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Abstract. The Yang-Mills-Higgs equations, while they arose in the-
oretical physics, have become a central object of study in geometric
analysis. The moduli spaces of solutions are used to study problems
in algebraic geometry as well as topology. To understand these moduli
spaces, it is natural to ask what sort of objects are limits in a weak
sense of sequences of solutions. In many examples, it can be shown that
subsequences of solutions converge to a solution off a set of Hausdorff
codimension 4. In four dimensions, these point singularities are remov-
able. The question arises of when this singular set of dimension n − 4
is removable in higher dimensions. In a classic paper, Tao and Tian
[11] prove an important step in the removability theorem. What they
show is that, in general, independent of the equation, if the case the
curvature of a connection defined on a set of Hausdorff codimension 4 is
sufficiently small in a certain Morrey space, that there exists a smaller
ball and a gauge in which the connection is d+ A, where A is coclosed
and bounded by norms on the curvature. One can now treat the Yang-
Mills-Higgs equations as a standard elliptic system and obtain further
regularity. This choice of Morrey space is natural, because monotonic-
ity of solutions provides estimates exactly in this space. However, since
the solution is only defined off a set of Hausdorff codimension 4, it is
not known that the monotonicity theorem is true for limiting singular
solutions. Only by adding the assumption of stationary with respect to
diffeomorphisms in the entire domain can one apply the theorem to lim-
iting singular connections. Unfortunately, we cannot fill in this gap. We
provide a new proof of the Tao-Tian result. Our proof uses the equation
and a maximum principle for a differential inequality derived from the
equation via averaging. In this manner, we can avoid the geometric con-
struction of a good gauge in a weak setting via averaging exponential
gauges, as we first obtain further estimates on the curvature from the
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inequality. Our main result Corollary 4 is that, if the curvature
is sufficiently small in a Morrey space, and the solution is defined
and smooth off a set of Hausdorff codimension 4 with the covariant
derivative of the Higgs field in the same Morrey space, then the so-
lution is smoothly gauge equivalent to one which extends smoothly
over the singular set. In the case that the solution has small en-
ergy, and is a critical point of the integral, or even just critical with
respect to diffeomorphisms in the entire domain, not just off the
singular set, the smallness of the curvature in the Morrey space
in a smaller domain can be verified and leads to Theorem 11 as a
corollary of Corollary 4. There may be other ways to obtain the
bounds on the curvature in the Morrey space; hence we state the
main result in terms of small curvature in the Morrey space. The
results apply to most of the coupled Yang-Mills-Higgs equations,
and we do not go into the details in this paper. We do assume that
the Higgs field is bounded, and explain why this follows from L2

bounds on it. Many interesting equations, such as the Kapustin-
Witten equations and the equations for a complex flat connection
do not come with such a bound on sequences. Moreover, the sin-
gular set of a renormalized limit is Hausdorff codimension 2, and
we sadly have nothing to say about these singularities.
We develop a new method for proving regularity for small energy
stationary solutions of coupled gauge field equations. Our results
duplicate those of [10] for the pure Yang Mills equations, but our
proof is simpler, and obtains bounded curvature without the use
of Coulomb gauges. It relies instead on the Weitzenblock formu-
lae, and an improved Kato inequality. Our results also extend and
simplify those of [3].

1. Introduction

We consider stationary solutions of the Euler Lagrange equations for the
integral

A(DA,Φ) =

∫
Ω

(
|FA|2 + |DAΦ|2 +Q(Φ)

)
(dx)n,(1.1)

for Ω ⊂ R
n n ≥ 4, and DA is a unitary connection on the product bundle

V × Ω, Φ is a section of the product bundle V × Ω, and where Q(•) is a
real valued equivariant function from sections of the product bundle V ×Ω.
The integrand on the right hand side of (1.1) is gauge invariant, but since
the result is local, we do not need any of the topological considerations in
its formulation. A typical term in Q(Φ) can be |(|Φ|2 − λ2)|2 if V = su(N),
but we impose only three conditions on Q, namely

Q(Φ) ≥ 0(1.2a)

(Φ, QΦ(Φ)) ≥ −K2
1 .(1.2b)
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Here QΦ(Φ) is the directional derivative of the function Q, in the direc-
tion φ, and, hence, QΦ(Φ) is a section of V ∗. By the usual duality argument,
we can identify it with a section of V .

Q(Φ) is equivariant with respect to the group action.(1.2c)

Remark 1. Our sign conventions are those of analysis. Hence, � =

div d =
∑n

i=1
∂2

∂2xi , and D∗
A is the covariant derivative divergence, that is the

formal adjoint of DA on p-forms with sign (−1)p.

First, we state the Euler–Equations for the energy functional

2(DA)
∗FA = [Φ, DAΦ](1.3a)

2(DA)
∗DAΦ = QΦ(Φ).(1.3b)

As in the previous work on this subject, monotonicity theorems and
change of scale are key ingredients. We generally only change scale by blow-

up, from |x− x0| ≤ r to |y| =
(
|x−x0|

r

)
R, for 0 < r < R. Since, we are in a

local trivialization, DA = d+A is a local covariant exterior derivative with
fixed scaling given by

Adx = Ãdy = (Ã)(
R

r
)dx,(1.4)

which implies Ã = ( r
R)A. Consistency of the first two terms in the integrand

on the right hand side of (1.1) demands that Φ(x) = Φ̃(y)( r
R), that is that

Φ scales like a 1-form. This requires Q(Φ) to scale like a 4-form. That is

Q̃R(Φ̃) =

(
R

r

)4

(Qr)(Φ) =

(
R

r

)4

Q(
( r

R

)
Φ̃).(1.5)

This looks formidable, however, we are saved by (1.2) and Theorem 1, which
provides bounds on terms depending on |Φ|, and hence bounds on terms
depending on Q.

Singular solutions of (1.3) may arise as limits of smooth solutions. The
following theorem indicates that, if there is a uniform bound in L2 on the
sequence of Higgs Fields Φj , there will also be a bound on the maximum of
|Φj |, and hence on the maximum of |Φ| in the singular limit.

Theorem 1. Let (DA,Φ) be a smooth solution of the field equations
(1.1) in the domain Ω ⊂ Rn. Let, Φ • QΦ(Φ)Φ ≥ −(K1), where • denotes
inner product, and let

∫
Ω |Φ|2 (dx)n ≤ (K2)

2. Then |Φ| is bounded in the
interior of Ω and for all x0 ∈ int(Ω), 0 < d < dist(x0, ∂Ω)

|Φ(x0)|2 ≤ ((d)−n)C1(n))

∫
|x−x0|≤d

|Φ|2 (dx)n + C2(n)K
2
1d

2.(1.6)
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Proof. We will make use of the following identity:

(
1

2
)�|Φ|2 = (Φ) • (D∗

ADAΦ) + |DAΦ|2.(1.7)

The equation (1.7) follows from the facts that Φ is locally a bundle section
and the compatibility of the connection with the inner product on sections.

Here � is the co-ordinate laplacian on the base. We use the the field
equation (1.3b) to replace the first term on the right hand side of (1.7), and
obtain

�|Φ|2 = (Φ) • (QΦ(Φ)) + 2|DAΦ|2.(1.8)

Using the lower bound Φ •QΦ(Φ) ≥ −(K1)
2 in (1.8), we obtain:

�|Φ|2 ≥ −K2
1 .(1.9)

Thus, the function |Φ|2 + (x− x0)
2K2

1 is non-negative smooth subharmonic
function. Now apply the sub-mean value property for subharmonic functions,
the triangle inequality for integrals, the triangle inequality for sums, and take
the sup of (x− x0)

2K2
1 inside the integral over Bd(x0) ⊂⊂ Ω. �

We can use these estimates in several ways, depending on the actual
structure of Q(Φ). The terms that we have in mind are terms like (|Φ|2−a2)p,
or |[Φ,Φ]|p, for p ≥ 1, where the simple cases occur for p = 2.

We just gave a description of the functional and motivated the bound
that we assume on the maximum of Φ in subsequent chapters. In Section 2 we
outline a proof of the monotonicity theorem. This motivates the assumption
we place on the Morrey Space norm of the curvature FA in our final theorem.
We emphasis that for its validity, it requires the critical point (DA,Φ) to
be stationary with respect to diffeomorphisms that are the identity near
the boundary of the domain. Section 3 contains the necessary improvement
to the usual Kato inequality |d|υ|| ≤ |∇υ| where υ = (FA, DAΦ), as well
as a reminder of the Weitzenbock formulae for the same quantity. In this
section, as in Section 1, our computations hold only on the set in which
the connection is smooth. Estimates for smooth solutions are contained in
Section 4. Section 4 is not essential but the estimates for smooth solutions
with curvature small in a Morrey Space are easier to obtain and provide a
warm-up for the singular case.

The core of the paper is in Section 5. Here we use the properties of Mor-
rey Spaces to get regularity for singular solutions of a differential inequality
(on functions f)with a coefficient small in a borderline Morrey space. The
Morrey Spaces Xm(Ωl) (with m an integer, and with Ωl = [−l, l]) that we
use in the statement of Theorem 9 just below are defined in Appendix C.
The theorem that we prove is Theorem 9:

Theorem 9. Let u ≥ 0 and f > 0 be smooth functions on Ω4 − S,
where S is a closed set of finite n− 4 Hausdorff dimension. If f ∈ X2(Ω4),
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0 < k < 2, and if

−�f + α

(
|df |2
f

)
− uf ≤ Qf,(1.10)

then there exist constants ηk > 0, and κk > 0, such that if ‖u‖X2(Ω4) < ηk,

then f ∈ Xk(Ω1). Moreover

‖f‖Xk(Ω1) ≤ κk‖f‖X2(Ω4).(1.11)

Section 6 is a straightforward application of Theorem 9 and the improved
Kato inequality of Section 3.

The idea of using differential inequalities to get estimates of the norms of
curvature and covariant derivative of the Higgs field, and to thus to remove
high codimension singular sets is due to Tom Otway [5].

We have Theorem 10:

Theorem 10. Let (DA,Φ) be solutions to a Yang-Mills-Higgs system in
Ω4−S, where S is a closed set of finite n−4 dimensional Hausdorff measure.
Let υ = (FA, DAΦ). Assume that υ ∈ X2(Ω4), and that Φ ∈ L∞(Ω4).

Q1 = sup
[−4,4]n

(2|Φ|+ |QΦ,Φ(Φ)|)(1.12)

Q2
2 = sup

[−4,4]n

(
|QΦ(Φ)|2

Q1

)
.(1.13)

If FA ∈ X2(Ω4) is sufficiently small, then |υ| ∈ L∞(Ω1). We also have the
explicit bound

‖υ‖L2n(Ω1) ≤ C(Q1)(‖υ‖X2(Ω4) +Q2
2)(1.14)

We state the main regularity theorem as a corollary of Theorem 10. It
applies the Coulomb gauge construction of Appendix C. We have there:

Corollary 4. Assume (DÃ,Φ) satisfies a Yang-Mills-Higgs system in
Ω−S, where S is a closed set of finite n−4 dimensional Hausdorff measure.
Let υ = (FÃ, DÃΦ)

Q1 = sup
Ω

(
|Q(Φ)|2 + |QΦ,Φ(Φ)|

)
.(1.15)

Q2
2 =

(
sup
Ω

|QΦ(Φ)|2
)

Q1
.(1.16)

Suppose υ ∈ X2(Ω), and Q1δ
2 as well as Q2δ

2 (scales like the two form υ)
are bounded by a fixed constant. In addition suppose that FÃ ∈ X2(Ω) has

small enough X2(Ω) norm (independent of the other constants). If Ωy,δ ⊂ Ω,
then δ2υ ∈ L∞(Ωy,δ) is bounded above by a constant, and (DÃ,Φ) are
smoothly gauge equivalent on Ωy,δ −S to a smooth exterior covariant differ-
ential (corresponding to a smooth connection), and a smooth Higgs Field on
Ωy,δ, both of which extend smoothly across the singular set S ∩ Ωy,δ.



262 P. SMITH AND K. UHLENBECK

The Appendices are important. In Appendix A we outline the necessary
background on Morrey Spaces. We refer the reader to the book by Adams
[1], and give outlines of applications that are not in this reference, such as
the invertibility of the Laplacian on cubes with Dirichlet boundary value.

We introduce notation such as the space Xk = M [n
k
, 4
k
] for the Morrey space

which scales like n
k and has integral power 4

k . This simplifies our exposi-
tion. Appendix B contains the maximum principle that we use in Section 5,
which seemed to fit better in an appendix than in the body of the paper.
Appendix C is the proof of the existence of a Coulomb gauge for singular
connections. This is not in the standard literature because we allow a singu-
lar set of Hausdorff codimension three (We only need Hausdorff codimension
four for our application). Tao and Tian [11] prove this with much weaker
conditions but their proof is much more elaborate. Since the point of this
paper is to simplify their proof, we include it.

2. Monotonicity formulae

In this section we use the condition that A(DA,Φ) is stationary in the
sense of Price [4], and Zhang [9] at (DA,Φ) with respect to smooth dif-
feomorphisms, that are the identity near the domain boundary, to derive a
monotonicity formula. We give an outline, since the method is the same as
used by many authors, cf. [4], and Lemma 2.1 of [11].

Theorem 2. If (DA,Φ) is a stationary point of A(DA,Φ) with respect
to smooth diffeomorphisms of Ω which equal the identity in a neighborhood
of ∂Ω, then for all smooth vector fields ν with compact support in Ω, we
have

∫
Ω
[∂kν

k|FA|2 + |DAΦ|2 +Q(Φ)− ∂jν
kFkiFji

−2∂jν
k(DA,jΦ)(DA,kΦ) ](dx)

n = 0

.(2.1)

Proof. This formula can be straightforwardly derived for smooth so-
lutions FA, Φ via Noether’s formula. But, by direct calculation (compare
formula (2.4) page 265 of [11]), it is also true for |FA|2, |Φ|2, Q(Φ) ∈ L1(Ω)
Thus, if the singular points of |FA|2, |DAΦ|2, Q(Φ) ∈ L1(Ω), occur on a set
of measure zero, they do not affect formula (2.1) �

Corollary 1. If (2.1) holds, and if A(DA,Φ) is finite, then, for {|x−
x0| ≤ R} ⊂ Ω, we have

∫
|x−x0|≤R

[(n− 4)|FA|2 + (n− 2)|DAΦ|2 + nQ(Φ)] (dx)n−

(2.2)

R

∫
|x−x0|=R

[|FA|2 + |DAΦ|2 +Q(Φ)− 4|FA,r|2 − 2|DA,rΦ|2] (dx)n−1 = 0.
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Here, FA,r = i ∂
∂r
(FA) is the radial part of FA, and DA,r = DA(

∂
∂r ) is the

radial part of DA.

Proof. With no loss of generality we assume that x0 = 0, since our
calculations are translation invariant. Let ν = νε be a smooth vector field,
dependent on a small positive parameter ε, where ν is defined by⎧⎪⎨

⎪⎩
ν = r ∂

∂r if |x| ≤ R− ε

ν = 0 if |x| ≥ R

ν = η(R−|x|
ε )r ∂

∂r otherwise,

(2.3)

Here η is a smooth function, satisfying{
η(t) = 0 for t ≤ 0

η(t) = 1 for t ≥ 1
(2.4)

with φ′ ≥ 0. Note that:

∂

∂xk
νi = η(

R− |x|
ε

)δik − (
1

ε
)η′(

R− |x|
ε

)
xixk

|x| .(2.5)

Using this ν in (2.1), we obtain

∫
|x|≤R

η(
R− |x|

ε
)[(n− 4)|FA|2 + (n− 2)|DAΦ|2 + nQ(Φ)] (dx)n−

(2.6)

∫
R−ε≤|x|=ρ≤R

(
1

ε
)η′(

R− |x|
ε

)[|FA|2 + |DAΦ|2 +Q(Φ)− 4|FA|2 − 2|DA,rΦ|2]

× ρ (da)n−1dρ.

where (da)n−1 = ρn−1(dΘ) is the area element on |x| = ρ.
Let t = R − ρ, and note that limε↓0(

1
ε )(η

′( tε)) → δ, in the sense of
distributions, where δ is the delta distribution. Thus, letting ε ↓ 0 gives our
result. �

From Corollary 1, by ignoring the radial parts of FA, and DA which
appear with a negative sign, and by replacing both n and n − 2 by n − 4,
we derive a differential inequality on

E(R) =

∫
|x|≤R

|FA|2 + |DAΦ|2 +Q(Φ) (dx)n.

(n− 4)E(R) ≤ RE ′(R).(2.7)

Integrating (2.7) gives the monotonicity formula

E(r) ≤ (
r

R
)n−4E(R).(2.8)
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Theorem 3. If (DA,Φ) is a stationary point of the functional A(DA,Φ),
with respect to smooth diffeomorphisms of its domain, then, if {|x − x0| ≤
R} ⊂ Ω for r ≤ R, we have∫

|x−x0|≤r
|FA|2 + |DAΦ|2 +Q(Φ) (dx)n(2.9)

≤
( r

R

)n−4
∫
|x−x0|≤R

|FA|2 + |DAΦ|2 +Q(Φ) (dx)n.

Remark 2. In the case where we have a Riemannian metric, instead
of a Euclidean metric, this formula is easily seen to be valid with an error
term.

In order to prove our final regularity theorem Theorem 11 (which is a
Corollary of Lemma 3 and of Corollary 4, [all in Section 6], we need the
scaling estimates below:

We take a small ball |x − x0| ≤ r to a ball |y| ≤ 4. In this case, as in
Section 1, we may assume that we have a bound on Φ, and therefore on
Q(Φ), and its derivatives with respect to Φ. That is:

|Φ| ≤ h(2.10)

Q(Φ) ≤ h0 = max|Φ|≤hQ(Φ)(2.11)

|QΦ(Φ)| ≤ h1 = max|QΦ(Φ)|≤h|QΦ(Φ|.(2.12)

Under rescaling, from r → R, denoting the rescaled terms by Φ̃, Q̃ etc., We
obtain

|Φ̃| =
( r

R

)
|Φ| ≤

( r

R

)
h(2.13)

Q̃ =
( r

R

)4
Q ≤ h0

|Q̃Φ̃| =
( r

R

)3
|QΦ| ≤

( r

R

)3
h1.

If Φ is more regular, then analogous bounds hold for the higher derivatives
of Q̃ with respect to Φ. This becomes important for the regularity theory.

We have a rescaled monotonicity type estimate.

Theorem 4. If∫
|x−x0|≤r

[|FA|2 + |DAΦ|2 +Q(Φ)] (dx)n ≤ C(r)n−4(2.14)

is rescaled to y = (Rr )(x− x0), we have∫
|x−x0|≤R

[|FÃ|
2 + |DÃΦ̃|

2 + Q̃(Φ̃)] (dy)n ≤ C(R)(n−4).(2.15)

Moreover, the rescaled variables satisfy (2.13).
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Remark 3. Under blowup, since we assume a bound on Φ, not only do
FÃ,r → 0 and Dr,ÃΦ → 0, but Φ̃ and Q̃ → 0. Thus, the theory of blow-ups

is the same as for pure Yang-Mills. This is somewhat disappointing.

There is a direct application of the Monotonicity Theorem 3 in the proof
of Lemma 3 and thus in the proof of Theorem 11, which are in of Section 6.

3. Improved Kato inequalities

Let ∇A = {∇i,A} (where the i refers to local co-ordinates xi on the
base) denote a local covariant derivative in a bundle (where this notation is
used to make a clear distinction between the full covariant derivative on the
bundle and the exterior covariant differential), and ν is a C1 section, with
∇ν continuous, the pointwise inequality

|d|ν||2 ≤ β| ∇ν|2, for β = 1(3.1)

is well known. However, if ν satisfies some elliptic equations, often the con-
stant β can be improved. This is particularly useful in removing singularities.

Such “Refined Kato inequalities” have been used before. In particular
see (23’) page 219 [6] and the estimate of the second fundamental form in
[9]. A very general approach to Refined Kato inequalities, not including our
results in this section is contained in the very lovely paper of Calderon et
alia [3]. Their results are based on deep knowledge of group representation
theory. In keeping the expository nature of this Survey volume, we prove
our results in this section be elementary computation.

In the following, we will choose a specific orthonormal frame at x ∈ Ω ⊂
Rn. We write the inequalities in such a way as to make the extension to a
Riemannian manifold as a base space clear.

Our two examples are ν = FA, and ν = DAΦ. Here, FA, and Φ are
assumed smooth in the domain Ω ⊂ Rn. In fact, we prove a generalization
of the usual improved Kato inequalities, for arbitrary one and two forms,
with error terms. Because a general two form F (unlike the curvature FA

does not satisfy either the Bianchi identity or the first Field equation, we
expect the error terms to involve DAF and D∗

AF ). Similarly, because a
general one form θ does not satisfy the second Field equation and is not in
the kernel of D∗

A, we expect the error terms to involve DAθ, and D∗
Aθ).

We note that the constants are different for the one form and the two
form inequalities.

In this section we make use of the connection ∇, locally associated with
a 1-form A, in the usual way, and denoted by ∇A. We also make use of the
associated local covariant derivative ∇A, and the associated local covariant
exterior differential denoted by DA. For a less cluttered notation, suppress
the subscript A on the connection and the local covariant derivative, which
will cause no confusion because we are working in a local trivialization, so
that the connection is the local covariant derivative.
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Theorem 5. Let ∇ be an arbitrary metric compatible connection on
Ω×V , where Ω ⊂ Rn. If F : Ω → V ⊗T ∗(Ω)⊗T ∗(Ω) is an arbitrary smooth
vector valued 2-form then,

(
n

n− 1

)(
|d|F ||2

)
≤ |∇F |2 + |DAF |2 + |D∗

AF |2,(3.2)

and if θ : Ω → V ⊗ T ∗(Ω) is an arbitrary smooth vector valued one form,

(
n+ 1

n

)(
|d|θ||2

)
≤ |∇θ|2 + |DAθ|2 + |D∗

Aθ|2.(3.3)

Proof. First, we prove (3.2). At any arbitrary point p in the fiber V ,
we choose a local exponential gauge, so that A(p) = 0. Choose an adapted
orthonormal frame (inducing local adapted orthonormal coordinates), such
that d|F | = d1|F | = ∂

∂1
(|F |)dx1. Note, that choosing such an orthonormal

frame, still preserves the exponential gauge centered at p, because all we are
doing is rotating the base coordinates, by a constant rotation at p. Then
using the standard Kato inequality, we have:

d|F | = d1|F | ≤ |∇1F |.(3.4)

Note, that in our adapted orthonormal coordinates, at the arbitrary point
p in the fiber–that is the center of our exponential coordinates, we have
∇1F has the coordinate representation

∑
k,l

∂
∂x1 (Fk,l), because A(p) = 0.

The idea of the proof is to make use of this formula for the coordinates
of ∇1F , in an expression resulting from replacing terms in the coordinate
representation of DAF at p by terms in the coordinate representation of
D∗

AF at p. Then, we use that fact that p is arbitrary. First, we express
DA(F ) at p in components, with respect to our adapted coordinates. We
note that at p, we have DA(F ) = d(F ).

Consider the individual components of DAF (p) = dF (p). We can com-
pute these explicitly in our local coordinates. In particular, consider those

component terms of the form

(
∂

∂x1 F ij
i �=j �=1

)
. We have (for i, j fixed):

(
∂

∂x1
F ij
i �=j �=1

)
=

∂F1,j

∂xi
± ∂F1,i

∂xj
± (dF )1,i,j .(3.5)

Here, (dF )1,i,j is the dx1 ∧ dxi ∧ dxj component of dF .
For each fixed pair (i, j), on the left hand side of equation (3.5), there

are three terms on the right hand side of equation (3.5).
Note that the ± parity of the terms on the right hand side of equation

(3.5) is immaterial to our proof.
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Consider the individual components of D∗
AF (p) = d∗F (p). In particular,

those component terms of the form

(
∂

∂x1F 1,l
l �=1

)
, are given by:

(
∂

∂x1
F 1,l
l �=1

)
=

∑
s �=1
s �=l

[
±
(

∂

∂xs
F s,l

)]
± (d∗F )l(3.6)

Here, (d∗F )l is the dx
l component of d∗∗F , where l is the fixed l on the left

hand side of equation (3.6).
Note that for each fixed l on the left hand side of equation (3.6), there

are n − 2 terms in the sum on the right hand side of (3.6). This is because
s takes the n − 2 integer values {s = 2, . . . , n} − {l}. Thus, the right hand
side of equation (3.6) has n− 1 terms.

Note that the ± parity of the terms on the right hand side of equation
(3.6) is immaterial to our proof. We have

|∇1F (p)|2 =
∑
s �=t

∣∣∣∣ ∂

∂x1
F st

∣∣∣∣
2

.(3.7)

Replacing each term on the right hand side of equation (3.7) by terms not
involving ∂

∂x1 , by using either equation (3.5) or equation (3.6), we obtain an

expression for |∇1F |2, in which ∂
∂x1 does not appear.

Each such replacement has either 3 or n − 1 terms. Note, that, since
n ≥ 4, we have 3 ≤ n− 1.

Now, we use
(∑n−1

i=1 ai

)2
≤ (n− 1)

(∑n−1
i=1 a2i

)
.

Thus, we have:

|∇1F (p)|2 ≤ (n− 1)

(
n∑

i=2

|∇iF (p)|2
)

+ (n− 1)|D∗
AF |2 + (n− 1)|DAF |2.

(3.8)

Adding (n− 1)|∇1F (p)|2 to both sides of equation (3.8) we obtain

(n)|∇1F (p)|2≤(n− 1)

(
n∑

i=1

|∇iF (p)|2
)
+(n− 1)|D∗

AF |2 + (n− 1)|DAF |2.

(3.9)

Dividing both sides of inequality (3.9) by n− 1, we obtain

(
n

n− 1

)
|∇1F (p)|2 ≤

n∑
i=1

|∇iF (p)|2 + |D∗
AF |2 + |DAF |2.(3.10)
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Now, we use inequality (3.4), in combination with inequality (3.10), and the
fact that p is arbitrary, to obtain:(

n

n− 1

)
|∇1|F (p)||2 ≤

(
n∑

i=1

|∇iF (p)|2
)

+ |D∗
AF |2 + |DAF |2.(3.11)

However, it follows from formulae (2.4) page 193, formula (2.12) page
194, and formula (2.13) page 194 of [2], that the inequality (3.11) is gauge
invariant. Since p is arbitrary, inequality holds in any gauge and at any point
in our local trivialization. Note that inequality (3.11) is inequality (3.2), and
this completes the proof of inequality (3.2).

Now, in a similar way, we prove inequality (3.3). First, we prove (3.2). At
any arbitrary point p in the fiber V , we choose a local exponential gauge, cen-
tered at p so that A(p) = 0. Choose an adapted orthonormal frame (induc-
ing local adapted orthonormal coordinates), such that d|θ(p)| = d1|θ(p)| =
∂
∂1
(|θ(p)|)dx1. Note, that choosing such an orthonormal frame, still preserves

the exponential gauge centered at p, because all we are doing is rotating the
base coordinates, by a constant rotation at p.

Then using the standard Kato inequality, we have:

d|θ(p)| = d1|θ(p)| ≤ |∇1θ(p)|.(3.12)

Note that in our adapted orthonormal coordinates at the arbitrary point p in
the fiber (that is the center of our exponential coordinates), we have ∇1θ(p)
has the coordinate representation

∑
k,l

∂
∂x1 (Fk,l) because A(p) = 0. The idea

of the proof is to make use of this formula for the coordinates of ∇1θ, in an
expression resulting from replacing terms in the coordinate representation
of DAθ(p) at p by terms in the coordinate representation of D∗

Aθ(p) at p.
Then, we use that fact that p is arbitrary. First we express DA(θ) at p in
components, with respect to our adapted coordinates. We note that at p we
have DA(θ) = d(θ).

Consider the individual components of DAθ(p) = dθ(p). We can com-
pute these explicitly in our local coordinates. In particular, we consider
coefficient terms that are the coefficients of dx1 ∧ dxl. These terms satisfy

(
∂

∂x1
θl �=1(p)

)
= ± ∂θ1

∂xl �=1
(p)± (dθ)1,l.(3.13)

Here, (dθ)1,l is the coefficient of dθ corresponding to dx1∧dxl, where l is the
fixed l on the left hand side of equation (3.13). There are two terms on the
right hand side of equation (3.13). Note that, since n ≥ 4, we have 2 ≤ n.

We also consider the individual components of D∗
A(p)θ = d∗θ(p). We

have (
∂

∂x1
θ1(p)

)
= ±

n∑
k=2

(
∂

∂xk
θk(p)

)
+ d∗(θ(p)).(3.14)
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Note that d∗(θ(p)) is a zero form, and so it has no indices. There are n
terms on the right hand side of equation (3.14).

We have:

|∇1θ(p)|2 = |d1θ(p)|2 =
∣∣∣∣
(

∂

∂x1
θ1(p)

)∣∣∣∣
2

+

n∑
l=2

∣∣∣∣ ∂

∂x1
|θl �=1(p))

∣∣∣∣
2

.(3.15)

Replacing the first term on the right hand side of equation (3.15) using
(3.14), and replacing the second term of the right hand side of equation

(3.15) using (3.13), and using (
∑n

i=2 ai)
2 ≤ (n)

∑n
i=2 a

2
i , we obtain

|∇1θ(p)|2 ≤ n

(
n∑

i=2

|∇iθ(p)|2
)

+ n|D∗
Aθ(p)|2 + n|DAθ(p)|2.(3.16)

Adding (n)|∇1θ(p)|2 to both sides of inequality (3.16) we obtain:

(n+ 1)|∇1θ(p)|2 ≤ (n)|∇θ(p)|2 + n|D∗
Aθ(p)|2 + n|DAθ(p)|2(3.17)

Dividing inequality (3.17) by n+ 1 on both sides we obtain:

|∇1θ(p)|2 ≤
(

n

n+ 1

)
|∇θ(p)|2 + |D∗

Aθ(p)|2 + |D∗
Aθ(p)|2.(3.18)

Finally, we use the standard Kato inequalities (3.12) together with in-
equality (3.18) to obtain

|∇|θ(p)||2 ≤
(

n

n+ 1

)(
|∇θ(p)|2 + |D∗

Aθ(p)|2 + |D∗
Aθ(p)|2

)
(3.19)

at p in our exponential gauge centered at p. However, it follows from formulae
(2.4) page 193, formula (2.12) page 194, and formula (2.13) page 194 of [2],
that the inequality (3.19) is gauge invariant. Since p is arbitrary, inequality
holds in any gauge and at any point in our local trivialization.

Since inequality (3.19) is inequality (3.2), we have proved inequality
(3.2). This completes the proof of the theorem. �

These estimates are used in conjunction with the standard Weitzenbock
formulae. We remind the readers of these identities. First, we have

Theorem 6.

∇∗
A∇AV = D∗

ADAV +DAD
∗
AV + S(FA)V.(3.20)

Here, ∇∗
A∇A is the “rough Laplacian”, DA is the exterior covariant dif-

ferential, D∗
A is the exterior covariant codifferential, and S(FA) is a bundle

curvature term. There is no base curvature term, as we are assuming (lo-
cally) that the base manifold is an open domain of Rn.

Proof. A good reference for this is section 3 of [2]. �
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Theorem 7. Let (DA,Φ) be a smooth solution of the field equations
(1.3) in Ω. Then(

−1

2

)
�|FA|2 + |∇AFA|2 ≤ |FA|3 + |DAΦ|2|FA|+ |Φ|2|FA|2(3.21a) (

−1

2

)
�|DAΦ|2 + |∇ADAΦ|(3.21b)

≤ 2|FA||DAΦ|2 + |Φ|2|DAΦ|2 + |QΦ,Φ(Φ)||DAΦ|2.

Proof. We only give a sketch of the important points: To prove (3.21a),
we have:

DAD
∗
AFA +D∗

ADAFA =(3.22) (
1

2

)
DA[Φ, DAΦ] =

(
1

2

)
[DAΦ, DAΦ]

+

(
1

2

)
[Φ, [FA,Φ]].

In equation (3.21a) DA is the exterior covariant derivative, and D∗
A is the

exterior covariant codifferential.
Recall, that the inner product <,> of p-forms and q-forms with coef-

ficients that are sections of an associated bundle is defined by taking the
inner product of the section valued coefficients and producting with inner
product of the form parts. Thus the Hodge star operator can be considered
as acting on the form part alone. Thus we have (using that the inner product
on sections is a metric compatible with the connection ∇A)

d < FA, FA >= 2 < FA,∇AFA >(3.23)

d ∗ (< FA,∇AFA >) = 2 < ∇AFA,∇AFA > +2 < FA,∇∗
A∇AFA > .

(3.24)

Thus

d∗d(< FA, FA >) = [2 < ∇AFA,∇AFA > +2 < FA,∇∗
A∇AFA >] .(3.25)

Now apply Theorem 6 to the last term of (3.25), with V = FA, noting
that DAFA = 0 by Bianchi’s identity. Then apply (3.22) to the result. The
first term of the right hand side of (3.25) accounts for the second term of
the left-hand side of (3.21a).

Similarly we prove (3.21b), by using the identity

∇∗
A∇A(DAΦ) = (DAD

∗
A +D∗

ADA)(DAΦ) + [FA, DAΦ](3.26)

and the field equations (1.3). �
Corollary 2. Let ν = (FA, DAΦ). Then

−�(|ν|2) +
(
1 +

1

n

)
|d(|ν|)|2 ≤ 3|FA||ν|2 +Q1|ν|2 + 4|QΦ(Φ)|2.(3.27)

Here Q1 = 2max
(
|Φ|2 + |QΦ,Φ(Φ)|2

)
.
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Proof. If we add equation (3.21) and equation (3.21b), we get:

−�(|ν|2) + |∇Aν|2 ≤ |FA|3 + 3|FA||DAΦ|2 + |Φ|2
(
|FA|2 + |DAΦ|2

)(3.28)

+ |QΦ,Φ(Φ)||DAΦ|2 ≤ 3|FA||ν|2 +
(
|Φ|2 + |QΦ,Φ(Φ)||ν|2

)
.

(3.29)

From Theorem 5, we get:(
1 +

1

n

)
|d(|ν|)|2 ≤ |∇Aν|2 + |D∗

AFA|2 + |D∗
ADAΦ|2 + |DADAΦ|2(3.30)

≤ |∇Aν|2 + |Φ|2|ν|2 + |QΦ(Φ)|2.(3.31)

Putting this inequalities together gives the result. �

4. Bounds on the solutions of an elliptic inequality: the smooth
case

In this section we prove that a smooth function f which satisfies an
elliptic inequality in Ω is bounded in the interior of Ω in terms of its X2(Ω)
norm. This result, which is weaker than the result of Section 5, can be used
to prove that the limit of smooth solutions is smooth on the complement of
a set of finite n− 4 Hausdorff dimension. Also, it is a warmup for Section 5.

We prove this result for Ω1 ⊂ Ω4, where Ωl = [−l, l]n. By the results on
scaling and monotonicity in Section 1, Appendix A and Section 2, it can be
modified for arbitrary domains.

We use the notation of Appendix A, where Xk = M
n
k
, 4
k for the Morrey

Space with integration power n
k and scaling power 4

k . The formulae are
particularly simple in this notation.

Theorem 8. Let u > 0, and f ≥ 0 be smooth functions in Ω4 with
f ∈ X2(Ω4).

−�f + α

(
|df |2
f

)
− uf ≤ Q1f.(4.1)

Then there exist ηk and Kk, depending on α > 0 and 0 < k ≤ 1, such that
if ‖u‖X2(Ω4) ≤ ηk,

‖f‖Xk(Ω1) ≤ Kk‖f‖X2(Ω4).(4.2)

Here ηk, and Kk depend on the norm of the inversion of � on Xk′+2 and

the norm of Xk′ ⊂ X2+k′
2 , where k ≤ k′ ≤ 1.

Proof. Note, that this problem is not linear in f , but it scales linearly
in f . This allows us to fix the dependence in the conclusion as linear in
‖f‖X2(Ω4).

In fact, Theorem 8 is true without the condition α > 0. However, we
prove it with this condition as a warm up for the proof of Theorem 9 of
Section 5.
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Recall that the norm that we use for Xk
γ (Ωl) denotes the cutoff of the

odd extension. For γ > 0, this imposes Dirichlet boundary conditions, where
the condition γ > 0 is necessary.

The first Lemma is a straightforward computation.

Lemma 1. Suppose u, f > 0 are smooth, and

−�f + α

(
|df |2
f

)
≤ (u+Q1)f.(4.3)

Then ∥∥∥∥ |df |
f1/2

∥∥∥∥
2

X2(Ω3)

≤ C1

(
1

α

)
‖f‖2X2(Ω4)

(
1 +Q1 + ‖u‖X2(Ω4)

)
.(4.4)

Proof. Let

Ψ =

{
1, for t ≤ 1

0, for t ≥ 2
(4.5)

be a smooth cutoff function, and for arbitrary y ∈ Ω3, let Ψr(x) = Ψ( |x−y|
r ),

r < 1. Multiply equation (4.3), by Ψr(x), integrate and move the term∫
�Ψr(x)f(x) (dx)

n =
∫
Ψr(x)�f(x) (dx)n to the right hand side. This

gives,

α

∫
Ψr(x)

|df(x)|2
f(x)

(dx)n ≤
∫

[|�Ψr|+Ψr(x)(u+Q1)] f (dx)n(4.6)

Now

α

∫
|x−y|≤r

[
|df(x)|2
f(x)

]
(dx)n ≤ α

∫
Ψr(x)

[
|df(x)|2
f(x)

]
(dx)n(4.7)

|�Φr(x)| ≤ C2r
−2(4.8) ∫

|�Ψr(x)|f(x) (dx)n)(4.9)

≤ C2r
−2

(∫
|x−y|≤2r

f(x)2 (dx)n

) 1
2
(∫

|x−y|≤2r
1 (dx)n

) 1
2

≤ C3r
n−4‖f‖X2(Ω4)

and ∫
�Ψr(u+Q1)f (dx)n ≤ (2r)n−4‖u+Q1‖X2(Ω4)‖f‖X2(Ω4).(4.10)

Putting this all together gives:

α

∫
|x−y|≤r

|df |2
f

≤ C3(r
n−4 + (2r)n−4‖u+Q1‖X2(Ω4))(‖f‖X2(Ω4)).(4.11)

We can take the constant C1 = C3(1+2n−4) by using the triangle inequality,
dividing both sides by αrn−4 and using the definition of the X2 norm. �
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The next step in the proof of theorem 8 is to bound ‖f‖Xk(Ω2). Choose
another smooth test function,

ψ̂(x) =

{
0 for x ∈ Rn − Ω3

1. for x ∈ Ω2.
(4.12)

According to theorem 14, in Appendix A, if u is sufficently small, we
can solve

−�φ̂− uφ̂ = Q1ψ̂f − 2dψ̂df − [�(ψ̂)]f(4.13)

for φ̂ ∈ X3
2 (Ω3), if we can get an estimate of the right hand side of equation

(4.13) in X3(Ω3). Since, f ∈ X2(Ω3) ⊂ X3(Ω3), the first and third terms

are fine. But, df =

(
df

f
1
2

)
(f

1
2 ). According to lemma (1), df

f
1
2

can be esti-

mated in X2(Ω3). Equation (A.18) of Appendix A shows that ‖f 1
2 ‖X1(Ω3) ≤

‖f‖
1
2

X2(Ω3)
. Moreover X2(Ω3)⊗X1(Ω3) ↪→ X3(Ω3) by multiplication. Hence

the right hand side can be estimated in X3(Ω3) by

(c+max|�ψ̂|)‖f‖X2(Ω3) + C4‖f‖X3(Ω4).(4.14)

Hence,

‖φ̂‖X1(Ω3) ≤ C5‖φ̂‖X3
2 (Ω3) ≤ C6‖f‖X2(Ω4)(4.15)

where we have used the norm of the Morrey-Sobolev embedding X3
2 (Ω3) ↪→

X1(Ω3). We omit the dependence on u, because the norm involved is small
by assumption.

Now let g = ψ̂f − φ̂.

−�g − ug ≤ 0.(4.16)

According to Theorem 17 of Appendix B, if ‖u‖X2(Ω3) is sufficently small,

then g ≤ 0, and ψ̂f ≤ φ̂. Then inequality (4.15) immediately transfers to:

‖ψ̂f‖X1(Ω3) ≤ C7‖f‖X2(Ω4).(4.17)

Now we take a second cutoff function

ψ̄ =

{
0 if x ∈ Rn − Ω2

1 if x ∈ Ω1
.(4.18)

Note that d(ψ̂ψ̄) = �(ψ̂ψ̄) = 0, and ψ̂ψ̄ = ψ̄. Now

−�(ψ̄φ̂)− uψ̄φ̂ = cψ̄f − 2dψ̄dφ̂− (�ψ̄)φ̂.(4.19)

These identities hold on the open dense nonsingular set. We have ψ̄f ∈
X1(Ω2), and �(ψ̄)φ̂ ∈ X1(Ω2), but 2dψ̄dφ̂ is only estimated in X3

1 (Ω2) ⊂
X2(Ω2). We cannot invert −�−u on X2, no matter how small ‖u‖X2(Ω2) is.

However X2(Ω2) ⊂ X2+k(Ω2), and for ‖u‖X2(Ω2) ≤ ηk, we can invert −�−u
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onX2+k(Ω2). Now we have an estimate on ψ̄φ̂ ∈ X2+k
2 (Ω2) ⊂ X2(Ω2), which

transfers to f ∈ Xk(Ω1). �

5. Bounds on the solution of an elliptic inequality: the singular
case

This section is similar to Section 4, except that we allow singular sets
in Ω4.

Theorem 9. Let u ≥ 0, and f > 0, be smooth functions on Ω4 − S,
where S is a closed set of finite n− 4 Hausdorff dimension. If f ∈ X2(Ω4),
0 < k < 2 and

−�f + α

(
|df |2
f

)
− uf ≤ Q1f(5.1)

then there exist constants ηk > 0, and κk > 0, such that if ‖u‖X2(Ω4) < ηk,

then f ∈ Xk(Ω1). Moreover

‖f‖Xk(Ω1) ≤ κk‖f‖X2(Ω4).(5.2)

Proof. We now modify the proof of Section 4 to account for the singular
Set S, where S is a closed set of finite n−4 Hausdorff dimension. We observe
that inequality (5.2), though not linear, scales linearly. So we may assume
that ‖f‖X2(Ω4) = 1, and get bounds on ‖f‖Xk(Ω1) as a constant.

In the body of this proof, we need the following lemma:

Lemma 2. Suppose u ≥ 0, f > 0, with u, f ∈ X2(Ω4) smooth off of a
closed set S of finite n − 4 Hausdorff dimension. In addition α > 0, and
x ∈ Ω4 − S, we have,

−�f + α

(
|df |2
f

)
≤ (u+Q1)f,(5.3)

then |df |
f

1
2
∈ X2(Ω3), and

∥∥∥∥∥ |df |f
1
2

∥∥∥∥∥
2

X2(Ω3)

≤ Cα‖f‖X2(Ω4)

(
1 + ‖u‖X2

Ω4

)
.(5.4)

We prove Lemma 2.

Proof. Suppose that the test function μ ∈ C∞
0 (Ω4). We will show that∫

(−�μ)f (dx)n + α

∫
μ

(
|df |2
f

)
(dx)n ≤

∫
(u+Q1)μf (dx)n.(5.5)

Given equation (5.5), the proof is exactly the same as that of Lemma 1, if
we set ΨR = μ. Let S : Ω4 → R+ be a regularized distance function (11)
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to the set S. See Definition 11 of Appendix B. Let Ψ: [0,∞) → [0,∞) be a
C∞ function such that Ψ has bounded derivative and

Ψ(t) =

{
1, if t > 2

0, if t ≤ 1.
(5.6)

We define:

βε = 1−Ψ(
s(x)

ε
) =

{
1, if s(x) > 2ε

0, if s(x) ≤ ε.
(5.7)

Note by the usual computation, and by the definition of the regularized
distance function, we have:

|dβε| ≤ Kε−1(5.8)

|�βε| ≤ Kε−2.(5.9)

Here the size of K is inconsequential for the proof except that it is indepen-
dent of ε. Then, equation (5.5) is true if we replace μ by βεμ ∈ C∞

0 (Ω4−S).
Now we compute:

�(βεμ) = �(μ)βε + 2 grad(μ) • grad(βε) + μ�(βε)(5.10)

and

|2 grad(μ) • grad(βε) + μ�(βε)| ≤ K(μ)ε−2(5.11)

where K(μ) does depend on μ. This then implies:∫
Ω4

βε

(
(�μ)f + μ

|df |2

f
1
2

)
(dx)n ≤(5.12)

∫
Ω4

βε(u+Q1)f (dx)n +K(μ)ε−2

∫
|s(x)|≤2ε

f (dx)n.

But,

∫
|s(x)|≤2ε

f (dx)n ≤
(∫

|s(x)|≤2ε
|f |2 (dx)n

) 1
2
(∫

|s(x)|≤2ε
12 (dx)n

) 1
2

(5.13)

≤
(
K(S)ε4

) 1
2

(∫
|s(x)|≤2ε

|f |2 (dx)n
) 1

2

.

Here the volume of {X | s(x) < 2ε} has been estimated in Lemma 4 of

Appendix B. However, since limε↓0
(∫

|s(x)|≤2ε |f |2 (dx)n
)
= 0, the ε2 and the

ε−2 cancel, and we have our result. Note that the constants that depend on
S and μ disappear in the limit, as they are multiplied by a term that goes
to zero. This finishes the proof of the lemma. �
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In the remaining part of the proof of Theorem 9, we again use α > 0,
and assume without loss of generality that α < 1

2 . Multiply equation (5.1)
by f−α, and use the fact that in Ω3 − S, we have:

f−α

(
−�f + α

(
|df |2
f

))
= d∗(f−(α)df) = −

(
1

1− α

)
(�(f1−α)).(5.14)

Define f = f1−α, and note that:

‖f‖X2(1−α)(Ω) ∼ ‖f‖X2(Ω)(5.15)

from equation (A.18) of Appendix A. Now, on Ω3 − S, we have:

−�f − uf ≤ Q1f,(5.16)

for f ∈ X2(1−α)(Ω3). Now we proceed with the proof of Theorem 9.
In the proof of Theorem 8, we also needed an estimate on:

df = (1− α)

(
df

f
1
2

)(
f−α+ 1

2

)
∈ X3−2α(Ω3).(5.17)

This follows from the multiplication law and from df

f
1
2
∈ X2(Ω3), as well as

f
1
2
−α ∈ X2( 1

2
−α)(Ω3). Here assuming that ‖f‖X2(Ω4) = 1 is invaluable, as

we need not carry these powers around. In carrying out the proof, we obtain
that

−�φ− uφ = Q1Ψ̂f̄ − 2dΨ̂df − Ψ̂�(f)(5.18)

can be solved for φ ∈ X3−2α
2 (Ω3). We have that

−�(g)− ug ≤ 0,(5.19)

for g = Ψ̂f − φ. Here g ∈ X2(1−α)(Ω3), so the hypotheses of Theorem 18

of Appendix B are satisfied with g1+γ = g
1

1−α ∈ X2(Ω3) ⊂ L2(Ω3). It

follows that g ≤ 0, and that Ψ̂f̂ ∈ X1−2α(Ω3). In the next step, transferring

estimates similarly to the proof of Theorem 8, we get Ψφ ∈ X k̄(Ω2) for

arbitrary k̄ with ‖u‖X2(Ω2) ≤ ηk̂. But f ∈ X k̄(Ω1) is equivalent to f ∈
X k̄(1−α)(Ω1). This completes the proof of Theorem 9. �

The following is a Corollary of the above proof of Theorem 9:

Proposition 1. If u ≤ λf , and the hypothesis of Theorem 9 of Appen-
dix B are satisfied, then we have a bound on f(x) for x ∈ Ω1.

Proof. We follow the proof of Theorem 9, until, with f ≤ φ ∈ Ω2, we
have φ ∈ X3−2

2 (Ω3). We have:

−�((Ψ)(φ)) = u((Ψ)(φ)) +Q1(Ψ)(f)− 2(dφ)(dΨ)− (�(Ψ))(φ).(5.20)

Now, all the terms on the right are in X2−2α(Ω2), except for the term

(uΨ)(φ). Here φ ∈ X1−2α(Ω2) and u ≤ λf ≤ λ(f)
1

1−α ∈ X
1−2α
1−α (Ω2) ⊂

X1(Ω2). By multiplication, we have u(Ψ)(φ) ∈ X2−2α(Ω2). Hence (Ψ)(φ) ∈



YANG MILLS HIGGS 277

X2−2α
2 (Ω2) ⊂ L∞(Ω2), and f(x) ≤ φ(x) ≤ K in Ω1. Keeping track of

the explicit dependence of powers of ‖f‖X2(Ω4) in the final estimate is not
straightforward. �

6. Application to Yang-Mills-Higgs

The simpler results of Section 4 apply directly to getting estimates on
smooth solutions, and we do not go into that here.

First, we directly apply the results of Section 5 to solutions of a Yang-
Mills-Higgs system in a cube Ω4 = [−4, 4]n. An immediate corollary, using
Appendix C, shows when solutions (with Hausdorff codimension 4 singular
set), extend to smooth solutions in the interior of [−1, 1]n. Later, we show
how this applies to the Yang-Mills-Higgs equations in arbitrary domains,
and discuss how to verify the hypotheses.

Theorem 10. Let (DA,Φ) be solutions to a Yang-Mills-Higgs system in
Ω4−S, where S is a closed set of finite n−4 dimensional Hausdorff measure.
Let υ = (FA, DAΦ). Assume that υ ∈ X2(Ω4), and that Φ ∈ L∞(Ω4).

Q1 = sup
[−4,4]n

(2|Φ|+ |QΦ,Φ(Φ)|)(6.1)

Q2
2 = sup

[−4,4]n

(
|QΦ(Φ)|2

Q1

)
.(6.2)

If FA ∈ X2(Ω4) is sufficently small, then |υ| ∈ L∞(Ω1). We also have the
explicit bound

‖υ‖L2n(Ω1) ≤ C(Q1)(‖υ‖X2(Ω4) +Q2
2).(6.3)

Proof. Using the improved Kato formula, and the Weitzenbock formu-
lae, we have, from Corollary (2) of Theorem 7 see (3.27).

−�(|υ|2) + (1 +
1

n
)|d|υ||2 ≤ 3|FA||υ|2 +Q1(|υ|2 +Q2

2).(6.4)

Let u = 3|FA|, and f2 = |FA|2 +Q2
2. Then

−(
1

2
)�(f2) + (1 +

1

n
)(|df |2 ≤ uf2 +Q1f

2.(6.5)

Divide by f and use the fact that

f−1d∗(fdf) +
|df |2
f

= �f(6.6)

to get

−�f +

(
1

n

)(
|df |2
f

)
− uf ≤ Q1f.(6.7)

If u = 3|FA| ∈ X2(Ω4) is sufficently small, we can apply Proposition 1 to
get a bound on f ∈ L∞(Ω1).
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To obtain the explicit bound

‖f‖L2n(Ω1) ≤ C(Q1)‖f‖X2(Ω4)(6.8)

we apply Theorem 9 with 4
k = 2n. This gives:

‖υ‖L2n(Ω1) ≤ ‖υ‖Xk(Ω1) ≤ C(Q1)
(
‖υ‖X2(Ω4) +Q2

)
.(6.9) �

Now, we have a regularity result in small balls of Ω1. This regularity
theorem is proved by combining Theorem 10 and Corollary 5 from Appen-
dix C.

Corollary 3. If (DÃ,Φ) satisfy the hypothesis of Theorem 10, with
‖FÃ‖X2(Ω4) sufficently small, then for each point y ∈ Ω1 there is a neigh-
borhood By(δ) ⊂ Ω1, with δ chosen such that (6.14) below holds, such that,
in By(δ)− S, DÃ is smoothly gauge equivalent to an exterior covariant de-
rivative d + A (corresponding to a connection ∇A). If υ = (FA, DAΦ), we
have:

‖υ‖L2n(Ω1) ≤ C(Q1)
(
‖υ‖X2(Ω4) +Q2

)
(6.10)

d∗A = 0(6.11)

δ−1‖A‖L2n(By(δ)) ≤ C‖FA‖L2n(By(δ)) ≤ C‖FA‖L2n(Ω1)(6.12)

In the new gauge

A and Φ are smooth onBy(δ).(6.13)

Proof. Condition 6.10 is the conclusion of Theorem 10. In Theorem 19
Appendix C the local trivialization in which the Coulomb condition of 6.11
holds is constructed. Let ε > 0. The size of the ball By(δ) is fixed so that

‖FÃ‖L2n(By(δ)) ≤ ‖FÃ‖L2n(Ω1) ≤ δ−3ε.(6.14)

If we rescale to a unit ball we have the L2n norm of F bounded by ε and
we can apply theorem 19 of Appendix C. Then, equation 6.11 is valid. The
inequality 6.12 is the rescaled version of the estimate in Corollary 5 Appen-
dix C.

Now collect the information that we have from Appendix C, and the
Euler-Lagrange equations to get the following identities and equations:

d∗A = 0(6.15)

dA+

(
1

2

)
[A,A] = FA(6.16)

d∗FA + [A,FA] = [Φ, [d+A,Φ]](6.17)

DΦ = [d+A,Φ](6.18)

D∗ (dΦ) + [A, dΦ] = QΦ(Φ).(6.19)
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Rearrange the above equations so that:

�A = (d∗d+ dd∗)A = L1(A, dA,Φ, dΦ)(6.20)

and

�Φ = d∗dΦ = L2(A, dA,Φ, dΦ).(6.21)

Here the powers of {A, dA,Φ, dΦ} in the expressions L1 and L2 are under
control and Q is a smooth function of Φ, which – to begin with– is in L∞.
Standard bootstrap arguments then yield smoothness in the interior. �

To see how Theorem 10 applies in a general domain, assume (DÃ,Φ)
satisfies a Yang-Mills-Higgs system in Ω − S, where S is a closed set of
finite n − 4 dimensional Hausdorff measure. For a fixed y ∈ Rn, let Ωy,δ =
{x : x− y ∈ [−δ,+δ]n }. Then, Theorem 10 translates into:

Corollary 4. Assume (DÃ,Φ) satisfies a Yang-Mills-Higgs system in
Ω−S, where S is a closed set of finite n−4 dimensional Hausdorff measure.
Let υ = (FA, DAΦ).

Q1 = sup
Ω

(
|Q(Φ)|2 + |QΦ,Φ(Φ)|

)
(6.22)

Q2
2 =

(
sup
Ω

|QΦ(Φ)|2
)
Q1(6.23)

Suppose υ ∈ X2(Ω), and Q1δ
2 as well as Q2δ

2 (scales like the two form υ)
are bounded by a fixed constant. In addition suppose that FÃ ∈ X2(Ω) has

small enough X2(Ω) norm (independent of the other constants). If Ωy,δ ⊂
Ω, then δ2υ ∈ L∞(Ωy,δ) is bounded above by a constant, and (DÃ,Φ) and
(DÃ,Φ) are smoothly gauge equivalent on Ωy,δ − S to a smooth exterior
covariant differential (corresponding to a smooth connection), and a smooth
Higgs Field on Ωy,δ, both of which extend smoothly across the singular set
S ∩ Ωy,δ.

Proof. In rescaling to x̃ = x−y
δ , the constants rescale as already de-

scribed. Note that X2, and the (X2 norm) are invariant, when applied to
a geometric quantity that scales like a two form. Some examples of such a
quantity are FÃ and DÃΦ. Thus Corollary 4 is a restatement of Theorem
10 for cubes of arbitrary size. �

We indicated in Section 1 how a bound on the maximum of norm Φ can
be obtained. This leads to bounds on the terms Q1 and Q2.

We emphasize that there are important examples where Φ ∈ L2(Ω)
cannot be bounded. Our theory only applies when this bound is available.

The same can be said for the bound on υ = (FA, DAΦ) ∈ X2(Ω). Bounds
on υ = (FA, DAΦ) ∈ X2(Ω) are available when it is a stationary solution of
a Yang-Mills-Higgs system.

In many cases, limits of smooth solutions approach smooth solutions (in
an appropriate topology) in Ω − S (where S is a closed set of finite n − 4
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dimensional Hausdorff measure), but it is not clear that these limits are
stable with respect to perturbation by smooth diffeomorphisms unless they
fix the singular set S.

We only have the following:

Lemma 3. Suppose that (DA,Φ) is a smooth solution of a Yang-Mills-
Higgs system, with Q > 0 on Ω − S, where S is a closed set of zero n
dimensional Lebesque measure. Suppose, in addition that (DA,Φ) is a sta-
tionary critical point of the Yang-Mills-Higgs Functional A(DA,Φ), with
respect to all smooth diffeomorphisms that fix the boundary of Ω. Let Ωy,δ =
{x | |x− y| < δ}, assume that dist(Ωy,δ,Rn − Ω) ≥ R ≥ δ as well as∫

Ω
|FA|2 + |DAΦ|2 +Q(Φ) (dx)n ≤ S2.(6.24)

Then (FA, DAΦ) ∈ X2(Ωy,δ), and

‖(FA, DAΦ)‖X2(Ωy,δ) ≤ R
−(n−4)

2 S.(6.25)

Proof. By the Monotonicity Theorem 3 for x ∈ Ωy,δ we have:

ρ−(n−4)

∫
Bx(ρ)

|FA|2 + |DAΦ|2 +Q(Φ) (dx)n(6.26)

≤ R−(n−4)

∫
Bx(R)

|FA|2 + |DAΦ|2 +Q(Φ) (dx)n ≤ R−(n−4)S2.(6.27)

If we use the norm ‖•‖′′
X2(Ωδ)

defined in equation (A.14) of Appendix A, we

obtain the required estimate. �

Our final regularity theorem is a corollary of Lemma 3, and of Corol-
lary 4.

Theorem 11. Assume the hypothesis of Lemma 3 (with A replaced by Ã
and the hypothesis of Corollary 4 except for the small X2(Ω) norm condition
on FÃ in Corollary 4. Suppose Ω0 ∈ Ω with dist(Ω0,Rn) = R where R−S <

ε. If ε is positive and sufficently small and if S2 in the hypothesis of Lemma 3
is sufficently small, then (DÃ,Φ) are smoothly gauge equivalent to a smooth
exterior differential (corresponding to a smooth connection) and a smooth
Higgs Field on Ω0 − S, and both extend smoothly across the Singular Set
S ∩ Ω0.

Proof. Using Lemma 3, we obtain, when S2 is sufficently small that
we can apply Theorem 10 in its equivalent form of Corollary 4. �

Appendix A. Morrey Spaces

The function spaces which arise naturally from the monotonicity formu-
lae are Morrey Spaces. We outline a few key properties of these spaces. We
follow the discussion and notation of [11], which is useful for geometers.
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Definition 1. Let p ≥ q > 1. The Morrey Space Mp,q is the space of
measurable functions on Rn, with finite Mp,q norm, where the Morrey norm
Mp,q is defined by

‖f‖Mp,q = maxy∈Rn

r>0
(rn(

1
p
− 1

q
))

(∫
|x−y|≤r

|f |q(dx)n
) 1

q

(A.1)

Here p is the scaling power, q is the power of integration, and Lp ⊂ Mp,q.
These are the same spaces as defined by Adams [1], and there denoted by
Lq,λ. In our notation, we have Lq,λ = Mp,q, where λ = nq

p . We use the spaces

M
n
k
, 4
k = L

4
k
,4 = Xk.

Similarly, If Ω is an open domain of Rn, we define a Morrey Space of
functions on Ω.

Definition 2. Let Ω be an open domain of Rn. Let p ≥ q > 1. The
Morrey Space Mp,q(Ω) is the space of measurable functions on Rn, with
finite Mp,q(Ω) norm, where the Morrey norm Mp,q(Ω) is defined by

‖f‖Mp,q(Ω) = maxx0∈Ω
r>0

(rn(
1
p
− 1

q
))

(∫
Bx0 (r)⊂Ω

|f |q(dx)n
) 1

q

(A.2)

Here p is the scaling power, q is the power of integration, and Lp(Ω) ⊂
Mp,q(Ω). These are the same spaces as defined by Adams [1], (localized to
Ω) and there denoted by Lq,λ(Ω). In our notation, we have Lq,λ(Ω) = Mp,qΩ,

where λ = nq
p . We use the spaces M

n
k
, 4
k (Ω) = L

4
k
,4(Ω) = Xk(Ω).

The Morrey–Sobolev spaces are spaces of functions Mp,q
α , with α deriva-

tives in Mp,q, and mutis mutandis the spaces Mp,q
α (Ω) when Ω is an open

domain of Rn. For ease of notation, we drop the Ω in this case. The results
and proofs of the next two Theorems 12 and 13 also hold in this case.

Our two basic facts are:

Theorem 12. The map (f, g) → fg, (where f ∈ Mp,q, and g ∈ Mp′,q′

q′ )

has the property that

Mp,q
⊗

Mp′,q′ → Mp′′,q′′ for
1

p
+

1

p′
=

1

p′′
and

1

q
+

1

q′
=

1

q′′
(A.3)

This specializes to Xk
⊗

Xk′ → Xk+k′.

Proof. The proof is a simple application of Holder’s inequality. �
Theorem 13.

Mp,q
α ⊂ Mp′,q′ for n > αp,where q ≥ 1 and

1

p′
=

1

p
− α

n
and

p

p′
=

q

q′

(A.4)

Xk
α ⊂ Xk−α for α < k(A.5)

and

Mp,q
α ⊂ Cγ for αp > k(A.6)
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Proof. This is on page 43 of Adams [1]. �
So far, our function spaces are defined on Rn or on Ω, with Ω an open

domain of Rn. We now define Morrey Spaces whose elements are defined on
Closed cubes. Because we have choice of such a closed cubical domain, it
suffices to fix a closed cubical domain Ωl in Rn. Following Tao–Tian [10],
we fix Ωl = [−l, l]n. We use two extensions for f defined on Ωl.

In order to invert the Laplacian in Morrey Spaces, we extend Ωl to a
tessellation (parquet) ofRn, and use the method of “reflection in a parquet”.

We use the odd extension to impose Dirichlet boundary conditions on a
closed cube and the even extension to impose Neumann conditions. We are
mostly working with the Dirichlet problem.

Definition 3 (Odd Extension).

f̂(x) = f(x) , for x ∈ Ωl(A.7)

f̂(lkej + x) = −f(lkej − x) , for x ∈ Ωl , k odd.(A.8)

and extend f to all other closed cubes in the parquet by odd reflection in
the faces of the closed cubes where is already defined.

Definition 4 (Even Extension).

f̄(x) = u(x) , for x ∈ Ωl(A.9)

f̄(lkej + x) = f̄(lkej − x) , for x ∈ Ωl , k odd.(A.10)

and extend f to all other cubes in the parquet by even reflection in the faces
of the closed cubes where is already defined.

We also fix a smooth cutoff function Ψ, with support in [−2, 2], that is
one on [−1, 1]. Let Ψl(x) = Φ(xl ).

Definition 5 (Morrey Norm Extension).

‖f‖Mp,q(Ωl) = ‖Ψlf̂‖Mp,q = ‖Ψf̄‖Mp,q .(A.11)

Definition 6 (Morrey–Sobolev Norm Extension).

‖f‖Mp,q
α (Ωl)

== ‖Ψlf‖Mp,q
l

.(A.12)

We note that Definition 6 is only useful for Dirichlet boundary condi-
tions. We will use it in Theorem 14 to invert elliptic operators on Morrey
Spaces with a closed cubical domain

The even extension is useful for Neumann boundary value problems, but
we only need the odd extension for u ∈ X2(Ωl).

We only use estimates on Ωl = [−l,+l]n, for 1 ≤ l ≤ 4, and by dilation
arguments, the constants for l = 1 differ from the constants for 1 ≤ l ≤ 4
by fixed constants in the scale.

Some remarks about equivalent norms are in order: We recall Defini-
tion 5. We may also use:



YANG MILLS HIGGS 283

Definition 7.

‖f‖′Mp,q(Ωl)
= max

r≤l
x∈Ωl

(r)
n
p
−n

q

(∫
|x−y|≤r

|f̂(y)|q (dy)n
) 1

q

(A.13)

and

Definition 8.

‖f‖′′Mp,q(Ωl)
= max

r≤1
x,y∈Ωl

(r)
n
p
−n

q

⎛
⎜⎝∫

x∈Ωl
|x−y|≤r

|f(y)|q (dy)n

⎞
⎟⎠

1
q

.(A.14)

We now use the norm in Definition 8, to define Morrey Spaces on the
closed cubical domains Ωl.

Definition 9. The space of functions f defined on Ωl such that
‖f‖′′Mp,q(Ωl)

is finite is the Morrey Space Mp,q(Ωl).

Note that by equivalence of the norms of Definition 7, Definition 8 and
Definition 5 we could equivalently have required finiteness of these norms in
Definition 9.

Similarly, we use the norm in Definition 8 to define Morrey-Sobolev
Spaces on closed cubical domains Ωl.

We remind the reader again that these definitions impose Dirichlet
boundary conditions on the function f. This does, of course, not influence
the definition of Morrey spaces, but it influences the definition when α > 0
in the Morrey-Sobolev spaces.

Definition 10. The spaces Mp,q
α (Ωl) are the set of functions on Ωl with

α derivatives in Mp,q(Ωl).

There are combinatorial constants involved in the comparison estimates
that show the above equivalences of norms. But, each of the following are
easily proved to be valid in any of these norms:

Restriction:

Mp,q(Ωl) ↪→ Mp,q(Ωl′) , where l′ ≤ l(A.15)

Subspaces:

Mp,q(Ωl) ↪→ Mp′,q′(Ωl) , where p′ ≤ p , q′ ≤ q(A.16)

Multiplication:

Mp′,q′(Ωl)⊗Mp′′,q′′(Ωl) ↪→ Mp,q(Ωl′), where
1

p′
+

1

p′′
≤ 1

p
,

1

q′
+

1

q′′
≤ 1

q
.

(A.17)

Power Law (for ’ and ” norms):

‖fα‖Mp,q(Ωl) ≤
(
‖f‖Mαp,αq(Ωl)

)α
, where α > 0(A.18)
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Invertibility of � and �− cu on Morrey Spaces
First, we have an invertibility result for the Laplace operator on Morrey

Spaces defined on Ω, with Ω a closed cubical domain.

Theorem 14. Let Ω be a closed cubical domain. Then, � : Mp,q
2 (Ω) →

Mp,q(Ω) is invertible.

Proof. We prove this for Ω = [−1, 1]. The proof for arbitrary Ωl is
obtained by scaling. First, we solve �f = g in Ω, with Dirichlet boundary
conditions. Then, �f̂ = ĝ in Rn. Choose

ψ3(x) =

{
0 for, x /∈ Ω4

1 for, x ∈ Ω3
.(A.19)

Then

�(ψ3f̂) = ψ3ĝ + (�(ψ3))f̂ + 2(dψ3) • (df̂).(A.20)

Now let

ψ3f̂ = f1 + f2(A.21)

where

�f1 = ψ3ĝ ∈ Mp,q(A.22)

�f2 = 2dψ3 • df̂ + (�ψ3)f̂ ∈ Lq
1.(A.23)

Here f1 ∈ Mp,q
2 by the invertibility of � on Mp,q, (see theorem 8.1 of Adams

[1]). We have f2 in an appropriate Sobolev space on Rn. But �f2 = 0 in
Ω3. Thus by elliptic regularity f2 | Ω2 ∈ C∞(Ω2). Hence,

‖f‖Mp,q
2 (Ω) = ‖ψ3f̂‖Mp,q

2
≤ ‖ψ3f1‖Mp,q

2
+ ‖ψ3f2‖Mp,q

2
(A.24)

≤ C1‖f1‖Mp,q
2

+ C2‖f2 | Ω2‖C∞(Ω2).(A.25) �
We are next interested in the properties of �− u : Mp,q

2 (Ω) → Mp,q(Ω),
with Ω a closed cubical domain. Again, to define the operator, we note that
�− ū, where ū is the even extension of u to Rn, has the desired properties.
Consider

(�− ū)f̂ = ĝ.(A.26)

We need only to estimate the norm of ψūf̂ in Mp
q in terms of ψf̂ in Mp

q,2.

Theorem 15. Let 2 < k < 4. Let Ω be a closed cubical domain. If
u ∈ M

n
2
,2(Ω) = X2(Ω) is sufficently small then

�− u : Xk
2 (Ω) → Xk(Ω)(A.27)

is invertible.

Proof. This follows from Xk
2 ↪→ Xk−2, and Xk−2

⊗
X2 ↪→ Xk. See

Theorem 12 which holds for Morrey Spaces on closed cubical domains by
inheritance from Theorem 12 in Rn

Note that our spaces assume Dirichlet boundary data. �
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Appendix B. Eigenvalues and the maximum principle

The goal of this appendix is to prove a maximum principle for −�− u,
when u ∈ X2(Ωl) is small on Ωl = [−l, l]n, 1 ≤ l ≤ 4. Since the constants
change by fixed amounts, without loss of generality, we can assume Ω =
[−1, 1]n.

Theorem 16. There exists a constant λ, (depending on the norm of �−1

on X2(Ω) and on the constants in the Morrey-Sobolev embedding X3
2 (Ω) ⊆

X1(Ω) such that

λ

∫
Ω
uφ2 (dx)n ≤ ‖u‖X2(Ω)

∫
Ω
|d|φ||2 (dx)n(B.1)

for φ ∈ L2
1,0(Ω), where φ ∈ L2

1,0(Ω) denotes the set of functions in φ ∈ L2
1(Ω)

with vanishing Dirichlet boundary value on ∂Ω.

Proof. It is sufficient to prove this for φ smooth, since since smooth
functions are dense in L2

1,0(Ω). Fix such a φ0. Then, choose ρ so that∫
Ω
|dφ0|2 (dx)n ≤ ρ

∫
Ω
uφ2

0 (dx)
n(B.2)

≤ ρ

∫
Ω
ucφ

2
0 (dx)

n + ρ

∫
Ω
(u− uc)(maxφ2

0) (dx)
n

Here

uc =

{
u, if u ≤ c

c if u ≥ c
(B.3)

and limc→∞
∫
Ω(u− uc) (dx)

n = 0. Note that

‖uc‖X2 ≤ ‖u‖X2(B.4)

Minimize
∫
Ω |dφ|2 (dx)n subject to the constraint

∫
Ω ucφ

2 (dx)n = 1, for φ ∈
L2
1,0(Ω). Since L2

1,0(Ω) ⊂ L2(Ω) is compact and uc ≤ c we get an eigenvalue

ρc and an eigenfunction φc in Lp
2,0 for all p, such that

−�φc − ρcucφc = 0(B.5a)

ρc

∫
Ω
ucφ

2 (dx)n ≤
∫
Ω
|dφ|2 (dx)n(B.5b)

for all φ ∈ L2
1,0(Ω) But from (B.5a), we see that

‖�φc‖X3(Ω) ≤ ρc‖ucφc‖X3(Ω) ≤ ρc‖uc‖X2(Ω)‖φc‖X1(Ω).(B.6)

However

‖φc‖X1(Ω) ≤ c1‖φc‖X3
2 (Ω) ≤ c1c2‖�φc‖X3(Ω) ≤ c1c2ρc‖uc‖X2(Ω)‖φc‖X1(Ω).

(B.7)

Hence

1 ≤ c1c2‖u‖X2(Ω)ρc.(B.8)
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Use inequality (B.4), inequality (B.5b) and inequality (B.8) to get:∫
Ω
uφ2

0(dx)
n ≤ c1c2‖u‖X2(Ω)ρc

∫
Ω
ucφ

2
0(dx)

n+(B.9) ∫
Ω
(u− uc)φ

2
0(dx)

n ≤ c1c2‖u‖X2(Ω)

∫
Ω
|dφ0|2(dx)n+∫

Ω)
(u− uc)(dx)

nmax
x∈Ω

φ2
0.

Since limc→∞
∫
Ω(u− uc)(dx)

n = 0, we get the result with λ = 1
c1c2

. �
The proof of the smooth theorem is immediate from Theorem 16.

Theorem 17. If (u, g) are smooth, there exists a constant η depending
on the norm of �−1 and on a Morrey-Sobolev embedding constant, such that
if ‖u‖X2(Ω) < η, g = 0 on ∂Ω and

−�g − ug ≤ 0,(B.10)

then g ≤ 0

Proof. Let

g+(x) =

{
0 if g(x) ≤ 0

g(x) if g(x) ≥ 0
.(B.11)

Then from (B.10)∫
Ω

(
|dg+|2 − ug2+

)
(dx)n =

∫
Ω
(−�g − ug)g+ (dx)n ≤ 0.(B.12)

But, ∫
Ω
ug2+ (dx)n ≥

∫
Ω
|dg+|2 (dx)n ≥

(
λ

‖u‖X2(Ω)

)∫
Ω
ug2+ (dx)n(B.13)

from Theorem 16. If λ > ‖u‖X2(Ω), then∫
Ω
ug2+ (dx)n =

∫
Ω
|dg+|2 (dx)n = 0.(B.14)

Hence λ = η of Theorem 16. �
After this warm-up, we only need a few additional ideas to handle the

singular case.

Definition 11. If S ⊂ Ω is a closed singular set, a regularized distance
function to S is a map s : Ω → R+, such that s(x) = 0, for x ∈ S, is smooth
and s : Ω− S → R, and

c−1(dist(x,S)) ≤ s(x) ≤ c(dist(x,S)).(B.15)

Furthermore the k-th derivative of s satisfies

|( d

dxi
)ks(x)| ≤ Ck(s(x))

−k+1Ck(dist(x,S)−k+1)(B.16)
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on Ω− S.

The existence of this regularized distance function is a theorem of Stein
[6] (Theorem 2 page 171). The following lemma follows from the definition
of Hausdorff measure and a counting argument.

Lemma 4. If S ⊂ Ω is a closed set of finite k-dimensional Hausdorff
measure, and s : Ω → R is a regularized distance function to S, then∫

s(x)≤r
1 ≤ K̄rn−k.(B.17)

Theorem 18. Suppose S ⊂ Ω is a closed set of finite n− 4 dimensional
Hausdorff measure. Let g2β = g1+γ ∈ L2(Ω) (which defines β) for γ > 0,
where u, g ∈ C∞(Ω − S) and g = 0 on ∂Ω − S. If u ∈ X2(Ω) is sufficently
small (depending on γ > 0) and

−�g − ug ≤ 0,(B.18)

then g ≤ 0.

Proof. Let Ψ be a smooth cutoff function with

Ψ(t) =

{
0 for t ≤ 1

1 for t ≥ 1
.(B.19)

Assume s is a regularized distance function, and define ΨR(x) = Ψ( s(x)R ),
for R > 0. Let

gε =

{
g − ε for g ≥ ε

0 for g ≤ ε
.(B.20)

Choose ε > 0 such that ε is a regular value of g on Ω − S. We will take
ε → 0, so that

g0 =

{
g for g ≥ 0

0 for g ≤ 0
.(B.21)

We wish to prove g0 = 0. Now, we have on Ω

−Ψ2
R(g

γ
ε�g − ugγε g) ≤ 0(B.22)

ugγε g = ug2βε + εugγε .(B.23)

We also have:

Ψ2
Rg

γ
ε�g

(B.24)

= div(Ψ2
Rg

γ
ε dg)− (

1

2β
)(dΨ2

R)g
2β
ε )−

(
γ

β2

)
Ψ2

R|dgβε |2 + (
1

2β
)(�Ψ2

R)g
2β
ε .
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Continue, to get:

Ψ2
R|dgε|2 = |d(ΨRg

β
ε )− (dΨR)g

β
ε |2 ≥

(
1

2
|d(ΨRg

β
ε )|2 − |dΨR|2g2βε

)
.(B.25)

Putting (B.22) to (B.25) together, we obtain:

(
1

2
)

(
γ

β2

)
|d(ΨRg

β
ε )|2 ≤ ug2βε Ψ2

R +

(
γ

β2

)
|dΨR|2g2βε(B.26)

+ (
1

2β
)(�Ψ2

R)g
2β
ε + div

(
Ψ2

Rg
γ
ε dg − (

1

2β
)d(ψ2

R)g
2β
ε

)
.

If we let gR,ε = ΨRgε, and integrate (B.22), we get

(
1

2
)(

γ

β2
)

∫
Ω
|dgR,ε|2 (dx)n ≤

(B.27)

∫
Ω
u|gR,ε|2 (dx)n +

∫
Ω
ugγεΨ

2
R (dx)n + Cβ

∫
Ω
(|�(Ψ2

R)|+ |dΨR|2)g2βε (dx)n.

(B.28)

There is no contribution from the divergence term, as (Ψ2
R)g

2
ε dg +

γ
β2ΨR[d(ΨR)]g

2β
ε vanishes on ∂Ω ∪ g−1(ε) ∪ {s(x) ≤ R}. Because g−1(ε)

is a smooth submanifold, one can verify the computation at g−1(ε) by a one
dimensional argument. Now from the definition of ΨR and S

|�Ψ2
R|+ |dΨR|2(B.29)

≤ (
1

R
)‖dΨ2‖L∞|d2s|+ (

1

R2
) +

(
‖d2Ψ2‖L∞ + ‖dΨ‖2L∞ |ds|2

)
≤ (

K̂

R2
).

Apply this inequality (B.29), inequality (B.27), and Theorem 16 to get

(
1

2
)(

γ

β2
)

∫
Ω
|dgR,ε|2 (dx)n ≤ λ−1‖u‖X2(Ω)

∫
Ω
|dgR,ε|2 (dx)n(B.30)

+ ε‖u‖L2(Ω)

∫
Ω
‖gγε ‖L2(Ω) + (C(β))K̂K̄

(∫
s(x)≤2R

|gε|4β (dx)n
) 1

2

.

Since lim2R↓0
∫
s(x)≤2R |g4βε |(dx)n = 0, if ‖u‖X2(Ω) < ( γ

2β )λ, then g0 =

limR→0
ε→0

gR,ε = 0. �

Appendix C. Coulomb gauges

In order to get further regularity beyond an estimate on FA = dA +
1
2 [A,A], it is necessary to construct a Coulomb gauge, i.e. a local trivializa-
tion in which DA = d+A, and d∗A = 0, and to control the norm of A by a
norm of FA. Tian and Tao [11] do this in a very weak setting but their proof
is very difficult. In our situation we can assume a bound on F in Lp for p
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large, and their proof simplifies enormously. We include it here for complete-
ness. In the following By(δ) : = {x : |x− y| ≤ δ}, and B : = {x : |x| ≤ 1}.

Theorem 19. Let ∇Â be a connection that is smooth on Ω − S, where
S is a closed singular set with finite n− 3 dimensional Hausdorff measure.
Suppose FÂ ∈ Lp(Ω) for p > n. Then for each ε > 0, every point y ∈ Ω is
the center of a ball By(δ) ⊂ Ω, such that∫

By(δ)
|FÂ|

p (dx)n ≤ εpδ−2p−n.(C.1)

Note that δ depends on ε.
For such an ε > 0, there exists a local trivialization in which the con-

nection ∇A induces a local exterior covariant differential DA = d+ A such
that A satisfies d∗A = 0 and

‖A‖Lp(By(δ)) ≤ δAC(p, n)‖FA‖Lp(By(δ)) = δAC(p, n)‖FÂ‖Lp(By(δ)).(C.2)

Proof. The first statement is clear. Moreover, for interior domains of
Ω there is a uniform covering of such a domain by such balls. Choose a
coordinate system for such a ball, (x̃ : = x−y

δ ) that transforms this ball into
the unit ball. In this rescaled system∫

B
|FÂ|

p (dx̃)n ≤ εp(C.3)

and the conclusion is that there exists a trivialization at the scale of B such
that:

‖A‖Lp(B) ≤ C(p, n)‖FA‖Lp(B) ≤ C(p, n)ε.(C.4)

In the rescaled system 0 is not inS. Parallel translate the fiber at 0 along
every ray in B until each ray intersects S. This provides a smooth trivializa-
tion of the bundle over B − S ′, where S ′ : = {λy | y ∈ S, λ > 0}. Then, S ′

is a closed set of finite n − 2 dimensional Hausdorff measure. In this gauge
(trivialization) xkAk = 0 (for less cluttered notation we drop the subscript
A on FA) and

∂

∂r
(rAj) = Aj + xkFk,j + xk

∂

∂xj
(Ak) = Fk,j .(C.5)

Integrating equation (C.5) we get

rAj =

∫ r

0
ρFρ,j dρ(C.6)

where ρFρ,j = xkFk,j . Then

|A|prp ≤
(∫ r

0
|F |ρ dρ

)p

≤
(∫ r

0
(|F |ρα)p dρ

)(∫ r

0

(
ρ1−α

) p
p−1

)p

(C.7)

≤
(
r

β

)p−1 ∫ r

0
|F |pραp dρ.
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We set α = n−1
p , and compute:

β

(
(1− αp)

p− 1
+ 1

)
=

2p− αp− 1

p− 1
=

2p− n

p− 1
> 1.(C.8)

Integrating |A|prp again in r and also in the spherical angle, gives:∫ 1

0

∫
S1

rn−1|A|p dθdr ≤
∫ 1

0
rp−1 dr

(∫
S1

∫ 1

0
ρn−1|F |p dρdθ

)
.(C.9)

Hence

‖A‖Lp(B) ≤ ‖F‖Lp(B) ≤ ε.(C.10)

Now consider the equation for g = eu:

d∗(g−1dg + g−1Ag) = s,(C.11)

which is a smooth map from {u,A} (with u ∈ Lp
1(B)) ⊂ C0(B) and A ∈

Lp(B)) to s ∈ Lp
−1(B). Since at u = 0 the linearization is �u + A, and

� : Lp
0(B) → Lp

−1(B) is invertible, equation (C.11) is solvable for small A

for u near 0 in Lp
1,0(B). Now, in the new gauge, Ã = g−1dg + g−1Ag, and

FÃ = g−1FAg. We have:

d∗Ã = 0(C.12)

dÃ+ (
1

2
)[Ã, Ã] = FÃ.(C.13)

and,

‖Ã‖Lp(B) ≤ ‖dg‖Lp(B) + ‖A‖Lp(B)(C.14)

≤ (Cp + 1)‖A‖Lp(B) ≤ (Cp + 1)‖FA‖Lp(B) ≤ (Cp + 1)‖F̃A‖Lp(B)

Here Cp is roughly the norm of the inversion of � : Lp
1,0(B) → Lp

−1(B). �
This construction gives a gauge transformation between smooth connec-

tions on B − S. Because the singular set S is of Hausdorff codimension at
least two, the gauge transformation, which is a map to a compact group,
must extend over B − S ′. By the same argument, the singularities can only
be removed in one way.

Corollary 5. On B(12), we have Ã ∈ Lp
1(B(12)).

Proof. Since

‖Ã‖Lp(B) ≤ (Cp + 1)‖F̃A‖Lp(B),(C.15)

and since Ã solves the elliptic system:

d∗Ã = 0(C.16)

dÃ+
1

2
[Ã, Ã] = F̃ ,(C.17)

standard interior elliptic regularity gives an estimate of ‖Ã‖Lp
1(B( 1

2
) in terms

of ‖FÃ‖Lp(B). �
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Note that we do not set the radial xiAi equal to zero on the boundary.
We only use an interior regularity estimate.
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