute the coefficient of the delta function in Zr,r′ at one-loop level, we need
the determinant of the differential operator that we obtain by linearizing
the action around a constant map. But this differential operator, with a
boundary condition that specifies the phase space points at the ends, is not
self-adjoint, and it is problematic to make sense of its determinant. In the
example of R2 with coordinates p, q and symplectic form ω = dpdq, the ac-
tion is I =

∫
dt pq̇. The linearization around the solution p = q = 0 gives the

operator D =

(
0 d

dt
− d

dt 0

)
. The eigenvalue problem Dψ = λψ does not have

any nonzero solutions with the boundary conditions that p, q vanish at the
endpoints. The problem is that this boundary condition does not make D
self-adjoint. To get a self-adjoint problem, one should specify only one-half
of the boundary values at each end, and more specifically the variables that
are fixed should be Poisson-commuting. In particular, if P is a real polariza-
tion of M in the sense described in Section 2.2, one can require the endpoint
values x(0) and x(1) to lie in specified leaves F, F ′ of8 P . Computing the
path integral with this boundary condition will lead back to the recipe that
geometric quantization gives for quantizing with the polarization P . The
result one gets will depend on P in an essential way.

Even though contemplating the path integral (2.7) does not give a way
to avoid the anomaly in the passage from classical mechanics to quantum
mechanics, this formulation of the problem of quantization is nonetheless
important. Suppose that we have a well-defined microscopic theory of some
kind that somehow produces a Hilbert space H associated to M (and possi-
bly to some other data that enters the definition of the theory in question).
Suppose moreover that the path integral of this microscopic theory on the
interval I can be reduced to (2.5) plus some “massive” degrees of freedom

8More generally, one can take F to be a leaf of one polarization P and F ′ to be a leaf
of another polarization P ′. Computing in that situation will lead to the Blattner-Kostant-
Sternberg kernel, which was mentioned in footnote 7.
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that one can formally argue to be irrelevant. This actually means, assuming
the microscopic theory in question really is well-defined, that going to this
microscopic theory is giving us a way to embed the ill-defined problem of
quantizing the theory (2.5) in a larger, well-defined problem. In other words,
the microscopic theory is giving us a way to make sense of the original ill-
defined problem. Thus, under these conditions, it is sensible to define H to
be a quantization of M . This is how we will actually proceed when we come
to quantization by branes.

Now let us discuss what we can do with this theory without introducing
a polarization. The reason that, in the preceding discussion, we considered
a path integral on a 1-manifold with boundary, namely the unit interval I,
is that in general, in a Feynman path integral, an initial or final quantum
state appears on the boundary of the space on which the path integral is
performed, in this case I. One can avoid having to choose a polarization by
replacing I with a circle S1. Then one considers the same path integral, ex-
cept that one integrates over the space P of loops x : S1 → M . No boundary
condition is needed, because the circle has no boundary. As long as we do not
introduce boundaries, whatever we compute cannot be related to states in a
quantum Hilbert space. What can we hope to compute without being able
to define a Hilbert space? In deformation quantization, as proposed in [16]
and implemented rigorously on an arbitrary symplectic manifold [17, 18],
one aims to deform the commutative associative algebra A0 of functions on
M to a noncommutative but still associative algebra A, to all orders in a
power series in �. To first order in �, the deformation should be given by
the Poisson bracket. There is no construction of a Hilbert space that the
algebra A acts on.9

Though deformation quantization is not necessarily tied to path inte-
grals, the path integral on a circle gives a natural framework for deforma-
tion quantization. The formal framework is as follows. (This framework has
been justified rigorously to all orders in �, using a machinery of BV quan-
tization [22].) Let f be a function on M and r a point in S1. Given a loop
x : S1 → M , one can pull back f to a function on S1 and evaluate this
function at the point r to get what we will call f(r), a function on the loop
space P of M . Now let f1, f2, . . . , fk be functions on M and r1, r2, . . . , rk a
cyclically ordered set of points on S1, and consider the path integral

(2.9)
〈
f1f2 · · · fk

〉
=

∫
P

Dx eiI f1(r1)f2(r2) · · · fk(rk).

Because the classical action is invariant under orientation-preserving repar-
ametrization of S1, the quantity

〈
f1f2 · · · fk

〉
should formally only depend

on the cyclic ordering of the points r1, r2, . . . , rk, not the choice of specific
points. The “correlation function”

〈
f1f2 · · · fk

〉
has the information needed

9To be more precise, there is no construction of a Hilbert space of appropriate size.
A itself can be given the structure of a Hilbert space, using the trace that is introduced
presently. This Hilbert space is infinite-dimensional even when M is compact.
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for deformation quantization of the symplectic manifold M . The basic rela-
tion between the correlation function and deformation quantization is that
if

(2.10)
〈
f1f2f3 · · · fk

〉
=

〈
gf3 · · · fk

〉
(where g depends on f1 and f2 but not on f3, . . . , fk), then one declares

that in the algebra A, one has f̂1f̂2 = ĝ (where f̂ is an element of A that
reduces to f ∈ A0 in the limit � → 0). This relationship is a version of
the operator product expansion, adapted to topological field theory. Cyclic
symmetry means that the correlation function

〈
f1f2f3 · · · fk

〉
has the alge-

braic properties of a trace (since for instance
〈
fg

〉
=

〈
gf

〉
), though it is not

actually a trace in an A-module.
At least as presently understood, deformation quantization breaks or

at least deforms the symmetries of classical mechanics, somewhat similarly
to what happens with quantization, though the details are different. In Fe-
dosov’s approach [18], the construction of the quantum-deformed algebra
A depends on the choice of a symplectic connection on the manifold M (a
connection on the tangent bundle of M such that the symplectic form is
covariantly constant). Symplectic connections exist on every M (unlike po-
larizations [30]), but a symplectic connection is far from unique. A generic
symplectomorphism maps the algebra AΓ constructed with one symplectic
connection Γ to the algebra AΓ′ constructed using another symplectic con-
nection Γ′. AΓ and AΓ′ are isomorphic, but not canonically so (see Corollary
4.5 in [18]). The absence of canonical isomorphisms between the different
possible A’s means that the symplectomorphism group of M does not act
on any one of them. If G is any compact group of symplectomorphisms, then
there is a G-invariant symplectic connection, and therefore any such G can
be realized as a symmetry group of the quantum algebra A. By contrast,
geometric quantization in general cannot be defined to be invariant under a
compact group of symplectomorphisms.10

Unlike quantization, deformation quantization depends only on the sym-
plectic structure ω and not on the existence or choice of a prequantum line
bundle L. In fact, the action I =

∮
S1 x

∗(T)/� can, for purposes of deforma-
tion quantization, be rewritten in a way that refers only to ω and not T. We
simply observe that perturbatively in �, we can assume that x : S1 → M
is almost constant. Let D be a disc with boundary S1. An almost constant
map x : S1 → M can be extended to a map x : D → M , by shrinking the
image of x to a point in M . This extension is not unique, but it is unique

10For example, if M is a two-torus with translation-invariant symplectic form ω, then
it is possible to pick on M a (flat) symplectic connection that is translation invariant.
Therefore, deformation quantization can be defined to preserve the translation invariance
of the torus. But geometric quantization of the torus requires the choice of a prequan-
tum line bundle L with connection, and any choice breaks the translation symmetries.
That is because the curvature of L makes it impossible for the holonomy of L around a
noncontractible loop in M to be translation invariant.
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up to homotopy. Then we can replace 1
�

∮
S1

x∗(T) by
∫
D x∗(ω), and rewrite

(2.9) in the form

(2.11)
〈
f1f2 · · · fk

〉
=

∫
P

Dx exp

(
i

∫
D
x∗(ω)

)
f1(r1)f2(r2) · · · fk(rk),

manifestly depending only on ω and not L.
Deformation quantization also makes sense in a more general context of

Poisson manifolds that are not necessarily symplectic. A Poisson manifold by
definition has Poisson brackets defined by a formula {f, g} =

∑
ij r

ij∂if∂jg,

where rij is an antisymmetric tensor that is such that the usual Jacobi
identity is satisfied, but rij may not be invertible (on a symplectic manifold,
rij is the inverse of the symplectic form and in particular is invertible).
A path integral description of deformation quantization in this context is
still possible, but one has to use two-dimensional path integrals rather than
one-dimensional ones [19, 20, 21].

2.4. The A-model. In contrast to geometric quantization, which is
based on choosing a polarization, quantization via branes [9] involves a dif-
ferent choice of the additional structure of M that enables quantization.

The starting point is to assume that the real symplectic manifoldM has a
complexification Y with some favorable properties. In particular, we assume
that Y is a complex manifold with an antiholomorphic involution τ : Y → Y ,
satisfying τ2 = 1 and withM as a component of its fixed point set. Moreover,
we assume that the real symplectic form ω of M analytically continues to
a holomorphic symplectic form Ω on Y , making Y a complex symplectic
manifold. We take the assertion that Ω is the analytic continuation of ω to
Y to mean that Ω restricted to M equals ω:

(2.12) Ω|M = ω.

A nondegenerate and holomorphic two-form Ω satisfying that property au-
tomatically exists in a neighborhood of M , but we ask that Ω exists globally
on Y . From these assumptions, it follows that

(2.13) τ∗(Ω) = Ω,

so in particular

τ∗(ReΩ) = ReΩ

τ∗(ImΩ) = −ImΩ.(2.14)

Since M is invariant under τ and ImΩ is odd, we also have

(2.15) ImΩ|M = 0.

An important special case is that M is a real algebraic variety, and Y is
the corresponding complex algebraic variety. All examples we consider are
of this type, as were the examples considered in [9].
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Just like geometric quantization, brane quantization involves a choice,
and the resulting quantum Hilbert space depends on this choice in an es-
sential way. In particular, if M has a complexification Y with the properties
needed for brane quantization, there are always many possibilities for Y .
A symplectomorphism of M that does not extend to a holomorphic sym-
plectomorphism of Y will map Y to another possible complexification Y ′ of
M , leading upon quantization to an inequivalent Hilbert space. The anal-
ogous statement in geometric quantization is that a symplectomorphism of
M that does not preserve a given polarization maps the polarization to an
inequivalent one, again leading to an inequivalent Hilbert space.

For quantization by branes, we want to view Y as a real symplectic
manifold and to study the corresponding A-model. Any nontrivial real linear
combination of ReΩ and ImΩ could be viewed as a real symplectic form on
Y . However, for quantization of M , we will want M to be a Lagrangian
submanifold. For this, in view of eqn. (2.14), we should take the symplectic
form of Y to be a multiple of ImΩ. Since we have not said anything that
fixed the normalization of ω or Ω, we will simply take the symplectic form
of Y to be ImΩ. When we speak of the A-model of Y , we always mean
the A-model with that symplectic form (possibly generalized to include a
B-field in the A-model).

A nontrivial condition on Y is needed so that the A-model of Y with the
real symplectic form ImΩ is well-defined. For example, given any Y that is
a candidate complexification of some M , we could make another candidate
Y ′ by omitting from Y a τ -conjugate pair of points. This seems like a rather
unnatural example, and one expects to have to exclude it. The general con-
dition that should be placed on Y is not very clear from a physical point
of view. However, there is a known sufficient condition that suffices for all
examples that will be considered in the present article. This is that Y admits
a complete hyper-Kahler metric, which in a sense that will be explained mo-
mentarily extends the complex symplectic structure of Y . Such a complete
hyper-Kahler metric on Y ensures the existence of a quantum σ-model with
target Y , and a standard twisting of this σ-model is the desired A-model.

We pause for a moment to explain why it is important that the σ-
model of Y actually exists as a two-dimensional quantum field theory. In
Section 2.5, we will review how the A-model of Y is related to deformation
quantization of the algebra of holomorphic functions on Y . As a deformation
over a formal power series ring C[[�]], where � is the deformation parame-
ter, this construction is formal and does not require any assumption that a
quantum σ-model of Y actually exists.11 But for quantization (and not just

11The underlying σ-model from which the A-model is derived may itself have been
constructed by quantizing a classical system, with a quantum parameter usually called �.
That underlying quantum parameter is not necessarily related in a simple way to the
deformation parameter of the A-model, which is really a σ-model modulus. It will hopefully
cause no confusion to refer to this A-model deformation parameter as �. In any event, we
usually do not introduce the deformation parameter explicitly; instead we write formulas
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deformation quantization), we want to get a deformed algebra in which �

can be viewed as a complex parameter, not just as the argument of a formal
power series. This is what we get when the quantum σ-model actually exists;
� is then one of the moduli of the σ-model. It may be that the existence of
a full, ultraviolet-complete σ-model is more than is needed for the construc-
tions discussed in the present article, but existence of the quantum σ-model
is the sufficient condition that we know.

A hyper-Kahler manifold has a family of complex structures, associated
to an action on its tangent space of the quaternion units I, J,K, obeying
the usual quaternion relations I2 = J2 = K2 = −1, IJ = K. Associated
to I, J,K is a triple of Kahler forms ωI , ωJ , and ωK (where ωI is of type
(1, 1) and positive with respect to complex structure I, and similarly for
ωJ and ωK), along with holomorphic two-forms ΩI = ωJ + iωK , and cyclic
permutations of I, J,K. The complex structures and symplectic forms obey

(2.16) ItωJ = −ωK , ItωK = ωJ ,

and cyclic permutations thereof, where It is the transpose of I, viewed as a
linear transformation acting on 1-forms on Y . The hyper-Kahler metric of
Y is

(2.17) g = ItωI = J tωJ = KtωK .

When we say that the hyper-Kahler structure of Y extends its complex
symplectic structure as a complexification of M , we mean that I is the
complex structure of Y as a complexification of M , and the corresponding
holomorphic symplectic form is Ω = ΩI = ωJ + iωK . We assume that Y
has an involution τ that satisfies τ∗(g) = g as well as the conditions stated
earlier, which now become τ∗(I) = −I, τ∗(ωJ) = ωJ , τ

∗(ωK) = −ωK . From
this and eqn. (2.17) we can further deduce:

(2.18) τ∗

⎛
⎝ I

J
K

⎞
⎠ =

⎛
⎝−I

J
−K

⎞
⎠ , τ∗

⎛
⎝ωI

ωJ

ωK

⎞
⎠ =

⎛
⎝−ωI

ωJ

−ωK

⎞
⎠ .

In studying the A-model of Y , we will use a notation adapted to this
hyper-Kahler case, and thus we will write I for the complex structure of Y
as a complexification of M , ωJ for ReΩ, and ωK for ImΩ.

An important type of example is the case that M is a real affine variety,
meaning that it is a submanifold of some RN defined by the vanishing of
some real-valued polynomials in the coordinates x1, x2, . . . , xN of RN . In
that case, we can take Y to be the corresponding complex affine variety (the
submanifold of CN defined by the vanishing of the same polynomials in the
xi, now viewed as complex variables).

with a real symplectic form ω or a complex symplectic form Ω. To introduce � in such
formulas, one can pick a specific real or complex symplectic form ω0 or Ω0, and write
ω = ω0/� or Ω = Ω0/�. When we do write explicit factors of � in formulas, it is often at
a preliminary stage before learning that it makes sense to set � = 1.
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When we quantize M , it will turn out that the observables correspond
to functions on M that analytically continue to holomorphic functions on Y .
But it is important to decide what class of holomorphic functions we want
to allow. Do we want to consider only polynomial functions of the xi, or
do we want to allow functions that grow exponentially at infinity? Since
the observables will correspond to physical string states of the A-model, the
question is somewhat analogous to asking what class of quantum mechanical
wavefunctions we want to allow. We will allow only polynomial functions on
Y , rather than functions that grow exponentially, since this leads to a much
simpler theory.

Some simple examples of affine varieties, studied in [9], are a coadjoint
orbit M of SU(2), defined by

(2.19) x2 + y2 + z2 = j2

and a coadjoint orbit M ′ of SL(2,R), defined by

(2.20) −x2 − y2 + z2 = j2,

in each case with real variables x, y, z and symplectic form ω = dxdy/z.
In eqn. (2.19), j2 > 0; in eqn. (2.20), both signs of j2 are of interest. The
corresponding complex variety Y , which is a coadjoint orbit of SL(2,C),
is obtained by taking x, y, z to be complex-valued. After complexification,
the signs in the equations do not matter, so for definiteness we define Y
by eqn. (2.19). M is embedded in Y as the locus with x, y, z real, and
M ′ is the locus with x, y imaginary, and z real. M is the fixed point set
of the antiholomorphic involution of Y defined by τ : (x, y, z) → (x, y, z)
(assuming that j2 > 0 so that this fixed point set exists), and M ′ is the
fixed point set of a different antiholomorphic involution τ̃ defined by τ̃ :
(x, y, z) → (−x,−y, z). The brane quantization method applied to Y , with
the involutions τ and τ̃ , reproduces classical results about representation
theory of SU(2) and SL(2,R). Some of this was described in [9], and we will
make some further remarks starting in Section 3.6.

2.5. The canonical coisotropic brane and deformation quanti-
zation.

2.5.1. A-branes. Now let us discuss the branes of the A-model. The most
familiar A-branes are Lagrangian branes. The support of a Lagrangian A-
brane is a Lagrangian submanifold L of Y . Such a submanifold is always
middle-dimensional, so if Y has dimension dimY = 2n, then dimL = n =
1
2dimY . The definition of an A-brane with support L depends on the choice
of a Chan-Paton bundle over L, or for short a CP bundle. Our basic examples
will be Lagrangian A-branes of rank 1.

The CP bundle of a rank 1 A-brane supported on L is usually described
as a complex line bundle L → L with a unitary flat connection. Though this
description is adequate locally, and it is also adequate globally if L is a spin
manifold with a chosen spin structure, it is in general slightly oversimplified
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because of an anomaly [31] that is part of the relation of branes to K-
theory.12 The correct global statement is that L is a flat spinc structure over
L. The concept of a flat spinc structure was already described in Section 2.2:
if L is a spinc structure, then L2 is an ordinary complex line bundle with
connection, and the curvature of L is defined as one-half the curvature of L2.

Apart from the familiar Lagrangian branes, the A-model of a symplec-
tic manifold Y may have additional branes, discovered in [10], known as
coisotropic branes. The support of a coisotropic brane is a coisotropic sub-
manifold13 of Y whose dimension exceeds 1

2dimY . In this article, we will
be primarily concerned with the simplest case, which is a rank 1 coisotropic
brane whose support is all of Y . Since a complex symplectic manifold has a
canonical spin structure, the anomaly involving spin is not relevant in such
a case; the CP bundle of a brane with support Y is simply a complex line
bundle R.

In introducing coisotropic branes supported on Y , we will allow for the
possible presence in the σ-model of a two-form field B, usually called the
B-field. In the present article, the B-field is always flat and topologically
trivial, meaning that B is simply a closed two-form. As explained in [10],
in general in the A-model of a symplectic manifold Y with symplectic form
ωY and two-form field B, the condition for a rank 1 brane with support Y
and CP curvature F to be an A-brane is that I = ω−1

Y (F+ B) should be an
integrable complex structure on Y . The simplest examples arise in precisely
the situation of interest in the present article. If Y is a complex symplectic
manifold with complex structure I and holomorphic two-form Ω = ωJ+iωK ,
then in the A-model with ωY = ωK , we can solve I = ω−1

Y (F+B) by setting
F+ B = ωJ .

We still have some freedom to choose F and B separately, obeying F+B =
ωJ . The different possibilities are equivalent in the sense that they are related
by B-field gauge transformations. In general, the σ-model is invariant under
tensoring the CP bundle of every brane with an arbitrary unitary line bundle

12 The anomaly has nothing to do with any topological twisting and is a general
property of branes in σ-models. A brief explanation is as follows. First of all, there exists
a brane B0 supported on Y with trivial CP bundle. In the relation of branes to K-theory,
this brane corresponds to a trivial complex line bundle over Y . Now consider any other
brane B1 with support on some submanifold L ⊂ Y and CP bundle L → L. If L has rank
1, then naively it is a complex line bundle over L. However, a standard analysis shows that
the low-lying states of the (B0,B1) system, in the Ramond sector, correspond to spinors
with values in L. For such states lto exist, given that L was not assumed to be spin, L
must be a spinc structure rather than a complex line bundle.

13A coisotropic submanifold is one that can be defined locally by the vanishing of some
Poisson-commuting functions. For example, Y itself is coisotropic; in that case, no Poisson-
commuting functions are required. At the other extreme, a Lagrangian submanifold L is
coisotropic. Locally one can pick coordinates so that ωY =

∑
i dpidq

i and L is defined by
p1 = p2 = · · · = pn = 0. The pi are the Poisson-commuting functions that locally define L.
A Lagrangian submanifold is a coisotropic submanifold of minimum possible dimension.
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S, of curvature G (the same S for all branes). This induces a shift F → F+G
for the CP curvature of every brane, and a compensating shift B → B− G.

In the present article, it will generally be most convenient to choose
F = 0, B = ωJ . The CP bundle of a brane with F = 0 can be completely
trivial, with a trivial flat connection. The coisotropic A-brane with trivial
CP bundle, in an A-model with symplectic form ωK and B-field ωJ , is what
we will call the canonical coisotropic A-brane, denoted Bcc. Branes of this
type are important in the gauge theory approach to the geometric Langlands
correspondence [23].

If there exists a unitary line bundle R with curvature ωJ , then by a
B-field gauge transformation, we can set B = 0 and obtain an alternative
description in which Bcc has CP bundle R. In fact, that description has been
used previously [23, 9], and we will see one reason that it can be useful in
Section 5. However, in this article it will generally be more simple to take
the CP bundle of Bcc to be completely trivial and set B = ωJ .

In general, in the A-model with symplectic form ωY and a given B-field,
the sum ωC = ωY − iB is called the complexified symplectic form. In the
present context, this is

(2.21) ωC = ωY − iB = ωK − iωJ = −iΩ.

In general, if B1 is an A-brane, then the space of physical states of
(B1,B1) strings in the A-model is an associative algebra A. If B2 is an-
other A-brane, then the analogous spaces of (B1,B2) or (B2,B1) physical
states are A-modules (right and left A-modules, to be precise). The con-
nection of the A-model with quantization arises upon implementing this
idea for the case that B1 = Bcc, and B2 is a Lagrangian brane. As an ab-
breviation, we will use a common mathematical terminology, and refer to
the space of (B1,B2) physical states in the A-model (for any B1 and B2)
as Hom(B1,B2). The basic idea is that the joining of a (B1,B2) string to
a (B2,B3) string to make a (B1,B3) string is described as a composition of
morphisms Hom(B2,B3)⊗Hom(B1,B2) → Hom(B1,B3), where B1 is mapped
to B2 and then B2 is mapped to B3. In general, Hom(B1,B2) depends covari-
antly on B2 and contravariantly on B1. Related to this, if B1 has support
T1 and CP bundle E1, while B2 has support T2 and CP bundle E2, then
very roughly Hom(B1,B2) is some sort of space of sections over T1 ∩ T2 of
E∨

1 ⊗ E2 (here E∨
1 is the dual of E1). Schematically

(2.22) Hom(B1,B2) ∼ Γ(T1 ∩ T2, E
∨
1 ⊗ E2).

This is a very schematic statement, because we have not said what kind of
sections are allowed (this depends on details of the type of brane considered),
and in general the full story is much more complicated. The point of eqn.
(2.22) is only to stress that E1 is dualized and E2 is not. Some conventions
for the relations between strings and morphisms are explained in Fig. 1.
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Figure 1. (a) In the case of a left boundary of a two-
manifold Σ, we consider “time” to flow upward, in the di-
rection of the arrow, so a junction of boundary conditions
with B1 below B2 represents a transition from B1 to B2, de-
scribed algebraically as an element of Hom(B1,B2). (b) By a
conformal transformation, one can map this to a strip with
B2 on the left and B1 on the right. The drawing represents
an element of Hom(B1,B2) propagating from the bottom of
the picture to the top. Alternatively, viewed from top to
bottom, the same drawing represents downwards propaga-
tion of an element of the dual space Hom(B2,B1). (One can
exchange the two views by a π rotation of the plane, pre-
serving its orientation and exchanging B1 and B2. A reflec-
tion would reverse the orientation of the plane and is not
allowed.) The upward and downward pointing arrows indi-
cate that Hom(B1,B2) depends covariantly on B2 and con-
travariantly on B1. (c) The natural composition of morphisms
Hom(B2,B3) ⊗ Hom(B1,B2) → Hom(B1,B3) (where B1 is
mapped to B2 which is then mapped to B3) corresponds to
this picture.

Additively, at least for small �, Hom(Bcc,Bcc) is a direct sum of coho-
mology groups of Y ,

(2.23) Hom(Bcc,Bcc) = ⊕dimCY
r=0 Hr(Y,O)

(where O is a trivial complex line bundle over Y ). The integer r labels the
fermion number or “ghost number” of a cohomology class. The derivation
of this result is sketched in Appendix B, following Section 2.2 of [9]. Since
the fermion number is additive when string states are joined (or multiplied),
the states with r = 0 form a ring in their own right. This part of the
cohomology is therefore particularly important. The cohomology with r > 0
actually vanishes in many interesting examples.

The ring Hom(Bcc,Bcc) is particularly interesting in the case that Y is an
affine algebraic variety (defined by vanishing of some polynomial functions
on CN ), so we continue the discussion for that case. Since the sheaf cohomol-
ogy of an affine variety vanishes for r > 0, we only have to consider the r = 0
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cohomology, which as a vector space is the space of holomorphic functions
on Y . As explained in Section 2.4, we consider only functions that are poly-
nomials in the coordinates. Under ordinary multiplication, the holomorphic
functions on Y form a commutative, associative ring A0. But that is not
the ring structure of A = Hom(Bcc,Bcc). Rather, as shown in Section 11.1
of [23], following a number of prior developments [10, 11, 12, 13, 14, 15],
and as we explain next, A is an associative but noncommutative deformation
of A0.

2.5.2. The relation to deformation quantization. The basic idea of this
derivation is as follows. In general, the A-model is constructed from an
underlying supersymmetric σ-model by choosing one of its supercharges Q,
chosen to satisfy Q2 = 0, and restricting to Q-invariant observables. Since
Q2 = 0, Q-invariant observables are not affected by Q-exact terms {Q, . . .}
in the action. On a two-manifold Σ, consider a σ-model with target Y and
σ-model map X : Σ → Y . Let ωC = ω − iB be the complexified symplectic
form of the A-model. If Σ has no boundary, then the action takes the simple
form

(2.24) I =

∫
Σ
X∗(ωC) +

∫
Σ
{Q, . . .}.

In other words, everything is Q-exact except the pullback of ωC. In our
setup, ωC = −iΩ. So for example if Σ is a disc D with boundary S1, then
the action is

(2.25) I = −i

∫
D
X∗(Ω) +

∫
D
{Q, . . .}.

The integrand of the Feynman integral in Euclidean signature is exp(−I),
so this integral is schematically

(2.26)

∫
DX · · · exp

(
i

∫
D
Ω

)
exp

(
−
∫
D
{Q, . . .}

)
.

(Here DX · · · refers to an integral over X and other fields.) More generally,
we can include operator insertions on the boundary of the disc. Such opera-
tors represent (Bcc,Bcc) strings, so they correspond to holomorphic functions
f1, . . . , fk on Y (or cohomology classes of higher degree, as discussed later).
As in Section 2.3, we pick points r1, r2, . . . , rk in the boundary of the disc
and write fi(ri) for fi(X(ri)). Then the Feynman integral that represents
an A-model calculation on a disc whose boundary is labeled by Bcc with
operator insertions on the boundary is

(2.27)

∫
DX · · · exp

(
i

∫
D
Ω

)
exp

(
−
∫
D
{Q, . . .}

)
f1(r1)f2(r2) · · · fk(rk).

This integral is related to deformation quantization of the ring A0 of
holomorphic functions on Y . Let us first describe that notion. Formally,
deformation quantization of the ring of holomorphic functions on a com-
plex manifold Y is rather analogous to the deformation quantization of
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real symplectic (or Poisson) manifolds that was briefly described in Sec-
tion 2.3, except that what is deformed is the ring of holomorphic functions.
If Ω = 1

2

∑
i,j Ωijdy

idyj (where the yi are local holomorphic coordinates

on Y ), and Ωij is the inverse matrix to Ωij , then the Poisson bracket of
holomorphic functions is defined in the usual way by

(2.28) {f, g} =
∑
i,j

Ωij∂if ∂jg.

Then in the deformed ring A, the algebra elements f̂ , ĝ corresponding to
holomorphic functions f, g satisfy

(2.29) f̂ ĝ − ĝf̂ = −i�{̂f, g}0 +O(�2),

where we have introduced a deformation parameter by writing Ω = 1
�
Ω0,

with some fixed Ω0, and { , }0 is the Poisson bracket defined using Ω0. In

the expansion of f̂ ĝ in powers of �, the term of order �n is supposed to be
a sum of terms schematically of the form ∂kf∂2n−kg.

The most precise explanation of how the integral (2.27) is related to
deformation quantization was given in [32]. First recall from Section 2.3
that deformation quantization of the real symplectic manifold M can be
described by integration over the space P of maps x : S1 → M :

(2.30)
〈
f1f2 · · · fk

〉
=

∫
P

Dx exp

(
i

∫
D
x∗(ω)

)
f1(r1)f2(r2) · · · fk(rk).

Here the map x : S1 → M , assumed to be nearly constant, has been ex-
tended to x : D → M , where D is a disc with boundary S1, by shrinking
its image to a point in M . M has Y as a complexification, and ω = ωJ an-

alytically continues to Ω. The complexification of P is the space P̂ of maps
X : S1 → Y . In deformation quantization, X : S1 → Y can be assumed
to be nearly constant, again leading to a homotopy class of extensions to
X : D → Y . The function exp(i

∫
D x∗(ω)) analytically continues to a holo-

morphic function on P̂, namely exp(i
∫
D X∗(Ω)). We note that precisely this

function appears as a factor in eqn. (2.26), the rest of the action being
Q-exact. Suitable smooth functions f1, f2, . . . , fk on M can be analytically
continued to holomorphic functions on Y , which we also call f1, f2, . . . , fk.
Formally, the expression Dx exp(i

∫
D x∗(ω)) in eqn. (2.30), where Dx is the

measure of the Feynman path integral, is a top degree differential form on the
infinite-dimensional manifold P. It analytically continues to a holomorphic

form DX exp(i
∫
D X∗(Ω)) of top degree on P̂. To integrate a top degree holo-

morphic form on a complex manifold, in this case the infinite-dimensional

manifold P̂, one needs a middle-dimensional integration cycle. So for exam-

ple, if Γ is a middle-dimensional cycle in P̂ of an appropriate kind, we might
hope to make sense of the integral

(2.31)

∫
Γ
DX exp

(
i

∫
D
X∗(Ω)

)
f1(r1)f2(r2) · · · fk(rk).
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One example of a middle-dimensional cycle in P̂ is the original P con-
sisting of maps to M ⊂ Y . With this choice of Γ, the integral (2.31) reduces
back to (2.30), and provides a framework to understand deformation quan-
tization. What is shown in [32] is that the integral (2.27) on a disc with
Bcc boundary and operator insertions on the boundary can be interpreted
as the integral (2.31) with a different integration cycle, namely the cycle14

consisting of maps X : S1 → Y that extend to maps X : D → Y that
are holomorphic in complex structure K. The choice of Γ, within a class of
almost middle-dimensional cycles such that the integral (2.31) makes sense,
does not affect the arguments relating this integral to deformation quanti-
zation of Y . A finite-dimensional analog of this statement is that if Z is a
complex manifold with a holomorphic form Ω of top degree, then the dif-
ferential equations obeyed by a period integral

∫
ΓΩ do not depend on the

choice of the cycle Γ ⊂ Z.
We have omitted much in this short summary, but one further detail

requires explanation, though it will not play any direct role in the present
article. As explained in the discussion of eqn. (2.9), if we can make sense of
the integral (2.31), we will get an associative algebra A that deforms A0,

and a trace on A. A trace is a complex-valued linear function f̂ → 〈 f̂ 〉
obeying 〈 f̂ ĝ 〉 = 〈 ĝf̂ 〉. In the case of a smooth manifold M , the classical
limit of the trace is integration with the symplectic measure: f →

∫
M

ωn

n! f ,

where n = 1
2dimM . This does not have such a direct analog for a complex

symplectic manifold Y with a holomorphic function f . The closest analog
of ωn

n! f is Ωn

n! f , which is a holomorphic differential form of top degree; there

is no way to integrate Ωn

n! f over Y . If we use the integration cycle P that
involves restriction to M , this presents no difficulty, but if we use the inte-
gration cycle that is related to Bcc, we need to modify the definition of one
of the operators and as a result we will not get a trace. We are primarily
interested in noncompact Y , since if Y is compact, there are no noncon-
stant holomorphic functions to be quantized. If Y is noncompact, duality
is a pairing between the ordinary ∂ cohomology and ∂ cohomology with
compact support. If f1, . . . , fk−1 are holomorphic functions on Y , then we

should take fk to be an element of HdimCY
cpct (Y,O), a top degree ∂ cohomol-

ogy class with compact support. The classical limit of the integral in eqn.
(2.31) is then

∫
Y f1f2 · · · fk Ωn

n! . This is a well-defined integral, and the quan-
tum corrections are also well-defined. From the correlation functions of eqn.
(2.31), by using the operator product expansion as in eqn. (2.10), we can
construct an associative algebra A that reduces to the commutative algebra
A0 of holomorphic functions for � → 0. But this algebra does not come
with a trace, because the cyclic symmetry is spoiled by taking one of the
operators to represent a cohomology class with compact support.

14As we discuss shortly, a correction is needed because this cycle is not quite middle-
dimensional.
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The explanation of this point given in [32] is that because of an index
theorem, the cycle Γ associated to Bcc is actually above the middle dimen-
sion by an amount 2n = dimC Y , so it is not quite suitable for integration
of a holomorphic form. One compensates for this by replacing one of the
functions fi by a (0, 2n)-form.

2.5.3. Actual deformations. For a general Y , this construction will pro-
duce a deformation quantization over a ring of formal power series in �. That
is not good enough for the application of the A-model to quantization; for
this, one needs to be able to treat � as a complex number. Equivalently, one
needs to be able to take Ω to be a definite holomorphic symplectic form on
Y . When this is the case, we will say that the A-model produces an actual
deformed algebra A, not just a formal one. A sufficient condition for this,
as remarked in Section 2.4, is that the underlying quantum σ-model with
target Y (of which the A-model is a twisted version) should actually exist
as a full-fledged quantum field theory. In particular, this is so if Y admits a
complete hyper-Kahler metric.

Discussing the same question concerning deformation quantization of
the ring of holomorphic functions, Kontsevich [33] proposed that an actual
deformation will exist if, roughly, Y can be compactified by adding a divisor
at infinity along which Ω has a pole. Kontsevich’s criterion is somewhat
similar to the conditions under which a hyper-Kahler version of the theorem
of Tian and Yau on complete Calabi-Yau metrics [34] would predict that Y
has a complete hyper-Kahler metric. (Such a theorem does not seem to be
available except in complex dimension two, where Calabi-Yau metrics are
automatically hyper-Kahler.)

In some important cases discussed in [23, 9], one can show directly
(without knowledge about the quantum σ-model) that σ-model perturbation
theory terminates after finitely many steps and therefore that the A-model
provides an actual deformation. This happens if Y has a scaling symmetry, or
at least an asymptotic scaling symmetry, under which � scales with positive
degree.

For example, consider the complex variety x2 + y2 + z2 = j2 (eqn. 2.20).
This manifold is asymptotic at infinity to the cone x2 + y2 + z2 = 0. It has
an asymptotic scaling symmetry (x, y, z) → λ(x, y, z), under which j scales
with degree 1. We consider the holomorphic symplectic form Ω = dx dy/z�,
where � also scales with degree 1. The scaling symmetry means that nothing
is lost by setting � = 1, after learning that it makes sense to do so. The
classical ring A0 is generated by x, y, z, all of degree 1, with commutativity
relations such as xy = yx and the additional relation x2 + y2 + z2 = j2.
The deformed ring will be invariant under joint scaling of x, y, z, j, �, and
also has a manifest SO(3) symmetry rotating x, y, z, Taking these facts into
account, one finds [9] that the deformed ring is given by x̂ŷ − ŷx̂ = �ẑ,
and cyclic permutations of this statement, along with x̂2 + ŷ2 + ẑ2 = j2 −
1
4�

2, where only the numerical coefficient 1
4 in the last term requires some

analysis. This example also illustrates the other criteria; the space Y admits
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a complete hyper-Kahler metric (the Eguchi-Hansen metric), and it has a
compactification with the properties required by Kontsevich (namely the
quadric x2 + y2 + z2 = w2 in CP3). One can similarly consider an affine
variety defined by a polynomial of higher degree. For the complex symplectic
manifold xn + yn + zn = b (where b is a complex constant), with symplectic
form dxdy/zn−1, one finds that both criteria are satisfied for n = 3 and
neither for n > 3.

Complex cotangent bundles, which we will discuss at length in Sec-
tion 3.1, have an exact scaling symmetry, by virtue of which they are exam-
ples with an actual deformation, even though in general they are believed
not to admit complete hyper-Kahler metrics. They do satisfy the criterion
of Kontsevich.

2.6. Lagrangian A-branes and quantization.
2.6.1. Definition of the Hilbert space. Now we want to incorporate a

Lagrangian A-brane and explain the relation to quantization. We follow the
explanation in [9], Section 2.3. Some important illustrative examples had
been analyzed earlier [15].

To quantize the real symplectic manifoldM , we pick a rank 1 Lagrangian
A-brane B with support M and some CP bundle. What characterizes a rank
1 Lagrangian A-brane is that the curvature F of its CP bundle satisfies F+
B = 0. As we have taken B = ωJ , the curvature must be F = −ωJ . Our goal,
as described in Section 2.4, is to quantize M with the symplectic structure
ωJ . We recall as well that in geometric quantization, the first step is to
introduce a prequantum line bundle L with curvature equal to the symplectic
form, in this case ωJ . As this is the negative of the curvature of L, we can
interpret the CP bundle of B as L−1. One sign that this identification makes
sense is that the anomalies match. What is loosely called the prequantum
line bundle in geometric quantization is more accurately a spinc structure, as
we discussed in Section 2.2. And similarly, the CP bundle of a rank 1 brane
is really a spinc structure rather than a complex line bundle, as sketched in
footnote 12.

The Hilbert space for brane quantization of M with the prequantum line
bundle L is then defined to be H = Hom(B,Bcc), the space of physical states
of the (B,Bcc) system. The dual space is H′ = Hom(Bcc,B). The reason that
we identify H, not H′, as the Hilbert space is that A = Hom(Bcc,Bcc) acts
on H = Hom(B,Bcc) on the left, while it acts on H′ = Hom(Bcc,B) on the
right. To the extent that one prefers to work with left actions of a ring if
possible, it is natural to define H as we have. In referring to H as a Hilbert
space, not just a vector space, we are referring to the fact that H has a
natural hermitian inner product; this is described in Section 2.7.

To understand the motivation for this definition of the quantum Hilbert
space, we construct the effective action for low-energy states of an open
string whose left and right boundaries end on Bcc and B, respectively. Let
the string worldsheet be R × I, where R is parametrized by τ and I is
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an interval. The boundary conditions at the two ends of I are such that
there are no fermion zero-modes. See Appendix B for an explanation of this
statement. The boson zero-modes are constant along I and so describe a
map X : R → M , which we can describe by functions xi(τ), where xi are
local coordinates for M . What is the effective action for xi(τ)? The bulk
effective action contributes various terms that are quadratic in dxi/dτ , but
the most relevant terms are linear in dxi/dτ and come from the boundary
couplings to the CP bundles at the two ends of the string. Referring back
to eqn. (2.22), we see that in the definition of Hom(B,Bcc), we have the CP
bundle of Bcc at one end of the string and the dual, or inverse, of the CP
bundle of B at the other end. The CP bundle of Bcc is completely trivial,
and the CP bundle of B is L−1, so its dual is L, the prequantum line bundle.
If A is the connection on L, then the contribution of the coupling of the
string endpoint to L to the low energy effective action is just

(2.32) I =

∫
R

x∗(A).

This is the action that was introduced Section 2.3, where the connection
on the prequantum line bundle is called T/�. As explained there, this is
formally the action associated to quantization.

As we have discussed in Section 2.3, the actions of eqns. (2.6) or (2.32) ac-
tually cannot be quantized without more information. The correct statement
is not that the A-model computation of Hom(B,Bcc) reduces to quantization
of the action (2.32). Rather, the fact that the A-model is well-defined (for
suitable Y ) while quantization of eqn. (2.32) is ambiguous means that some
information has been lost in the reduction to (2.32). The right way to state
the conclusion is that H = Hom(B,Bcc) is the answer for quantization of M
with prequantum line bundle L that is provided by the A-model.

2.6.2. Some questions. The claim that the A-model is providing this
answer for the quantization of M raises a number of questions. Here are
some obvious ones:

(1) The space of physical states of the A-model is not usually a Hilbert
space. Usually it does not have a hermitian inner product of any kind (even
an indefinite one). How does the A-model generate a hermitian inner product
in the present context?

(2) What are the observables that act on the quantum Hilbert space H?
(3) Is this notion of quantization compatible with standard methods of

quantization when those are available?
The first question will be answered in Section 2.7.
Concerning the second question, the immediate answer that the A-model

provides is that A = Hom(Bcc,Bcc) acts on H = Hom(B,Bcc). This answer is
most satisfactory if M is a real affine variety and Y is its complexification. In
this case, as we learned in Section 2.5, A is an associative noncommutative
deformation of the ring A0 of polynomial functions on Y . The ring of poly-
nomial functions on Y is the same as the ring of polynomial functions on M
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(a polynomial function on M can be analytically continued to a polynomial
function on Y , and a nonzero polynomial on Y has a nonzero restriction
to M). So the functions on M that are quantized are the polynomial func-
tions. That is a fairly satisfactory answer. For example, if M = R2n, the
functions that are being quantized are simply the polynomials in the coordi-
nates and momenta. In Section 2.7, we will learn that the elements of A that
correspond to hermitian operators on H are the ones that are τ -invariant.

However, quantization of a symplectic manifold M via branes makes
sense for many examples other than real affine varieties. In many other in-
stances, A0 is much smaller, and then we do not get such a rich set of func-
tions on M that are quantized to operators on H. It is then less obvious, in
general, what are interesting observables. However, there is another way to
define operators that act on H, namely operators associated to Lagrangian
correspondences. This will be explained in Section 4. For example, in a case
relevant to geometric Langlands that will be studied elsewhere [29], A0 is
“small” and A is actually abelian and isomorphic to A0. In that particu-
lar example, it is important to consider operators associated to Lagrangian
correspondences (Hecke correspondences, to be precise, which physically are
associated to ’t Hooft operators).

The last question of comparing quantization by branes to standard meth-
ods of quantization is the subject of Section 3.

2.6.3. Generalizations. So far, we have considered a Lagrangian brane
that is supported on M , a component of the fixed point set of an anti-
holomorphic involution τ : Y → Y . As we will discuss in Section 2.7, this
condition is important in defining a hermitian inner product on the space
H. But other types of Lagrangian brane are also important.

Since we consider Y as a symplectic manifold with symplectic structure
ωK , by definition to say that L is a Lagrangian submanifold means that the
restriction of ωK to L vanishes. But there is no general constraint on the
restriction of ωJ to L. If that restriction vanishes as well, then L is actually
Lagrangian for the complex symplectic structure ΩI = ωJ + iωK of Y . Such
an L is a complex submanifold15 of Y , so it is actually a complex Lagrangian
submanifold. Since Hom(B,Bcc) is a module for A = Hom(Bcc,Bcc) for any
A-brane B, in particular this is so if B is a Lagrangian brane supported on
a complex symplectic manifold L. Such branes are of type (B,A,A) in the
sense that they are B-branes in complex structure I (since L is a complex
submanifold, and the CP bundle of B, being flat, is holomorphic in complex
structure I), and A-branes for symplectic structures ωJ and ωK (since L is
Lagrangian in each of these structures and its CP bundle is flat). Modules
associated to branes of type (B,A,A) are interesting and will be important
tools in Section 3, but they are not closely related to quantization of L.
Indeed, since both ωJ and ωK vanish when restricted to L, nothing in this

15If ωJ and ωK vanish when restricted to L, this means that, along L, each is a pairing
between the tangent bundle and normal bundle to L in Y . It follows that I = ωK

−1ωJ

maps the tangent bundle of L to itself, so L is a complex submanifold.
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discussion has provided a symplectic structure on L, so we do not have
a natural problem of quantizing L. (If Y is hyper-Kahler, it has a third
symplectic structure, namely ωI , and a complex Lagrangian submanifold L
is symplectic with respect to ωI . But the A-model that we are studying and
the branes Bcc and B are not sensitive to ωI .)

The case that is related to quantization of L is the opposite case that ωJ

is nondegenerate when restricted to L. If B is a rank one A-brane supported
on any such L, then Hom(B,Bcc) has most of the properties that one would
expect for a quantization of L with symplectic structure ω = ωJ |L. Only
one step in the construction fails, namely the definition of a hermitian inner
product. As we will explain in Section 2.7, the definition of this inner product
requires that L should be the fixed point set of an antiholomorphic involution
of Y . Intuitively, one should expect this. If L is not the fixed point set of
an antiholomorphic symmetry of Y , then it is not natural for a holomorphic
function on Y to be real when restricted to L, so there is no evident way to
decide what holomorphic functions on Y should become hermitian operators
in a quantization of L. Hence it should not be possible to define a hermitian
inner product on Hom(B,Bcc).

In Section 3.7 of [9], examples are described of Lagrangian submanifolds
L of a coadjoint orbit of SL(2,C) (the affine variety Y defined by eqn. (2.19)),
such that ωJ is nondegenerate when restricted to L, but L is not the fixed
point set of any antiholomorphic involution of Y . Such L’s were related, for
example, to various kinds of interesting but not unitary representations of
the group SL(2,R) or its Lie algebra.

Another generalization is to consider the case that B is a Lagrangian
brane supported on M (or on a more general Lagrangian submanifold L) of
rank m > 1. In discussing this case, let us assume for simplicity that M is a
spin manifold, so that we do not have to discuss the usual anomaly involving
spin. The CP bundle of M is then a flat vector bundle U → M of rank m,
with structure group U(m). In this situation, Hom(B,Bcc) will be a sort of
rank m generalization of the notion of quantization. The existence of this
generalization of the notion of quantization may come as a slight surprise.
However, it is not hard to see that such a generalization does exist in the
cases in which geometric quantization is available. For example, suppose that
M = T ∗N for some N . Then in the spirit of geometric quantization, one
can consider the Hilbert space consisting of L2 sections of K1/2 ⊗ U → N .
Alternatively, suppose that M has a Kahler polarization. Then one can
consider the Hilbert space H0(M,K1/2 ⊗ U).

2.7. Hermitian inner product. Here, following Section 2.4 of [9],
we will discuss what is required to define a hermitian inner product in the
A-model. Actually the two cases of the topological A-model and B-model
can be treated in parallel, and the B-model case is also interesting. So we
consider the two cases together: we consider any two-dimensional topolog-
ical field theory that is obtained by twisting a unitary, supersymmetric,
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two-dimensional σ-model. The twisting is made by selecting a linear com-
bination Q of the supercharges that satisfies Q2 = 0, and treating it as a
differential.

The usual inner product in such a topological field theory is a bilinear
form (linear in each variable), not a hermitian or sesquilinear form (linear
in one variable, antilinear in the other). Thus, if B1 and B2 are two branes,
there is always a nondegenerate bilinear pairing between Hom(B1,B2) and
Hom(B2,B1). It can be computed by a two-point function on a disc. So
finding a sesquilinear pairing of Hom(B1,B2) with itself is equivalent to
finding an antilinear map from Hom(B1,B2) to Hom(B2,B1).

The underlying σ-model always has an antilinear symmetry, the CPT
symmetry that we will call Θ. It reverses the orientation of a string, and
so maps Hom(B1,B2) to Hom(B2,B1). However, Θ does not do the job we
want, because it is not a symmetry of the topological field theory defined
using a given Q. Such a Q is never hermitian (since it obeys Q2 = 0), and
Θ conjugates Q to Q†. In other words, Θ maps an A- or B-model with
differential Q to a conjugate A- or B-model with differential Q†.

To find an antilinear symmetry of the topological field theory associated
to a given Q, we need to combine Θ with a linear symmetry τ of the σ-
model that conjugates Q† back to Q. Such a symmetry can exist in either
an A-model or a B-model. In an A-model, τ should reverse the sign of the
symplectic form ω that is used in defining the A-model.16 In a B-model, τ
should reverse the sign of the complex structure J that is used to define
the B-model. In other words, we need τ∗(ω) = −ω in the A-model, and
τ∗(J) = −J in the B-model. Θτ = τΘ will then be an antilinear map from
the A-model or B-model to itself.

More generally, in the presence of a B-field, Θ maps an A-model with
complexified symplectic form ωC = ω − iB to a conjugate A-model with ωC

replaced by −ωC. To compensate for this, while reversing the sign of ω, τ
should satisfy τ∗(B) = B.

To get the best properties, τ should be self-adjoint, satisfy τ2 = 1, and
commute with Θ. We will assume these conditions, which imply that Θ2

τ = 1
and Θτ is self-adjoint.

In general, τ will map branes B1 and B2 to some other branes B1 and
B2, and Θτ will then map Hom(B1,B2) to Hom(B2,B1). So Θτ , composed
with the natural bilinear pairing ( , ) of the A- or B-model, will give a
sesquilinear pairing between Hom(B1,B2) and Hom(B1,B2), defined by

(2.33) 〈ψ,ψ′〉 = (Θτψ,ψ
′).

To get a sesquilinear pairing of Hom(B1,B2) with itself, we need B1 = B1,
B2 = B2. In other words, the branes considered must be τ -invariant. When

16A diffeomorphism of a real symplectic manifold that reverses the sign of the sym-
plectic structure is said to be “antisymplectic,” by analogy with the use of the term
“antiholomorphic” to describe a diffeomorphism that reverses the sign of the complex
structure.
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that is the case, it makes sense to ask if the sesquilinear form is hermitian,
which means that 〈ψ,ψ′〉 = 〈ψ′, ψ〉. This condition is actually satisfied,
because ( , ) is symmetric and Θτ is self-adjoint and antilinear.

For τ -invariant branes B1, B2, let us work out a general description of
the adjoint of an operator O : Hom(B1,B2) → Hom(B1,B2). First of all,
in general there is a dual or transpose operator O∗ from the dual space
Hom(B2,B1) to itself. O∗ is characterized by the condition that for ψ ∈
Hom(B1,B2), χ ∈ Hom(B2,B1),

(2.34) (O∗χ, ψ) = (χ,Oψ).

On the other hand, for ψ,ψ′ ∈ Hom(B1,B2), the adjoint operator O† should
obey

(2.35) 〈O†ψ′, ψ〉 = 〈ψ′,Oψ〉.

Combining these conditions with the definition of 〈 , 〉, we get (ΘτO†ψ′, ψ) =
(Θτψ

′,Oψ) = (O∗Θτψ
′, ψ). So ΘτO† = O∗Θτ , or, as Θ

2
τ = 1,

(2.36) O† = ΘτO∗Θτ .

Let us examine this construction of a hermitian product for the case
that Y is the complexification of a real symplectic manifold M . M is then a
fixed point set of an antiholomorphic involution τ : Y → Y , as discussed in
Section 2.4. Therefore, a Lagrangian brane B supported on M is τ -invariant.
Since we consider the A-model with ω = ωK and B = ωJ , we want ωK to
be odd under τ (to satisfy τ∗(ω) = −ω) and ωJ to be even (so that B is
τ -invariant17). These conditions are satisfied (eqn. (2.18)). The brane Bcc is
τ -invariant, since its CP bundle is trivial. So we do get a hermitian structure
on H = Hom(B,Bcc). The same construction gives a hermitian structure on
the dual space H′ = Hom(Bcc,B). These structures are equivalent under the
antilinear isomorphism Θτ : H ∼= H′.

Since A = Hom(Bcc,Bcc) acts linearly on H, we can now ask what el-
ements x ∈ A correspond to hermitian operators on H. With the above
definition of the hermitian structure, the answer is that x corresponds to a
hermitian operator if and only if it commutes with Θτ . Since Θτ is antilinear
and Θ2

τ = 1, every x can be written x = x1+ix2, where x1 and x2 commute
with Θτ and become hermitian after quantization.

In general, for τ -invariant branes B1,B2, the hermitian form that we have
defined on Hom(B1,B2) is not positive-definite. It is always nondegenerate,
since Θτ is an isomorphism and the bilinear pairing ( , ) of the A- or B-model
is nondegenerate.

In the more specific context of quantization, the best we can say is that
sufficiently close to a classical limit, this hermitian form is positive-definite.
For example, in the case of a Kahler polarization, one is sufficiently close to

17Alternatively, we could make a B-field gauge transformation to set B = 0 and give
Bcc a CP curvature ωJ . Then we would want τ∗(ωJ) = ωJ to make Bcc τ -invariant.
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Figure 2. (a) An auxiliary brane F , with certain additional
data, can be used to make a state in Hom(B,Bcc). In gen-
eral this is a distributional state. (b) Inner products between
states constructed using branes F , F ′ can be computed by a

path integral on a rectangle with F at the bottom and F ′
–

the τ conjugate of F ′ – at the top.

a classical limit if the periods of the symplectic form are large enough; in
quantization of a cotangent bundle, one always expects positivity.

2.8. Smooth functions and distributions. We will conclude this in-
troduction by sketching a useful way to exhibit elements ofH = Hom(B,Bcc).
More detail will be presented in Section 3. The main ingredient is another
A-brane F . In practice, we will generally choose F to be a rank 1 brane
supported on some Lagrangian submanifold L ⊂ Y . L will typically not co-
incide with the phase space M whose quantization we are studying. Then
picking elements α ∈ Hom(F ,Bcc) and β ∈ Hom(B,F), we compose them to
make ψ = α◦β ∈ Hom(B,Bcc), as sketched in Fig. 2(a). Similarly if F ′ is yet
another A-brane, also equipped with α′ ∈ Hom(F ′,Bcc), β

′ ∈ Hom(B,B′),
we can compose them to make ψ′ = α′ ◦ β′ ∈ Hom(B,Bcc). The inner prod-
uct 〈ψ′, ψ〉, defined as in Section 2.7, can be computed by a path integral
on a rectangle; see Fig. 2(b).

However, we should ask what kind of states are ψ and ψ′. Here we have
in mind questions of analysis like the distinction, in the quantum mechanics
of a particle moving in ordinary space R3, between different classes of wave-
function. The arena of quantum mechanics of a particle on R3 is usually
understood to be the Hilbert space of L2 functions. But in a well-motivated
physics problem, the wavefunction of a particle is usually much nicer than
that – a smooth function with rapid decay at infinity. Mathematically, such
functions make up what is known as a Schwartz space. On the other hand, in
developing quantum mechanics, it is convenient to also consider unnormal-
izable states, such as a wavefunction δ3(	x− 	x0) with delta function support
at a point 	x0 ∈ R3, or a plane wave exp(i	p · 	x), which corresponds to a
wavefunction with delta function support in momentum space. Mathemati-
cally, these unnormalizable states are called distributions; a distribution, by
definition, has a well-defined inner product with any vector in the Schwartz
space.
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In the case of quantization of a compact phase spaceM , the Hilbert space
H is finite-dimensional and no such questions of analysis will arise. However,
if M is not compact, we should ask what sort of wavefunctions are produced
by the construction that was just sketched. A simple observation is that if
either F or F ′ has compact support, one can expect the amplitude associated
with the rectangle of Fig. 2(b) to be well-defined and convergent. If neither
F nor F ′ has compact support, in general this amplitude may not be well-
defined. This motivates the following tentative interpretation. A completely
general A-brane F produces, in this construction, a distributional state that
is not normalizable. But an A-brane F with compact support produces the
analog of a vector in Schwartz space – a vector that can be paired with an
arbitrary distribution.

3. Comparing quantization by branes to geometric quantization

3.1. Complex cotangent bundles and deformation quantization.
Geometric quantization and quantization by branes are two different ways
to introduce additional structure that is needed in order to quantize a sym-
plectic manifold M . Are there circumstances in which these two methods of
quantization agree? The best answer we can hope for is to find conditions
on a complexification Y of M and a polarization P of M such that brane
quantization based on Y is equivalent to geometric quantization based on
P . In the present section, we will explain a criterion for such equivalence for
the two basic types of polarization that were introduced in Section 2.2: real
polarizations of M and complex polarizations.

We begin by describing the most obvious situation in which one might
hope to compare brane quantization to geometric quantization. Suppose
that M = T ∗N is a cotangent bundle, with the natural symplectic struc-
ture ω =

∑
i dpidq

i, where qi are local coordinates on N and pi are linear
functions on the fibers of the cotangent bundle. Suppose further that W
is a complexification of N in the sense of Section 2.4. Then Y = T ∗W is
a complexification of M . The natural holomorphic symplectic form of Y ,
which can again be written as Ω =

∑
i dpidq

i (where now the qi and pi are
local holomorphic coordinates on W and on the fibers of T ∗W → W ), is
an analytic continuation of ω. If the A-model of Y exists, it can be used
to quantize M , and the result can be compared to geometric quantization
using the description of M as a cotangent bundle, M = T ∗N .

First we discuss deformation quantization of Y , in other words, we dis-
cuss Hom(Bcc,Bcc). The cotangent bundle has a scaling symmetry that is
highly constraining. To exploit this symmetry, it is convenient to generalize
slightly to the case Ω =

∑
i dpidq

i/� (where the parameter � can be set to 1
once one knows it makes sense to do so). There is a scaling symmetry under
which the qi are invariant while pj and � have degree 1.

The scaling symmetry is an action of C∗ on these variables. We will
assume that deformation quantization should be carried out in a C∗ invariant
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way. This is so if a U(1) subgroup of C∗ is a symmetry of an underlying σ-
model, from which the A-model of interest is deduced. (This is true in an
application to geometric Langlands that will be discussed elsewhere [29].)
Holomorphy will promote such a U(1) symmetry to C∗. In the absence of
an underlying U(1) symmetry, deformation quantization via Bcc might not
be C∗-invariant.

Suppose for example that W = Cn, Y = C2n, so that the coordinates qi,

pj can actually be defined globally. The Poisson brackets are {pi, qj} = δji ,
{qi, qj} = {pi, pj} = 0. Requiring that quantum commutators agree with
Poisson brackets up to corrections of order �2 and imposing the scaling
symmetry, the most general possible form of the quantum commutators is

[p̂i, q̂
j ] = −i�δji

[p̂i, p̂j ] = �2fij(q̂
k)

[q̂i, q̂j ] = 0.(3.1)

The Jacobi identity [p̂i, [p̂j , p̂k]]+· · · = 0 implies that ∂ifjk+∂jfki+∂kfij = 0,
so there are some functions gk with fij = ∂igj − ∂jgi. Then upon replacing

p̂i by p̂′i = p̂i − i�gi(q
k) – a substitution that is consistent with the scaling

relation – we reduce eqn. (3.1) to

[p̂′i, q̂
j ] = −i�δji

[p̂′i, p̂
′
j ] = 0

[q̂i, q̂j ] = 0.(3.2)

The quantum-deformed algebra of polynomial functions of pi and qj – which
are the only functions we allow, as discussed in Section 2.5 – is therefore
the algebra we get if we represent qj as a multiplication operator, and pi
as −i� ∂

∂qi
. Of course this last formula is familiar from elementary quantum

mechanics. With this characterization of q̂i and p̂j , the associative algebra
Hom(Bcc,Bcc) can be characterized as the algebra of polynomial holomorphic
differential operators on Cn. In making this relation to differential operators,
it is important to only allow functions whose dependence on the p’s is poly-
nomial, and we will always impose this condition in what follows. Similarly
we only allow a polynomial dependence on q. Thus a function of p̂ and q̂
corresponds to a polynomial holomorphic differential operator.

Now let us consider a more general W . Locally, we can reduce to the
previous case by replacing W with an open set U ⊂ W , chosen so that
U is isomorphic to a region in Cn, and replacing Y with T ∗U . Replacing
the target space Y = T ∗W by an open set, in this case T ∗U , is in general
not a good operation in a σ-model. However, since σ-model perturbation
theory involves small fluctuations around constant maps to the target space,
there is no problem in σ-model perturbation theory to restrict to an open
set. Usually this would give only perturbative information, but we are in
an unusual situation in which this is enough, since the scaling symmetry
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implies that perturbation theory up to order �2 gives the full answer. We
have chosen an open set of the form T ∗U because such a set is invariant
under scaling, so that the scaling argument applies. Therefore, it is possible
to think of Hom(Bcc,Bcc) as a sheaf over W : to any open set U ⊂ W , we
associate Hom(Bcc,Bcc) over T ∗U . We should acknowledge that while this
step makes sense and seems very natural mathematically, it is not clear that
it is entirely natural physically. It would be desirable to find a more natural
physical interpretation of this step, or possibly a way to avoid it in the
following arguments.

If we choose U small enough as to be isomorphic to an open ball in Cn,
then matters are simple. Once we do restrict to T ∗U for such a U , the coor-
dinates qi, p

j can be defined globally, and promoted as before to operators
that represent (Bcc,Bcc) strings. Therefore the above analysis applies in any
such set.

Now we cover W with small open sets Uα that are each isomorphic to an
open in Cn, and have topologically trivial intersections. Y is then covered
by the open sets T ∗Uα. For each α, we pick local coordinates qiα for Uα,
and fiber coordinates pj,α for the cotangent bundle. In intersection regions
T ∗(Uα ∩ Uβ), the relations between the coordinates are

qiα = hiαβ(q
k
β)

pi α = Mαβ(q)
k
i pk,β,(3.3)

where hiαβ are some holomorphic functions and Mαβ
i
j is the inverse matrix

to ∂ih
j
αβ.

At the quantum level, the scaling symmetry does not allow any change
in the transition formula for the q’s, so we must have q̂iβ = hiαβ(q̂

k), with
the same functions of the q’s as before. However, for the p’s, the scaling
symmetry allows a correction of order �, so that the formula would become
p̂i α = Mαβ(q̂)

k
i p̂k,β + i�ri αβ(q̂) for some holomorphic functions ri αβ . How-

ever, to satisfy [p̂i α, p̂j β ] = 0, we need ∂irj αβ − ∂jri αβ = 0, and therefore
(since Uα∩Uβ is topologically trivial) rj αβ = ∂jwαβ(q̂) for some holomorphic
functions wαβ . The transformation of the p̂’s is then

(3.4) p̂i α = Mαβ(q̂)
k
i p̂k,β + i�∂iwαβ(q̂).

We can make this formula look much simpler if we use a single set of coor-
dinates qi in the region Uα ∩Uβ (rather than two sets of coordinates qiα and
qiβ). Then the matrix M is replaced by 1 and the formula becomes simply

(3.5) p̂i α = p̂i β + i�∂iwαβ .

This isolates the nonclassical part of the transformation of p̂.
It is immediate that wαβ = −wβα, and consistency in triple overlaps

tells us that ∂k(wαβ + wβγ + wγα) = 0, and therefore that φαβγ = wαβ +
wβγ+wγα is a complex constant. In quadruple intersections, these constants
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automatically satisfy

(3.6) φαβγ − φβγδ + φγδα − φδαβ = 0,

and therefore define an element [φ] of H2(W,C).
If [φ] is actually valued in 2πi · H2(W,Z), meaning that, after possibly

shifting the wαβ by constants, each φαβγ is an integer multiple of 2πi, then
the quantities Sαβ = exp(wαβ) satisfy SαβSβγSγα = 1 and can be regarded
as the transition functions of a complex line bundle L → W . Explicitly,
L is as follows. In each Uα, a section of L is simply a function ψα. But
the functions ψα and ψβ in different open sets Uα and Uβ are related by
ψα = Sαβψβ. In this situation, the above formulas can be interpreted to
mean that the quantization of a function of q and p gives a holomorphic
differential operator acting on sections of L. In other words, suppose that
Dα and Dβ are holomorphic differential operators acting on functions in the
respective open sets Uα and Uβ . In order to be able to interpret these as the
restrictions to the given regions of a globally defined holomorphic differential
operator on W , we need Dα(Sαβψ) = SαβDβψ or Dα = SαβDβS

−1
αβ . In

particular, the operator that in region β is p̂i = −i� ∂
∂qi

will in region α be

p̂i + i�∂i logSαβ = p̂i + i�∂iwαβ , matching (3.4).

This has the following generalization.18 Let L → W be a holomorphic
line bundle, and suppose that after picking trivializations of L in the open
sets Uα, L can be described by transition functions exαβ in Uα∩Uβ . Suppose
that wαβ = λxαβ for some complex λ. If λ is an integer, then the func-

tions ewαβ = eλxαβ are transitions functions for a holomorphic line bundle,
namely Lλ. In that case, the discussion in the last paragraph applies and
the quantization of a function of q and p is a holomorphic differential op-
erator that acts on sections of Lλ. For generic complex λ, a line bundle Lλ

does not exist, but only because in triple overlaps Uα ∩ Uβ ∩ Uγ , the prod-

uct of transition functions eλ(xαβ+xβγ+xγα) is a c-number, not equal to 1.
Since differential operators commute with c-numbers, the notion of differen-
tial operators acting on Lλ makes sense whether Lλ exists as a line bundle
or not. And the quantized functions of q and p are naturally understood as
differential operators acting on Lλ.

More generally, let Li → W be holomorphic line bundles, described by
transition functions exi αβ , with some holomorphic functions xi αβ. If wαβ =∑

i λixi αβ for some integers λi, then ⊗iLλi
i makes sense as a line bundle and

the quantized functions of p and q are the differential operators acting on
⊗iLλi

i . If wαβ =
∑

i λixi αβ with more general complex coefficients λi, then

⊗iLλi
i does not make sense as a line bundle but differential operators acting

on ⊗iLλi
i do make sense, and in a natural way the quantized functions of p

and q are holomorphic differential operators acting on ⊗iLλi
i .

18 The situation that we will describe arises in important examples of quantization,
but it is not completely general. For example, if W is compact and the Hodge decomposi-
tion of [φ] has a piece of type (2, 0), then what we are about to describe is not applicable.
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We will loosely refer to ⊗iLλi
i as a complex power of a line bundle

(though it is more accurately a tensor product of such complex powers).
The situation that we have described is important for quantization, but it
is not the most general possibility, as noted in footnote 18.

An important detail is that if R is a holomorphic line bundle that ad-
mits a flat connection, then the holomorphic differential operators acting
on ⊗iLλi

i are the same as the holomorphic differential operators acting on

R ⊗i Lλi
i . That is because a flat line bundle can be characterized by its

c-number global holonomies. Since a differential operator commutes with
c-numbers, holomorphic differential operators are not sensitive to the differ-
ence between ⊗iLλi

i and R⊗i Lλi
i .

It turns out that in the case of Y = T ∗W , Hom(Bcc,Bcc) is the sheaf of
differential operators acting on a complex power of a line bundle. A quick
way to show this is to make a convenient choice of A-brane B0 and use the
fact that Hom(Bcc,Bcc) can act on Hom(B0,Bcc). To do so, we will make use
of Lagrangian branes of type (B,A,A).

3.2. Branes of type (B,A,A) as tools. Branes of type (B,A,A) are
B-branes in complex structure I and A-branes with respect to ωJ and ωK .
They were introduced in Section 2.6.3. We will be particularly interested in
rank 1 Lagrangian branes of type (B,A,A). The support of such a brane is a
complex Lagrangian submanifold L. We have taken the B-field to be B = ωJ ,
which vanishes when restricted to a complex Lagrangian submanifold L.
Therefore the condition F + B = 0 for the CP curvature of a rank one A-
brane B0 supported on L reduces to F = 0. So the CP bundle of such a
brane is a flat spinc structure. As explained in Section 2.6.3, if B0 is such a
brane, then Hom(B0,Bcc) is a module for the quantum deformed algebra of
functions on Y , though this module is not naturally interpreted in terms of
quantization of L.

We can use such modules as a tool in understanding Hom(Bcc,Bcc). As
a probe, we consider a convenient brane of type (B,A,A), namely a brane
supported on the zero-section of the cotangent bundle, namely W ⊂ T ∗W .
We assume that W admits a flat spinc structure L, and therefore is the
support of a rank 1 Lagrangian brane B0. As the considerations will be local
along W , it is not really important if L exists globally, and likewise we will
see in a moment that the choice of L is irrelevant.

The zero-section of the cotangent bundle is invariant under scaling of
the fibers. So Hom(B0,Bcc) can be evaluated in the small � limit. Tak-
ing into account the fact that the CP bundle of Bcc is trivial, the re-
sult, following a general analysis in Appendix B, is that Hom(B0,Bcc) ∼=
⊕dimC W

q=0 Hq(W,K
1/2
W ⊗L−1). In particular, just setting q = 0, Hom(Bcc,Bcc)

must be able to act on H0(W,K
1/2
W ⊗L−1), the space of holomorphic sections

of K
1/2
W ⊗L−1. Since L−1 is flat, it plays no role here; holomorphic differen-

tial operators acting on sections of K
1/2
W ⊗L−1 are the same as holomorphic
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differential operators acting on sections of K
1/2
W . Thus, Hom(Bcc,Bcc) must

be the sheaf of differential operators acting on sections of K
1/2
W , not on some

other line bundle.
In view of what was explained earlier, the differential operators acting on

K
1/2
W make sense regardless of whether K

1/2
W exists globally as a line bundle.

But perhaps it is worth spelling out that similarly, if K
1/2
W does exist as a

line bundle, the choice of this line bundle does not matter. Different choices

of K
1/2
W differ by tensoring with a line bundle R such that R2 is trivial.

Such an R admits a flat connection, so tensoring by R has no effect on the

holomorphic differential operators acting on K
1/2
W .

In Appendix C, we explain another (and mathematically more standard)
way to show that in the case of a cotangent bundle, Hom(Bcc,Bcc) is the

sheaf of differential operators acting on sections of K
1/2
W and not some other

complex power of a line bundle.

3.3. Complex cotangent bundles and quantization. Now we re-
turn to the real symplectic manifold M = T ∗N , and ask how the A-model
of Y = T ∗W , where W is a complexification of M , can be used to study the
quantization of M .

We will make use of another Lagrangian brane F of type (B,A,A). Be-
fore getting into details, we explain the strategy (which was briefly described
in Section 2.8). We will describe fairly natural elements α ∈ Hom(Bcc,F)
and β ∈ Hom(F ,B), where as before Bcc is a canonical coisotropic A-brane
and B is a rank 1 Lagrangian A-brane supported onM . Once α and β are de-
fined, it is straightforward to use the triple F , α, β to define an element ψ′ in
H′ = Hom(Bcc,B), which is the dual of the Hilbert space H = Hom(B,Bcc).
(The natural antilinear map Θτ , defined in Section 2.7, establishes an iso-
morphism between H and H′, but when we do not invoke it, we distinguish
H andH′.) Actually, for the choice of F that we will make, ψ′ will be a distri-
butional wavefunction. This is consistent with the discussion in Section 2.8,
since F will not have compact support.

Algebraically, we compose α ∈ Hom(Bcc,F) with β ∈ Hom(F ,B) to
make ψ′ = β ◦ α ∈ H′ = Hom(Bcc,B). In terms of pictures, we simply
consider a strip, as in Fig. 3, with Bcc on the left, F on the top, B on the
right, and α, β at the corners. Motivated by such pictures, we will refer
to objects such as α and β as corners.19 The path integral on the strip
naturally produces a vector ψ′ ∈ H′ = Hom(Bcc,B). Indeed, if we supply a

19In two dimensions, calling these objects “corners” may seem ill-motivated, as these
corners can be straightened out by a conformal mapping. The terminology is motivated by
analogous constructions above two dimensions in which such corners, which represent junc-
tions between two different boundary conditions, cannot be straightened out conformally.
See [36] for a systematic study of such junctions in certain four-dimensional supersym-
metric theories. Such four-dimensional constructions can be reduced to two dimensions by
compactification on a Riemann surface, and this is relevant to geometric Langlands.
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Figure 3. A strip with Bcc on the left, F at the top, and B
on the right, with appropriate “corners” α, β. With conven-
tions as in fig. 1(a), α represents an element of Hom(Bcc,F)
and β represents an element of Hom(F ,B). Their compo-
sition is an element of H′ = Hom(Bcc,B). In the picture,
this element propagates downward from the top of the strip,
where it is created.

state ψ ∈ Hom(B,Bcc) to provide a boundary condition at the bottom of
the strip, then the path integral on the strip will simply produce a number.
A picture similar to Fig. 3 but with F at the bottom produces a vector in
H, as already explained in Section 2.8.

For F , we take a brane that is supported on a fiber F of the cotangent
bundle T ∗W , namely the fiber that contains some point w ∈ W . Eventually
we will specialize to the case w ∈ N , but for the moment we allow arbitrary
w. We will denote local coordinates on W in a neighborhood of w as qi, and
write pi for conjugate functions on the fibers of the cotangent bundle.

Since F ∼= Cn has a unique spin structure, the CP bundle of F is sim-
ply a flat line bundle; since F is simply-connected, this flat line bundle is
trivial. F is invariant under scaling of the cotangent bundle (though not
pointwise), so F is likewise invariant under this scaling. Hence as in Sec-
tion 3.2, Hom(Bcc,F) can be evaluated in the � → 0 limit. The result, again

from Appendix B, is that Hom(Bcc,F) = H0(F,K
1/2
F ), where we use the

fact that for F ∼= Cn, the higher cohomology vanishes. Moreover, K
1/2
F is

trivial, so H0(F,K
1/2
F ) is equivalent to the space of holomorphic functions on

F . Since we do not allow wavefunctions that grow exponentially at infinity,

H0(F,K
1/2
F ) can be identified with the space of polynomial functions in the

coordinates pi that parametrize F . We want to pick20 α ∈ H0(F,K
1/2
F ) to be

everywhere nonzero, meaning that it provides a trivialization of the trivial

line bundle K
1/2
F . Such an α is uniquely determined once it is fixed at a par-

ticular point, which we take to be the unique point w ∈ F ∩W . We choose21

20We will not distinguish in the notation between α ∈ H0(F,K
1/2
F ) and the corre-

sponding element of Hom(Bcc,F), and similarly later for β.
21 The following description does not determine the sign of α. For the possible sig-

nificance of this sign, see footnote 22.
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α|w = (dp1dp2 · · · dpn)1/2, by which we mean a vector in K
1/2
F that maps to

dp1dp2 · · · dpn under the isomorphism (K
1/2
F )2 = KF . We abbreviate this as

α = (d	p)1/2.
We also need to define an element β ∈ Hom(F ,B). Since B and F are

both Lagrangian branes – supported respectively onM and F – this is a stan-
dard ingredient in the A-model. The leading approximation to Hom(F ,B)
is the cohomology of the intersection M ∩ F with values in the appropriate
tensor product of CP bundles. Under the projection T ∗W → W , M projects
to N and F projects to w, so the intersection M ∩F is empty unless w ∈ N .
So if w /∈ N , then Hom(F ,B) = 0. We therefore restrict to the case that
w ∈ N . In this case, M ∩ F is simply the fiber at w of the real cotangent
bundle T ∗N . Thus it is a copy of Rn; we call this FM . Since the CP bundle of
F is trivial, the relevant tensor product of CP bundles is just L, the CP bun-
dle of B. So the leading approximation to Hom(F ,B) is ⊕n

r=0H
r
dR(FM ,L),

where here the cohomology in question is the de Rham cohomology of FM

with values in the flat line bundle L|FM
. Since FM

∼= Rn, this cohomology
vanishes except for r = 0. In general, for Lagrangian A-branes B,F the co-
homology of the intersection is only an initial approximation to Hom(F ,B),
but in this case, since the cohomology vanishes except for one value of r,
this is the full answer: Hom(F ,B) = H0

dR(FM ,L). This cohomology group
consists of covariantly constant sections of L → FM . So for β we can take
any covariantly constant section of L over FM . It is convenient to identify a
covariantly constant section with its value at the point w ∈ FM , so we can
think of β as a vector in Lw, the fiber of L at w.

For any w ∈ N and for α, β chosen as above, this construction determines
a state ψ′(w;α, β) ∈ H′. To get an idea of the meaning of these states, let us
compute the inner product of ψ′(w;α, β) with some other state ψ′(w′;α′, β′),
defined similarly starting with a brane F ′ supported on the fiber F ′ of the
cotangent bundle at another point w′ ∈ N , and with α′, β′ defined as above.
To define this inner product, we use the Hilbert space structure of H′, as
introduced in Section 2.7. The main step in the definition is to apply to
one of the states the product Θτ = Θτ , where Θ is CPT and τ is the
antiholomorphic involution of Y that keeps M fixed, Let us, for example,
apply Θτ to ψ′(w′;α′, β′). Since τ leaves M fixed, it maps w′ ∈ N ⊂ M to
itself. Therefore, it maps the fiber of T ∗W at w′ to itself (not pointwise). The
upshot of this is that Θτ just maps the brane F ′ to itself, while reversing
the orientation of a string and complex conjugating α′ and β′. Taking this
into account, the Hilbert space inner product 〈ψ′(w′;α′, β′), ψ′(w;α, β)〉 can
be computed by a path integral on the rectangle that is sketched in Fig. 4.
The rectangle is constructed by taking the strip of Fig. 3 and a similar strip
with F replaced by F ′, and gluing them together after reflecting the second
one upside down to account for the action of Θτ . (When the second strip is
reflected upside down, the wavefunctions α′, β′ at the corners are complex
conjugated, to account for the action of Θτ .)
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Figure 4. The inner product between states produced by
F and by F ′ can be computed via a path integral on this
rectangle.

We claim that 〈ψ′(w′;α′, β′), ψ′(w;α, β)〉 = 0 if w �= w′. To show this,
we use the two-dimensional topological invariance of the A-model. We in-
troduced the rectangle by discussing a state in the Hilbert space H =
Hom(Bcc,B), propagating from the bottom to the top of the rectangle. But
we can equivalently think of the rectangle as describing the propagation of
a state from left to right. As sketched in Fig. 5(a), this second viewpoint
is natural if, using topological invariance, we stretch the rectangle from left
to right. The state that propagates from left to right in the figure is an
element of Hom(F ′,F). As F and F ′ are Lagrangian A-branes supported
respectively on F and F ′, the starting point in computing Hom(F ,F ′) is
the cohomology of the intersection F ∩ F ′. But if w �= w′, F ∩ F ′ = ∅. So
Hom(F ,F ′) = 0 and 〈ψ′(w′;α′, β′), ψ′(w;α, β)〉 = 0.

Sometimes we will meet a similar rectangle in a situation in which
Hom(F ,F ′) is not zero. So for future reference, let us note that the topo-
logical field theory path integral on such a rectangle can be evaluated by
letting the rectangle degenerate to a pair of triangles glued at a vertex, as
sketched in Fig. 5(b). The left triangle involves Bcc along with two branes of
type (B,A,A); we will call such a triangle a holomorphic triangle. The right
triangle involves three Lagrangian branes F ,F ′, and B; we will call such a
triangle a Lagrangian triangle.

Since 〈ψ′(w′;α′, β′), ψ′(w;α, β)〉 = 0 for w �= w′, it is natural to think
that ψ′(w;α, β) should be viewed as a delta function state supported at the
point w ∈ N . If so, we expect 〈ψ′(w′;α′, β′), ψ′(w;α, β)〉 to be proportional
to δ(w,w′). Unfortunately, we have not found a convenient way to explicitly
exhibit this delta function by studying the path integral on the rectangle.
Instead, we will probe in other ways the interpretation of ψ′(w;α, β) as a
delta function.

Let us recall that according to the usual recipe of geometric quantization,
the Hilbert space H obtained in quantizing M = T ∗N as a cotangent bundle
is a space of half-densities on N with values in the prequantum line bundle
L. That means that the dual space to H is a space of half-densities on N
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Figure 5. (a) One can view the rectangle of fig. (4) as de-
scribing the propagation from the bottom to the top of the
picture of an element of Hom(B,Bcc), or the propagation
from the left to the right of the picture of an element of
Hom(F ′,F). Elongating the figure from left to right suggests
the second interpretation. Because of two-dimensional topo-
logical invariance, the metric structure of the rectangle is
immaterial. (b) In a limit, the rectangle degenerates to two
triangles, glued at a vertex. Passing through the vertex is a
state in Hom(F ′,F). The rectangle can be evaluated by sum-
ming over states making up a basis of Hom(F ′,F), and for
each such basis state, evaluating a product of two triangles.

with values in the dual of L. In the brane construction, L = L−1, the inverse
of the CP bundle of B.

If f and g are half-densities on N valued respectively in L and L−1,
then there is a natural bilinear (not hermitian) pairing (f, g) =

∫
N fg. So

the dual of H, according to geometric quantization, should consist of half-
densities on N valued in L. Let us see whether we can interpret ψ′(w;α, β)
as a half-density on N supported at w and valued in Lw. To get started,
we note that ψ′(w;α, β) is proportional to β, which is valued in Lw. We
still have to understand how to interpret ψ′(w;α, β) as a half-density on N
supported at w.

The bundle of densities on N is a trivial real line bundle that we will
call KN . Assume for simplicity that N is orientable and pick an orienta-
tion. Then KN is isomorphic to the bundle of top degree differential forms
on N . If q1, . . . , qn are local coordinates on N , ordered in a way that is
compatible with the orientation of N , then KN can be trivialized locally by
dq1dq2 · · · dqn, which we abbreviate as d	q. Since KN is trivial, it has a trivial

square root which we will call K
1/2
N . It can be trivialized locally by a section

that we will call (d	q)1/2.
Now let us describe a delta function half-density supported at w. We

can choose the qi to vanish at the point w. Then δn(q1, q2, . . . , qn), or δ(	q)
for short, is a delta function supported at w. It is naturally understood as a
section of K−1

N , since it can be paired with a section of KN to get a number:
1 =

∫
d	q δ(	q). A delta function half-density supported at w is a multiple of

(d	q)1/2δ(	q). This is a section of K
1/2
N K−1

N = K
−1/2
N .
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On the other hand, ψ′(w;α, β) was proportional to α = (d	p)1/2. The
symplectic structure of T ∗N determines a natural measure d	pd	q on the
tangent space to T ∗N at w, and the square root of this is a natural half-

density (d	p)1/2(d	q)1/2 on T ∗N . Since (d	q)1/2 is valued in K
1/2
N , (d	p)1/2 can

be interpreted as a section of K
−1/2
N , just like (d	q)1/2δ(	q).

Thus ψ′(w;α, β) corresponds in a natural way to the following delta
function element of H′:

(3.7) ψ′(w;α, β) ∼ (d	q)1/2δ(	q) · β.

This assertion simply means that given the data needed to define ψ′, namely
the point w ∈ N and the wavefunctions (d	p)1/2 and β, the object on the right
hand side is canonically determined. Moreover the identification is consistent
with the Hilbert space inner products on the two sides, at least if we only
consider inner products between states supported at distinct points.

To further justify this proposal, we can proceed as follows. Let Ψ be any
state in H = Hom(B,Bcc) and define f(w,α, β) = (ψ′(w;α, β),Ψ), where
( , ) is the bilinear A-model pairing between H and H′. Now let

(3.8) Ψ̂(w) = f(w;α, β)
√

d	q β−1.

Ψ̂(w) is a half-density on N with values in L−1. Ψ̂(w) does not depend on
any choices that were made, because the explicit factors of

√
d	q and β−1 in

the definition of Ψ̂(w) undo the effects of the choices of
√
d	p and β that were

made in the definition of ψ′(w;α, β). So Ψ̂(w) is an element in the Hilbert
space Hgq that would be defined in geometric quantization, using the real
polarization of M that is given by the fact that it is a cotangent bundle.

Thus we have found a natural map H → Hgq, where H is the Hilbert
space defined in brane quantization of M using the complex manifold Y
and Hgq is the Hilbert space defined in geometric quantization of M as a
cotangent bundle T ∗N . We expect that this map is an isomorphism. To
prove this, one would have to show that any state Ψ that is orthogonal to
all the ψ′(w;α, β) actually vanishes. We expect this to be the case, but do
not have a direct argument. As already noted, one would also like a natural
way to directly exhibit the delta function in 〈ψ′(w;α, β), ψ′(w′;α′, β′)〉.

In this analysis, we assumed that N is orientable. If N is unorientable,
then the derivation is modified because d	p is a section not of K−1

N but of

K−1
N ⊗ ε, where ε = det T ∗N . Related to this, if N is unorientable, the CP

bundle of the brane B is not L−1, a unitary line bundle of curvature −ω,
but rather is L = S0 ⊗ L−1, where S0 is the canonical flat spinc structure
described in Section 2.2. We expect that these subtleties compensate for each
other and that even for unorientable N , H is the space of L2 half-densities
on N valued in L−1. But we will not attempt a careful argument.

For an elementary example of the construction that we have presented,
consider the case M = R2. An affine linear structure on M (a notion of
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what are linear functions on M , as explained in Section 2.1) gives the infor-
mation needed to complexify M to Y = C2: the real linear functions on M
analytically continue to holomorphic linear functions on Y . For geometric
quantization of M , pick conjugate linear functions p, q such that the sym-
plectic form ofM is dp dq.M can be viewed as T ∗R, where R is parametrized
by q, and similarly Y can be viewed as T ∗C, where C is parametrized by
q, now regarded as a complex variable. So the construction that we have
described indicates that geometric quantization of M with this real linear
polarization is equivalent to brane quantization by H = Hom(B,Bcc), where
B is a Lagrangian brane supported on M . Since brane quantization did
not depend on a choice of polarization, this shows that the Hilbert spaces
obtained by geometric quantization of M = R2 with any real linear polariza-
tion (compatible with a given affine linear structure) must be all naturally
isomorphic. The same logic applies for quantization of R2n, once it is given
an affine linear structure. We have recovered a celebrated fact about quan-
tum mechanics: different real linear polarizations compatible with an affine
linear structure give equivalent quantizations.22

3.4. Twisted cotangent bundles. So far, by considering the case
that Y = T ∗W with its standard holomorphic symplectic structure, we have
been able to compare brane quantization to geometric quantization, but only
in a rather special situation. Here we will generalize the construction to what
is sometimes called a twisted cotangent bundle.23 As we will see, the general-
ization to twisted cotangent bundles makes possible a much more interesting
comparison between brane quantization and geometric quantization.

The cotangent bundle Y = T ∗W has a holomorphic projection π :
T ∗W → W . The fibers are Lagrangian submanifolds that are copies of
Cn, with n = 1

2dimCY Moreover, W can be holomorphically embedded
in T ∗W as the zero-section. This embedding ι : W → T ∗W is a “section”
of π : T ∗W → W , meaning that π ◦ ι = 1 (equivalently, for any w ∈ W ,
ι(w) ∈ π−1(w)).

We will generalize this by considering a complex symplectic manifold Y
that has all these properties except the last. In other words, we assume that
there is a holomorphic projection π : Y → W for some complex manifold
W . The fibers are Lagrangian submanifolds and are isomorphic to Cn. But
the projection π : Y → W may not have a holomorphic section.

We will call such a structure a holomorphic polarization of Y , generically
denoted Π. The fibers of π : Y → W are the leaves of Π.

22 To be more precise, these different linear polarizations give quantum Hilbert spaces
that are naturally equivalent up to an overall sign. One way to see the appearance of this
sign was explained in footnote 3. It may be that the origin of the sign in the present
construction is in the sign of the wavefunction (d�p)1/2, which we did not fix in any natural
way. Another sign entered the above discussion when we used an orientation of N to

identify K
1/2
W |N with the space of half-densities on N .

23See [37] for much more detail on this subject in a more general context.
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We will construct such a structure for any holomorphic line bundle L →
W . Pick on L a unitary connection with curvature f of type (1, 1); in local

coordinates f = −i
∑

ij fijdq
idqj . Then Ω0 =

∑
i dpi ∧ dqi + f is a two-form

on Y0 = T ∗W that is closed but, of course, not of type (2, 0). We will explain
how to modify the complex structure on Y0 so that Ω becomes of type (2, 0)
and holomorphic.

An explicit way to describe L is to cover W with open sets Uα, in each
of which one picks a trivialization of L. With this trivialization, a section of
L over Uα is just a holomorphic function sα. On intersections Uα ∩ Uβ, the
local trivializations are glued together with holomorphic transition functions
evαβ ; a global section s of L is a family of local sections sα that satisfy

(3.9) sα = evαβsβ

in Uα ∩ Uβ. The hermitian inner product on L is then defined in Uα by

||sα||2 = ehαsαsα for some real-valued function hα. The requirement that
||sα||2 = ||sβ ||2 in Uα ∩ Uβ whenever (3.9) is true gives the relation between
hα and hβ:

(3.10) hα = hβ + 2Re vαβ.

The curvature f of L is defined in the region Uα by

(3.11) f = −i∂∂hα.

Eqn. (3.10) implies that this is independent of α in intersection regions, so
f is globally defined. Moreover differentiating (3.10) gives

(3.12) ∂ihα = ∂ihβ + ∂ivαβ.

The construction we will make works not just for line bundles but for
complex powers of line bundles, so we generalize to this case before pro-
ceeding. Let Ls, s = 1, . . . , k be holomorphic line bundles over W , with
holomorphic transition functions evs αβ and hermitian metrics defined by lo-
cal functions hs α, for s = 1, . . . , k. To generalize the statements in the last
paragraph to L = ⊗k

s=1Lcs
s , with some complex coefficients cs, we define the

curvature form f =
∑k

s=1 csfs, and set hα =
∑k

s=1 cshs α, vαβ =
∑

s csvs αβ.
The formulas of the last paragraph hold whether the cs are integers or not. In
particular, in each Uα, eqns. (3.11) and (3.12) hold. The only thing that goes
wrong if the cs are not integers is that in triple intersections, evαβ+vβγ+vγα

is a constant but not necessarily 1. That will not affect any of the following.
The closed two-form Ω =

∑
i dpidq

i+ f is, of course, not holomorphic or
even of type (2, 0) in the natural complex structure of Y0 = T ∗W . Shortly
we will modify the complex structure of Y0 to make Ω holomorphic. We will
call this manifold with its modified complex structure a twisted cotangent
bundle, and denote it as Y . Y will still admit a holomorphic projection
π : Y → W , with fibers Cn.

Before explaining this construction, let us note that as
∑

i dpidq
i =

d(
∑

i pidq
i) is exact, the cohomology class of Ω =

∑
i dpidq

i + f is that of
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f. We can express this as a statement about first Chern classes, since if [f]
is the cohomology class of a form f, then [f]/2π represents the first Chern
class c1(L). So

(3.13) [Ω] = 2πc1(L) = 2π
∑
s

vsc1(Ls).

Even if the holomorphic projection π : Y → W does not have a holomorphic
section, it always has a smooth section. Moreover, Y is contractible onto this
section, which is a copy of W . So we can view eqn. (3.13) as a statement in
the cohomology of W .

For example, if W is compact, then according to Hodge theory, c1(L)
is of type (1, 1), so eqn. (3.13) implies that [Ω] is of type (1, 1). Moreover,
c1(Ls) is real for all s, so if the coefficients vs are real then [Ω] is real.
These are convenient conditions for providing interesting examples of quan-
tization. For quantization, we will want to consider a brane supported on a
nonholomorphic section M of the fibration π : Y → W . We will want M to
be Lagrangian for ImΩ and symplectic for ReΩ. The condition [ImΩ] = 0
is necessary in order for such an M to exist. The fact that [ReΩ] can be
nonzero is not necessary to give examples, but many of the most interesting
examples have [ReΩ] �= 0.

To define the new complex structure, we just say that in T ∗Uα, the
functions

(3.14) pα i = pi + i∂ihα(q, q)

are holomorphic coordinates on the fibers, and we define a new holomorphic
structure in which the functions pα i and qj are holomorphic, rather than pi
and qj . This definition has been arranged so that in T ∗Uα,

(3.15) Ω =
∑
i

dpα idq
i,

so Ω is of type (2, 0) and holomorphic in T ∗Uα. Of course, Ω is globally
defined and this formula holds for all α. Moreover, in intersection regions
Uα ∩ Uβ , we have, by virtue of eqn. (3.12),

(3.16) pα i = pβ i + i∂ivαβ,

where vαβ is holomorphic. So although pα i �= pβ i, the complex structure in
which pα i and qj are holomorphic on T ∗(Uα∩Uβ) is the same as the complex
structure in which pβ i and qj are holomorphic on that open set. Hence the
complex structures that we have defined on the various open sets T ∗Uα agree
on all intersections, and fit together to define a new complex structure on
T ∗W . In this way, we define a new complex manifold Y , equivalent as a
smooth manifold to the original cotangent bundle. On Y , Ω is holomorphic
and of type (2, 0), so Y is a complex symplectic manifold.

Eqn. (3.16) has the same general form as eqn. (3.5), with w = v/�, so
our previous discussion applies. Hence if we could assume that the trans-
formation law of the quantum operators p̂, q̂ is the same as that of the
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classical functions p, q, we would conclude from the discussion of Section 3.1
that Hom(Bcc,Bcc) consists of holomorphic differential operators acting on
L = ⊗k

s=1Lλs
s , with λs = cs/�. The geometry of Y is controlled by the pa-

rameters cs, so if we keep the geometry of Y fixed while varying �, than the
exponents λs are of order 1/�.

This is not the right answer, because it ignores the quantum effect that
was analyzed in Sections 3.1 and 3.2. Even if vαβ = 0 in the classical formula
(3.16), as is the case if Y = T ∗W with its usual symplectic structure, there
is a quantum contribution, such that Hom(Bcc,Bcc) consists of holomorphic

differential operators acting on sections of K
1/2
W , not on functions.

It is natural to guess that the classical and quantum effects in the trans-
formation law of p̂ should be added. In that case, Hom(Bcc,Bcc) will consist

of holomorphic differential operators acting on the tensor product K
1/2
W ⊗L.

To justify this answer, it suffices to observe that the problem has a scaling
law under which q is invariant, while p, �, and v all scale with degree 1. So
in a quantization that preserves the scaling symmetry, the transformation
of p̂ can only be a linear function of � and φ, and hence it must be correct
to add the classical and quantum effects in the transformation law of p̂ and

hence to take the tensor product of K
1/2
W and L.

We conclude by discussing how to classify the Y ’s that can be con-
structed this way, for a given W . Suppose that W is compact. Then, accord-
ing to Hodge theory, any holomorphic line bundle R → W such that c1(R)
vanishes with complex coefficients admits a flat connection. For such R, the
holomorphic differential operators that act on L are the same as those that
act on R⊗L. Therefore, if W is compact, the complex symplectic manifolds
Y that we can make by this construction are completely classified by c1(L)
with complex coefficients, or in other words (according to eqn. (3.13)) by
the cohomology class [Ω]. For noncompact W , in general this is not the case;
there can be topologically trivial holomorphic line bundles R → W that do
not admit a flat connection. Thus the noncompact case is more complicated
in general.

3.5. An example. In this section, we will work out in detail a simple
example of a twisted cotangent bundle. We consider deformation quantiza-
tion only, deferring quantization to Section 3.6.

The example we consider is the complex symplectic manifold Y that was
already introduced in eqn. (2.19). It is described by the equation24

(3.17) x2 + y2 + z2 = j2

with the holomorphic symplectic form

(3.18) Ω =
dx dy

z
.

24Later we will set j = �j and eventually we set � = 1, replacing j with j.
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The equation and the symplectic form are invariant under an obvious
action of G = SO(3,C) = PGL(2,C) on the triple x, y, z. Indeed, Y is a
coadjoint orbit of G. It can be regarded as the subspace of the Lie algebra g

of G consisting of elements T with determinant −j2. Any such element can
be written

(3.19) T =

(
z x+ iy

x− iy −z

)
for some x, y, z satisfying eqn. (3.17). The eigenvalues of any such T are j
and −j, so the eigenvalue problems

(3.20) T

(
q
1

)
= −j

(
q
1

)
, T

(
q′

1

)
= j

(
q′

1

)
have unique solutions with q, q′ ∈ C ∪∞:

q = −x+ iy

j+ z
= − j− z

x− iy

q′ =
x+ iy

j− z
=

j+ z

x− iy
.(3.21)

Clearly q and q′ are exchanged by j ↔ −j. Either q or q′ (plus a point at
infinity) parametrizes a copy of W = CP1, which is simply the projectiviza-
tion of the two-dimensional vector space on which T acts. Clearly, G will act
on W by the familiar fractional linear transformations q → (aq+b)/(cq+d),
q′ → (aq′ + b)/(cq′ + d), with ad− bc = 1.

There is no point in Y with q = q′, since the two eigenvectors of T are
always distinct. That is the only constraint; any distinct pair q, q′ ∈ CP1

determines a unique T , which one can find by solving eqns. (3.21) for x, y, z.
The complement of a point in CP1 is a copy of C. So the possible values of
q′ for given q parametrize a copy of C; likewise the possible values of q for
given q′ parametrize a copy of C. So Y has two holomorphic polarizations,
one with leaves labeled by the choice of q (and parametrized by q′ with the
constraint q′ �= q) and one with leaves labeled by q′ (and parametrized by
q with the constraint q �= q′). Let us denote the holomorphic polarizations
parametrized by q and q′ as Π and Π ′, respectively.

A short calculation gives a formula for the symplectic form in terms of25

q and q′:

(3.22) Ω = 2ij
dqdq′

(q − q′)2
.

Perhaps surprisingly, the variables conjugate to q and q′ can be chosen to
be equal, since if

(3.23) p = p′ = − 2ij

q − q′
,

25The factor 1/(q − q′)2 in the following formula does not really represent a pole in
Ω, since q and q′ are always distinct, as noted earlier.
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then

(3.24) Ω = dpdq = dp′dq′.

To describe the situation globally, we cover CP1 with two open sets U
and Ũ , where U is the complement of the point at infinity in CP1 and Ũ
is the complement of the origin. Good variables in U are q, q′, and good

variables in Ũ can be obtained by a tractional linear transformation: q̃ =
−1/q, q̃′ = −1/q′. The conjugate variables are

(3.25) p̃ = p̃′ = − 2ij

q̃ − q̃′
.

From these formulas, it follows that

(3.26) p = q̃2p̃+ 2ijq̃ = q̃2p̃− 2ij

q
.

To compare this to the general formula (3.4), we note that in this example,
W = CP1 has complex dimension 1, so indices i, k in eqn. (3.4) can be
omitted. We have covered W with only two open sets, so q, p correspond
to qα, pα in (3.4) and q̃, p̃ correspond to qβ, pβ . The function q̃2 plays the
role of the matrix M , and finally to put (3.26) in the form of (3.4), we are
supposed to write −2ij/q as i�∂qu for some holomorphic function u. So26

u = −2j log q, where we have set j = �j. Then we try to interpret eu as the
transition function of a line bundle L. In the present case, eu = q2j . This is
single-valued if and only if 2j ∈ Z, so that is the only case in which L is an
honest line bundle; for other values of j, L is really the complex power of a
line bundle. The line bundle L that we get when 2j ∈ Z is a familiar one.

The section that is 1 in region Ũ (in the trivialization that is implicit in the
above formula for p̃) is eu = q2j in region U (in the trivialization implicit in
the formula for p). This section has a zero of order 2j at the origin, and no
poles, so L is what is usually called O(2j). We will use the notation O(2j)
whether 2j ∈ Z or not; the idea is always that differential operators acting
on O(2j) are well-defined – we will write explicit formulas – whether or not
O(2j) exists as a line bundle.

Now let us discuss the canonical coisotropic A-brane Bcc on the space Y .
According to the general discussion, Hom(Bcc,Bcc) is the sheaf of holomor-

phic differential operators acting on K
1/2
W ⊗L. For W = CP1, KW is isomor-

phic to O(−2) and K
1/2
W is isomorphic to O(−1). So K

1/2
W ⊗L = O(2j − 1).

Hence, we expect Hom(Bcc,Bcc) to be the algebra of holomorphic differen-
tial operators on CP1 acting on O(2j − 1). At some stages in the derivation
that led to this statement, we sheafified Hom(Bcc,Bcc) (though this step was

26The function u is not single-valued; that is the price we pay for covering W with
open sets whose intersection is not simply-connected. The procedure of Section 3.4 would
tell us to cover W = CP1 with a larger number of open sets with contractible intersections.
Then we would define transition functions that are always single-valued but do not satisfy
SαβSβγSγα = 1 in triple overlaps unless 2j ∈ Z. A derivation along those lines would be
longer.
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arguably not entirely natural from a physical point of view), but in the final
statement, no sheafification is necessary. Hom(Bcc,Bcc) is simply the algebra
of globally defined holomorphic differential operators acting on O(2j − 1).

We note, however, that we started with two equally good holomorphic
polarizations of Y , differing by j → −j. If we had used the second one in
the last part of the analysis, we would have identified Hom(Bcc,Bcc) with
the algebra of globally defined holomorphic differential operators acting on
O(−2j−1). Therefore, we expect that these two algebras will be isomorphic.
This is indeed true, as we will see shortly.

The algebra of global differential operators on CP1 acting on O(2j − 1)
is generated by27

t− = − d

dq

t3 = q
d

dq
− j +

1

2

t+ = q2
d

dq
− (2j − 1)q.(3.27)

These operators satisfy the familiar commutation relations of the sl(2) Lie
algebra g:

(3.28) [t3, t±] = ±t±, [t+, t−] = 2t3.

To verify that these operators are globally holomorphic, we check the be-
havior at q = ∞ by transforming from q to q̃ = −1/q, also conjugating by
the transition function of O(2j − 1). For example, t+ = q2 d

dq − (2j − 1)q

maps to q̃2j−1
(

d
dq̃ +

2j−1
q̃

)
q̃−(2j−1) = d

dq̃ , which is holomorphic at q̃ = 0. A

polar term has canceled because of the precise coefficient in the term 2j−1
q̃ .

Altogether

t− = −q̃2
d

dq̃
+ (2j − 1)q̃

t3 = −q̃
d

dq̃
+ j − 1

2

t+ =
d

dq̃
.(3.29)

The operators t+, t− and t3 are algebraically independent, except for a single
relation which equates the quadratic Casimir operator of g to a c-number:

(3.30)
1

2
(t+t− + t−t+) + t23 = j2 − 1

4
.

27We set � = 1 in the rest of this discussion. The formulas given in eqn. (3.27) are
uniquely determined up to the possibility of taking linear combinations of these operators
and adding constants to them. We have made a convenient choice.
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This has the expected symmetry under j → −j. The shift by K
1/2
W was

crucial in getting this symmetry.
The operators t+, t−, and t3 are quantum versions of the generators

x, y, z of the algebra of holomorphic functions on Y . For example, the for-
mula p = −2ij/(q − q′) = i(x − iy), together with p = −id/dq, shows that
t− = −d/dq corresponds to x − iy. More generally, working through the
above relations between x, y, z and p, q, we find

x− iy → t−

x+ iy → t+

z → t3.(3.31)

The Casimir relation (3.30) is thus a quantum-deformed version of the orig-
inal classical relation x2 + y2 + z2 = j2.

In this discussion, we have considered only deformation quantization. In
Section 3.6, we will add a Lagrangian A-brane and analyze quantization.
In doing so, an antiholomorphic involution of Y is important. If j2 is real,
then Y has the obvious antiholomorphic involution τ : (x, y, z) → (x, y, z).
A look back to the starting point in eqn. (3.21) shows that τ exchanges
the two holomorphic polarizations Π and Π ′ (to be precise, τ maps the
leaf of Π with a given value of q to the leaf of Π ′ with q′ = −1/q). The
same complex manifold Y , also for j2 real, has another antiholomorphic
involution τ̃ : (x, y, z) → (x,−y,−z), also mapping Ω to Ω. To write more
transparent formulas, it is convenient to map τ̃ back to τ by redefining
(x, y, z) → (x, iy, iz). The equation defining Y becomes

(3.32) x2 − y2 − z2 = j2.

The symplectic form is still Ω = dx dy/z. We consider this manifold Y ′ with
the original antiholomorphic involution τ that complex conjugates x, y, z.
Of course, purely as a complex manifold, Y ′ is equivalent to Y , so it still
has two holomorphic polarizations. But there is an interesting difference.
For j2 > 0, the two holomorphic polarizations are again exchanged by τ .
But if j2 = −s2 is negative, the two holomorphic polarizations are each
τ -invariant. The equation x2 − y2 − z2 = −s2 is equivalent to the statement
that the matrix

(3.33) T ′ =

(
z x− y

−x− y −z

)

has eigenvalues ±s. Solving the eigenvalue problems

(3.34) T ′
(
q
1

)
= −s

(
q
1

)
, T ′

(
q′

1

)
= s

(
q′

1

)
,
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we get the formulas

q = −x− y

z + s
= − z − s

x+ y

q′ = −x− y

z − s
= − z + s

x+ y
(3.35)

which define the two holomorphic polarizations Π and Π ′. As these formulas
are completely real, Π and Π ′ are each τ -invariant. To be more precise, τ
acts on Π by q → q, leaving fixed the leaves with real q and exchanging
others in pairs, and acts similarly on Π ′.

3.6. Application to quantization. Now we will discuss how to ap-
ply holomorphic polarizations to quantization. We consider the situation
introduced in Section 2.4: Y is a complex symplectic manifold with complex
structure I and holomorphic symplectic form Ω, along with an antiholomor-
phic involution τ such that τ∗(Ω) = Ω. M , a component of the fixed point
set of τ , is symplectic with respect to ωJ = ReΩ (as well as being inevitably
Lagrangian for ωK = ImΩ). We assume that Y has a holomorphic polariza-
tion Π, whose leaves are fibers of a holomorphic map π : Y → W , for some
W . We want to understand the implications of the existence of Π for brane
quantization of M .

Since Y is foliated by the leaves of Π, every point p ∈ M is contained in
a unique leaf Fp. Fp is Lagrangian for Ω and hence for ωJ . So ωJ vanishes
when restricted to Fp ∩M . Therefore Fp ∩M is at most middle-dimensional
in M . If it is middle-dimensional, it is a Lagrangian submanifold of M .
Suppose that this is the case for every leaf of Π that contains a point of M
and moreover suppose that all these Lagrangian submanifolds are copies of
Rn. Then the Lagrangian submanifolds of M that are of the form Fp ∩M
define a real polarization P of M . In this situation, we will show that brane
quantization of M is equivalent to geometric quantization using the real
polarization P .

Let N be the space of leaves of P . It is the subspace of W that param-
etrizes leaves of Π that intersect M . A point in N corresponds to a leaf F of
Π such that F ∩M is of real dimension n, so F ∩M is middle-dimensional
in F . F ∩M is totally real (since M is), so F is a complexification of F ∩M .
Since F ∩ M is τ -invariant, and F is a complexification of F ∩ M , F is
mapped to itself by τ (though not pointwise).

In turn, by dimension counting, one can see thatN is middle-dimensional
in W ; the real dimension of N is n = 1

2dimRM = 1
2dimC Y , and this is the

same as the complex dimension of W . N parametrizes a middle-dimensional
totally real subspace of W , so W can be viewed as a complexification of N .
τ acts as an antiholomorphic symmetry of W , leaving N fixed. Points in
W but not in N correspond to leaves of Π that do not intersect M ; at
least in a neighborhood of N , such leaves are exchanged pairwise by τ . In
particular the holomorphic polarization Π is τ -invariant, though not every
leaf is mapped to itself by τ .
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For an elementary example of this situation, let Y = C2, parametrized
by complex variables p, q with Ω = dp dq. Let τ act by (p, q) → (p, q), with
fixed point set M . Expand p, q in real and imaginary parts: p = p1 + ip2,
q = q1+ iq2. M is a copy of R2 parametrized by p1, q1. Y has a holomorphic
polarization Π whose leaves are of the form q = b, where b is a complex
parameter that specifies the choice of leaf. Thus the space W of leaves is a
copy of C. τ maps the leaf with q = b to the leaf defined by q = b or q = b; the
τ -invariant leaves are the ones with b real. So τ acts on W ∼= C by complex
conjugation, leaving fixed the real axis N . A point in N corresponds to a
leaf of Π that intersects M in a copy of R; these copies of R are the leaves
of a real polarization P of M .

For a somewhat more sophisticated example, consider the complex sym-
plectic manifold Y ′ of eqn. (3.32), with j2 < 0 so that s is real.M is described
by the same equation with x, y, z real. Eqn. (3.35) describes two different
holomorphic polarizations Π and Π ′ of Y ′, one parametrized by q and one
by q′. τ maps Π to itself and likewise maps Π ′ to itself. The leaves of Π or
Π ′ that have a nonempty intersection with M are those with q or q′ real.
Those leaves provide two real polarizations P and P ′ of M . The two pro-
jections π, π′ : Y → W ∼= CP1 associated to Π and Π ′ restrict along M to
projections π, π′ : M → N = RP1, where N is parametrized by q or q′, plus
a point at infinity,

Now we consider a quite different possibility. If F is a leaf of a holo-
morphic polarization Π, then F and M are both middle-dimensional in Y ,
so it is natural for F ∩ M to consist of just a point (it is also natural for
the intersection to consist of several points, but we will not consider that
case). Suppose that F ∩M is at most a single point for every leaf of Π. If
so, the projection π : Y → W restricts to an isomorphism of M onto its
image π(M) (which may be only part of W , as we will see in an example).
Since W is a complex manifold, this gives M a complex structure, which we
will call28 J . In complex structure J , a holomorphic function on M is the
pullback π∗(f) of a holomorphic function on W . Note that if V is a vector
field on Y (not necessarily holomorphic) that is tangent to the leaves of Π,
then V projects to zero on W and therefore the derivative in the V direction
of a function pulled back from W vanishes:

(3.36) LV · π∗(f) = 0.

In this situation, J is a complex polarization of M in the sense of geometric
quantization, since ωJ |M = ReΩ|M is of type (1, 1) with respect to J . To see
this, let TpM be the tangent space to M at a point p ∈ M , and let Tp,CM =
Tp,M ⊗R C be its complexification. Consider the decomposition Tp,CM =

T 1,0
p,CM ⊕ T 0,1

p,CM , where the two subspaces are respectively the spaces of

holomorphic and antiholomorphic complexified tangent directions to M (in

28The notation is motivated by the fact that if the complex structure of Y , which we
call I, extends to a hyper-Kahler structure with additional complex structures J,K, then
J is sometimes the restriction of J to M .
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complex structure J ). As a vector space, T 0,1
p,CM can be naturally identified

with TpFp, the tangent space to p in the leaf Fp of Π that contains p (this
follows from eqn. (3.36), which says that holomorphic functions on M are
annihilated by derivatives in the TpFp directions). Since Fp is Lagrangian for
Ω, this tells us that the (0, 2) part of Ω|M vanishes in complex structure J .
Together with the fact that M is Lagrangian for ImΩ, this implies that the
(2, 0) and (0, 2) parts of ReΩ|M both vanish, showing that ReΩ|M is of type
(1, 1).

The antiholomorphic involution τ of Y will map Π to a holomorphic
polarization Π ′ = τ(Π). τ maps a holomorphically varying family of leaves
of Π to an antiholomorphically varying family of leaves of Π ′, so it reverses
the induced complex structure of M . In particular, Π and Π ′ are always
different. If ω is positive-definite in the complex structure J induced by Π,
meaning that J determines a complex Kahler polarization in the sense of
geometric quantization, then it is negative-definite in the complex structure
−J induced by Π ′.

In this situation, we will argue in Section 3.8 that brane quantization
of M , at least as a vector space, disregarding the Hilbert space structure,
agrees with geometric quantization using the complex polarization of M
that is induced from Π. The Hilbert space structures are actually different
generically, as will be clear from the example studied in Section 3.10.

But first we consider some illustrative examples of complex polarizations
ofM induced by holomorphic polarizations of Y . For an elementary example,
again set Y = C2, with p, q,Ω, τ , andM as before. But now define a leaf ofΠ
by the equation q+ip = b, where b again is a constant that parametrizes the
choice of leaf. Such a leaf intersects M in the unique point q1+ip1 = b. So in
this case, M acquires a complex structure in which the function z = q1+ip1
is holomorphic. A vector field tangent to the leaf q + ip = b is ∂

∂q + i ∂
∂p ,

which along M is interpreted as 2 ∂
∂z . The τ -conjugate of Π is a polarization

Π ′ whose leaves are defined by an equation q − ip = b, again with b as a
parameter. The induced complex structure is the one in which z = q1 − ip1
is holomorphic.

For a somewhat more subtle example, consider the complex manifold
x2 + y2 + z2 = j2, studied in Section 3.5, with j2 > 0. M is the submani-
fold with x, y, z real. For real x, y, z, the matrix T defined in eqn. (3.19) is
hermitian. A 2×2 hermitian matrix with eigenvalues j,−j is uniquely deter-
mined if one of the eigenvectors is specified, which we may do by specifying
q or q′. Thus any leaf of Π or Π ′ intersects M in a unique point. The SO(3)
symmetry of the construction ensures that the induced complex structure
on M is, up to sign, the natural complex structure on M ∼= S2 ∼= CP1.
But in fact, the signs are opposite. One way to see this is to observe that
the variety Y admits a holomorphic involution ζ : (x, y, z) → (−x,−y,−z).
This involution (which changes the sign of the holomorphic symplectic form
Ω = dx dy/z) exchanges Π and Π ′, since it reverses the sign of the matrix
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T of eqn. (3.19), thus exchanging the two eigenvalues. On the other hand,
on the two-sphere M defined by x, y, z real, the map (x, y, z) → −(x, y, z)
reverses the orientation and acts antiholomorphically. Explicitly, Π induces
on M a complex structure in which M is parametrized holomorphically by
q, and Π ′ induces a complex structure in which M is parametrized holomor-
phically by q′. It follows from eqn. (3.21) that if j, x, y, and z are all real,
then q′ is related to q by

(3.37) q′ = −1

q
.

Thus the two complex structures induced by Π and Π ′ are opposite; a
holomorphic function in one is antiholomorphic in the other.

For a somewhat similar example with an interesting twist, consider again
the example Y ′ of eqn. (3.32), but now with j2 > 0 so that s is imaginary. The
fixed point locus of τ is again parametrized by real x, y, z. The real algebraic
manifold x2 − y2 − z2 = j2 with j2 > 0 has two components, with x > 0 or
x < 0. We call these respectively M and M ′. Each of M and M ′ is a copy of
SO(2, 1)/SO(2) = SL(2,R)/U(1), which can also be realized as the complex
upper half-plane H. Leaves of Π or Π ′ with real q or q′ do not intersect

either M or M ′ at all. (This follows from eqn. (3.34); since s = ±
√
−j2 is

imaginary for j2 > 0, this equation clearly has no solutions for real values
of x, y, z and q or q′.) The projections π and π′ from Y to W ∼= CP1 map
M to an upper or lower half plane in W and M ′ to the opposite half-plane.
The SO(2, 1) symmetry ensures that the induced complex structures on M
and M ′ are (again up to a choice of orientation) equivalent to the standard
complex structure of H.

Holomorphic polarizations of the two types that we have discussed are
useful for quantization, as we will see. Most likely some other types are
similarly useful. For example, in geometric quantization it is possible to
have a polarization intermediate between real and complex polarizations –
roughly, a polarization that is real in some directions and complex in others.
It is likely that conditions can be placed on a holomorphic polarization of Y
so that brane quantization of M can be related to geometric quantization
with a polarization of such intermediate type.

3.7. Comparing to geometric quantization with a real polar-
ization. In this section and the next one, we generalize the comparison of
brane quantization and geometric quantization that was made in Section 3.3.
Here we consider to general case that Y admits a holomorphic polarization
Π that restricts to a real polarization P of M ; in Section 3.8, we consider
the case that Π restricts to a complex polarization.

The resulting story is very similar to the discussion in Section 3.1, where
we assumed that M = T ∗N . However, the structure is more general than
we assumed previously. The polarization Π determines on M a projection
π : M → N , whose fibers are the leaves of P . Topologically, it is possible
to pick an embedding ι : N → M satisfying π ◦ ι = 1. Once this is done,
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M can be identified as T ∗N . However, in contrast to Section 3.1, there is
no natural embedding and we cannot assume that the symplectic form ωJ

is the standard
∑

i dpidq
i. All we can say is the following: since the fibers

of π are Lagrangian, ωJ has no terms dpidpj ; since ωJ |M is assumed to be
everywhere nondegenerate, fiber coordinates pi can be picked so that the
dpdq terms are the usual

∑
i dpidq

i; but we learn nothing about the dqidqj

terms except that they do not depend on p (since dωJ = 0), and are closed.
Thus the general form of ωJ is ωJ =

∑
i dpidq

i + π∗(α), where α is a closed
two-form on N .

This is the general form of a symplectic structure that is assumed in
geometric quantization in order to quantize a symplectic manifold M using
a real polarization. So one can hope to compare brane quantization to geo-
metric quantization in this greater generality. The analysis in Section 3.3
assumed α = 0.

In geometric quantization, the quantum Hilbert space Hgq is defined as
follows. Consider a point w ∈ N . The prequantum line bundle L → M is flat
when restricted to π−1(w) ∼= Rn. So one can define a line bundle LN → N
whose fiber at the point w is the space of covariantly constant sections of
L over π−1(w). This line bundle does not have a natural connection, but it
does have a natural hermitian metric, inherited from that of L. The Hilbert
space Hgq is defined as the space of L2 half-densities on N valued in LN

with the obvious inner product

(3.38) 〈χ, ψ〉 =
∫
N
χψ.

To try to recover such a description from brane quantization, we proceed
just as in Section 3.1 and define a class of candidate delta function states in
H′ = Hom(Bcc,F). As before, we let F be the leaf of Π that contains a given
point w ∈ N , and we let F be a brane of type (B,A,A) supported on F
with trivial CP bundle. And we pick an element in Hom(Bcc,F) associated to

α = (d	p)1/2. We also need a corner in Hom(F ,B). As before, this is the space
of covariantly constant sections of L = L−1 over FM = F ∩M = π−1(w). Let
β be such a section. It is naturally valued in the dual of the fiber of LN at
w, so β−1 is valued in the fiber of LN at w. With this data, the construction
of Fig. 3 gives a vector ψ′(w;α, β) ∈ H′. Inner products between two such
states vanish for w �= w′ by the same argument as before, suggesting that
such states should be regarded as delta function states. Let Ψ be any state
in H. The inner product f(w;α, β) = (ψ′(w;α, β),Ψ) is naturally defined,
and as in eqn. (3.8), we can define a half-density on N valued in LN by

(3.39) Ψ̂(w) = f(w;α, β)
√
dq β−1.

This gives a natural map from Ψ ∈ H = Hom(B,Bcc) to Ψ̂ ∈ Hgq. We expect
this map to be an isomorphism.

For an example of a twisted cotangent bundle quantized in this way,
one can take M to be the real algebraic variety x2 − y2 − z2 = j2, which we
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quantize by complexifying it to the complex manifold Y ′ defined by the same
equation with complex x, y, z (eqn. (3.32)). M has two real polarizations
P and P ′ defined in eqn. (3.35) with q, q′ real. These two polarizations
are induced by the two holomorphic polarizations Π and Π ′ of Y ′ that
are defined by the same formulas, with complex variables. So geometric
quantization of M with either of the real polarizations P and P ′ will give
an equivalent Hilbert space.

To make the resulting two quantizations of M explicit, we have to de-
scribe the line bundle LN over N ∼= RP1. Since M ∼= T ∗RP1 ∼= T ∗S1 is not
simply-connected, the prequantum line bundle L → M , which is defined to
be a unitary line bundle with a connection with curvature ω, is not unique;
we could modify it by multiplying the holonomy around S1 by an arbitrary
element of U(1). The choice we make below is the unique choice such that
the action of PGL(2,R) on M lifts to an action of the same group (rather
than a cover of it) on L.

We cover N with two open sets U and Ũ , with U parametrized by a real

variable q and Ũ by q̃ = −1/q. The symplectic form is ω = dpdq = dp̃dq̃.
The relation between p and p̃ was found in eqn. (3.26); with j = is, this
relation is

(3.40) p = q̃2p̃+
2s

q
.

We describe a prequantum line bundle as follows. In region U , L has a
trivialization such that the connection form becomes the one-form A =
pdq; in region Ũ , there is a trivialization that leads to the one-form Ã =

p̃dq̃. These obey dA = dÃ = ω, as expected for a connection on L. The

corresponding covariant differentials are dA = d+ iA, d
˜A
= d+ iÃ. The two

connection forms differ by a gauge transformation:

(3.41) A = Ã+ 2s
dq

q
= Ã+ 2s d log q,

so dA = q2isd
˜A
q−2is.

Consider a section of L that in region U is represented, relative to the

trivialization used in writing A = pdq, by a function ψ(q), and in region Ũ
is represented, relative to the trivialization used in writing Ã = p̃dq̃, by a

function ψ̃(q̃). Eqn. (3.41) suggests that in the region U ∩ Ũ these should

be related by ψ(q) = q−2isψ̃(q̃). But we have to be careful because U ∩ Ũ
is not connected; it consists of two components, one with q > 0 and one

with q < 0. We could generalize the gluing law to ψ(q) = eiαq−2isψ̃(q̃) with
a real constant α. If we use the same constant for positive and negative
q, this will not matter, but if we use different constants, this does matter;
the possibility of doing this corresponds to the existence of a one-parameter
family of choices of L. We fix the choice of L by specifying that ψ(q) =
|q|−2isψ(q̃) for both positive and negative q.
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For a convenient way to describe this, first note that the measure dq
satisfies

(3.42)
dq

q2
= dq̃.

Since measures (as opposed to one-forms) are positive, it makes sense to
raise this formula to any complex power. We find that the gluing law for ψ

and ψ̃ is equivalent to

(3.43) ψ(q)(dq)is = ψ̃(q̃)(dq̃)is.

So we conclude that a section of L → N ∼= RP1 can be understood as a
density on RP1 of weight is.

The Hilbert space H = Hom(B,Bcc) consists of half-densities on RP1

with values in L, so it is the space of 1
2 + is densities on RP1. The Hilbert

space inner product in the quantization of a twisted cotangent bundle was
given in eqn. (3.38). As always in brane quantization, the algebra A =
Hom(Bcc,Bcc) acts on H in a natural way. In the present example, this
algebra is generated by the operators t−, t+, and t3 of eqn. (3.29). They
are all antihermitian as operators on H. On H, these operators generate a
representation of PSL(2,R) for any complex s. For real s, this representation
is manifestly unitary with the Hilbert space structure (3.38).

We could have started with the other holomorphic polarization Π ′ of Y .
This would have led to the same formulas with a substitution s → −s. So
brane quantization predicts an isomorphism between the unitary represen-
tations of PSL(2,R) associated to densities of weight 1

2 + is and 1
2 − is. This

isomorphism is well-known and is usually proved via explicit elementary
formulas, or simply by noting that the two representations have no highest
or lowest weight vector and have the same values of the quadratic Casimir
operator.

For a more general choice of L, we would get 1
2 + is densities on RP1

with values in a flat line bundle that has a monodromy eiε in going around
RP1 ∼= S1, with ε ∈ R. This monodromy does not matter topologically; the
various line bundles LN → N are isomorphic as unitary line bundles. But the
quantum theories do depend nontrivially on ε. The same algebra A acts as
before, regardless of ε, by the same formulas (3.29). But the representation
generated by these operators depends on ε. For eiε = −1, one gets, for real
s, a family of unitary representations of SL(2,R); for other values ε, one gets
a family of representations of a different cover of PSL(2,R), generically the
universal cover. In all cases the equivalence s ↔ −s remains.

3.8. Comparing to geometric quantization with a complex po-
larization. Now we consider brane quantization of M in the case that Y
admits a holomorphic polarization Π that induces a complex structure J
on M . As discussed in Section 3.6, holomorphic polarizations come in pairs
Π, Π ′ that induce opposite complex structures J , −J on M . These cannot
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both be Kahler, so we briefly discuss geometric quantization with complex
polarizations that are not necessarily Kahler.

If M has prequantum line bundle L and a polarization defined by a
complex structure J , then in general what geometric quantization associates

to this data is the cohomology Hr
J (M,K

1/2
M ⊗ L) for 0 ≤ r ≤ n = dimCM .

The notation Hr
J refers to sheaf cohomology with complex structure J

(and when necessary, we write KM,J for KM ). A complex polarization in
general is characterized by an integer r0, defined as the number of complex
directions, in the tangent space at any point m ∈ M , in which the symplectic
form ω is negative. (This number is the same for any point in M , since ω is
everywhere nondegenerate.) A polarization is Kahler if r0 = 0. This is the
most important and most-studied case. In the case of a Kahler polarization,
if one is sufficiently close to a classical limit (that is, if the periods of the

symplectic form ω are large enough), the cohomology Hr
J (M,K

1/2
M ⊗ L)

vanishes for r > 0. In this case, the recipe of geometric quantization reduces
to saying that the Hilbert space of quantum states is

(3.44) Hgq = H0
J (M,K

1/2
M ⊗ L)

with the natural hermitian inner product

(3.45) 〈χ, ψ〉 =
∫
M

dμχψ,

where μ is the symplectic measure on M . In the case of a complex po-

larization that is not Kahler, one has to consider Hr
J (M,K

1/2
M ⊗ L) with

r �= 0. Provided that one interprets Hr
J (M,K

1/2
M ) as the space of L2 har-

monic (0, r)-forms on M with values in K
1/2
M ⊗ L, the definition (3.45) of a

Hilbert space structure on Hr
J (M,K

1/2
M ⊗L) makes sense for any r. As long

as there is precisely one value of r for which Hr
J (M,K

1/2
M ⊗ L) is nonzero,

this space is a reasonable candidate as a quantum Hilbert space and thus
geometric quantization gives a reasonable answer for quantization of M . If
one is sufficiently close to a classical limit, one can hope that the relevant
L2 cohomology is nonzero only for one value of r, namely r = r0. If the
cohomology is nonzero for more than one value of r, then it is doubtful that
geometric quantization with the complex polarization J is really giving a
reasonable answer for quantization.

A special case is that J defines a Kahler polarization, and we want
to quantize M with the complex structure −J . With respect to −J , ω
is negative definite so r0 is equal to n = dimCM . Hodge theory identifies

Hn
−J (M,K

1/2
M,−J ⊗ L) with H0

J (M,K
1/2
M,J ⊗ L), so geometric quantization

with complex structure −J is equivalent to geometric quantization with
complex structure J . More generally, for any value of r, Hodge theory gives

an isomorphism Hr
J (M,K

1/2
M,J ⊗ L) ∼= Hn−r

−J (M,K
1/2
M,−J ⊗ L), so geometric
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quantization based on −J is always equivalent to geometric quantization
based on J .

Our goal in this section is to compare brane quantization to geomet-
ric quantization under certain hypotheses. Under certain conditions, we will
show that (regardless of the value of r0) the cohomology groups considered
in geometric quantization admit the action of the algebra of observables
A = Hom(Bcc,Bcc) that acts in brane quantization. We will also show more
directly that, in the case of a Kahler polarization, there is a natural identifi-
cation of H = Hom(B,Bcc) with Hgq as vector spaces. This identification is
not guaranteed to extend to an equivalence between the Hilbert space struc-
tures. When an appropriate antilinear symmetry is present, brane quanti-
zation leads to a definition of a Hilbert space structure on H, but there is
no evident reason that this Hilbert space structure will be equivalent to an
elementary formula such as the one in eqn. (3.45). An example that will be
considered in Section 3.10 suggests that nothing as simple as that is true.

To carry out this program, we assume that Y is presented with a holo-
morphic polarization Π, and a projection π : Y → W , for some W . More
specifically, we assume that Y is a twisted cotangent bundle, constructed
as in Section 3.4 starting with a holomorphic line bundle L → W , or
more generally a formal tensor product of complex powers of line bundles,29

L = ⊗k
s=1Lλs

s .
Let us first consider the case that M is compact. In this case, π(M)

must be all of W (rather than a proper open set in W , which would not be
compact). So M is a nonholomorphic section of π : Y → W , which ensures
that when restricted to M , π is an isomorphism between M and W . Since
the fibers of π are contractible, this implies that Y is contractible onto M .
To define a Lagrangian brane B supported on M , first of all M should be
Lagrangian, meaning that ImΩ vanishes when restricted to M . Since Y is
contractible onto M , this implies vanishing of the cohomology class [ImΩ].
We also need a prequantum line bundle L → M whose curvature is ReΩ.
This implies that c1(L) = [ReΩ]/2π. Combining the two statements, we
need [Ω]/2π = c1(L) for an actual line bundle L. A look back to eqn. (3.13)
shows that we can satisfy these conditions if and only if L exists as in actual
line bundle, in which case we should set L = L. To be more precise, L was
only defined up to the possibility of tensoring with a flat line bundle. In
defining L, we have to make a specific choice.

It is also possible for W0 = π(M) to be a proper open subset of W .
In that case, we get less restrictive conditions: we require only that when
restricted to π−1(W0), [ImΩ] must vanish and L must exist as an actual line
bundle.

We can illustrate the difference between these two cases by considering
again the examples that were discussed in Section 3.5. First consider the
complex manifold Y defined by x2 + y2 + z2 = j2, with complex symplectic

29Here and later we set � = 1.
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form Ω = dxdy/z. We assume that j2 > 0 and define M by the same
equation x2+y2+z2 = j2 with real x, y, z. As shown in Section 3.6, π : M →
W is an isomorphism from M ∼= S2 to W ∼= CP1. Thus Y is contractible
onto M . A short calculation gives

(3.46)

∫
M

Ω = 4πj.

Thus the condition to have a line bundle L → W ∼= CP1 with c1(L) = [Ω]/2π
is that j ∈ 1

2Z. In this case, the line bundle L exists and is L = O(2j). For
the prequantum line bundle of M , we pick L = L; we define a brane B
supported on M whose CP bundle is L−1.

Let us compare this to the superficially similar example of the complex
manifold Y ′ defined by x2−y2−z2 = j2, again with Ω = dxdy/z and j2 > 0.
We defineM by the same equation x2−y2−z2−j2, now with real x, y, z, with
the additional condition x > 0. The difference from the previous case is that
M is contractible; as explained in Section 3.6, the map π : M → W identifies
M with an open upper half-plane (or upper hemisphere) in W ∼= CP1. So
the condition for L to exist as a line bundle when restricted to M is trivial,
and we can take L = O(2j) for any real j. The prequantum line bundle is
then also L = O(2j). This would not make sense as a line bundle over CP1,
but it does make sense over M .

A test of the claim that in examples of this kind, brane quantization and
geometric quantization predict the same spaces of physical states (but possi-
bly not the same Hilbert space structure) is as follows. The algebra that acts
naturally on H = Hom(B,Bcc) is A = Hom(Bcc,Bcc). If we sheafify along
W , we can think of this as a sheaf of algebras, not just a single algebra. In
Section 3.4, we showed that A is the sheaf of holomorphic differential op-

erators (in complex structure J , of course) acting on K
1/2
M ⊗ L. Obviously,

this algebra acts on holomorphic sections of K
1/2
M ⊗ L, and almost equally

obviously, since holomorphic differential operators commute with the ∂ op-
erator, the same algebra acts on all of the ∂ cohomology groups with values

in K
1/2
M ⊗L. Thus, the space of physical states as defined in geometric quan-

tization does admit an action of the algebra of observables that one would
expect in brane quantization.

For the simple examples involving Y or Y ′, we can make these state-
ments completely explicit. In the case of Y , the algebra of observables is
generated by the three operators t+, t−, and t3 of eqn. (3.27). For j ∈ Z/2,
the physical Hilbert space H = H0(CP1,O(2j−1)) is of dimension 2j; the 2j
states furnish an irreducible representation of SU(2) of spin j − 1/2. In the
representation of eqn. (3.27), the states are the polynomials in q of degree
≤ 2j−1; the operators t+, t− and t3 act on these states as the familiar su(2)
generators. (For example, t3 has eigenvalues j − 1/2, j − 3/2, . . . ,−j +1/2.)
Clearly, all this only makes sense because 2j is an integer. The story is
similar in the case of Y ′, but now the operators t+, t−, t3 generate a unitary
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representation of PSL(2,R) (or a cover of this group, depending on the value
of j), rather than SU(2), acting on holomorphic sections of O(2j − 1) over
M ∼= H.

If J is a Kahler polarization, we can argue in a more direct way that
Hgq is the same as H = Hom(B,Bcc). We imitate the construction of Sec-
tion 3.3. Let w be a point in M , and F the fiber of Π that contains w.
As usual, we define a brane F supported on F with trivial CP bundle, and
find an element of H′ = Hom(Bcc,B) by composing suitable elements of

Hom(Bcc,F) and Hom(F ,B). As before, Hom(Bcc,F) ∼= H0(F,K
1/2
F ). Af-

ter picking local coordinates 	q and 	p parametrizing M and F near w, such

that Ω =
∑

i dpidq
i, we can pick an element of H0(F,K

1/2
F ) that restricts to

α = (d	p)1/2 at w. Since F and B meet at the unique point w, Hom(F ,B) is
one-dimensional and is a copy of L−1|w, the fiber of the CP bundle of B at
the point w. So there is an element of Hom(F ,B) for any β ∈ L−1|w. Com-
posing these elements of Hom(Bcc,F) and Hom(F ,B), we get an element
ψ′(w;α, β) ∈ H′ = Hom(Bcc,B). ψ′ varies holomorphically with w; this will
be explained in Section 3.11. As in Section 3.3, if Ψ is any element of H, we
can define the A-model bilinear pairing f(w;α, β) = (ψ′(w;α, β),Ψ). Then
we multiply by

√
d	q β−1 to undo the dependence on the choices of α and β.

So we define

(3.47) Ψ̂ =
√
d	q β−1f(w;α, β).

Because of the factors of
√
d	q and β−1, Ψ̂ is valued in the fiber at w of

K
1/2
M ⊗ L. Moreover, Ψ̂ is holomorphic in w because ψ′(w;α, β) varies holo-

morphically with w. So in short, this construction defines a map from the
physical state space H of brane quantization to its analog Hgq in geometric
quantization. We expect that this map is nonzero precisely when the com-
plex polarization of M that is induced by Π is Kahler, and in that case is
an isomorphism.

Brane quantization gives a recipe to define the hermitian structure of H,
but it is hard to reduce this recipe to an explicit formula. The general recipe
was explained in Section 2.7. To make it somewhat more explicit in the
present context, we can proceed as follows. First, it is equivalent to define a
hermitian structure on H or on its dual space H′, and it will be convenient
to do the latter. We will define the inner product between ψ′(w;α, β) and

a similar state ψ′(w̃; α̃, β̃) ∈ H′ defined with another set of choices w̃, α̃, β̃.
The general recipe says the hermitian inner product is obtained from the
A-model bilinear pairing after applying the antilinear operator Θτ to one of

the two states: 〈ψ′(w;α, β), ψ′(w̃; α̃, β̃)〉 =
(
Θτψ

′(w;α, β), ψ′(w̃; α̃, β̃)
)
. The

antilinear mapping Θτ exchanges the holomorphic polarization Π with its
conjugate Π ′. in particular, Θτ maps F to a brane F ′ supported on the fiber
F ′ of Π ′ that contains w. Θτ likewise maps the elements of Hom(Bcc,F) and
Hom(F ,B) that we composed to get ψ′(w;α, β) to elements of Hom(B,F ′)
and Hom(F ′,Bcc) whose composition is Θτψ

′(w;α, β) ∈ H = Hom(B,Bcc).
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Figure 6. (a) A path integral on this rectangle, with the
indicated boundary conditions, can be used to compute an
inner product. (b) The rectangle can be reduced to this union
of triangles, joined at a vertex. In evaluating the correspond-
ing path integral, one has to sum over states propagating
through that vertex.

The A-model pairing between this state and ψ′(w;α, β) can be represented,
as in examples discussed earlier, by a path integral on a rectangle with

ψ′(w̃; α̃, β̃) at the top and Θτψ
′(w;α, β) at the bottom (Fig. 6). Unfortu-

nately, the path integral on the rectangle is difficult to evaluate. It reduces
to a sum of products of triangles (Fig. 6(b)), but in that form it is likely
still not possible to get any general formula.

A noteworthy point is that, in contrast to the discussion of cotangent
bundles, the states ψ′(w;α, β) are normalizable. No singularity develops in
Fig. 6 if we set w = w̃. One should not expect to run into delta function
states in the present context, because for example if M is compact, then
the physical state spaces are finite-dimensional and there would be no such
thing as a delta function state.

3.9. What happens when Y is hyper-Kahler and M is compact.
We should not leave this subject without explaining that in an important
special case, there is a more simple way to partially compare brane quanti-
zation to geometric quantization.

Throughout this analysis, we have merely treated Y as a complex sym-
plectic manifold. We have not assumed that the complex symplectic struc-
ture of Y extends to a complete hyper-Kahler structure in the sense de-
scribed in Section 2.4. This assumption is sufficient to ensure that a good
A-model of Y exists, and it holds in many interesting examples. But it is
very likely not necessary.

If we do assume that the complex symplectic structure of Y extends to a
hyper-Kahler structure, then a more simple way to partially compare brane
quantization to geometric quantization presents itself. This was actually al-
ready discussed in [9] (Sections 2.3 and 4). First of all, the symmetry τ of Y ,
which is antiholomorphic in complex structure I, actually acts holomorphi-
cally in complex structure J (see eqn. (2.18)). So M , as a component of the
fixed point set, is holomorphic in complex structure J . Since ωJ is Kahler
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with respect to J , this means that complex structure J provides a complex
Kahler polarization of M , in the sense of geometric quantization.

Geometric quantization of M with this polarization leads to the Hilbert
space

(3.48) Hgq = H0(M,K
1/2
M ⊗ L),

where as usual L is the prequantum line bundle. (For simplicity we assume
that the CP curvature F = ωJ of L is sufficiently positive so that the higher
cohomology vanishes.). The Hilbert space structure is given by the inner
product

(3.49) (ψ, χ) =

∫
M

dμψχ,

where dμ is the measure derived from the symplectic structure ωJ .
Let us see if we can justify a relationship between Hgq and what one

would get from brane quantization. First, we note that in this situation,
both Bcc and the Lagrangian brane B supported on M are branes of type
(A,B,A), that is, they are A-branes with respect to symplectic structures
ωI and ωK , and B-branes with respect to complex structure J . This can be
seen as follows.30

In the case of B, we simply observe that as ωI is τ -odd (eqn. (2.18)), the
τ -invariant submanifold M is Lagrangian for ωI , just as it is for ωK . So B
is an A-brane for ωI just as it is for ωK . On the other hand, we have noted
that M is a complex submanifold in complex structure J . The CP bundle
of B satisfies F + B = 0. In particular, F + B is of type (1, 1) in complex
structure J . A brane supported on a complex submanifold with F + B of
type (1, 1) is a B-brane, so B is a B-brane in complex structure J . So in
short it is a brane of type (A,B,A).

For Bcc, its support is all of Y , which is a complex manifold in complex
structure J , and its CP curvature satisfies F + B = ωJ , which is of type
(1, 1) in complex structure J . Again these conditions ensure that Bcc is a
B-brane with respect to J . Bcc is an A-brane with respect to ωK because
ω−1
K (F+B) = I is an integrable complex structure, and similarly it is an A-

brane with respect to ωI because ω
−1
I (F+B) = −K is an integrable complex

structure. So again Bcc is a brane of type (A,B,A).
The answer that brane quantization gives for the quantization of M with

our usual choices of CP bundles (trivial for Bcc, L
−1 for B) is the space of

(B,Bcc) strings in the A-model of ωK . We have been calling this simply
Hom(B,Bcc), but in the present context it is better to write HomAK

(B,Bcc),
where the subscript AK is meant to remind us that we consider the physical
string states in the A-model of type ωK . The answer (3.48) that geometric

30The supercharges that serve as the differentials of the A-models of ωI and ωK and
the B-model of J are linearly dependent. Hence it suffices to check invariance under two
of these differentials; invariance under the third follows. It seems illuminating to check all
three invariances directly, so we do so.
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quantization gives for quantizing M with the Kahler polarization J is the
same as HomBJ

(B,Bcc), in other words, the space of (B,Bcc) strings in the
B-model of complex structure J .

Thus brane quantization using the complex structure Y agrees with geo-
metric quantization using the complex Kahler polarization K if and only if
HomAK

(B,Bcc) coincides with HomBJ
(B,Bcc). In general, this is probably

too much to hope for, though a clear counter-example is not immediately
apparent. But as noted in [9], if M is compact, a very simple argument gives
an isomorphism between HomAK

(B,Bcc) and HomBJ
(B,Bcc) purely as vec-

tor spaces, ignoring their hermitian inner products. The argument is simply
that if M is compact, then instead of considering the space of (B,Bcc) strings
in one or another twisted topological field theory, we can simply consider
the supersymmetric ground states of the (B,Bcc) system. This will coincide,
purely as a vector space, with the space of physical states in any of the
possible twisted supersymmetric field theories, and this observation implies
the equivalence of vector spaces HomAK

(B,Bcc) ∼= HomBJ
(B,Bcc).

This relationship, however, does not extend to a relation between hermit-
ian inner products. There is no reason to expect the hermitian inner product
of HomAK

(B,Bcc) to agree with that of Hgq, described in eqn. (3.49). As for
HomBJ

(B,Bcc), for it to carry a natural hermitian structure, Y should have
a Z2 symmetry that acts antiholomorphically in complex structure J . The
existence of such a symmetry does not follow from our assumptions, so in
general HomBJ

(B,Bcc) does not have a hermitian structure.
In Section 3.8, we explained that when M has a complex structure J

that is induced from a holomorphic polarization Π of Y , HomAK
(B,Bcc) is

the same, as a vector space, as H0
J (M,K

1/2
M ⊗L). This description did come

with a recipe for describing the hermitian inner product of HomAK
(B,Bcc),

but this recipe was fairly inexplicit, involving a holomorphic triangle that
is in general hard to evaluate. One does not expect that this recipe will in
general reduce to something as simple as the usual definition (3.49) that
geometric quantization would suggest.

We thus have two strategies to compare brane quantization of M via a
complexification Y to quantization using a complex Kahler polarization. One
strategy uses a holomorphic polarization of Y and one uses a hyper-Kahler
structure of Y .

Instead of further discussion of the sort of elementary examples that we
have analyzed in this article, we will discuss the two approaches in the con-
text of a more sophisticated example, which was discussed from the hyper-
Kahler point of view in [9], Section 4 (where further detail was given beyond
what we will say here).

3.10. Quantizing the moduli space of flat G-bundles. Let G be
a compact Lie group with complexification GC. We write g and gC for the
corresponding Lie algebras. GC has an antiholomorphic involution � with
fixed point set G. Let C be a compact closed oriented two-manifold, and let
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M be the moduli space of flat G-bundles31 E → C of a specified topological
type. M has a natural symplectic structure ω0 that we normalize so that
its smallest nonzero period is 2π. For G = SU(N), it can be defined by the
formula [35]

(3.50) ω0 =
1

4π

∫
C
Tr δA ∧ δA,

where Tr is the trace in the fundamental N -dimensional representation of
G, and δA represents the variation of a flat connection on E. The condition
on its periods means that ω0 is the curvature of a line bundle L → M (which
generates the Picard group of M modulo torsion). One wishes to quantize M
with symplectic structure32 ω = κω0 and prequantum line bundle L = Lκ,
for some integer κ. There is no loss of generality to assume κ > 0, since the
sign of κ is reversed if one reverses the orientation of C.

M is the phase space of three-dimensional Chern-Simons gauge theory
with gauge group G on R× C, where R parametrizes the “time” [39]. The
goal of quantization is to construct a Hilbert space associated to the spatial
manifold C. The symplectic structure of M is defined using no structure
of C other than an orientation. Thus formally one can hope that quan-
tization can be carried out in such a way that the orientation-preserving
diffeomorphisms of M will act naturally on the quantum Hilbert space. In
fact, this is necessary if one is going to get a topological field theory from
the three-dimensional Chern-Simons theory.

For brane quantization, the first step is to pick a nice complexification
of M . Indeed, M has a nice complexification Y , the moduli space of flat

GC-bundles Ê → C. This is a complex symplectic manifold; the complex
structure comes from the complex structure of GC, and the holomorphic
symplectic structure, which is defined by the formula (3.50) with the g-
valued flat connection A replaced by a gC-valued flat connection A, is an
analytic continuation of the symplectic structure of M . A typical holomor-
phic function on Y is the trace, in some holomorphic representation, of the
holonomy of A around a given oriented loop in C. To be coherent with
the notation in the present article, we will call this complex structure I,
though unfortunately in Hitchin’s work on Higgs bundles [38], whose rel-
evance will be described momentarily, and in applications of that work to

31In this discussion, we will ignore technical issues involving singularities of M . One
can entirely avoid such issues by, for example, taking G to be SO(3) and specifying that
the bundle E should have w2(E) �= 0.

32The level of the Chern-Simons and WZW models that will be mentioned shortly,
as conventionally defined, is not κ. Rather, assuming for simplicity that G is simply-
connected, it is k = κ−h, where h is the dual Coxeter number of G. For simply-connected

G, K
1/2
M ∼ L−h. In some approaches, it is natural to refer to what we call L⊗K

1/2
M , rather

than L, as the prequantum line bundle, and formulas are written directly in terms of k
rather than κ.
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geometric Langlands, it is usually called J . Y has an antiholomorphic invo-
lution τ that leaves M fixed. τ can be defined by applying � to A, or to its
monodromies.

The choice of Y did not spoil the diffeomorphism symmetry of C; orien-
tation-preserving diffeomorphisms of C act on Y , preserving its complex
symplectic structure. So formally the procedure of brane quantization gives
a diffeomorphism-invariant answer for the quantization of M : it is H =
HomAK

(B,Bcc).
We can try to make this concrete by either the choice of a holomorphic

polarization or the choice of a hyper-Kahler metric. (The latter approach
was described in [9], with more detail on some points than we will give here.)
Either approach will involve an auxiliary choice that appears to break the
diffeomorphism symmetry. But the equivalence to HomAK

(B,Bcc) indicates
that the output that comes from the holomorphic polarization or the hyper-
Kahler metric does have the diffeomorphism symmetry.

The starting point in either of the two approaches to making brane quan-
tization of M more concrete is to pick a complex structure on C. Of course,
there is not a natural choice; the possible choices, up to diffeomorphisms that
are connected to the identity, make up a Teichmüller space T . For t ∈ T ,
let It be the corresponding complex structure on C.

Once It is given, it is possible to make brane quantization concrete by
using either a holomorphic polarization of Y or a hyper-Kahler structure.
First we describe the approach with a holomorphic polarization.

Once It is given, a flat bundle has a holomorphic structure, defined
by the (0, 1) part of the flat connection, and an antiholomorphic structure,
defined by the (1, 0) part. To define a holomorphic polarization of Y , place
on Y an equivalence relation in which two flat GC bundles are considered
equivalent if they have the same holomorphic structure. Every point in Y
is in a unique equivalence class. Consider an equivalence class that contains
the flat connection A = dzAz + dzAz. Any other connection in the same
equivalence class has (up to gauge transformation) the same (0, 1) part, so
it takes the form A′ = A +W , where W = dzWz is a (1, 0)-form valued in

ad(Ê), the adjoint bundle of Ê. IfA is flat, the condition thatA′ is also flat is
that W is holomorphic, in other words it is valued in H0(C,KC⊗ad(Ê)). An
index theorem shows that the dimension of this vector space is n = 1

2dimCY .
Thus the equivalence classes are copies of Cn, so this construction defines a
holomorphic polarization Πt of Y .

One can see as follows that Πt induces on M a complex polarization.
The definition of Πt makes clear that each point of M is contained in a
unique leaf; what remains is to show that each leaf contains at most one
point in M . This statement is part of the Narasimhan-Seshadri theorem,
which establishes a correspondence between stable holomorphic GC bundles
over C and flat G bundles. The intersection F ∩M is the space of flat unitary
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g-valued connections on a given holomorphic GC bundle. The Narasimhan-
Seshadri theorem says that F ∩ M is a single point if E is stable and is
empty otherwise.

In terms of the expansion A = Azdz+Azdz of a complex flat connection,
the space of leaves is parametrized holomorphically by Az. After restricting

to M , the expansion becomes A = dzAz+dzAz, where Az = −A†
z (assuming

one’s convention is that a unitary flat connection is anti-hermitian). So the
complex structure on M that is induced by Π is the one in which Az varies
holomorphically. In this complex structure, which we will denote as Jt, M
can be interpreted as the moduli space of holomorphic GC bundles on C. If
we write δA = dzδAz + dzδAz, then the formula (3.50) is bilinear in δAz

and δAz, showing that the symplectic form is of type (1, 1) with respect to
Jt, so that Jt is a complex polarization of M . This is expected from general
arguments in Section 3.6. With a little more care, one can show that Jt is a
Kahler polarization of M .

The arguments of Section 3.8 are applicable to this example, and show
that the Hilbert space H of brane quantization is, as a vector space, H =

H0
Jt
(M,K

1/2
M ⊗ L). This equivalence also comes with a not very explicit

description of the Hilbert space structure of H, involving a holomorphic
triangle.

Applying to Πt the antiholomorphic involution τ , we get another holo-
morphic polarization Π ′

t. The leaves of this polarization consist of flat GC

bundles that all have the same antiholomorphic structure. Π ′
t induces the

opposite complex structure −Jt on M . In general, as explained in Sec-
tion 3.8, geometric quantization using a complex polarization is invariant
under changing the sign of the complex structure. Accordingly, geometric
quantization with Π ′

t gives equivalent results to those that come from Πt.
We will not discuss Π ′

t further.
The alternative road to making brane quantization of Y concrete is as

follows. Once the two-manifold C is given the complex structure It, one can
formulate and solve Hitchin’s equations [38], giving the flat GC bundle Ê the
structure of a Higgs bundle. The space Y gets a new complex structure Jt in
which it parametrizes Higgs bundles, and the complex symplectic structure
of Y is extended to a hyper-Kahler structure. (Jt is called I in Hitchin’s work,
and much subsequent literature.) Concretely, Hitchin’s equations involve

a reduction of the structure group of Ê from GC to G. Relative to this
decomposition, the complex flat connection A decomposes as A = A + iφ,
where A is a GC-valued flat connection, A = dzAz + dzAz is a G-valued
connection, and φ = dzφz+dzφz is an adjoint-valued one-form on C. A and
φ obey Hitchin’s equations. The complex structure Jt is the one in which
the holomorphic variables are Az and φz.

The discussion in Section 3.9 shows that H can be identified as a vector
space with H0

Jt
(M,K

1/2
M ⊗L). This identification does not lead to a descrip-

tion of the Hilbert space structure of H.



PROBING QUANTIZATION VIA BRANES 361

The complex structure Jt that we get by solving Hitchin’s equations is
defined on all of Y , while the complex structure Jt that we get by forgetting
the antiholomorphic structure of a flat bundle is defined only on M . But Jt,
when restricted to M , is the same as Jt. To show this, we just observe that
M is embedded in Y as the locus φ = 0. So the complex structure Jt, in
which Az and φz are holomorphic, restricts on M to the complex structure
Jt, in which Az is holomorphic.

Therefore, the description of H that we get from the holomorphic polar-
ization is the same as the one that we get by solving Hitchin’s equations.

Neither the description in terms of holomorphic polarizations nor the
description in terms of solving Hitchin’s equations makes it clear why or in

what senseH0
Jt
(M,K

1/2
M ⊗L) is independent of the choice of t ∈ T . Yet this is

predicted by the relation to brane quantization. It is also needed for the topo-
logical invariance of three-dimensional Chern-Simons gauge theory [39], and
to get a satisfactory picture of the holomorphic factorization of the WZW
model of two-dimensional conformal field theory [40]. The usual approach

is to view H0
Jt
(M,K

1/2
M ⊗ L) as the fiber of a vector bundle over T , and to

construct a (projectively) flat connection on this vector bundle. Integrating

this flat connection then gives an equivalence between H0
Jt
(M,K

1/2
M ⊗L) for

different t, restoring topological invariance and leading to satisfactory results
in two-dimensional conformal field theory and three-dimensional topological
field theory. The flat connection has been constructed from several points of
view [41, 42, 43]; the different approaches have been shown to give equiva-
lent results [44]. This flat connection coincides with the natural flat connec-
tion on the space of conformal blocks of the WZW conformal field theory
[45]. To be compatible with unitarity of Chern-Simons gauge theory in three
dimensions and the expected properties of the WZW model in two dimen-
sions, this flat connection must be unitary; that is, it must preserve some
positive hermitian inner product on the fibers. The global monodromies of
the flat connection then lead to a unitary representation of the mapping
class group (more exactly, a central extension of it, as the connection is only
projectively flat). The known constructions of the flat connection via gauge
theory do not lead to anything nearly as simple as the formula (3.49) sug-
gested by geometric quantization. It is believed [46, 47, 48] that a correct
formula requires an extra factor and takes the form

(3.51) (ψ, χ) =

∫
M

dμψχ eGκ ,

where eGκ is the partition function of a WZW model with target GC/G at
level κ. This factor comes from integration over orbits of GC-valued gauge
transformations in reduction from the space of all connections to the space
M of flat unitary connections. Abstractly, it has been proved that the flat
connection is in fact unitary [49] and more concretely, it is known that the
unitary structure can be defined by a formula such as (3.51), where for large
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Figure 7. A disc with boundary segments labeled con-
secutively as ∂0Σ, ∂1Σ, . . . , ∂nΣ. On each segment ∂αΣ, for
α = 0, 1, . . . , n, the boundary condition is defined by a brane
Bα. Vertex operators are inserted at the junctions between
segments.

κ there is an asymptotic expansion Gκ = F +
∑∞

n=1 κ
−nFn, with the leading

contribution F being the Ricci potential of M [50]. At leading order, this
result agrees with the prediction based on the WZW model of GC/G [51].

Brane quantization gives the answer for the Hilbert space inner product
that we described in Section 3.8. This description is not very explicit, since
it depends on a holomorphic triangle that is difficult to calculate. It would
be extremely interesting to understand how the expected factor eGκ arises
in this approach.

3.11. A-branes and B-branes. Here we will describe some basic prop-
erties of the moduli of branes of type (B,A,A). Among other things, this will
let us understand better the role of a holomorphic polarization in arguments
such as those of Section 3.8.

First we consider the A-model of a real symplectic manifold S with
symplectic form ω. A rank one Lagrangian A-brane B is supported on a
Lagrangian submanifold L ⊂ S, and endowed with a CP bundle L with
connection A and curvature F that obey F + B = 0. To deform B, we can
in general deform both L and A. A general deformation of A has the form
A → A+ εa, where a is a 1-form and ε is a small parameter. To preserve the
condition F+ B = 0, one requires da = 0. However, if a is exact, a = dφ for
some φ, then the deformation A → A + εa is just a gauge transformation.
So the nontrivial deformations are by the de Rham cohomology H1

dR(M,R).
Let us suppose to begin with that L is compact. Then the nontrivial defor-
mations correspond, by Hodge theory, to harmonic one-forms a.

Now consider instead deformations of L. Locally, we can pick coordinates
pi, q

j such that ω =
∑

i dpidq
i and L is described by p1 = · · · = pn = 0. Any

1-form b =
∑

i bidq
i gives a possible deformation of L in which the equation

pi = 0 is deformed to pi = εbi. This preserves the fact that L is Lagrangian if
and only if b is closed, db = 0. However, if b is exact, b = dρ for some function
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ρ(q), then the deformation of L is by an infinitesimal symplectomorphism
of M generated by ρ, namely δpi = {pi, ρ} = ∂ρ/∂qi, δqi = {qi, ρ} = 0.
A deformation of L by a symplectomorphism is trivial as a deformation
of the A-brane B. Momentarily we will demonstrate this explicitly. Hence
the nontrivial deformations of L in the A-model correspond, in first order,
to closed one-forms that are not exact, or in other words to the de Rham
cohomology H1

dR(M,R). Again, if L is compact, this is the same as the space
of harmonic one-forms b.

Comparing the last two paragraphs, we see an obvious almost complex
structure on the moduli space M of possible deformations of B as an A-
brane. In this almost complex structure, a + ib is a deformation of type
(1, 0). In fact, this almost complex structure is integrable andM is a complex
manifold.

Now let us see explicitly why the exact terms in the one-forms a and b
represent trivial deformations of B as an A-brane. Consider the σ-model ac-
tion for the A-model on an oriented two-manifold Σ with a map X : Σ → M .
The boundary ∂Σ of Σ is a union of segments ∂αΣ that are labeled by branes
Bα with CP connections Aα (Fig. 7). Suppose that one of these segments,
say ∂0Σ, is labeled by the brane B of interest, with its CP connection A. At
the junctions between segments, local operators are inserted. Let T be the
set of these junctions. Most of the σ-model action is Q-exact, where Q is
the usual A-model differential. Spelling out the terms that are not Q-exact,
we can write the action in the general form

(3.52) I =

∫
Σ
X∗(ω)− i

∫
∂0Σ

X∗(A)− i
∑
α �=0

∫
∂αΣ

X∗(Aα)+
∑
t∈T

ct+ {Q, . . .}.

The terms that are not Q-exact are the contributions of the symplectic
form and the CP connections, along with possible endpoint contributions
ct corresponding to operators inserted at the junctions. The contribution of
∂0Σ is important in what follows, so we have separated out this contribution
in eqn. (3.52). Likewise, the important junctions will be the left and right
endpoints of ∂0Σ; we call them tr and t�. If we vary the brane B by an a or
b variation, either δA = a or else δpi = bi, δq

j = 0, the action I changes by
a simple local integral along ∂0Σ:

(3.53) δI = −i

∫
∂0Σ

(ai + ibi)dq
i.

We see that this naturally depends on a and b in the combination a + ib,
which is a manifestation of the complex structure of the moduli space M.
Now specialize this to what we will call an exact variation, a + ib = dν for
some complex-valued function ν. In this case, the integral reduces to a sum
of boundary terms,

(3.54) δI = −i(ν(tr)− ν(t�))
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(we abbreviate ν(X(t)) as ν(t)). So we can compensate for an exact variation
by a suitable transformation of the insertions at the endpoints of ∂0Σ:

(3.55) δcr = iν(tr), δc� = −iν(t�).

Finally we can formulate more precisely the statement that A-branes related
by an exact deformation are equivalent. To assert that an exact deformation
of B is in some sense trivial, we need to know what to do with Hom(B,B′) and
Hom(B′,B), for any other A-brane B′, when we make the exact deformation
of B. Eqn. (3.55) answers this question: it tells us how the insertions at the
endpoints of ∂0Σ have to be modified when we make an exact deformation
of B to get a deformation that is truly trivial.

Now let us specialize to the case that the symplectic manifold S is ac-
tually a complex symplectic manifold Y and B is a brane of type (B,A,A),
supported on a complex Lagrangian submanifold L. Thus L is a complex
manifold in some complex structure I and is Lagrangian for a holomorphic
symplectic form Ω = ωJ +iωK . To deform B as a B-brane, we can deform L
as a complex submanifold and deform the flat CP bundle L of L as a holo-
morphic line bundle. Both types of deformation of B are parametrized by
complex moduli. If L is a compact Kahler manifold, then the moduli space
M that parametrizes deformations of B is the same whether one regards B
as a B-brane of type I or as an A-brane of type ωJ or ωK . This is so for a
reason essentially explained in Section 3.9: the tangent space to M is the
space of supersymmetric ground states of the (B,B) system, which can be
defined at the level of the physical σ-model, without specializing to a par-
ticular twisted topological field theory. However, M has different complex
structures depending on whether considers it as a moduli space of B-branes
in complex structure I or of A-branes in symplectic structure ωJ or ωK (or
a linear combination thereof). On a compact Kahler manifold M , the Hodge
decomposition expresses a harmonic one-form as the sum of pieces of types
(1, 0) and (0, 1), giving expansions a = a(1,0) + a(0,1), b = b(1,0) + b(0,1). If
M is considered to parametrize B-branes of type I, then it has a complex
structure in which the holomorphic directions are parametrized by a(0,1) and
b(1,0). If it is considered to parametrize A-branes in a symplectic structure Jζ

that is a linear combination of ωJ and ωK , then the holomorphic directions
are parametrized by a(0,1)+ζb(0,1) and a(1,0)−ζ−1b(0,1), where ζ depends on
the linear combination considered (conventions can be chosen so that ζ = 1
for ωJ and ζ = i for ωK). At ζ = 0, Jζ reduces to the complex structure
that is appropriate in the B-model of type I, and at ζ = ∞, it reduces to
the opposite complex structure, appropriate in the B-model of type −I.

If L is not compact, in general there is no such relation between the
moduli of B as a B-brane and as an A-brane. Instead of being general, let us
discuss what happens for the example that has actually been important in
our analysis. This is the case of a brane F of type (B,A,A) that is supported
on a leaf F of a holomorphic polarization Π, with trivial CP bundle. Since
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F ∼= Cn, F is simply-connected, and F actually has no moduli as an A-
brane. On the other hand, F does have moduli as an B-brane, since different
leaves of Π support inequivalent B-branes. Locally, we can parametrize the
choice of leaf by holomorphic variables qi, and parametrize the leaves by
holomorphic variables pi, such that Ω =

∑
i dpidq

i. Then a particular leaf is
determined by specifying the values of the qi, say qi = wi. Different choices
of the wi label different B-branes, but, roughly speaking – we make a more
accurate statement shortly – these branes are all the same as A-branes.

The claim that the A-brane F labeled by a given choice of 	w =
(w1, w2, . . . , wn) is independent of 	w may seem perplexing, because the de-
pendence on 	w has actually been important in our analysis. The point is
that we have always considered the brane F together with a distinguished
element of Hom(Bcc,F) associated to the wavefunction α = (d	p)1/2. The
brane F together with this particular element of Hom(Bcc,F) does depend
nontrivially – and holomorphically, as we will see – on 	w. To make a trivial
variation of F , we would want to accompany a change of F with a change
in the endpoint couplings c�, cr as given in eqn. (3.55). This is different from

using the wavefunction α = (d	p)1/2, independent of 	w.
Let us see how this works out for the case that we vary the brane F to

a nearby leaf of the same holomorphic polarization, for example by shifting
wi by some complex constants bi. We recall that in the situation relevant
to quantization, the complexified symplectic form is ωC = −iΩ and that the
CP bundle of F is trivial. The action (see eqns. (3.52) and (2.25)) becomes

(3.56) I = −i

∫
Σ
X∗(Ω) + c� + cr + · · ·+ {Q, . . .},

where we have omitted boundary terms and couplings outside the interval
∂0Σ, since these are unaffected by the deformation that we are about to
make. To describe the change in the brane F by changing 	w, we vary the
map X near ∂0Σ by δpi = 0, δqi = bi. With Ω =

∑
i dpidq

i, we get

(3.57) δI = i

∫
∂0Σ

bidpi = ibipi(tr)− ibipi(t�).

The compensating endpoint variations to get a truly trivial deformation are
then

(3.58) δcr = ibipi(tr), δc� = −ibipi(t�).

We can interpret these results as follows, First of all, this variation of F
is holomorphic, since the variation of the action is proportional to δwi = bi

with no term proportional to δwi = bi. This confirms a claim that was made
in Section 3.8. Second, the specific variation δc�, δcr that are needed to
compensate for a displacement of F can be interpreted intuitively as follows.
The displacement of F was by bi ∂

∂qi
, which generates qi → qi+ bi. Quantum

mechanically, bi ∂
∂qi

corresponds to ibipi. The correction to a vertex operator
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representing an element of Hom(B′,F) or Hom(F ,B′), for some other brane
B′, involves multiplication by ±ibipi.

How bipi acts on Hom(B′,F) or Hom(F ,B′) depends on the kind of brane
considered. Suppose that B′ = Bcc. Then Hom(Bcc,F) and Hom(F ,Bcc) are

identified with H0(F,K
1/2
F ). A general element is of the form f(	p)(d	p)1/2,

and bipi acts as a multiplication operator. On the other hand suppose that
B′ is a Lagrangian A-brane whose support L intersects F at a single point w.
Then acting on Hom(F ,B′) or Hom(B′,F), pi can be replaced by its value
at w.

Finally, consider what is happening when we vary the leaf of a holomor-
phic polarization Π. Nearby leaves of Π are equivalent if when we change
the leaf by δqi = bi, we transform Hom(F ,B′) and Hom(B′,F) by ±ibipi,
as just explained. This can be regarded as a flat connection on a family of
branes parametrized byW . But it is an unintegrable flat connection. To inte-
grate this flat connection, we would have to exponentiate the operator ±ibipi
acting at the corners between F and other branes. For example, to claim
that two fibers with qi differing by a noninfinitesimal shift bi are equivalent,
we would have to multiply their corners with Bcc by exp(±i

∑
i b

ipi). Such
exponential functions are not allowed; we have allowed polynomial functions
of p only. The inability to integrate the flat connection is a feature, not a
bug. In our applications, it would not be natural to claim that the different
fibers of Π are equivalent.

4. Symmetries and correspondences

4.1. Overview. As explained in Section 2.1, it is impossible to quantize
a real symplectic manifold M , with prequantum line bundle L, in such a way
that the natural symmetry group G of classical mechanics is realized as a
group of unitary transformations of the quantum Hilbert spaceH. (We recall
that an element of G is a symplectomorphism ϕ : M → M together with a
lift of ϕ to a symmetry of L.) Given this, we may ask instead the following
question: for a given method of quantizing M , what subgroup of G is realized
quantum mechanically as a group of unitary symmetries?

In geometric quantization, this question has a standard answer. Geo-
metric quantization of M depends on the choice of a polarization P of M .
For a given choice of P , the subgroup of G that is realized quantum me-
chanically as a symmetry group is the subgroup GP that preserves P . In
special cases, which are sometimes important, the Hilbert space H defined
in geometric quantization admits a unitary action of a larger subgroup of G,
but the generic answer from geometric quantization is that the subgroup of
classical symmetries that acts in the quantum theory is GP .

For example, we can describe GP rather explicitly if M = T ∗N is a
cotangent bundle with its standard symplectic structure and P is the real
polarization whose leaves are the fibers of the cotangent bundle. The group
GP of symplectomorphisms that leaves P fixed is generated by two types of



PROBING QUANTIZATION VIA BRANES 367

symplectomorphism. First, every diffeomorphism of N extends to a diffeo-
morphism of T ∗N that preserves the symplectic structure. These diffeomor-
phisms permute the leaves of P . In addition, there are symplectomorphisms
of T ∗N that map each leaf to itself. If qi are local coordinates on N and pi
are corresponding linear functions on the fibers of the cotangent bundle, a
symplectomorphism of T ∗N that maps each leaf to itself leaves qi fixed and
shifts the pj by pj → pj + ∂f/∂qj for some function f(q1, q2, . . . , qn) (called
the generating function of the canonical transformation).

What is the symmetry group in brane quantization? In brane quanti-
zation, the first step is to complexify a real symplectic manifold M , with
symplectic form ω, to a complex symplectic manifold Y , with holomorphic
symplectic form Ω. Y must be such that if we view Y as a real symplectic
manifold with symplectic form ImΩ, then its A-model is well-defined. (For
example, Y could be a complete hyper-Kahler manifold, as discussed in Sec-
tion 2.4.) Once a suitable Y is chosen, one defines a Lagrangian brane B
with CP bundle L, and the quantum Hilbert space of brane quantization is
H = Hom(B,Bcc).

There is an obvious candidate answer for the symmetry group of brane
quantization. The natural symmetries of the A-model of Y are holomorphic
symplectomorphisms, that is, invertible holomorphic maps of Y to itself
that preserve the symplectic form Ω. A holomorphic symplectomorphism
of Y is potentially a symmetry of the brane B if it maps M to itself, and
its action on M lifts to an action on L. This gives us a natural candidate
for the symmetries of brane quantization. Let GY be the subgroup of G
corresponding to elements whose action on M can be analytically continued
to a holomorphic symplectomorphism of Y . Then GY is the natural candidate
for the subgroup of G that acts unitarily on H = Hom(B,Bcc).

Although this proposal may be correct, there is actually a technical
difficulty in justifying it. To make the A-model concrete, one usually picks
a Riemannian metric g on Y . This may be a complete hyper-Kahler metric,
as discussed in Section 2.4. At a minimum, g should, together with the real
symplectic form ωK = ImΩ, define an almost complex structure K such
that ωK is of type (1, 1) and positive. Moreover, g should be such that the
A-model of Y actually exists. The A-model of Y is independent of g as long
as g varies within a class of allowed metrics, such that the A-model exists.
Unfortunately, this last condition is difficult and its full import is not easy
to understand.

Now let ϕ be a holomorphic symplectomorphism of Y . Generically g will
not be ϕ-invariant, but will be transformed by ϕ to some other metric gϕ.
The A-model of Y with the metric gϕ may in general not be well-defined.
Even if it is, to argue that the metrics g and gϕ lead to equivalent A-models
of Y , we would need to know that it is possible to interpolate between g and
gϕ within the class of allowed metrics. It is always possible to interpolate
between g and gϕ by a family of metrics that are associated to suitable
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almost complex structures.33 But it is not obvious that this interpolation
can be made within the class of metrics for which the A-model exists.

Physically, one prefers to view the A-model as a twisted version of an
ultraviolet-complete σ-model. Trying to consider an A-model based on a
metric such as gϕ would in general take us out of that world, and arguments
based on interpolation from g to gϕ might take us even farther afield.

To further orient the reader, we will describe some concrete questions
for which this issue is or is not problematic. Then we will describe an alter-
native approach that enables one to study symplectomorphisms within an
ultraviolet-complete world.

We will illustrate both sides of the story in the context of quantization of
M = R2n with real-valued coordinates 	x = (x1, x2, . . . , x2n) and a standard

symplectic structure ω = 1
2

∑2n
i,j=1 ωijdx

idxj . First, we will try to interpret

in terms of brane quantization the standard result34 that quantization of M
can be chosen to be invariant under the group of affine linear symplectomor-

phisms 	x → A	x+	b, as discussed in Section 2.1. We begin in the familiar way,
complexifying M to a complex symplectic manifold Y = C2n with the xi

now as holomorphic coordinates on Y . The resulting complex structure and
complex symplectic structure of Y are of course translation-invariant, that

is invariant under 	x → 	x + 	b with a complex constant 	b. The translation-
invariant complex symplectic structure of Y can be extended, in the sense of
Section 2.4, to a translation-invariant hyper-Kahler structure, by picking a
suitable translation-invariant Riemannian metric g on Y . The space of such
g’s can be described as follows. Because of the assumed translation invari-
ance, we can make the analysis at a point y ∈ Y . The tangent space to y
in Y has dimension 4n, so the group of linear transformations of this tan-
gent space is a copy of GL(4n,R). The complex symplectic structure of Y is
invariant under a subgroup Sp(2n,C) ⊂ GL(4n,R). A translation-invariant
hyper-Kahler metric on Y that extends its complex symplectic structure
is invariant not under Sp(2n,C) but under a maximal compact subgroup
thereof. Such a subgroup is isomorphic to the compact real form of the sym-
plectic group, which we will call Spc(2n). Any Spc(2n) subgroup of Sp(2n,C)
is the subgroup preserved by some hyper-Kahler metric, and all such sub-
groups are conjugate in Sp(2n,C). The space of translation-invariant hyper-
Kahler metrics on Y that extend its complex symplectic structure is hence a

33The argument for this is similar to an argument given shortly concerning hyper-
Kahler metrics. The symplectic structure ωY of Y reduces the structure group of the
tangent bundle of Y from GL(4n,R) to Sp(4n,R). A metric relative to which ωY is positive
and of type (1, 1) corresponds to a further reduction of the structure group to a maximal
compact subgroup U(2n) of Sp(4n,R). It is possible to interpolate between any two such
reductions, since the quotient Sp(4n,R)/U(2n) is contractible.

34This also follows from arguments in Section 3 showing that brane quantization
of R2n, which does not depend on a choice of polarization, is equivalent to geometric
quantization of R2n with a real linear polarization.
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copy of the homogeneous space W = Sp(2n,C)/Spc(2n). Any of the hyper-
Kahler metrics parametrized by W can be used to define the A-model of Y .
W is contractible and in particular is connected and simply-connected. So we
can interpolate in W between any two points w1, w2 ∈ W, and moreover this
interpolation can be made in a unique way, up to homotopy. (Uniqueness
is important because homotopically distinct interpolations from w1 to w2

might have led to equivalences between quantum theories that would differ
by a unitary transformation.) Therefore, if we define the A-model of Y using
a translation-invariant hyper-Kahler metric, it will not matter which one we
use.

Now we can understand in a new way why the brane quantization ofM is
invariant under affine linear transformations of M . An affine linear symplec-

tomorphism 	x → A	x+	b of M can be analytically continued to a holomor-
phic symplectomorphism of Y , defined by the same formula. A generic affine
linear symplectomorphism will not preserve a translation-invariant hyper-
Kahler metric that is used to define the A-model of Y . But it will trans-
form this translation-invariant hyper-Kahler metric to another translation-
invariant hyper-Kahler metric, and the A-model of Y does not care which
translation-invariant hyper-Kahler metric we use. So quantization of M via
the A-model is invariant under affine linear symplectomorphisms; the group
of affine linear symplectomoprhisms acts on the quantum Hilbert space H.

To see the limitation of this kind of argument, we note the following.
The group of symplectomorphisms of M = R2n that extend to holomorphic
symplectomorphisms of Y is much larger than the group of affine linear
symplectomorphisms. In this discussion, we will only consider polynomial
symplectomorphisms, since we have only allowed polynomial functions in
the A-model. To construct a very large group of polynomial symplectomor-
phisms, first split the variables x1, . . . , x2n into Poisson-commuting coor-
dinates q1, . . . , qn and conjugate momenta p1, . . . , pn. For any polynomial
function f(q1, . . . , qn), consider the symplectomorphism that maps pi, q

j to

p′i = pi +
∂f

∂qi

qi′ = qi.(4.1)

Symplectomorphisms of this kind together with linear symplectomorphisms35

generate a group that is known as the group of tame symplectomorphisms
of R2n. We will denote it as TAut(R2n). To see how enormous is TAut(R2n),
imagine trying to associate a Lie algebra to this group. (This is technically
problematic in this infinite-dimensional situation.) Such a Lie algebra would

35 It is enough to consider here linear symplectomorphisms �x → A�x rather than affine

linear ones �x → A�x + �b, because constant shifts of the p’s are already included in eqn.
(4.1), and once we include linear symplectomorphisms (which can exchange the p’s and
q’s), constant shifts of the q’s are included as well.



370 D. GAIOTTO AND E. WITTEN

have to include all polynomial functions of the p’s and q’s as generators. In-
deed, the transformations in eqn. (4.1) have generators f(q1, . . . , qn). Since
TAut(R2n) includes linear symplectomorphisms, which in particular can ex-
change the p’s and q’s, a hypothetical Lie algebra that includes arbitrary
polynomial functions of the q’s as generators also has to include arbitrary
polynomial functions of the p’s. But then to get a class of functions that
is closed under Poisson brackets, we have to allow arbitrary polynomials in
the p’s and q’s. So TAut(R2n) is big enough that if it could be treated as a
Lie group, its Lie algebra would include all the polynomials in the canonical
variables.

For n = 1, it is known that TAut(R2n) coincides with the full group
Aut(R2n) of polynomial symplectomorphisms of R2n. It is not known whether
this is true for n > 1. (Note that at the Lie algebra level, one would not
see a distinction between TAut(R2n) and Aut(R2n), since a Lie algebra of
TAut(R2n) would have to have arbitrary polynomial generators, as was just
explained.)

In deformation quantization, instead of Aut(R2n), we can consider the
group Aut(C2n) of all holomorphic polynomial symplectomorphisms of C2n.
Likewise, instead of TAut(R2n), we can consider the analogous tame sub-

group TAut(C2n) generated by 	x → A	x +	b along with the symplectomor-

phisms in eqn. (4.1), where now A, 	b, and f can all be complex. These
groups are symmetries of the classical ring A0 of polynomial functions on
C2n, along with its Poisson bracket. Deformation quantization replaces A0

with a noncommutative ring A, sometimes called the Weyl algebra (defined
by generators xi with relations [xi, xj ] = i�Ωij). A quantum analog of the
classical symmetry groups TAut(C2n) and Aut(C2n) is the group of auto-
morphisms of A. How are TAut(C2n) and Aut(C2n) related to their quantum
analogs?

Kanel-Belov and Kontsevich [52] established the striking result that
TAut(C2n) is a subgroup of the automorphism group of the Weyl algebra,
and conjectured that the possibly larger group Aut(C2n) is the automor-
phism group of the Weyl algebra. This has been subsequently proved by
Kanel-Belov, Elishev, and Yu [53]. (These proofs make heavy use of reduc-
tion modulo a prime p; the Weyl algebra has quite unusual properties after
such reduction.) As will be explained at the end of Section 4.4, the results
of [52, 53] have immediate analogs for quantization of R2n (as opposed
to deformation quantization of C2n). In particular, a central extension of
Aut(R2n) acts as a group of unitary symmetries of the Hilbert space ob-
tained by quantization R2n. There is no quantum deformation. On the one
hand, we might expect this, because this central extension is the group GY

introduced at the outset of this discussion. On the other hand, the result is
remarkable because nothing similar is true at the Lie algebra level. As ex-
plained earlier, a Lie algebra of Aut(R2n) or even TAut(R2n) would have to
contain all the polynomial functions on R2n. Because of the usual anomaly
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in the passage from classical mechanics to quantum mechanics, discussed in
Section 2.1 and Appendix A, there is no way for such a Lie algebra to act
on the quantum Hilbert space without quantum deformation.

It is reasonable to aim to use brane quantization to recover some of the
results of [52, 53]. However, a general polynomial symplectomorphism ϕ of
Y will transform a translation-invariant metric g on Y into a metric gϕ that
is far from being translation-invariant. In general, gϕ may not lead to an
ultraviolet-complete σ-model, and even if it does we will not know how to
interpolate between g and gϕ in a class of metrics on Y that lead to such mod-
els. So to recover from brane quantization some of the results of [52, 53] will
require a different approach. In Section 4.2, we will introduce an approach
that will enable us to study general polynomial symplectomorphisms while
remaining in the ultraviolet-complete world. Another advantage of this ap-
proach is that it provides a good framework to study operators that are
more general than symplectomorphisms.

4.2. Interfaces and operators. A symplectomorphism ϕ of a sym-
plectic manifold Y is an invertible map ϕ : Y → Y that preserves the
symplectic structure ω of Y , in the sense that ϕ∗(ω) = ω. Concretely, if xi

are local coordinates on Y , then ϕ can be defined by expressing x′i = ϕ∗(xi)
as functions of the xk:

(4.2) x′i = f i(xk).

Saying that ϕ is invertible means that these relations can be inverted,

(4.3) xi = ki(x′k)

The condition that ϕ is a symplectomorphism (and not just a diffeomor-
phism) of Y means that ϕ∗(ω) = ω or in more detail

(4.4)
∑
i,j

ωij(x
′)dx′idx′j =

∑
i,j

ωij(x)dx
idxj .

We can of course impose further conditions. If Y is a complex manifold
and ϕ is a holomorphic mapping, then we can choose the xi to be local
holomorphic coordinates and then the functions hi, ki are holomorphic. If
there is a distinguished class of polynomial functions on Y , then ϕ is a
polynomial mapping if the functions hi and ki are polynomials.

The condition (4.4) for a symplectomorphism has an interesting inter-
pretation. Consider the product of two copies of Y , say Y × Y ′, with the xi

viewed as coordinates on Y and the xi
′
viewed as coordinates on Y ′. The con-

ditions x′i = f i(xk) or equivalently xi = ki(x′k) define a middle-dimensional
submanifold L ⊂ Y ×Y ′. Consider Y ×Y ′ as a symplectic manifold with the
symplectic structure ω � (−ω), that is, the symplectic form of Y × Y ′ is the
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Figure 8. The σ-model of a product Y × Y ′ can be under-
stood as a quantum field on a two-manifold Σ that has two
identical sheets. One sheet is mapped to Y and one to Y ′. (a)
We consider a case that the two sheets are coupled only via a
boundary condition associated to a brane BL. We depict this
coupling by gluing the sheets together along the boundary.
(b) After “unfolding,” the brane becomes an interface or do-
main wall IL between σ-models with targets Y (the left part
of the figure) and Y ′ (the right part). IL is supported on the
central vertical line �.

sum of ω on the first factor and −ω on the second.36 Eqn. (4.4) means that
L is a Lagrangian submanifold of Y × Y ′ for this real symplectic structure.

In general, consider a product Y ×Y ′ of two symplectic manifolds Y, Y ′.
A Lagrangian submanifold L ⊂ Y ×Y ′ is called a Lagrangian correspondence
between Y and Y ′. A Lagrangian correspondence L that is associated, as
above, to a symplectomorphism between Y and Y ′ is a very special case in
which, if y0, y

′
0 are points in Y and Y ′, respectively, the intersection of L

with y0 × Y ′ or Y × y′0 is a single point.
If L is a Lagrangian correspondence in Y × Y ′, then upon picking a flat

spinc structure on L, we can define a Lagrangian A-brane BL in the A-model
of Y ×Y ′. In the σ-model of maps Φ : Σ → Y ×Y ′, where Σ is a two-manifold,
the role of the brane BL is to define a possible boundary condition along a
portion ∂0Σ of the boundary of Σ. Since Y ×Y ′ is a simple product, we can
think of Σ as having two sheets, of which one is mapped to Y and one to
Y ′; the two sheets are coupled only along the boundary of Σ. The boundary
condition means that Φ maps ∂0Σ to L ⊂ Y ×Y ′ (with a boundary coupling
that depends on the spinc structure of L). This construction has a useful
“unfolded” version (Fig. 8). For this, we “flip over” or unfold one sheet of

Σ along ∂0Σ. After unfolding, Σ is replaced by a two-manifold Σ̂ in which

36 In more detail, if π : Ŷ → Y1 and π′ : Ŷ → Y ′ are the projections to the two

factors of Ŷ = Y × Y ′, and α, α′ are two-forms on Y and Y ′, one defines α � α′ =
π∗(α) + π′∗(α′). Similarly, if R,R′ are line bundles over the two factors, one defines

R�R′ = π∗(R)⊗π′∗(R′). This is the line bundle over Ŷ that is R on the first factor and
R′ on the second.
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∂0Σ is no longer a boundary but an internal line �. To the “left” of �, Σ is
mapped to Y and to the right it is mapped to Y ′. Thus, in the unfolded
picture, the brane BL is replaced by a domain wall or “interface” IL between
the σ-model of Y and the σ-model of Y ′.

So far these are general remarks about two-dimensional field theories.
Now let us specialize to the case that Y ′ is a second copy of Y , and we are
studying an A-model in which the symplectic form on Y ′ has opposite sign
to that on Y . “Unfolding” reverses the orientation of one sheet of Σ, and in
the A-model, reversing the worldsheet orientation is equivalent to reversing
the sign of the symplectic form. Since we started with opposite symplectic
structures on the two copies of Y , it follows that after unfolding, the sym-
plectic structure is the same everywhere and we simply have the ordinary
A-model of a single copy of Y . What in the previous picture was an A-brane
BL in the A-model of Y × Y ′ becomes after unfolding a topological domain
wall or interface IL in the A-model of Y . Calling this interface “topological”
means that it can be freely moved around in Σ without affecting A-model
observables.37

Topological interfaces or domain walls can be used to define operators
acting on physical state spaces of the A-model. The basic idea is illustrated
in Fig. 9(a). The A-model on a strip R× I (where I is a unit interval) with
boundary conditions associated to branes B1,B2 describes Hom(B1,B2). Now
we add a topological interface I running horizontally across the strip. It is
necessary to provide some information to explain what happens where the
interface meets the left or right boundaries of the strip. Assuming that this
has been done in a satisfactory way, the path integral on the strip defines
an operator O acting on Hom(B1,B2). Reading the picture from bottom to
top, a state in Hom(B1,B2) enters at the bottom and interacts with the
interface; then a possibly different state in Hom(B1,B2) emerges at the top.
(Read from top to bottom, the same picture describes the dual or transpose
operator acting on the dual vector space Hom(B2,B1).)

We will refer to the point where I ends on the left or right boundary of
the strip as an “endpoint” of I with B1 or B2. To understand the endpoints
of interfaces, it is actually convenient to go back to the folded picture. We
do this by folding the worldsheet of Fig. 9(a) along the interface, so that the
locus of the interface becomes a boundary (as it was originally in Fig. 8(a)).
In the folded picture, sketched in Fig. 9(b), the interface I comes from a
brane BL in the A-model of Y ×Y ′ and likewise the left and right boundaries

are labeled by branes B̂1 and B̂2, the folded versions of B1 and B2. The

endpoint of I on B1 or B2 is simply a (BL, B̂1) or (B̂2,BL) corner, as studied
in Section 3.3 and Fig. 3. In other words, these corners are elements of

37In particular, we could move a topological interface up to a boundary, whereupon
it would combine with an existing boundary condition to make a new one. This defines
what in mathematical language could be called a functor on the category of boundary
conditions. This is important in some applications (including geometric Langlands), but
here we will use topological interfaces to define ordinary quantum operators.
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Figure 9. (a) A topological interface I used to define
an operator acting on an A-model physical state space
Hom(B1,B2). On the right and left are branes B1 and B2;
the horizontal line represents the interface I. Additional in-
formation must be provided at the “endpoints” where the
horizontal line in the figure meets the boundaries. A physical
state enters at the bottom of the strip, interacts with the
interface, and emerges at the top. If one reads the picture
from top to bottom, it describes the dual or transpose opera-
tor on Hom(B2,B1). (b) This picture is obtained from (a) by
“folding” along the curve � that supports the interface IL.
Folding replaces � by a boundary that is now labeled by a

brane BL. On the right and left, B̂1 and B̂2 are folded or dou-
bled versions of the branes B1 and B2. The description in the
text began with this folded picture, which was then unfolded
to get the previous one. (c) Composition of operators comes
from composition of the associated topological interfaces I
and I ′ along with the corresponding endpoints. In topologi-
cal field theory, one can fuse the two interfaces and use the
analog of the operator product expansion for local operators
to combine their endpoints.

Hom(BL, B̂1) and Hom(B̂2,BL). They are the sort of thing that we have
discussed at length in Section 3 and Appendix B.

Once corners are chosen, a Lagrangian correspondence defines an oper-
ator acting on the physical states of the A-model. In particular, Lagrangian
correspondences can be used to define operators in brane quantization of a
real symplectic submanifold M ⊂ Y . As noted in Section 2.6.2, this is par-
ticularly important if Y is such that the algebra A0 of holomorphic functions
on Y is relatively “small,” too small to effectively characterize the quanti-
zation of M . Operators derived from correspondences are important in such
a case.

4.3. Composing interfaces. As explained in Section 2.1, there is no
general recipe for quantization, because quantization does not transform the
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classical algebra of functions to a quantum algebra of operators in any sim-
ple way. The usual claim that Poisson brackets are mapped to commutators
is only valid to first order in � or for particular classes of functions and oper-
ators. Any known recipe for quantization singles out some class of functions
that behave well, either by the choice of a polarization or (in brane quan-
tization) by the choice of a suitable complexification of the classical phase
space.

Defining operators via correspondences rather than functions does not
in general avoid this basic difficulty. It merely shifts the problem from com-
posing functions at the quantum level to composing interfaces and the as-
sociated endpoints.

In the A-model, there certainly is a composition law for topological in-
terfaces, analogous to the operator product expansion for local operators. If
I ′ and I are two topological interfaces, then bringing them together gives a
new topological interface I ′′ = I ′·I. But like the operator product expansion
for local operators, the composition law of topological interfaces cannot just
be computed from classical formulas; it is subject to quantum corrections.

If interfaces I and I ′ are used (together with suitable endpoints) to
define operators OI , OI′ , then the composition OI′OI of the operators can
be computed (Fig. 9(c)) by composing the interfaces and the endpoints.
In general, we will run into quantum corrections both in composing the
interfaces and in composing the endpoints. To get useful results, one needs
some way to get these compositions under control.

In our discussion so far, we have only required L ⊂ Y × Y ′ to be a
Lagrangian correspondence for the real symplectic form of the A-model of
Y × Y ′. However, a much more specific situation is natural for problems of
quantizing a classical phase space. Suppose that Y is in the usual sense a
complexification of a real symplectic manifold M that we wish to quantize.
Then to construct an operator in the quantization of M , it is natural to start
with a real Lagrangian correspondence Lr ⊂ M×M ′, where similarly to the
discussion in Section 4.2, M ′ is a second copy of M with opposite symplectic
structure. Then we define L ⊂ Y × Y ′ to be the complexification of Lr. A
generic Lr will not have a nice complexification, meaning a complexification
L whose global properties are good enough that rank 1 A-branes supported
on L exist. Just as a generic smooth or even real-analytic function onM does
not analytically continue to an everywhere-defined holomorphic function on
Y , a generic Lagrangian correspondence in M × M ′ does not have a nice
analytic continuation in Y × Y ′. The correspondences Lr ⊂ M × M ′ that
can be quantized in brane quantization to give quantum operators are the
ones that do have nice analytic continuations in Y × Y ′.

A submanifold of Y ×Y ′ obtained as the complexification of a Lagrangian
correspondence inM×M ′ is not just Lagrangian for the real symplectic form
of Y × Y ′; it is Lagrangian for the complex symplectic form. Hence a rank
1 A-brane BL supported on L is actually a brane of type (B,A,A), that is,
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it is a B-brane in the complex structure of Y and an A-brane for either the
real or imaginary part of the holomorphic symplectic form Ω of Y .

This simplifies the problem of learning how to compose topological inter-
faces in the A-model of ωK = ImΩ. Although in general there are quantum
corrections to the composition of A-model interfaces, there are no quantum
corrections to the composition of B-model interfaces. Those compositions
can be computed classically.

So as long as we consider branes of type (B,A,A) whose moduli as B-
branes are the same as their moduli asA-branes, the corresponding interfaces
can be composed classically. However, there is a subtle point here. A rank 1
(B,A,A)-brane BL supported on L has a CP bundle L that is a flat complex
line bundle (more precisely a flat spinc bundle, but this distinction will not be
important here). To deform BL as a B-brane, we deform L as a holomorphic
line bundle, while to deform it as an A-brane, we deform L as a flat line
bundle. If L is compact, the possible deformations of a flat line bundle L → L
as a holomorphic line bundle are the same as its possible deformations as a
flat line bundle. Therefore the A-model and B-model moduli spaces of BL

are the same (though this moduli space carries different complex structures
in the A- and B-models). Interfaces associated to such L’s have the property
that composing them in the B-model is the same as composing them in the
A-model.

In practice, we are usually interested in interfaces associated to non-
compact L’s. For example, if L is the complexification of a real Lagrangian
correspondence Lr ⊂ M ×M , it will typically not be compact. If L is not
compact, then in comparing the moduli of BL as a B-brane to its moduli as
an A-brane, it is important to ask if the first Betti number b1(L) is positive.
If so, L may admit flat line bundles that are trivial as holomorphic line
bundles. In that situation, BL has moduli as an A-brane that are invisible
in the B-model, and therefore knowing how to compose interfaces of type
(B,A,A) in the B-model does not immediately tell us how to compose them
in the A-model. We can avoid this situation by assuming that b1(L) = 0, in
which case BL has no A-model moduli that are not detected in the B-model.
We will generally do that in what follows.

4.4. Automorphisms. We return to the theme of Section 4.2. I is an
interface in the A-model of Y associated to a Lagrangian correspondence
L ⊂ Y × Y ′, and we want to use I to define an operator acting on H =
Hom(B,Bcc). For this, we need “endpoints” at which I can end on the
two branes Bcc and B. In this section, we focus on Bcc and the relation to
deformation quantization. Quantization is discussed in Section 4.5.

An endpoint at which I ends on Bcc is interpreted, in the folded picture,

as an element of Hom(B̂cc,BL), where BL is a Lagrangian brane supported

on L, and B̂cc is a product of coisotropic branes on the two factors of Y ×Y ′.
Hom(B̂cc, B̂cc) is a product of two copies of A = Hom(Bcc,Bcc), one for each

factor in Y ×Y ′. Those two copies act on the space of corners Hom(B̂cc,BL).
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Figure 10. Operators inserted above or below the endpoint
of an interface I on the brane Bcc provide, respectively, a left
or right action of the algebra A of boundary operators on the
space of endpoints between I and Bcc.

So after unfolding, two copies of A act on the space of endpoints between I
and Bcc. This statement has a simple pictorial interpretation (Fig. 10); an
element x ∈ A can be inserted on the boundary of a two-manifold “below”
or “above” a given endpoint. The insertions below the interface correspond
to a right action of A on the space of interfaces, and the insertions above
the interface correspond to a left action of A. We will denote the interface I
equipped with an endpoint α as I(α). For the left or right action of x ∈ A

on I(α), we write I(α) → xI(α), or I(α) → I(α)x′. But as x only acts on
α, we can also more simply write α → xα or α → αx′.

The action of two copies of A act on the space Hom(B̂cc,BL) of corners
can be seen more explicitly as follows. From Appendix B, the leading ap-

proximation to Hom(B̂cc,BL) is H
0(L,L⊗K

1/2
L ), where L is the CP bundle

of BL and for simplicity we assume the higher cohomology to vanish. Since

L is embedded in Y × Y ′, one can multiply an element of H0(L,L ⊗K
1/2
L )

by either a function on Y or a function on Y ′. After quantum deformation,
this gives the action of two copies of A. (“Folding” maps an algebra to the
opposite algebra, in which operators are multiplied in the opposite order;
this is why one copy of A acts by a left action and one by a right action.)

As an important special case, we can consider an interface I that gen-
erates an automorphism of the algebra A. This means that there is a corner

α ∈ Hom(B̂cc,BL) such that every corner can be written as xα for a unique
x ∈ A, and also as αx′ for a unique x′ in A. This condition determines
an invertible map ϕ̂ from A to itself: for x ∈ A, ϕ̂(x) is the element of
A such that xα = αϕ̂(x). Moreover, ϕ̂ is invertible; for x ∈ A, ϕ̂−1(x)
is the element of A such that ϕ̂−1(x)α = αx. Finally, ϕ̂ is an automor-
phism of A, since for x1, x2 ∈ A, x1x2α = αϕ̂(x1x2) but on the other hand
x1x2α = x1αϕ̂(x2) = αϕ̂(x1)ϕ̂(x2), so ϕ̂(x1x2) = ϕ̂(x1)ϕ̂(x2).

Complex constants are in the center of A and also commute with inter-
faces, so in particular if λ is a nonzero complex constant, then λα generates
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the same automorphism as α. More generally, suppose that x0 is any in-
vertible element of A. Then for x ∈ A, we have x(x0α) = x0(x

−1
0 xx0)α =

x0αϕ̂(x
−1
0 xx0), showing that x0α generates the automorphism x →

ϕ̂(x−1
0 xx0). Conversely, if x0α generates an automorphism, then the cor-

ner α is equal to xx0α for some x ∈ A, implying that x0 has the inverse x.
Thus if there is any corner α by means of which a given interface generates
an automorphism, then the corners that lead to automorphisms are precisely
the ones of the form x0α, where x0 ∈ A is invertible.

In studying automorphisms associated to interfaces, there is consequent-
ly some simplification if Y is such that constants are the only invertible
(polynomial) holomorphic functions on Y . This is actually automatic if we
assume that b1(Y ) = 0, an assumption that will be convenient at several
points in the following.38 A typical example satisfying our assumption is
Y = C2n, which we shortly will study more carefully.

Now let ϕ be a holomorphic symplectomorphism of Y . It is associated to
a complex Lagrangian correspondence L ⊂ Y × Y ′ that parametrizes points
of the form (y, ϕ(y)). L has two maps to Y by forgetting the first or second
factor of Y ×Y ′, and each of these maps is an isomorphism. So as a complex
manifold, L is isomorphic to Y . In particular, L is a complex symplectic
manifold, so it has a canonical spin structure. This gives a canonical choice
for the brane BL in the folded theory, with trivial CP bundle L, and after
unfolding it leads to a canonical interface IL. In what follows, we always
make this canonical choice of BL and IL. Also, since b1(Y ) = 0 and L is
isomorphic to Y , L satisfies b1(L) = 0.

Suppose instead that ϕ, ϕ′ are two holomorphic symplectomorphisms of
Y , associated to complex Lagrangian correspondences L,L′ and topological
interfaces Iϕ, Iϕ′ . Since L,L′ are complex Lagrangian submanifolds, the in-
terfaces Iϕ and Iϕ′ are of type (B,A,A). As explained in Section 4.3, that
means (since b1(L) = b1(L

′) = 0) that these interfaces can be composed
classically, viewing them as B-model interfaces. That classical composition
is simple to describe. In crossing Iϕ, a generic σ-model field jumps from X
to ϕ∗(X), and in crossing Iϕ′ , there is a similar jump from X to ϕ′∗(X).
Since we have chosen the CP bundles to be trivial, this is all that hap-
pens. In crossing first Iϕ and then Iϕ′ , X jumps first to ϕ∗(X) and then
to ϕ′∗(ϕ∗(X)). The final result is that X is mapped to (ϕ′ ◦ ϕ)∗(X). In
other words, the composition Iϕ · Iϕ′ is simply Iϕ′◦ϕ, where ϕ′ ◦ ϕ is the
composition of the two symplectomorphisms.

Though interfaces of type (B,A,A) can be composed in this simple way
in bulk, in general there is no equally simple way to compose their endpoints
with Bcc. An exception is the case related to automorphisms of A. Suppose

38Suppose that the holomorphic function f on Y is invertible, meaning that it nowhere
vanishes. Then the closed 1-form λ = d log f is globally-defined. If λ is exact, λ = du for
a globally-defined holomorphic function u, then f = Ceu (with a non-zero constant C)
and f grows exponentially at infinity. If λ is not exact, then λ defines a nonzero element
of H1(Y,C) and b1(Y ) > 0.
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that Iϕ and Iϕ′ , equipped with endpoints α and α′, generate automorphisms
ϕ̂ and ϕ̂′ of A. This means that for x ∈ A, we have xIϕ(α) = Iϕ(α)ϕ̂(x)
and xIϕ′(α′) = Iϕ′(α′) ϕ̂′(x). Combining these relations, we see that

(4.5) xIϕ(α)Iϕ′(α′) = Iϕ(α)ϕ̂(x) Iϕ′(α′) = Iϕ(α) Iϕ′(α′)ϕ̂′(ϕ̂(x)).

In other words, setting ϕ′′ = ϕ′ ◦ ϕ, when we compose Iϕ(α) and Iϕ(α′),
the endpoints compose in such a way that the composite interface Iϕ′′ is
equipped with an endpoint α′′ via which it generates the automorphism
ϕ̂′ ◦ ϕ̂.

To make this interesting, we need to know that Y has many symplec-
tomorphisms such that the corresponding interface, equipped with a suit-
able endpoint, generates an automorphism of A. As an example, we will
consider the case Y = C2n with its standard complex symplectic structure
Ω = 1

2�

∑2n
i,j=1 ωijdx

idxj . We will make use of some scaling arguments, which
hold for the following reason. When we construct the A-model of Y using a
flat hyper-Kahler metric, the resulting σ-model has a global symmetry group
Spc(2n) that leaves fixed the hyper-Kahler metric, and anR-symmetry group
SU(2)R that rotates the three complex structures I, J,K that form part of
the hyper-Kahler structure. In particular, SU(2)R has a subgroup U(1)R
that leaves fixed the complex structure I under which Ω is holomorphic.
Under U(1)R, x has charge 1 and � has charge 2. This accounts for one of
the scaling symmetries that will be used in what follows. To get the other,
first split the x’s into p’s and q’s in the usual way, so that Ω = 1

�

∑
i dpidq

i.
Then (with a suitable choice of the flat hyper-Kahler metric) Spc(2n) has
a subgroup U(1)′ under which p and q have charges 1 and −1 (while � is
invariant). The group U(1)R × U(1)′ has a diagonal subgroup under which
q is invariant while p and � scale in the same way, accounting for the other
scaling symmetry that is used in what follows.

We will explain how to recover from the brane construction the result
of Kanel-Belov and Kontsevich [52] that the tame automorphism group
TAut(C2n) acts as a group of automorphisms of the quantum-deformed al-
gebra A of polynomial functions on C2n (the Weyl algebra). Let TAut0(C

2n)
be the subset of TAut(C2n) consisting of elements ϕ ∈ TAut(C2n) such that
the corresponding interface Iϕ, equipped with a suitable endpoint α, gen-
erates an automorphism ϕ̂ of A. The above arguments show that the auto-
morphism ϕ̂ associated to ϕ is unique (when it exists), and that TAut0(C

2n)
is at least a semigroup. Moreover, this semigroup acts via automorphisms
of A. We will show that the generators of TAut(C2n) which were described
in Section 4.1 belong to TAut0(C

2n). Therefore TAut(C2n) is the same as
TAut0(C

2n) and acts as a group of automorphisms of A.
The statement that the generators of TAut(C2n) are in TAut0(C

2n) fol-
lows from simple scaling arguments. One generator of TAut(C2n) is a linear
symplectomorphism ϕ : 	x → A	x, with A ∈ Sp(2n,C). At the classical level,

the space of corners between B̂cc and a Lagrangian brane supported on a

correspondence L is in general H i(L,L⊗K
1/2
L ), where L is the CP bundle.
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In the present case, L and K
1/2
L are trivial and with L ∼= C2n, the higher

cohomology vanishes, so the space of corners reduces at the classical level to
H0(L,O), the space of holomorphic functions on L. Classically, we can pick
the constant function 1 ∈ H0(L,O) and use it to define a corner between BL

and B̂cc and thus an endpoint α of Iϕ on Bcc. The function 1 does nothing
classically; picking this function means that even along the boundary of Σ,
the effect of the interface is just to cause a jump from m to ϕ(m). In the
case of the symplectomorphism ϕ : 	x → A	x, this means that any boundary
observable f(	x) jumps at the classical level to f(A	x):

(4.6) f(	x)Iϕ(α) = Iϕ(α)f(A	x).
This is a classical formula. If the function f is nonlinear, then we have to pay
attention to the ordering of factors in the noncommutative algebra A and
possible quantum corrections, so in general one cannot expect a statement
as simple as this in the quantum-deformed theory. However, in the particular
case at hand there is a simple answer, because to characterize the action of
the interface on A, it suffices to explain what happens to the linear functions
on C2n, which generate the algebra A. If x is any linear function on C2n,
the formula

(4.7) xIϕ(α) = Iϕ(α)A(x)

is not subject to any quantum correction. This follows from the scaling by
U(1)R that was explained earlier, in which x scales with degree 1, and �

with degree 2. Since all elements of A have non-negative degree, this scaling
symmetry leaves no possibility of any correction to eqn. (4.7).

After splitting the x’s into p’s and q’s in the usual way, the symplectic
form becomes Ω =

∑
i dpidq

i/� and the other generators of TAut take the
form

ϕ∗(pi) = pi + ∂f/∂qi

ϕ∗(qi) = qi.(4.8)

Let Lf be the correspondence associated to this symplectomorphism and
If the corresponding interface. Equipped with an endpoint α associated
to the constant function 1 ∈ H0(L,O), the interface If implements the
automorphism indicated in eqn. (4.8), in the sense that qiIf (α) = If (α)qi,
and piIf (α) = If (α)(pi+∂f/∂qi), at least in the limit � → 0. We explained
earlier that at f = 0, there is a scaling symmetry in which p and � have
degree 1 while q has degree 0. We can extend this to the case f �= 0 by
saying that f has degree 1. This scaling symmetry leaves no room for any
correction to the formula, given that it holds at f = 0 (where the interface
is trivial, so ϕ∗(pi) = pi, with no correction of order �). So these additional
generators are also contained in TAut0(C

2n).
Ideally, one would like to similarly show that not just TAut(C2n) but

the possibly larger group Aut(C2n) acts as a group of automorphisms of A,
as has been proved in [53]. The main difficulty is as follows. Let ϕ be a
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hypothetical polynomial symplectomorphism of C2n that is not contained
in TAut(C2n), and let L and Iϕ be the corresponding correspondence and
interface. One would like to claim that there is a canonical endpoint between
Iϕ and Bcc associated to the function 1 ∈ H0(L,O), but this requires some
knowledge about L, as explained in Appendix B.2. One would then hope to
show that Iϕ, equipped with the canonical endpoint, implements an auto-
morphism of A; the argument that TAut(C2n) is a group of automorphisms
of A would then be finished by using the relation to the B-model to show
that these automorphisms compose properly. For the subgroup TAut(C2n),
we were able to skip most of these steps because one could see directly that
the generators TAut(C2n) do implement automorphisms. As explained in
Appendix B.2, it is possible to prove directly that the canonical endpoint
exists for the generators of TAut(C2n), because of their simple structure,
but for a hypothetical non-tame ϕ, a more sophisticated argument would be
needed.

Up to this point, we have considered deformation quantization only. In
Section 4.5, we explain what new ingredients are needed for a similar dis-
cussion of quantization. But in the important special case of R2n, we can
do this immediately in an ad hoc way. To get symmetries of quantization,
we should restrict from TAut(C2n) to its subgroup consisting of symplec-
tomorphisms that restrict to real symplectomorphisms of R2n. We call this
subgroup TAut(R2n). TAut(R2n) is generated by the linear symplectomor-
phisms 	x → A	x, now with A ∈ Sp(2n,R), along with the transformations
(4.8), now with f restricted to be real.

Given what we have already learned, it is not difficult to prove that
TAut(R2n), or more precisely a central extension of it by U(1), acts as a
group of unitary transformations of the Hilbert space H that is obtained in
quantizing R2n. First let us check that the generators of TAut(R2n) can be
realized as unitary transformations of H that, by conjugation, generate the
expected automorphisms of A. For the linear symplectomorphisms 	x → A	x,
this is just the familiar statement that the group Sp(2n,R), or more precisely
a double cover of it, acts unitarily on H. As for the transformation pi → pi+
∂if(q) of eqn. (4.8), if we realize H as a space of functions ψ(q1, q2, . . . , qn)
of the q’s, then this transformation is implemented by the unitary operator
of multiplication by exp(if(q)/�).

Given any ϕ ∈ TAut(R2n), we can write it as a word in the generators
of this group. Then multiplying the unitary transformations associated to
the generators, we get a unitary transformation Uϕ that we associate to ϕ.
A different way to write ϕ as a word in the generators might associate to

ϕ a different unitary transformation Ũϕ. However, we already know that

TAut(R2n) acts as a group of symmetries of A, so both Uϕ and Ũϕ must
generate by conjugation the automorphism associated to ϕ. Since the only
operators on H that commute with A are the complex scalars, this implies

that we must have Ũϕ = eiαUϕ with eiα ∈ U(1). Hence the association
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ϕ → Uϕ represents an action on H of a central extension

(4.9) 1 → U(1) → TAut∗(R2n) → TAut(R2n) → 1.

This central extension is nontrivial, and cannot be reduced to a central
extension by a proper subgroup of R2n. Indeed TAut(R2n) contains the group

of translations 	x → 	x+	b, and just to realize this group as a group of quantum
symmetries, one needs the central extension by U(1). If one restricts to
a subgroup of TAut(R2n) consisting of transformations that leave fixed a
specified point in R2n, the central extension may reduce to an extension by
a finite subgroup, possibly Z2.

4.5. Application to quantization. We aim next to get results about
quantization analogous to the results about deformation quantization in Sec-
tion 4.4. For this, we specialize to the case of a complex symplectomorphism
ϕ of Y that is the analytic continuation of a real symplectomorphism ϕr of
M . We assume that ϕr lifts to a symmetry of the prequantum line bundle
L → M ; in other words, we assume that ϕ∗

r(L) is isomorphic to L as a
unitary line bundle with connection. We write Lr for the Lagrangian cor-
respondence in M ×M ′ associated to ϕr, and L for its complexification in
Y ×Y ′. Let Iϕ be the corresponding topological interface in the A-model of
Y . In the last section, we discussed the properties of an endpoint α where
Iϕ ends on Bcc such that Iϕ implements an automorphism of the algebra A.
In order for Iϕ to act not just on A but on the quantum Hilbert space, that
is on the A-module H = Hom(B,Bcc), we need also an endpoint β where Iϕ
ends on the Lagrangian brane B that is supported on M .

In the folded picture, B comes from a Lagrangian brane B̂ that is sup-
ported on M ×M ′ ⊂ Y × Y ′, with Chan-Paton bundle L−1 �L (the second
factor is the inverse of the first because folding replaces the CP bundle with
its dual). The interface Iϕ comes in the folded picture from a Lagrangian
brane BL supported on L, with trivial CP bundle. The leading approxima-

tion to the space of corners Hom(BL, B̂) is just the de Rham cohomology of
the intersection L ∩ (M ×M ′), with values in the tensor product of the CP
bundles. Since BL has trivial CP bundle, the relevant product of CP bundles
is simply L−1 � L.

The intersection L∩(M×M ′) is the real Lagrangian correspondence Lr.
Since Lr parametrizes pairs (m,ϕr(m)) ∈ M ×M ′, it is topologically a copy
of M . For simplicity, we assume that b1(M) = 0 (we continue to assume
that b1(Y ) = 0). This implies that b1(Lr) = 0, and that the A-model space

Hom(BL, B̂) is just the de Rham cohomology of Lr with values in L−1 � L.
L−1 � L is, of course, not trivial as a line bundle over M × M ′, but the
assumption that ϕ∗

r(L) is isomorphic to L means that L−1 � L is trivial
when restricted to Lr. The isomorphism between ϕ∗

r(L) and L is unique
up to multiplication by a complex number of modulus 1. Every choice of
isomorphism β : L → ϕ∗(L) determines an element β ∈ H0

dR(Lr,L
−1 � L).

These are the canonical endpoints between Iϕ and B.
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Corners of this kind have a simple meaning in terms of the σ-model map
Φ : Σ → Y . Φ maps a two-manifold Σ to Y , while mapping a component
of ∂Σ labeled by B to M . At an endpoint σ where an interface Iφ meets
∂Σ, the map Φ : ∂Σ → M is discontinuous, with a jump from m to ϕ(m).
Importantly, if we define the endpoint using a class β ∈ H0

dR(Lr,L
−1 � L),

there is no further restriction on the behavior of Φ(σ). If instead we use,
for example, an element of Hk

dR(Lr,L
−1 � L) that is Poincaré dual to a

codimension k manifold V ⊂ Lr, we would have to impose a constraint
Φ(σ) ∈ V .

The condition “no constraint” reproduces itself nicely when we compose
interfaces. Let ϕr, ϕ

′
r be two real symplectomorphisms of M that lift to

symmetries of L, and define ϕ′′
r = ϕ′

r ◦ ϕr. In bulk, the relation to the B-
model shows that the corresponding interfaces compose in the natural way,
Iϕ′ · Iϕ = Iϕ′′ . We would like to equip them with endpoints with B so
that this simple composition law still holds when the interfaces are ending
on Bcc. For this, we use the simple endpoints associated to isomorphisms
β : L → ϕ∗

r(L), β
′ : L → ϕ′

r
∗(L). Such endpoints impose no constraint,

in a sense mentioned in the last paragraph, when an interface Iϕ or Iϕ′

ends on ∂Σ. The composition of “no constraint” with “no constraint” is
“no constraint.” If we define β′′ : L → ϕ′′

r
∗(L) by β′′ = β′ ◦ β then the

composition of the interfaces, including their endpoints on ∂Σ, is simply
Iϕ′(β′) · Iϕ(β) = Iϕ′′(β′′).

A few things about this answer are worth emphasis. First, this is a
much more straightforward answer for endpoints of these interfaces on the
Lagrangian brane B than we had for their endpoints on Bcc. Second, to
get this answer, we had to consider pairs consisting of symplectomorphisms
ϕr : M → M together with isomorphisms β : L → ϕ∗(L). Such a pair is
an element of the symmetry group G of classical mechanics, as defined in
Section 2.1.

Now let T be the set of complex symplectomorphisms of Y that, when
equipped with suitable corners with Bcc, generate automorphisms of A. Thus
for any ϕ ∈ T , the interface Iϕ has an endpoint α such that Iϕ(α) generates
an automorphism. We learned in Section 4.4 that T is a group, which more-
over acts as a group of automorphisms of A. Let Tr be the subgroup of T
consisting of symplectomorphisms that map M to itself, and that when re-
stricted to M lift to symmetries of L. Because the symmetry of L associated
to a symplectomorphism is only unique up to an overall phase, Tr appears
in a central extension

(4.10) 1 → U(1) → T ∗
r → Tr → 1.

Each ϕ ∈ Tr is the analytic continuation of some ϕr : M → M , such that
there exists an isomorphism β : L → ϕ∗

r(L). This isomorphism can be used
to define an endpoint of Iϕ on B, which we also call β. Equipping each Iϕ for
ϕ ∈ Tr with such endpoints α, β, we define a quantum operator Oϕ,α,β acting
onH = Hom(B,Bcc). In view of what has been said about the bulk operators
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and the endpoints, these operatorsOϕ,α,β compose properly to give an action

on H of the group T̂r. At the end of Section 4.4, we demonstrated this for
M = R2n in a way that relied on the fact that the algebra A is rather large
in that case. However, the result holds even when A is not so large.

4.6. Unitarity. Suppose that we use an interface I, with suitable end-
points, to construct a linear map O : Hom(B1,B2) → Hom(B1,B2). There is
always a dual or transpose map O∗ : Hom(B2,B1) → Hom(B2,B1). We can
visualize the definition of the dual or transpose operator by rotating Fig. 9(a)
by an angle π (keeping fixed the orientation of the plane) or equivalently by
reading the figure from top to bottom.

Let us consider the case that the operator O is associated to an in-
terface Iϕ (together with endpoints on B1,B2) for some symplectomorphism
ϕ : Y → Y . This means that σ-model fields jump by the action of ϕ in cross-
ing Iϕ from bottom to top. If we read Fig. 9(a) from top to bottom, then the
jump is by ϕ−1. So if O : Hom(B1,B2) → Hom(B1,B2) is derived from a sym-
plectomorphism ϕ, then the dual operatorO∗ : Hom(B2,B1) → Hom(B2,B1)
is derived from the inverse symplectomorphism.

Now suppose that the A-model of Y has an antisymplectic involution
τ . If the branes B1, B2 are τ -invariant, then according to the discussion in
Section 2.7, Hom(B1,B2) carries a natural hermitian metric. Relative to this
metric, the adjoint of O is defined by

(4.11) O† = ΘτO∗Θτ .

So if O is associated to a symplectomorphism ϕ, and O∗ to ϕ−1, then O†

will be similarly associated to τϕ−1τ (again with some endpoints on B1,B2).
In the situation relevant to quantization, B1 is a Lagrangian brane B

supported on a component M of the fixed point set of τ , and B2 = Bcc. To
be a symmetry of H = Hom(B,Bcc), ϕ should be the analytic continuation
to Y of a real symplectomorphism ϕr : M → M . But this means that ϕ
is τ -invariant. Hence τϕ−1τ = ϕ−1. So if O : H → H is defined via the
interface Iϕ, with some endpoints, then O† : H → H is similarly defined via
the interface Iϕ−1 , with some endpoints.

Hence O†O is associated to the trivial interface, and must be simply a
complex scalar of modulus 1. But since O†O is nonnegative, we must have

(4.12) O†O = 1.

Thus any O that is associated to a symplectomorphism by this construction
is unitary.

5. Quantizing a complex manifold

One of the main ideas in brane quantization is to view a complex sym-
plectic manifold Y as a real symplectic manifold, and study its A-model.
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Given an antiholomorphic involution τ : Y → Y , satisfying certain condi-
tions, one uses this A-model to quantize a component of the fixed point set
of τ .

Once one views Y as a real symplectic manifold, why not quantize Y ? Is
there a natural way to understand the quantization of Y in this framework?
For this, we first need a complexification of Y , viewed as a real manifold.
In fact, a complex manifold, viewed as a real manifold, has a canonical

complexification. We just define Ŷ = Y1 × Y2, where Y1 and Y2 are two
copies of Y , with opposite complex structures. In other words, if the complex
structure of Y1 is I, then the complex structure of Y2 is −I. This ensures

that the involution τ of Ŷ that exchanges the two factors is antiholomorphic.
The fixed point set of τ is a copy of Y , embedded as the diagonal in Y1 ×
Y2. To study the quantization of Y in this framework, we want to pick a

complex symplectic form Ω̂ on Ŷ whose restriction to the diagonal is the
real symplectic form of Y that we want to use for quantization. Assuming
that Y has a complex symplectic form Ω and that we want to quantize it with
the real symplectic form ωJ = ReΩ, a suitable choice for the holomorphic

symplectic form of Ŷ is Ω̂ = 1
2Ω� 1

2Ω; in other words, the complex symplectic

form of Ŷ is 1
2Ω on Y1 and 1

2Ω on Y2. This has the desired property of

restricting to ωJ on the diagonal in Ŷ . So the A-model of Ŷ with the real

symplectic structure Im Ω̂ is a suitable framework for understanding the
quantization of Y with symplectic structure ωJ . We take the B-field of this

B-model to be B = Re Ω̂, or in more detail B = 1
2ωJ � 1

2ωJ ; in other words,

the B-field is 1
2ωJ on each factor. The restriction of B to the diagonal is

B|Y = ωJ .
The next step is to introduce canonical coistropic A-branes. On Y1, the

relation I = ω−1B = (12ωK)−1 1
2ωJ tells us that a brane Bcc,1 with triv-

ial CP bundle is an A-brane. Similarly, on Y2, the relation −I = ω−1B =
(−1

2ωK)−1 1
2ωJ tells us that a brane Bcc,2 with trivial CP bundle is an A-

brane. Here we use the fact that I and −I are both integrable complex struc-

tures. The product brane B̂cc = Bcc,1 × Bcc,2 is then a canonical coisotropic

brane over Ŷ = Y1 ×Y2. Its CP bundle is trivial. The antiholomorphic sym-

metry τ̂ that exchanges the two factors maps B̂cc to itself, exchanging the
two factors.

This setup is therefore suitable for quantization of the Lagrangian sub-

manifold Y ⊂ Ŷ . We let B̂ be a rank 1 Lagrangian A-brane supported on
Y . Since B|Y = ωJ , the condition F + B = 0 for a Lagrangian brane tells
us that the CP curvature of B must be F = −ωJ . If, therefore L → Y is a
prequantum line bundle in the sense of geometric quantization appropriate
for quantizing Y with symplectic form ωJ , then L−1 is suitable as a CP
bundle for B. The anomaly involving spin is not relevant, since the complex
symplectic manifold Y has a canonical spin structure. So L is simply an
ordinary complex line bundle over Y .
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Finally, Hom(B̂, B̂cc) is a quantization of Y with prequantum line bun-

dle L. The quantum Hilbert space H = Hom(B̂, B̂cc) will admit a natural

action of Hom(B̂cc, B̂cc). Because of the product nature of the construc-

tion, Hom(B̂cc, B̂cc) is simply the product of two commuting factors, namely
Hom(Bcc,1,Bcc,1) and Hom(Bcc,2,Bcc,2). Here Hom(Bcc,1,Bcc,1) is a deforma-
tion quantization of the algebra of holomorphic functions on Y1 in complex
structure I, and Hom(Bcc,2,Bcc,2) is similarly a deformation quantization
of the algebra of holomorphic functions on Y2 in complex structure −I, or
equivalently the algebra of antiholomorphic functions in complex structure
I. In other words, what acts on H is a product A× A, where A is a defor-
mation quantization of the algebra of holomorphic functions on Y , and A is
the complex conjugate of another copy of A.

This construction also has a useful “unfolded” version. It seems that this
is most elegantly described in case the prequantum line bundle has a square
root, say L = L2. Thus the curvature of L is 1

2ωJ . Of course, there is an
obstruction to the existence of such an L: c1(L) must be even.

Given the existence of L, we can make a B-field transformation to set
B to zero, after which both Bcc,1 and Bcc,2 have CP bundles isomorphic to
L. In this description, we solve the condition F+ B = 1

2ωJ for a coisotropic

brane with B = 0, F = 1
2ωJ ; in the previous description, we had F = 0,

B = 1
2ωJ .
After the B-field transformation, the CP bundle of the Lagrangian brane

B̂ is trivial, with a trivial connection. As a check on this statement, the
curvature constraint for a Lagrangian brane is F+B = 0, so in a description
with B = 0, we need F = 0 and the CP bundle can be trivial.

Now consider a (B̂, B̂cc) string. This is a state in a σ-model that is the
product of two copies of the σ-model of Y . The two copies, which correspond
to Y1 and Y2, are potentially coupled by boundary conditions (determined by
the branes) on the boundaries of the string worldsheet. Suppose the string
worldsheet is a strip R × [0, π], where the interval [0, π] is parametrized by
σ, and R is parametrized by τ . At σ = 0, the boundary condition is set

by B̂cc = B̂cc,1 × B̂cc,2; since this is the product of a brane on Y1 and a
brane on Y2, the boundary condition at σ = 0 gives no coupling between
the two copies of the σ-model. There is such a coupling at the other end of

the string, at σ = π, since the brane B̂ is not a product. In short, away from
σ = π, we just have two strings, living in two copies of the σ-model of Y ;

at σ = π the two strings are coupled by a boundary condition. But since B̂
is supported on the diagonal in Y1 × Y2, the boundary condition just says
that the two strings on the interval [0, π] have the same boundary values at
σ = π. Gluing them together at σ = π and “unfolding,” we just get a single

map from a doubled interval [0, 2π] to Y . Because the CP bundle of B̂ is
completely trivial, after unfolding, nothing special is happening at σ = π.
We just have a single copy of the σ-model of Y on the doubled interval. This
unfolding procedure is basically the same one that was sketched in Fig. 8,
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one difference being that the role of L is played in the present discussion by
the diagonal in Y1 × Y2, so the interface IL is trivial.

However, we have to discuss what unfolding has done to the coisotropic
branes that were formerly setting the boundary condition at σ = 0. One
of them, say Bcc,2, now sets the boundary condition at σ = 2π. The un-
folding has reversed the orientation of the string worldsheet in the region
σ > π. Reversing the orientation exchanges the notion of holomorphic and
antiholomorphic maps from the worldsheet to Y , which in the context of
the A-model is equivalent to reversing the sign of the symplectic structure.
This leads to a very simple answer. Prior to unfolding, the two copies of
the σ-model had A-model symplectic structures ωK and −ωK , respectively.
After unfolding, the sign in the second factor is reversed, and therefore the
symplectic structure is ωK in both copies. Therefore, after unfolding, we just
get an ordinary A-model of Y , with symplectic structure ωK , on the whole
unfolded interval [0, 2π]. But what happens to the brane Bcc,2 that sets the
boundary condition at σ = 2π? An orientation of a two-manifold induces
an orientation of its boundary, so after unfolding, the natural orientation of
the boundary at what is now σ = 2π has been reversed. Reversing the ori-
entation of the boundary inverts what we mean by parallel transport along
the boundary, so it replaces the CP bundle L of a brane by its inverse, and
in particular reverses the sign of the CP curvature.

Therefore, after unfolding, the branes at σ = 0 and at σ = 2π have op-
posite CP curvatures 1

2ωJ and −1
2ωJ , respectively. The brane at σ = 0

is the original canonical coisotropic brane Bcc = Bcc,1, with CP curva-
ture F = 1

2ωJ , so that A = Hom(Bcc,Bcc) is a deformation quantiza-
tion of the algebra of holomorphic functions on Y in complex structure
ω−1F = (12ωK)−1(12ωJ) = I. The brane at σ = 2π is a conjugate brane Bcc

with CP curvature F = −1
2ωJ , so that Hom(Bcc,Bcc) is a deformation quan-

tization of the algebra of holomorphic functions on Y in complex structure
(12ωK)−1(−1

2ωJ) = −I; equivalently it is the algebra A of antiholomorphic
functions in complex structure I.

What in the folded picture is Hom(B̂, B̂cc) is reinterpreted in the unfolded
picture as Hom(Bcc,Bcc) in the A-model of a single copy of Y . This unfolded
picture gives an alternative and sometimes convenient description of the
Hilbert space obtained by quantizing Y , assuming that the prequantum line
bundle L has a square root. Of course, the relation of Hom(Bcc,Bcc) to
quantization of Y can be argued directly, without starting with the folded
version of the construction, via an unfolded version of the argument that
was sketched in Section 2.6. A special case (with Y = T 4) was analyzed
directly in [15].

The reason that we set the B-field to zero before unfolding is that oth-
erwise, as the B-field is odd under orientation reversal, after unfolding the
B-field has a sign discontinuity at the center of the unfolded strip. The dis-

continuity, together with the CP bundle of the brane B̂, makes a topological
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line operator that can be moved to the left or right of the strip. By moving
it all the way to the left or right, one can avoid having a discontinuity in
the strip, but this breaks the symmetry between the two ends of the strip
that is important in defining a Hilbert space inner product. The unfolded
description with B = 0 maintains this symmetry, at the cost of having to
assume that L has a square root.

In the application of this unfolded construction to geometric Langlands
[29], ωJ is cohomologically trivial, and L is a trivial line bundle with a trivial
square root. In such a case, the version of the unfolded construction without
a B-field is convenient.
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Appendix A. The anomaly

To illustrate the anomaly in the passage from classical mechanics to
quantum mechanics, we consider R2, parametrized by real variables x1, x2
with Poisson brackets {x1, x2} = 1. Upon quantization, x1 and x2 become
operators x̂1, x̂2 that satisfy [x̂1, x̂2] = −i�. In analyzing the problem of
quantization, we assume that the quantization of a polynomial of degree k
in the xi, for any k ≥ 1, is supposed to be a polynomial of degree k in the x̂i
with the same leading terms. The question is whether ordering of factors in
the quantum operator and possible subleading terms can be chosen so that
commutators will match precisely with Poisson brackets.

The Weyl ordering 〈x̂i1 x̂i2 · · · x̂ik〉 of a monomial xi1xi2 · · ·xik is defined
as the average over the k! possible orderings of the factors:

(A.1) 〈x̂i1 x̂i2 · · · x̂ik〉 =
1

k!
(x̂i1 x̂i2 · · · x̂ik + x̂i2 x̂i1 · · · x̂ik + · · · ) .

We do not assume to begin with that Weyl ordering is the best way to order
factors. We will see that no matter how the factors are ordered and what
lower order terms are added, there is no way to avoid an anomaly in the
quantization of polynomials in x1, x2. In a sense that will be explained, Weyl
ordering comes closest to avoiding an anomaly.

For polynomials of degree ≤ 2, there is no anomaly. The commutators
of Weyl-ordered polynomials of degree ≤ 2 match the Poisson brackets of
the corresponding classical polynomials in the expected way. Weyl ordering
is the unique procedure with this property: adding lower order terms to the
Weyl-ordered polynomials of degree ≤ 2 would modify their commutators.
We will assume that this is known (or that the reader will verify it) and
explain that there is an anomaly if one considers polynomials of degree
greater than 2.
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The homogeneous quadratic polynomials in x1 and x2, namely x21, x
2
2,

and x1x2, generate by Poisson brackets the Lie algebra SL(2,R). Homoge-
neous polynomials in x1, x2 of degree k span a k+1-dimensional vector space
and transform in an irreducible representation of SL(2,R) of degree k + 1.
Since there is no anomaly for quadratic polynomials, the Weyl-ordered qua-
dratic polynomials in x̂1, x̂2, namely x̂21, x̂

2
2, and

1
2 (x̂1x̂2 + x̂2x̂1), likewise

generate the Lie algebra of SL(2,R) by commutators. Weyl-ordered homo-
geneous polynomials of degree k in x̂1, x̂2 transform in an irreducible repre-
sentation of SL(2,R) of degree k + 1, just like their classical counterparts.
Any other choice of ordering (or equivalently any addition to the degree k
Weyl-ordered polynomials of lower order terms) would spoil this fact, since
polynomials of degree less than k transform in smaller representations of
SL(2,R). Thus if and only if one uses Weyl ordering, there is no anomaly in
the commutator of a homogeneous quadratic polynomial with a homogenous
polynomial of any degree k.

However, an anomaly appears in the commutator of two Weyl-ordered
polynomials of degree greater than 2. To show this, it suffices to exhibit an
anomaly in a special case. Let z = (x1 − ix2)/

√
2, z = (x1 + ix2)/

√
2, so

{z, z} = i and [ẑ, ẑ] = �. We have {z3, z3} = 9iz2z2, so absence of an anomaly

would require [z3, z3] = 9�
〈
ẑ, ẑ, ẑ, ẑ

〉
. But a short calculation reveals that

instead

(A.2) [ẑ3, ẑ
2
] = 9�

〈
ẑ, ẑ, ẑ, ẑ

〉
+

3

2
�3,

exhibiting the anomaly.
In this particular example, the anomalous term in the commutator is

a c-number. For polynomials of higher degree, say z3 and z4, that is not
the case. This assertion follows without any further computation from the
Jacobi identity [ẑ, [ẑ3, ẑ4]] + [ẑ4, [ẑ, ẑ3]] + [ẑ3, [ẑ4, ẑ]] = 0.

Appendix B. Details on Hom(Bcc,Bcc) and Hom(B,Bcc)

B.1. Lowest order calculations. The purpose of this appendix is to
sketch the computation of Hom(Bcc,Bcc), and of Hom(B,Bcc), where B is a
Lagrangian A-brane. The computations are made to lowest order in σ-model
perturbation theory. We discuss possible corrections in Appendix B.2.

To concretely define the A-model of a complex symplectic manifold Y
with symplectic structure ω = ωK , one needs an almost complex structure
on Y with respect to which ωK is of type (1, 1) and positive. If Y admits a
hyper-Kahler structure that extends its symplectic structure, in a sense de-
scribed in Section 2.4, we can use the complex structure K that is part of the
symplectic structure. Even if Y does not admit such a hyper-Kahler struc-
ture, it is always possible to pick on Y an almost hyper-Kahler structure,
meaning a choice of almost complex structures J and K which (together
with the complex symplectic structure of Y ) satisfy the algebraic relations
discussed in Section 2.4. This is possible for the following reason. Suppose
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that Y has real dimension 4k. The complex symplectic structure of Y re-
duces the structure group of its tangent bundle from GL(4k,R) to Sp(2k,C).
A maximal compact subgroup of Sp(2k,C) is the compact form Spc(2k). The
quotient Sp(2k,C)/Spc(2k) is contractible, so once the structure group of
the tangent bundle of Y is reduced to Sp(2k,C), there is no obstruction to
a further reduction to Spc(2k). This is the structure needed to define J and
K and a metric g on Y with all the usual algebraic relations satisfied. More-
over, any two such reductions are homotopic, and hence lead to equivalent
A-models. In making the following analysis, we assume that K is part of an
almost hyper-Kahler structure.

First we consider Hom(Bcc,Bcc), following Section 2.2 of [9]. We consider
a (Bcc,Bcc) string on a strip Σ = R × [0, π], where the second factor is
parametrized by σ. In general, the degrees of freedom of the σ-model are
bosonic fields X that describe a map Φ : Σ → Y , and fermion fields ψ±
valued in Φ∗(TY ) ⊗ S± (here S+ and S− are the positive and negative
chirality spin bundles of Σ). The general A-model transformation of X,
generated by the differential Q of the A-model, is

(B.1) δX = (1− iK)ψ+ + (1 + iK)ψ−.

This means that δX has a (1, 0) piece, proportional to ψ+, and a (0, 1) piece,
proportional to ψ−. Since, away from the boundary of Σ, ψ+ and ψ− are
sections of Φ∗(TY ) ⊗ S± that obey no particular constraint, in order for
an operator F (X,X) in the interior of Σ to be Q-invariant, the function
F must be constant. But we are interested in local operators inserted on
the boundary, and here matters are different. In general [55], on a string
ending on a rank 1 brane with CP bundle of curvature F in the presence of
a two-form field B, the worldsheet fermions obey a boundary condition

(B.2) ψ+ = (g − (F+ B))−1(g + F+ B)ψ−.

For Bcc, with F+ B = ωJ , the boundary condition reduces to

(B.3) ψ+ = Jψ−,

so that along the boundary of Σ, the variation of X reduces to δX = (1 +
iI)(1 + J)ψ−. This means that, relative to complex structure I, along the
boundary of Σ, δX has only a (0, 1) part:

δ1,0X = 0

δ0,1X = ρ,(B.4)

where ρ = (1 + iI)(1 + J)ψ−. Since Q2 = 0, eqn. (B.4) implies that along
∂Σ one has

(B.5) δρ = 0.

Boundary operators F (X,X, ρ) that are of degree q in ρ correspond to (0, q)-
forms on Y , and eqns. (B.4), (B.5) imply that Q acts on such operators as
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the usual ∂ operator, in complex structure I. Hence the space of physical

states in this approximation is the cohomology ⊕dimC Y
q=0 Hq(Y,O).

Now let us consider Hom(B,Bcc), where B is a Lagrangian A-brane of
rank 1, supported on some L ⊂ Y . To find the cohomology of Q acting on
(B,Bcc) strings, we first find the bosonic and fermionic zero-modes along
the string. We work on the same strip as before, with boundary conditions
at σ = 0 and σ = π defined by Bcc and B, respectively. At σ = π, the
map Φ : Σ → Y is constrained to be L-valued. This constraint removes
some bosonic zero-modes along the string; the surviving ones describe a
map Φ : ∂Σ → L. For fermions, the boundary condition at σ = 0 is the
same ψ+ = Jψ− as before. At σ = π, the boundary condition is now

(B.6) ψ+ = Rψ−,

where R : TY → TY is a reflection that acts as +1 on the tangent bundle
TL to L, and as −1 on its orthocomplement TL⊥. In particular R2 = 1.
Combining the two conditions, a fermion zero-mode along the string must
obey Jψ− = Rψ− or (since J2 = −1) JRψ− = −ψ−.

We will first assume that ωJ is nondegenerate when restricted to L, and
show that in this case, −1 is not one of the eigenvalues of JR, implying that
there are no fermion zero-modes along the string. As explained in Section 2.6,
once this is known, the analysis of the effective action for the bosonic zero-
modes then leads to the problem of quantizing L.

To show that −1 is not an eigenvalue of JR, suppose that JRα = −α,
and write α = α+ + α−, where α+ ∈ TL, α− ∈ TL⊥. From JRα = −α
and J2 = −1, it follows that Jα+ = −α−, Jα− = α+. For any χ ∈ TL,
we have ωJ(χ, α+) = g(χ, Jα+) = −g(χ, α−) = 0, where ω( , ) and g( , )
are the antisymmetric and symmetric pairings associated to ωJ and g, and
g(χ, α−) = 0 because χ is valued in TL and α− in TL⊥. Hence, if ωJ is
nondegenerate when restricted to TL, then α+ must vanish. Hence α− =
−Jα+ also vanishes, and α = 0. Therefore JR has no eigenvalue −1, and
there are no fermion zero-modes along the string.

Now let us discuss the opposite case that ωJ vanishes when restricted to
TL. This means that for any χ, χ′ ∈ TL, we have 0 = ωJ(χ, χ

′) = g(χ, Jχ′).
In other words, J maps TL to TL⊥; since J2 = −1, it also maps TL⊥ to
TL, and anticommutes with R. From this it follows that (JR)2 = 1, and
that the eigenspace of JR with eigenvalue −1 is middle-dimensional and
its orthogonal projection to TL is an isomorphism. The quantization of the
fermion zero-modes thus gives a copy of the spin bundle of L, which for a

complex manifold L can be identified as K1/2⊗⊕dimCL
q=1 Ω0,q(L), with Ω0,q(L)

the bundle of (0, q)-forms on L. The variation of a bosonic zero-mode is still
as written in eqn. (B.4), but now the bosonic zero-modes describe a map
to L rather than to Y , and ρ corresponds to a (0, 1) form on L. Therefore,
at this level of description, the cohomology of Q reduces to the cohomology
of a ∂ operator on L. This ∂ operator acts on sections of L−1 ⊗ K1/2,
where the factor of L−1 comes from the CP bundle of B (there is no similar
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factor from Bcc, which has trivial CP bundle), and the factor of K1/2 comes
from quantization of the fermion zero-modes. So the answer we get for the
cohomology of Q is ⊕qH

q(L,L−1⊗K1/2), or more brieflyH∗(L,L−1⊗K1/2).

As explained in the text, L and K1/2 are in general spinc structures rather
than ordinary complex line bundles, but the tensor product L−1 ⊗K1/2 is
always a well-defined complex line bundle.

Going back to the case of Hom(Bcc,Bcc), the reason that we did not

have to include a factor of K1/2 in that example is simply that the canonical
bundle of the complex symplectic manifold Y is always trivial (it is trivialized
by the top exterior power of the holomorphic symplectic form Ω). So Y has a

spin bundle that is just ⊕dimC Y
q=0 Ω0,q(Y ). If not simply-connected, Y may have

other spin bundles, but ⊕dimC Y
q=0 Ω0,q(Y ) is the right one to use because the

identity operator exists as an element of Hom(Bcc,Bcc), and we would lose
that if we quantize the fermion zero-modes with a different spin structure
on Y .

B.2. Corrections. Finally, we discuss the following important point.
All computations that we have performed in this appendix have been based
on lowest order in σ-model perturbation theory; in other words, they corre-
spond to the leading terms in an expansion in � or 1/Ω. Are there important
corrections?

In the example of Hom(B,Bcc), where ωJ is nondegenerate when re-
stricted to L, the conclusion of the above argument was to show that there
are no fermion zero-modes. So Q can be approximated by 0 in a low energy
description and the problem reduces to quantization of L with a certain
prequantum line bundle. We do not claim to have an explicit description of
the resulting quantum Hilbert space Hom(Bcc,B), except in some favorable
cases, notably if a polarization exists with certain good properties. So we
are not making any claim that could be subject to corrections.

In the case of Hom(B,Bcc) where the support of B is a complex La-
grangian submanifold, and also in the case of Hom(Bcc,Bcc), in general cor-
rections to the small � limit are conceivable. Precisely what the question
means is actually rather subtle. We will focus on Hom(B,Bcc), but the case
of Hom(Bcc,Bcc) can be discussed similarly.

One notion of what it might mean to say that Hom(B,Bcc) is “corrected”
relative to the lowest order answer would be that higher order corrections
cause the cohomology of the supercharge Q to be smaller than the coho-
mology of the ∂ operator that we found as the lowest order approximation
to Q. For example, for L a complex Lagrangian submanifold, one might

have u ∈ H0(L,K
1/2
L ), η ∈ H1(L,K

1/2
L ), with both of them annihilated by

∂; but higher order corrections in σ-model perturbation theory might lead
to Qu = εη (with ε a small parameter), removing both u and η from the
cohomology of Q. This sort of correction is possible only if the cohomology

H i(L,K
1/2
L ) is nonzero for two adjacent integers i, i+ 1.
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A simple condition that ensures that there is no correction in that sense

is that H i(L,L−1 ⊗K
1/2
L ) = 0 for i > 0. This is actually so in many of the

examples considered in this article. In any such case, Hom(B,Bcc) is in some
sense uncorrected.

However, it is much more interesting when one can say in a more precise
sense that Hom(B,Bcc) is uncorrected. Before explaining this, we will first
point out two important classes of examples in which one can assume that

L−1 ⊗K
1/2
L is trivial, so that the lowest order answer reduces to H i(L,O).

Further we will specialize to the case that H i(L,O) = 0 for i > 0, so that
the lowest order answer actually reduces to H0(L,O), that is, the ring of
holomorphic functions on L.

For a first class of examples that satisfies these criteria, suppose that
L ∼= Cn is a fiber of a holomorphic polarization of some complex symplectic
manifold Y . Then KL is trivial, and as L is simply-connected, the flat line

bundle L and the square root K
1/2
L are trivial. Finally, it is also true that

H i(Cn,O) = 0 for i > 0.
For a second class of examples, suppose that L ⊂ Y ×Y ′ is a correspon-

dence associated to a holomorphic symplectomorphism of Y . Then L as a
complex manifold is isomorphic to Y , so KL is trivial, and we can choose L
and K

1/2
L to be also trivial. Finally, if H i(Y,O) = 0 (which is the case for

many interesting complex symplectic manifolds, though certainly not all),
L will have the same property.

In either of these cases, Hom(B,Bcc) reduces in the leading approxi-
mation to the space of holomorphic functions on L. This space contains a
distinguished one-dimensional subspace consisting of functions that do not
grow at infinity – constant functions. In our discussion in the text of these
examples, corners associated to a constant function played an important
role. So let us discuss carefully what is involved, beyond the assumptions
that we have made so far, in ensuring that there is a canonical element of
Hom(B,Bcc) associated to the constant function 1.

Let us consider what happens in σ-model perturbation theory, which we
will assume is governed by a small parameter ε (if one rescales the metric
of Y by a constant t, then one can take ε = 1/t). In lowest order in ε, Q
reduces to ∂, which annihilates a constant function. Suppose that in order
εk (for some k > 0), one runs into a first nonzero contribution. This would
take the form

(B.7) Q · 1 = α,

where α is a (0, 1)-form on L that is of order εk. Since Q2 = 0, we will have
Qα = 0, a condition that in order εk just reduces to ∂α = 0. To compensate
for this effect, we choose w such that

(B.8) ∂w = −α.
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Such a w exists, because α is ∂-closed and H1(L,O) = 0. After picking such
a w, we replace 1 with ψ1 = 1 + w and we see that Qψ1 vanishes up to
order εk+1. In higher orders, we may find that Qψ1 is nonzero in order εr

for some r > k. If that happens, we follow the same procedure again and
make a further correction to ψ1.

At each stage of this procedure, we have to solve an equation of the
general form ∂w = −α. Such a w will always exist (since α will always be
∂-closed) and w is uniquely determined up to the possibility of adding to it
a holomorphic function. If it is always possible to pick w in a canonical way,
then this procedure will give a distinguished ψ1 associated to the constant
function 1. So it will not be true that the constant function 1 “is” an element
of Hom(B,Bcc), but it will be true that there is an element of Hom(B,Bcc)
that is canonically associated to the constant function 1. That statement is
what one wants to know in practice for applications.

How would we specify a canonical solution of the equation ∂w = −α?
The obvious way to do this is to ask for w to vanish at infinity along L.
If the equation has a solution such that w vanishes at infinity, then this
solution is unique, since any other solution would be obtained by adding
to w a holomorphic function. If α vanishes fast enough at infinity, then the
equation does have a solution that vanishes at infinity. For example, for
L = Cn parametrized by z1, . . . , zn with metric

∑n
k=1 |dzk|2, if α vanishes

at infinity faster than 1/|z|, then the equation for w has a solution that
vanishes at infinity.

As an important example of a nice situation, suppose that Y and L
are asymptotically conical. This means in particular that their curvatures
vanish at infinity. Since σ-model corrections to the leading order answer
involve the intrinsic and extrinsic curvature of L and the curvature of Y ,
in such a case α will vanish at infinity sufficiently rapidly and w can be
assumed to vanish at infinity. It is reasonable to expect the conclusion of
the above analysis to hold as an exact statement, though the argument was
phrased in perturbation theory.

We will conclude with a couple of simple examples to illustrate poten-
tial pitfalls. For our first example, let Y = C2, parametrized by p, q, with
symplectic form dpdq and flat hyper-Kahler metric |dp|2 + |dq|2. Let Y ′

be a second copy of Y parametrized by p′, q′, and consider the Lagrangian
correspondence L defined by

p′ = p+ qn

q′ = q.(B.9)

The metric of Y × Y ′ is |dp|2 + |dq|2 + |dp′|2 + |dq′|2. After setting q′ = q,
the metric of L is |dp|2 + |dp′|2 + 2|dq|2, with p, p′, q related by p′ = p+ qn.
Let p± = (p′ ± p)/

√
2. We then have L = C × L′, where C is parametrized

by p+ with flat metric |dp+|2, and L′ is parametrized by p−, q, related by

(B.10) qn =
√
2p−,
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and with the metric |dp−|2 + 2|dq|2. Since Y × Y ′ and L have an exact
symmetry that shifts p+ by a constant, the first factor of L = C×L′ decou-
ples from σ-model perturbation theory, and in the preceeding discussion, the
equation ∂w = −α can be understood as an equation on L′. L′ only has one
infinite “end,” with p−, q → ∞. This region is conveniently parametrized by

p−, with q ∼ p
1/n
− , and the form of eqn. (B.10) and of the metric of L′ show

that L′ is asymptotically flat, with curvature vanishing as 1/|p−|4−2/n. So
there will always be a solution with w vanishing at infinity, and this is an
example in which there should exist an element of Hom(B,Bcc) canonically
associated to the constant function 1.

The generators of the group of tame symplectomorphisms of C2n (in
language explained in Section 4.1) can be treated similarly for any n. How-
ever, let us consider a hypothetical non-tame symplectomorphism of C2n.
Parametrizing C2n by coordinates x1, x2, . . . , x2n, a correspondence L asso-
ciated to a symplectomorphism of C2n is in general described by equations

x′i = f i(xk)

xj = kj(x′k)(B.11)

For the case of a general non-tame symplectomorphism, with little known
about the functions f i and the inverse functions kj , it is not clear how to
describe the region at infinity in L and how to argue that the equation
∂w = −α will have a solution that vanishes at infinity. Some insight about
this might have made possible a stronger conclusion in our discussion of
symplectomorphisms of C2n in Section 4.4.

Appendix C. The opposite algebra

In Section 3.2, we explained that if W is a complex manifold with canon-
ical bundle K, and Y = T ∗W with the standard complex symplectic form
Ω =

∑
i dpidq

i, then A = Hom(Bcc,Bcc) is the algebra of differential oper-

ators acting on sections of K1/2. This statement also holds after restricting
to an open set in W .

Here we will explain this along more standard mathematical lines. The
following is somewhat similar to the construction of a hermitian inner prod-
uct in Section 2.7, but we use a linear operation rather than an antilinear
one.

If A is an algebra, the opposite algebra Aop is defined as follows: elements
aop of Aop are in one-to-one correspondence with elements a of A, but they
are multiplied in the opposite order (so aopbop = (ba)op). In the case of
deformation quantization of Y = T ∗W , the algebra A = Hom(Bcc,Bcc)
is isomorphic to its own opposite. This may be seen as follows. Y has a
holomorphic involution τ that maps (p, q) to (−p, q), and therefore satisfies
τ∗(Ω) = −Ω. In the A-model, one can compensate for reversing the sign of
Ω by reversing the orientation of the two-manifold Σ on which the model is
defined. Hence the A-model on Σ is invariant under a diffeomorphism of Σ
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that reverses its orientation, together with the action of τ on the target space.
Such a diffeomorphism reverses the orientation of ∂Σ, and hence reverses
the order in which operators are inserted on ∂Σ. But reversing the order of
operator insertions on the boundary is equivalent to exchanging A with Aop.
The conclusion is that the algebra A is isomorphic to its opposite algebraAop

by an automorphism that at the classical level acts by (p, q) → (−pop, qop).
On the other hand, let D be the algebra of differential operators acting

on sections of a holomorphic line bundle L (or possibly a complex power
of line bundles). As we explain momentarily, the opposite algebra Dop is
the algebra of differential operators acting on K ⊗ L−1. Hence for D to be
isomorphic to Dop means that L is isomorphic to K ⊗ L−1, in other words
L = K1/2. Hence, if A is isomorphic to Aop, it must be the algebra of
differential operators acting on sections of K1/2.

The assertion about Dop is proved by a formal integration by parts. We
recall that on a complex manifold, the exterior derivative has an expansion
d = ∂ + ∂, where ∂ shifts the degree of a differential form by (1, 0). The
canonical bundle K is the same as the bundle of (n, 0)-forms. For λ an (n−
1, 0)-form, ∂λ is an (n, 0)-form, that is, a section of K. If D is a differential
operator acting on sections of L, its “transpose” Dtr is a differential operator
acting on sections of K ⊗ L−1 that is defined as follows. Let g be a local
section of L and f a local section of K ⊗ L−1. Then Dtr is defined by the
condition that for any such f, g,

(C.1) fDg = (Dtrf)g + ∂λ,

where λ is an (n− 1, 0)-form that is constructed locally from f, g, and their
derivatives. From this it follows immediately that if D1, D2 are two differ-
ential operators acting on sections of L, then (D1D2)

tr = Dtr
2 D

tr
1 . Since the

order of multiplication is reversed, this shows that the association D → Dtr

maps D to its opposite algebra Dop. Hence if D is the algebra of differen-
tial operators acting on sections of L, then Dop is the algebra of differential
operators acting on sections of K ⊗ L−1.

As an example, suppose that W is a Riemann surface, L is the trivial
line bundle O, and D is a differential operator that can be written locally
as D = a(z)∂z. Let g be a local section of O and f a local section of K. The
identity

(C.2) fa∂zg = (−∂z(af)) g + ∂z (fag)

shows that Dtr can be defined locally by Dtrf = −∂z(a(z)f(z)). Here the
minus sign reflects the fact that at the classical level, the map from D to
Dop comes from an involution that acts by (p, q) → (−p, q).
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Appendix D. Anomalies and Bcc

In lowest order of σ-model perturbation theory, to every Lagrangian
submanifold L of a symplectic manifold Y , endowed with a flat spinc bun-
dle, one can associate an A-brane BL. At the quantum level, however, disc
instanton effects obstruct the existence of some of these branes.

The analogous question for coisotropic branes has apparently not been
considered in the physics literature, though a related question concerning
deformation quantization of algebraic varieties has been studied mathemat-
ically [54]. Rank 1 coisotropic branes were constructed by Kapustin and
Orlov in lowest order of σ-model perturbation theory [10]. Might there be
an anomaly that obstructs the existence of some such branes in higher or-
ders?

Here we will consider this question in the basic example of a coisotropic
brane Bcc whose support is all of the A-model target space Y . In particular,
Y will be a complex symplectic manifold with ωY = ImΩ. A complex sym-
plectic manifold has vanishing first Chern class, so the usual fermion number
anomaly (which is important in analyzing disc instanton obstructions to La-
grangian branes) is absent and we can use fermion number conservation to
constrain the analysis. Though we only consider coisotropic branes whose
support is all of Y , it is worth mentioning that at least for branes of rank
1 (the only case in which coisotropic branes are well-understood), the gen-
eral case is a mixture of the case we consider and the more familiar case
of a Lagrangian brane. That is because a general coisotropic brane of rank
1 looks like Bcc in some directions and like a Lagrangian A-brane in other
directions.

If Bcc is a valid A-brane, this means that the BRST operator Q of the
theory satisfies Q2 = 0 even in the presence of a boundary labeled by Bcc.
The alternative is that there might be a boundary contribution toQ2; though
Q2 = 0 in bulk, we might have

(D.1) Q2 = F (0),

where F (0) is a local operator inserted at an endpoint where a string ends on
Bcc. There might also be a contribution at the second endpoint of the string,
but we can focus on the contribution at one endpoint. The operator F (0)
will have conformal dimension 0 in the classical limit (if the model is not
conformally invariant at the quantum level, this scaling might be modified by
logarithms in σ-model perturbation theory). The operators with appropriate
scaling have the form F (X,X, ρ), in the notation of Appendix B (here the
fields X,X, ρ are to be evaluated at the string endpoint – the point “0”
in eqn. (D.1)). As noted in the discussion of eqns. (B.4) and (B.5), these
operators correspond to (0, q)-forms on Y , for q = 0, . . . , dimCY , and Q acts
on them as the usual ∂ operator mapping (0, q)-forms to (0, q + 1)-forms.
The condition that F (0) has fermion number 2 means that it is a (0, 2)-
form, and the condition Q2 = F (0) implies that [Q,F (0)] = [Q,Q2] = 0, so
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F is a ∂-closed (0, 2)-form. If F is ∂-exact, F = ∂λ for a (0, 1)-form λ, then
the anomaly can be removed by shifting Q → Q− λ(0). Thus the potential
anomalies that cannot be removed by a redefining Q correspond to elements
of H2(Y,O).

Bezrukavnikov and Kaledin, however, show [54] (in a different language)
that the anomaly associated to β ∈ H2(Y,O) can be removed if there is a
closed two-form b on Y such that the part of b of type (0, 2), which we

denote as b(0,2), is equal to β. To understand this in our language, we recall
that as well as a symplectic form ωY = ImΩ, the A-model under study has
a B-field B = ReΩ. The reason for this particular choice is that Kapustin
and Orlov [10], in verifying that the equation Q2 = 0 receives no boundary
contribution, ran into the condition (ω−1

Y (F + B))2 = −1, which can be
satisfied by B = ReΩ, F = 0. If one shifts B to B+b, for a closed two-form b,
then the Kapustin-Orlov condition is violated and Q2 receives a boundary
contribution proportional to b(0,2). But that also means that an anomaly
proportional to b(0,2) can be canceled by shifting B.

If Y is compact, then by Hodge theory, every class in H2(Y,O) has a
harmonic representative. This representative is a closed two-form, implying
that any potential anomaly can always be canceled by shifting B. Usually,
for quantization one is not interested in the case that Y is compact, but
the argument just stated probably has an analog for a suitable class of non-
compact Y ’s. If Y has, for example, a complete hyper-Kahler metric that
is asymptotically conical, then one can hope to prove that any anomaly is
cohomologous to a (0, 2)-form of compact support, and then use a version of
Hodge theory for complete Riemannian manifolds to argue that the anomaly
can be eliminated. However, we will not make any precise argument along
these lines. Most examples studied in the present article have H0,2(Y ) = 0.
The cotangent bundles Y = T ∗W can be exceptions. For these examples,
it is possible to use the scaling symmetry of the cotangent bundle to show
that there is no anomaly.

Bezrukavnikov and Kaledin parametrize the possible deformation quan-
tizations of the sheaf of holomorphic functions on Y by what they call a
period map, a sort of quantum version of the cohomology class [Ω] of Ω.
In doing so, one runs into the fact that Y might have deformations as a
complex symplectic manifold that do not change [Ω]. The presence of such
deformations complicates the discussion of a period map.

From our point of view, deformations of Y as a complex symplectic
manifold that do not change [Ω] have the following significance. Suppose
that the complex structure and complex symplectic form I,Ω of Y can be
deformed to another complex structure and complex symplectic form I ′,Ω′,
such that [Ω] = [Ω′]. By applying a suitable diffeomorphism to the pair I ′,Ω′,
one can reduce to the case39 ImΩ = ImΩ′. One cannot simultaneously

39In general, if a real symplectic form [ω] is varied in a continuous family keeping [ω]
fixed, then the symplectic forms in this family are all equivalent up to diffeomorphism.
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require ReΩ = ReΩ′, but since [ReΩ] = [ReΩ′], one does have ReΩ =
ReΩ′ − dλ for some 1-form λ. We can regard A = λ as a connection form
on a trivial line bundle L; the curvature of L is F = dλ. In addition to
the familiar solution of the Kapustin-Orlov condition (ω−1

Y (F + B))2 = −1
with ωY = ImΩ, B = ReΩ, F = 0, we have another solution with the
same ωY and B but F = dλ (so F+B = ReΩ′). Therefore, in addition to the
familiar coisotropic brane Bcc with trivial, flat CP bundle, the A-model with
ωY = ImΩ and B = ReΩ has a new and equally good coisotropic brane B′

cc

with CP bundle L. More generally, if the complex symplectic structure I,Ω
that leads to the existence of the brane Bcc can be varied in a family while
keeping [Ω] fixed, then the A-model with fixed ωY and B has a family of
coistropic branes labeled by the same data. (This is a classical description;
the anomaly that can be potentially canceled by shifting B may complicate
the picture in some cases.)

The possibility of deforming the pair I,Ω while keeping [Ω] fixed can be
described as follows. Consider the exact sequence of sheaves

(D.2) 0 → C → O → O/C → 0,

where C is the sheaf whose local sections are complex constants. Associated
to this short exact sequence is an exact sequence in cohomology that reads
in part

· · ·→H1(Y,C)
j→ H1(Y,O)→H1(Y,O/C)

δ→ H2(Y,C)
j→ H2(Y,O) → · · · .

(D.3)

We can interpret O as the sheaf of (holomorphic) Hamiltonian functions on
Y , and O/C as the sheaf of holomorphic functions mod constants. Divid-
ing by constants is appropriate for analyzing the deformations of Y as a
complex symplectic manifold, because the Hamiltonian vector field Ω−1df
associated to a Hamiltonian function f is invariant under shifting f by a
constant. Accordingly, first order deformations of Y as a complex symplec-
tic manifold are classified by H1(Y,O/C). For a deformation corresponding
to x ∈ H1(Y,O/C), the corresponding deformation of [Ω] is [Ω] → [Ω]+δ(x).
Thus the deformations of Y as a complex symplectic manifold without
changing [Ω] are classified by the kernel of δ. Exactness of the sequence (D.3)
means that the kernel of δ is the same as the quotientH1(Y,O)/j(H1(Y,C)),

which parametrizes ∂ closed (0, 1) forms modulo those of the form c(0,1) for
a closed 1-form c. That quotient parametrizes the family of first order defor-
mations of Bcc as a coisotropic A-brane, in a fixed A-model with no change
in ωY or B.

To see this, one observes that a first order variation of ω keeping [ω] fixed is of the form
δω = dγ for some 1-form γ. This first-order deformation of ω can be canceled by an
infinitesimal diffeomorphism generated by the vector field V = ω−1γ.
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[7] J. Śniatycki, Geometric Quantization and Quantum Mechanics (Springer-Verlag, New

York, 1980). MR 0554085
[8] Brian C. Hall, Quantum Theory for Mathematicians (Springer, New York, 2013).

MR 3112817
[9] S. Gukov and E. Witten, “Branes and Quantization,” ATMP 13 (2009) 1445–1518,

arXiv:0809.0305. MR 2672467
[10] A. Kapustin and D. Orlov, “Remarks on A-branes, Mirror Symmetry, and the Fukaya

Category,” J. Geom. Phys. 48 (2003) 84, arXiv:hep-th/0109098. MR 2006226
[11] P. Bressler and Y. Soibelman, “Mirror Symmetry and Deformation Quantization,”

arXiv:hep-th/0202128. MR 1854130
[12] A. Kapustin, “A-Branes and Noncommutative Geometry,” arXiv:hep-th/0502212.

MR 2982885
[13] V. Pestun, “Topological Strings in Generalized Complex Space,” arXiv:hep-

th/0512189. MR 2322532
[14] M. Gualtieri, “Branes on Poisson Varieties,” arXiv:0710.2719. MR 2681704
[15] M. Aldi and E. Zaslow, “Coisotropic Branes, Noncommutativity, and the Mirror

Correspondence,” JHEP 0506 (2005) 019, arXiv:hep-th/0501247. MR 2158557
[16] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, “Deformation

Theory and Quantization,” Ann. Phys. 111 (1978) 61–151. MR 0496158
[17] M. De Wilde and P. B. A. Lecomte, “Existence of Star-Product and of Formal De-

formations in Poisson Lie Algebra of Arbitrary Symplectic Manifold,” Lett. Math.
Phys. 7 (1983) 487–496. MR 0728644

[18] B. V. Fedosov, “A Simple Geometrical Construction Of Deformation Quantization,”
J. Diff. Geom. 40 (1994) 213–238. MR 1293654

[19] M. Kontsevich, “Deformation Quantization of Poisson Manifolds, I,” Lett. Math.
Phys. 66 (2003) 157–216, arXiv:q-alg/9709040. MR 2062626

[20] A. S. Cattaneo and G. Felder, “A Path Integral Approach to the Kontsevich Quan-
tization Formula,” math.QA/9902090, Commun. Math. Phys. 212 (2000) 591–612.
MR 1779159

[21] A. S. Cattaneo and G. Felder, “Poisson Sigma Models and Deformation Quantiza-
tion,” Mod. Phys. Lett. A 16 (2001) 179–190, arXiv:hep-th/0102208. MR 1832088

[22] R. E. Grady, Qin Li, and Si Li, “Batalin-Vilkovisky Quantization And The Algebraic
Index,” arXiv:1507.01812. MR 3682678

[23] A. Kapustin and E. Witten, “Electric-Magnetic Duality and the Geometric Lang-
lands Program,” Commun. Num. Theor. Phys. 1 (2007) 1–236, arXiv:hep-th/0604151.
MR 2306566

[24] M. Herbst, “On Higher Rank Coisotropic A-Branes,” J. Geom. Phys. 62 (2012) 156–
169, arXiv:1003.3771. MR 2864468



PROBING QUANTIZATION VIA BRANES 401

[25] P. Etingof, E. Frenkel, and D. Kazhdan, “An Analytic Version of the Langlands
Correspondence for Complex Curves,” arXiv:1908.09677. MR 4285697

[26] P. Etingof, E. Frenkel, and D. Kazhdan, “Hecke Operators and Analytic Langlands
Correspondence for Curves over Local Fields,” arXiv:2103.01509.

[27] P. Etingof, E. Frenkel, and D. Kazhdan, “Analytic Langlands Correspondence for
PGL2 on P1 with Parabolic Structure over Local Fields,” arXiv:2106.05243.

[28] J. Teschner, “Quantization Conditions of the Quantum Hitchin System and the Real
Geometric Langlands Correspondence,” in: J. E. Dancer et. al., eds., Geometry and
Physics, vol. 1 (Oxford University Press, 2018), arXiv:1707.07873. MR 3932266

[29] D. Gaiotto and E. Witten, “Gauge Theory and the Analytic Form of the Geometric
Langlands Program,” arXiv:2107.01732.

[30] M. J. Gotay, “A Class of Non-Polarizable Symplectic Manifolds,” Mh. Math. 103
(1987) 27–30. MR 0875349

[31] D. S. Freed and E. Witten, “Anomalies in String Theory with D-Branes,” Asian J.
Math. 3 (1999) 819–852, arXiv:hep-th/9907189. MR 1797580

[32] E. Witten, “A New Look at the Path Integral of Quantum Mechanics,” Surv. Diff.
Geom. 15 (2010) 345–420, arXiv:1009.6032. MR 2817248

[33] V. G. Knizhnik and A. B. Zamolodchikov, “Current Algebra and Wess-Zumino Model
in Two Dimensions,” Nucl. Phys. B 247 (1984) 83–103. MR 0853258

[34] G. Tian and S.-T. Yau, “Complete Kahler Manifolds with Zero Ricci Curvature, I,”
J. Amer. Math. Soc. 3 (1990) 578–609. MR 1040196

[35] M. F. Atiyah and R. Bott, “The Yang-Mills Equations over Riemann Surfaces,” Phil.
Trans. R. Soc. Lond. A 308 (1983) 523–615. MR 0702806
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