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Abstract. The paper is concerned with the maximization of Laplace
eigenvalues on surfaces of given volume with a Riemannian metric in a
fixed conformal class. A significant progress on this problem has been re-
cently achieved by Nadirashvili–Sire and Petrides using related, though
different methods. In particular, it was shown that for a given k, the
maximum of the k-th Laplace eigenvalue in a conformal class on a sur-
face is either attained on a metric which is smooth except possibly at a
finite number of conical singularities, or it is attained in the limit while
a “bubble tree” is formed on a surface. Geometrically, the bubble tree
appearing in this setting can be viewed as a union of touching identical
round spheres. We present another proof of this statement, developing
the approach proposed by the second author and Y. Sire. As a side re-
sult, we provide explicit upper bounds on the topological spectrum of
surfaces.

1. Introduction and main results

1.1. Conformally maximal metrics. Let M be a compact surface
without boundary endowed with a Riemannian metric g. The corresponding
measure is denoted by dvg, and in what follows all integrations and func-
tional spaces are considered with respect to this measure unless indicated
otherwise. Let Δg be the associated Laplace-Beltrami operator on M with
eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . . λn · · · ↗ +∞
and corresponding eigenfunctions φn, forming an orthonormal basis in
L2(M).
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Given a conformal class C of Riemannian metrics on M , let

(1.1.1) Λk(M, C) = sup
g∈C

λk(M, g)Area(M, g).

It is well-known that this supremum is always finite. In fact, for surfaces, the
supremum is finite even if taken over all Riemannian metrics, not necessarily
conformally equivalent, see (1.2.1). This was conjectured by S.-T. Yau ([Yau,
Problem 71], reprinted in [SY, Chapter VII]) and later proved in [Kor], see
also [Gro, GY, GNY, Ha] for further developments. For details we refer
to subsection 1.2, where explicit estimates of this kind are obtained.

The numbers Λk(M, C) are called the conformal spectrum of M (see
[CES]). The goal of the present paper is to provide a new proof of the
following result due to Nadirashvili–Sire and Petrides (see [NaSi1, NaSi2]
and [Pet1, Pet3]):

Theorem 1.1. Let M be a compact Riemannian surface without bound-
ary.
(i) For any conformal class C of Riemannian metrics on M , there exists a
metric g ∈ C, possibly with a finite number of conical singularities, such
that

(1.1.2) Λ1(M, C) = λ1(M, g)Area(M, g).

(ii) For any conformal class C of Riemannian metrics on M and for any
k > 1, either one has

(1.1.3) Λk(M, C) = Λk−1(M, C) + 8π,

or there exists a metric g ∈ C, possibly with a finite number of conical
singularities, such that

(1.1.4) Λk(M, C) = λk(M, g)Area(M, g) > Λk−1(M, C) + 8π.

Remark 1.2. Applying part (ii) of Theorem 1.1 iteratively, we arrive
at an alternative that could be informally stated as follows. Given k > 1,
either there exists a maximal metric for λk which is smooth outside a finite
number of conical singularities, or the supremum Λk(M, C) is achieved by a
sequence of metrics degenerating (in a sense to be specified in Section 5) to
a disjoint union of 1 < j < k identical round spheres of volume 8π/Λk(M, C)
(so-called “bubbles”, see subsection 5.1) and the surface M endowed with a
maximal metric for Λk−j(M, C), which is smooth away from a finite number
of conical singularities. Note that the number of conical singularities of a
maximal metric for Λk(M, C) is bounded above in terms of k and the genus
of M , see [Kar3, Proposition 1.13]. Let us also mention that equality (1.1.3)
can be stated in such a simple form since

(1.1.5) Λk(S
2) := Λk(S

2, [gst]) = 8πk

for all k ≥ 1, as was shown in [KNPP]. Here gst is the standard round
metric, and we recall that any Riemannian metric on S

2 is conformally
equivalent to gst. Note that apart from the specific value of the constant
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8π in (1.1.3) and (1.1.4), the proof of Theorem 1.1 does not rely on (1.1.5).
While the proof of (1.1.5) uses the dichotomy in Theorem 1.1 (ii), it does
not require to specify the value of the constant. Hence, there is no “circular
argument” in the proofs of Theorem 1.1 and formula (1.1.5).

We note as well that if one replaces the strict inequality in (1.1.4) by a
non-strict inequality, it would be always true by the standard gluing argu-
ment (see [CES, Theorem B] and [KNPP, Remark 2.4]).

Remark 1.3. Part (i) of Theorem 1.1 appeared first in [NaSi1] under
the assumption

(1.1.6) Λ1(M, C) > 8π = Λ1(S
2).

It was later shown in [Pet1] that this inequality holds for any conformal
class C on any surface M which is not a sphere.

Remark 1.4. The exact values of Λk(M, C) and the corresponding max-
imizing metrics are known in a very few cases. Apart from the result (1.1.5)
for the sphere (see [Na2, Pet2, NaSi3, KNPP]) and the equality

(1.1.7) Λk(RP
2) := Λk(RP

2, [gst]) = 4π(2k + 1), k ≥ 1

for the real projective plane [Kar2] (see also [LY, NaPe]), nothing is known
in the case k > 1. For k = 1, global maximizers (i.e. maximizers over all
conformal classes) have been found for the sphere [Her], the real projective
plane [LY], the torus [Na1], the Klein bottle [JNP, EGJ, CKM] and the
surface of genus two [JLNNP, NaSh]. It is also known that for certain
conformal classes on tori, the first eigenvalue is maximized by the Euclidean
metric [EIR]. Finally, let us note that for k = 1 the analogue of part (i) of
Theorem 1.1 for global maximizers has been recently proved in [MS].

Remark 1.5. It is mentioned in [Pet3] that inequality (1.1.4) holds for
some conformal classes. Indeed, Let g0 be a smooth metric on the genus 2
surface Σ2 obtained by gluing together two copies of the equilateral torus

T
2
eq using a short thin tube. Since 2λ1(T

2
eq)Area(T2

eq) =
16π2

√
3

> 24π, this

gluing can be done so that

λ2(Σ2, g0)Area(Σ2, g0) > 24π.

At the same time, Λ1(Σ2, [g0]) ≤ 16π by the Yang-Yau inequality ([YY], see
also [EI, JLNNP, NaSh]). Therefore, one has

Λ2(Σ2, [g0]) > 24π � Λ1(Σ2, [g0]) + 8π.

Under certain assumptions on the gluing procedure (in particular, if the ra-
dius of the connecting tube is small compared to its length, and if the metric
g0 has nonpositive curvature everywhere), it follows from [BE, Theorem 2.4]
that the conformal class [g0] is close to the boundary of the moduli space
of Σ2. For such conformal classes, inequality (1.1.4) could be also deduced
as follows. Consider a degenerating sequence Cn of conformal classes of the
genus 2 surface Σ2, converging (on the Deligne-Mumford compactification of
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the moduli space) to two copies of the equilateral torus. Using the continuity
result [KM, Theorem 2.8] one has that

lim
n→∞

Λ2(Σ2, Cn) � 2Λ1(T
2, Ceq) =

16π2

√
3
.

Hence, as before, for large enough n one has

Λ2(Σ2, Cn) > 24π � Λ1(Σ2, Cn) + 8π.

1.2. Explicit upper bounds on the topological spectrum. Given
a surface M , set

Λk(M) = sup
C

Λk(M, C).

The numbers Λk(M) are sometimes called the topological spectrum of the
surface M . The explicit values of Λk(M) are known only in a few cases, see
[KNPP, Section 2] for an overview. If M is a surface of genus γ, it was
shown by Korevaar [Kor, Theorem 0.5] (see also [GNY, Ha]) that

(1.2.1) Λk(M) ≤ C(γ + 1),

where C is some universal constant. Though this bound has been formally
stated for orientable surfaces, its proof works for non-orientable surfaces as
well. Combining the ideas of [YY, Kar1] with the estimates (1.1.5) and
(1.1.7), we can make the constant C explicit.

Theorem 1.6. (i) Let M be an orientable surface of genus γ. Then

(1.2.2) Λk(M) � 8πk

[
γ + 3

2

]
, k � 1.

(ii) Let M be an non-orientable surface, and let γ be the genus of its ori-
entable double cover. Then

(1.2.3) Λk(M) � 16πk

[
γ + 3

2

]
, k � 1.

The proof is presented in subsection 6.2.

1.3. Plan of the proof of Theorem 1.1. The methods used in
[NaSi1, NaSi2] and [Pet1, Pet3] to prove Theorem 1.1 are different,
though they share some common tools. The approach developed in [Pet1,
Pet3] uses the heat equation techniques in an essential way. The argument
outlined in [NaSi1, NaSi2] uses a reformulation of the eigenvalue opti-
misation problem in terms of Schrödinger operators (see also [GNS]). In
this paper we present a proof of Theorem 1.1 developing the approach of
[NaSi1, NaSi2]. We clarify some of the ideas that were put forward in those
papers, and introduce several new ingredients which are needed to complete
the argument.

Let us describe the main parts of the proof of Theorem 1.1. The first
part essentially follows [NaSi1, GNS]. We start by fixing a metric g ∈ C
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on M of constant curvature satisfying Areag(M) = 1, and use the confor-
mal invariance of Δ to reduce our consideration to a family of eigenvalue
problems

(1.3.1) Δu = λV u,

where V ∈ L1(M) is a positive function with the unit L1-norm. Geometri-
cally, the potential V (under an additional assumption V ∈ C∞(M)) rep-
resents the conformal factor for a metric g′ = V g ∈ C, and the condition
||V ||1 = 1 means that Areag′(M) = 1.3 This leads to an optimisation
problem (Ak) defined in subsection (2.1). For the reasons explained below,
we would like to consider the eigenvalue equation (1.3.1) for not necessar-
ily positive functions V . However, in that case the corresponding spectral
problem is not elliptic, since the quadratic form Q(u) =

∫
M V u2 dvg is no

longer positive definite. In order to circumvent this difficulty we reformulate
the problem (1.3.1) in terms of a certain Schrödinger operator, see subsec-
tion 2.2. Using this reformulation we introduce an optimisation problem
(Bk) which is in a sense equivalent to (Ak). At the same time, it admits sim-
pler extremality conditions, because it allows more general perturbations.
This leads to Theorem 2.14 which states that for each k ≥ 1, there exists
a maximizing sequence of (possibly singular) metrics of area one defined by
the potentials VNm,k, satisfying ||VNm,k||L∞ � CNm for some constant C,
such that the corresponding eigenfunctions φNm,k converge weakly in H1 as
Nm → ∞. This brings us to the next step of the argument, because the
weak convergence of eigenfunctions is not enough to deduce the required
regularity properties of the limiting metric.

The second part of the proof is described in Section 4. We define the good
points (see Definition 4.5), which are characterised by having a neighbor-
hood with a sufficiently large first Dirichlet eigenvalue. In a way, this means
that the measure does not concentrate too much near a good point; if this
condition is violated, we say that a point is bad . Using variational arguments
we show that all but possibly k points on M are good. The key technical re-
sult of Section 4 is Proposition 4.7 which shows that φNm,k converge strongly
in H1 in a neighborhood of a good point. We refer to Remark 4.8 for an in-
terpretation of this result as an ε-regularity type theorem (see [CM]). The
proof of Proposition 4.7 requires rather delicate auxiliary analytic results
which are proved in Section 3 using the theory of capacities. Some of them,
such as Lemma 3.9 could be of independent interest. Using Proposition 4.7
we prove Theorem 4.1, which is the main result of this section. It states that
the limiting measure is regular away from bad points, while the latter give
rise to δ-measures, i.e. atoms. The regular part is constructed via a harmonic
map defined using limiting eigenfunctions. The harmonic map theory (see
[Hel, Kok2]) then yields that the regular part may have at most a finite

3Slightly abusing notation, in what follows we identify metrics with their corresponding
conformal factors.
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number of conical singularities. Sections 3 and 4 contain probably the most
novel ingredients of the proof of Theorem 1.1.

The last part of the proof is presented in Section 5. It describes the
behaviour of a maximizing sequence of metrics near the atoms, and in a
sense is a variation of the bubble tree construction for harmonic maps [Par].
A similar construction using somewhat different analytic tools could be also
found in [Pet3]. This part of the proof is technically quite involved and could
be subdivided into several steps. We choose a normalization parameter CR

that eventually will tend to zero, and rescale the metric near the bubble. The
constant CR determines the rescaling, and controls the size of the bubbles:
in particular, we will ignore bubbles of size less than CR (note that for each
fixed k, bubbles of sufficiently small size do not affect λk). In the process
of rescaling, secondary bubbles (i.e. the descendants of the initial bubble
on the bubble tree) may arise. However, we show in Lemma 5.6 that each
time a secondary bubble appears, its size decreases in a controlled way and
therefore the bubble tree is finite. Moreover, CR controls the size of the
necks, i.e. the areas between a bubble and its descendant on the bubble
tree.

Using the rescaling and an inverse stereographic projection to the sphere,
we view each bubble b as a sphere with a sequence of metrics with confor-

mal factors Ṽ b
Nm,k which are obtained from the maximizing sequence VNm,k

described above. Away from the secondary bubbles, this sequence converges

weakly to a limiting metric defined by a potential Ṽ b
∞ ∈ L1(S2), see Theorem

5.8. If this potential is bounded, we say that the bubble is of type I, other-
wise we say that the bubble b is of type II. In the latter case the Laplacian

on S
2 with the limiting metric defined by Ṽ b

∞ may have essential spectrum,
see Remark 5.10. For type II bubbles the construction of the test-functions
for the eigenvalue λk is significantly more involved than for type I bubbles,
see subsection 5.2. In section 5.3 we estimate the Rayleigh quotients of test
functions separately on different parts of the surface M : the smooth part,
the type I bubbles, the type II bubbles and necks. Taking CR → 0 and ap-
plying (1.1.6) together with [KNPP, Theorem 1.2], we complete the proof
of Theorem 1.1.

Acknowledgments. The authors would like to thank Alexandre
Girouard for valuable remarks on the earlier version of the paper. We are
also thankful to Dorin Bucur and Daniel Stern for useful discussions, as well
as to Leonid Polterovich for pointing out the reference [BE] and helpful
comments.

2. Two optimisation problems

2.1. Optimisation of the eigenvalues in a conformal class. Con-
sider the spectral problem (1.3.1) with a nonnegative V ∈ L1(M). It can
be understood in the weak form, where V dvg is treated as a Radon prob-
ability measure (see [Kok2]). The eigenvalues of such a problem can be



CONFORMALLY MAXIMAL METRICS FOR EIGENVALUES ON SURFACES 211

characterised variationally via Rayleigh quotient, i.e one defines

(2.1.1) λk(V ) = inf
Ek

sup
u∈Ek

∫
M

|∇u|2 dvg∫
M

V u2 dvg

,

where the supremum is taken over Ek ⊂ C∞(M) which form (k + 1)-
dimensional subspaces in L2(V dvg). The latter condition is equivalent to
saying that the restriction of Ek to suppV is (k+1)-dimensional. Note that
we enumerate the eigenvalues starting from λ0(V ).

Remark 2.1. Alternatively, variational characterisation (2.1.1) could be
written in the form

(2.1.2) λk(V ) = sup
Fk

inf
u⊥Fk

∫
M

|∇u|2 dvg∫
M

V u2 dvg

,

where Fk is now k-dimensional and ⊥ is understood in L2(V dvg).

Let N (λ) = #{λi(V ) < λ} be the eigenvalue counting function. The
following proposition holds.

Proposition 2.2. Let QV
λ (u) be the following quadratic form

QV
λ (u) =

∫
M

|∇u|2 dvg − λ

∫
M

u2 V dvg.

Then N (λ) = indQV
λ , i.e. the right-hand side is defined as the maximal

dimension of a linear subspace on which QV
λ is negative definite.

Proof. Let us show first that indQV
λ � N(λ). Suppose there exists

a k-dimensional space Gk, where QV
λ is negative definite. We will prove

that λk−1(V ) < λ, which implies N (λ) � k. The first observation is that
Gk remains k-dimensional in L2(V dvg). Indeed, if u ∈ Gk is such that∫
M u2 V dvg = 0, then QV

λ (u, u) � 0. Thus we can use Gk in the varia-
tional characterisation (2.1.1) for λk−1(V ). The claim then follows, since for
any u ∈ Gk one has ∫

M
|∇u|2 dvg < λ

∫
M

uv V dvg.

Let us now prove the inequality in the opposite direction: indQV
λ � N(λ).

Let k = N (λ) − 1 and let Gk+1 be the k + 1-dimensional space spanned
by the first k eigenfunctions and the constants (corresponding to λ0 = 0).
Then it is easy to see that QV

λ is negative definite on Gk. This implies that

indQV
λ = N (λ) and completes the proof of the proposition. �

Consider the class of functions

LN = {V |V ∈ L∞(M), 0 � V � N , ||V ||1 = 1}
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endowed with *-weak topology coming from identity (L1)∗ = L∞. Since LN

is bounded a subset of L∞, it is compact in this topology by Banach-Alaoglu
theorem. Moreover, one has the following Proposition.

Proposition 2.3 ([Kok2, Proposition 1.1]). Functional λk(V ) is upper
semicontinuous on LN .

Consider the following optimisation problem:

(Ak) λk(V ) → max for V ∈ LN .

The following proposition holds:

Proposition 2.4 ([Kor], see also [GNY]). There exists a universal
constant C such that for all V ∈ LN one has

λk(V ) � Ck.

Propositions 2.3 and 2.4 combined imply that there exists a solution to
problem (Ak). Set

Λ̃N
k = max

V ∈LN

λk(V ).

Since any non-negative L∞ function can be approximated by positive C∞

function such that the Laplacian spectra converge, see [CKM, Lemma 4.5],
one has

(2.1.3) lim
N→∞

Λ̃N
k = Λk(M, C).

2.2. Negative eigenvalues of Schrödinger operator. Let Δ − W
be the classical Schrödinger operator with W ∈ L∞(M). Let σk(W ) denote
the corresponding eigenvalues, i.e. real numbers σ such that there exist a
non-zero solution of

(2.2.1) Δu−Wu = σu.

The eigenvalues σk(W ) admit a variational characterisation as follows,

(2.2.2) σk(W ) = inf
Ek

sup
u∈Ek

∫
M

(
|∇u|2 −Wu2

)
dvg∫

M
u2 dvg

,

where Ek ranges over (k + 1)-dimensional subspaces in C∞(M).

Remark 2.5. We enumerate eigenvalues σk starting from k = 0, simi-
larly to the eigenvalues λk. Thus, σk is in fact the (k + 1)-st eigenvalue of
the Schrödinger operator Δ−W .

The following proposition is proved similarly to Proposition 2.2:

Proposition 2.6. Let N− = #{σi < 0}. Then N− = indQW
1 .
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Define the class of functions

MN,k = {W ∈ L∞(M), σk(W ) � 0, ||W ||∞ � N}.

It was shown in [GNS, Lemma 2.1] that MN,k is compact in *-weak topol-
ogy.

The second optimisation problem is the following,

(Bk)

∫
M

W dvg → max for W ∈ MN,k.

This functional is obviously bounded by N , therefore there exist a solution
to this problem.

The following theorem essentially states that problems (Ak) and (Bk)
are equivalent in the limit N → ∞.

Theorem 2.7. Let {WN,k}N be a sequence of solutions to (Bk) for k � 1.
Set

VN,k =
WN,k∫

M WN,k dvg
.

Then for sufficiently large N one has

(i) VN,k � 0 almost everywhere;
(ii) λk(VN,k) =

∫
M WN,k dvg;

(iii) lim sup
N→+∞

λk(VN,k) = Λk(M, c).

Let us first explain the significance of this result. As we will see below
the extremality condition for the problem (Bk) is more tractable than the
corresponding condition for (Ak). It is a consequence of the fact that the
space MN,k contains functions which may take negative values, i.e. there is
more freedom in choosing a perturbation.

Proof. The main part of the proof of this theorem is contained in
[GNS]. In particular, in [GNS, Lemma 3.1] it is shown that for large enough
N , the solution WN,k is non-negative almost everywhere (see also Remark
2.8), and in [GNS, Lemma 2.2] it is proved that σk(WN,k) = 0.

Proof of (i). Since WN,k � 0 almost everywhere, it is sufficient to show that
WN,k �≡ 0 as an element of L∞(M). But then for each 0 < c < λ1(M, g) the
constant function c ∈ MN,k and therefore WN,k ≡ 0 can not be a solution
to (Bk).

Proof of (ii). Note that for λ =
∫
M WN,k dvg the eigenvalue equation (Δ −

λVN,k)u = 0 coincides with the equation for the zero eigenvalue of the op-
erator Δ−WN,k. In particular, the multiplicity of λ as an eigenvalue of the
first equation equals the multiplicity of 0 as the eigenvalue of the second.
Moreover, by Propositions 2.2 and 2.6, one has N(λ) = N−. As a result,
we have that λ-eigenvalues of the first equation have the same indices as 0-
eigenvalues of the second equation. Since σk(WN,k) = 0, then λk(VN,k) = λ.
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Proof of (iii). Let ṼN,k ∈ LN be a solution to (Ak): λk(ṼN,k) = ΛN
k . Set

W̃N,k = λk(ṼN,k)ṼN,k. Then W̃N,k ∈ MÑ,k for Ñ = λk(ṼN,k)N + 1. Then

by (ii) we have

(2.2.3) λk(VÑ,k) =

∫
M

WÑ ,k dvg �
∫
M

W̃N,k dvg = λk(ṼN,k) = Λ̃N
k ,

where the inequality in the middle follows from the fact that WÑ ,k is a

solution of (Bk) in MÑ,k. Note that the right-hand side of (2.2.3) converges

to Λk(M, C) by (2.1.3), which implies lim sup
N→+∞

λk(VN,k) = Λk(M, C). �

Remark 2.8. Let us remark that the statement of [GNS, Lemma 3.3]
that is used in the proof [GNS, Lemma 3.1] contains a minor inaccuracy.
It requires the solution v to be C2, whereas in the sequel Lemma 3.3 is
applied to eigenfunctions of a Schrödinger operator with L∞ potential, which
are Hölder continuous (see, for instance, [Kok1]), but not necessarily C2.
However, this is not a problem, since Lemma 3.3 holds for a wider class of
solutions. In particular, the proof presented in [GNS] remains valid under
the assumption that v ∈ H1∩C0 is a weak solution of [GNS, inequality (7)].

In the following we use VN,k as a maximizing sequence for Λk := Λk(M, C)
and assume N is large enough so that Theorem 2.7 holds. We also set

(2.2.4) ΛN
k := λk(VN,k) =

∫
M

WN,k dvg.

2.3. Extremality conditions for problem (Bk). The reason we chose
the maximizing sequence in this way is that the extremality condition for
problem (Bk) has a particularly convenient form which we derive below. We
will use the following well-known lemma (see [GNS, Lemma 3.2], see also
[Kat, Theorem 2.6, section 8.2.3]).

Lemma 2.9. Let W (t, x) be a function on R × M such that for any
t ∈ R, W (t, ·) ∈ L∞(M) and ∂tW (t, ·) ∈ L∞(M). For any t ∈ R consider
the eigenvalue problem

Δu−W (t, ·)u = σ(t)u

Denote by {σl(t)} the sequence of the eigenvalues counted with multiplicity
and arranged in increasing order. Suppose that

σl−1(0) < σ = σl(0) = . . . = σl+m−1(0) < σl+m(0).

Let Uσ be the eigenspace for t = 0 corresponding to σ. Define a bilinear form
Q on Uσ by

(2.3.1) Q(u, v) = −
∫
M

∂tW (0, ·)uv dvg

and denote by αi, i = 0, . . . ,m−1 the eigenvalues of this form with respect to
the L2 inner product, counted with multiplicity and arranged in an increasing
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order. Then for any i = 0, . . . ,m− 1, we have

(2.3.2) σl+i(t) = σl+i(0) + tαi + o(t).

For an element of the maximising sequence VN,k let UN,k to be the

eigenspace corresponding to ΛN
k . Note that UN,k is also 0-eigenspace for the

problem (2.2.1) with W = WN,k := ΛN
k VN,k. By definition 0 � WN,k � N .

Set

(2.3.3) EN,k =

{
x ∈ M | WN,k(x) �

N

2

}
.

Proposition 2.10. For any v ∈ L∞(M) such that
∫
M v = 0 and v � 0

on EN,k, there exists u ∈ UN,k\{0} such that
∫
M vu2 � 0.

Proof. Assume the contrary, i.e. there exists v ∈ L∞ such that
∫
M

v = 0;

v � 0 on EN,k and for all u ∈ UN,k\{0} one has

(2.3.4)

∫
M

vu2 dvg < 0.

Set W (t) = WN,k + tv. We first remark that in view of (2.3.4), the
quadratic form (2.3.1) is positive definite, and therefore by (2.3.2) one has

(2.3.5) σk(W (t)) > σk(W (0)) = 0

for 1 � t > 0.
Furthermore, we claim that W (t) ∈ MN,k for 1 � t > 0. Indeed, on

EN,k one has v � 0 and N
2 � WN,k � N . Therefore,

−N � N

2
+ tv � WN,k + tv � N

for 1 � t > 0. At the same time, on M\EN,k we have 0 � WN,k � N
2 , and

hence

−N � tv � WN,k + tv � N

2
+ tv � N

for 1 � t > 0.
Thus, W (t) ∈ MN,k and

∫
M W (t) =

∫
M WN,k, i.e. W (t) is a solution

to (Bk). Recall that by [GNS, Lemma 2.2], any solution to (Bk) has to
satisfy σk(W (t)) = 0 and we arrive at a contradiction with (2.3.5). �

Proposition 2.10 allows us to obtain the following characterisation of
solutions to (Bk).

Proposition 2.11. There exists a collection φN,k = (u1N,k, . . . , u
l(N)
N,k ) of

elements of UN,k such that |φN,k|2 =
l(N)∑
i=1

(
uiN,k

)2
= 1 on M\EN,k, dvg−a.e.,

and wN,k � 1, dvg − a.e.

The proposition is an easy corollary of the lemma below.
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Lemma 2.12. Let E ⊂ M be a measurable set in M . Let Q be a convex
finite-dimensional cone in L1(M) such that

(i) If q ∈ Q then q � 0 a.e.
(ii) For any v ∈ L∞(M) such that

∫
M v = 0 and v � 0 a.e. on E there

exists 0 �= q ∈ Q such that
∫
M vq � 0.

Then there exists q0 ∈ Q such that q0 ≡ 1 on M\E and q0 � 1 a.e.

Proof. The proof of this lemma is inspired by [Na1, Theorem 5],
[NaSi1, Lemma 3.8]. Denote by K the following convex cone

(2.3.6) K = {u ∈ L1(M)|u ≡ 0 on M\E, u � 0 a.e. on E}.
First, we note that K ∩Q = {0}. Indeed, any u ∈ K ∩Q satisfies u � 0 a.e.
and
∫
M u � 0 at the same time. Let K1 be the convex cone spanned by 1

and K. Suppose that Q ∩ K1 �= {0}. Then there exists 0 �= q ∈ Q, α � 0
and k ∈ K such that q = α + k. Since K ∩ Q = {0}, one has that α �= 0.
Therefore, q0 = α−1q satisfies the conditions of the lemma.

In the rest of the argument we assume the contrary, i.e. that K1 ∩Q =
{0}. According to a Hahn-Banach type result [Kl, Theorem 2.7], there exists
an element v0 ∈ (L1)∗(M) = L∞(M) such that for any k1 ∈ K1\{0} and
any q ∈ Q\{0} one has

(2.3.7)

∫
M

v0k1 > 0 >

∫
M

v0q.

Set v = v0 −
∫
M v0 so that

(2.3.8)

∫
M

v = 0.

Our goal is to show that v contradicts property (ii) of the cone Q.
First, note that for any 0 �= q ∈ Q one has

(2.3.9)

∫
M

qv < 0.

Indeed, since 1 ∈ K1, in view of the first inequality in (2.3.7) one has

(2.3.10)

∫
M

v0 > 0.

Therefore, ∫
M

qv =

∫
M

qv0 −
∫
M

q

∫
M

v0 < 0.

Note that the first term is negative by the second inequality in (2.3.7),
and both integrals in the second term are nonnegative due to (2.3.10) and
property (i) of the cone Q.

Second, let us show that for any 0 �= k ∈ K one has

(2.3.11)

∫
M

vk > 0.
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Indeed, since
∫
M k � 0 by (2.3.6), one has k −

∫
k ∈ K1. Therefore, by the

first inequality in (2.3.10) we have

0 <

∫
M

v0

(
k −
∫
M

k

)
=

∫
M

v0k −
∫
M

v0

∫
M

k =

∫
M

vk.

Now, take F = {x ∈ E, v(x) > 0} and let χF be the characteristic function
of F . Then −χF ∈ K and one has

0 � −
∫
M

vχF � 0,

where the first inequality follows from (2.3.11) and the second inequality
is trivial. Therefore, both inequalities are equalities, which is possible iff
Area(F ) = 0. Therefore, v � 0 a.e. on E. Together with (2.3.8) it means
that v satisfies the assumptions in property (ii) of the cone Q, and we get a
contradiction with (2.3.9). This completes the proof of he lemma. �

Proof of Proposition 2.11. In Lemma 2.12, let Q be the convex hull
of the squares of elements in UN,k and let E := EN,k. Note that property
(ii) of Q follows from Proposition 2.10 and property (i) is immediate.The
result then follows by a direct application of Lemma 2.12. �

Proposition 2.11 yields the following corollary.

Corollary 2.13. There exists a constant C such that for any k,N ∈ N

and any i = 1, . . . , l(N), we have ||uiNm,k||2H1 � Ck.

Proof. Indeed, it follows from Proposition 2.11 that the L2 norm of
uiNm,k is bounded above by a constant equal to Area(M). At the same time,

the Dirichlet energy of uiNm,k is bounded by Ck by Proposition 2.4. This
completes the proof of the corollary. �

For future reference, let us summarize the results of this section in the
following theorem.

Theorem 2.14. For each k ≥ 1, there exists a strictly increasing se-
quence Nm, m = 1, 2, . . . , of natural numbers, and maps φNm,k = (u1Nm,k, . . . ,

udNm,k) : M → R
d for some d ∈ N, such that

(1) ΔφNm,k = ΛNm
k VNm,k φNm,k, ΛNm

k → Λk := Λk(M, C).
(2) The (k + 1)-st eigenvalue of the Schrödinger operator

Δ− ΛNm
k VNm,k

is zero.
(3) ||VNm,k||L∞ � CNm, ||VNm,k||L1 = 1.

(4) There exists a weak limit φNm,k ⇀ φk = (u1k, . . . , u
d
k) in H1 and

φNm,k → φk in L2.
(5) |φNm,k| � 1 and |φk| = 1 dvg-a.e.
(6) VNm,k dvg ⇀∗ dμk for some probability measure dμk.
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Remark 2.15. Here and in what follows, given a map φ = (u1, . . . , ud)

we use the notation |φ|2 =
∑d

j=1(u
j)2, |∇φ|2 =

∑d
j=1 |∇uj |2.

Proof. Note that by the multiplicity bounds of [Kok1], the dimension
l(N) in Proposition 2.11 is bounded by a constant independent of N . There-
fore, choosing an appropriate subsequence we may assume that the images
of the maps φNm,k lie in R

d for some fixed d. In fact, below we will be ex-
tracting subsequences from φNm,k on a number of occasions. Slightly abusing
notation for the sake of simplicity, we will denote these subsequences again
by φNm,k.

Let us now prove assertions (1–6). Properties (1–3) follow from Theo-
rem 2.7. The weak convergence in H1 of a subsequence φNm,k follows from
Corollary 2.13 and the fact that any bounded sequence in H1 contains a
weakly convergent subsequence. Since the embedding H1(M) → L2(M) is
compact, one can extract a subsequence that strongly converges in L2. This
proves property (4). The first part of property (5) is a direct consequence of
Proposition 2.11. In order to prove the second assertion of (5) we argue as
follows. First, we note that the measures of the sets EN,k defined by (2.3.3)
tend to zero as N → ∞. Indeed, by (2.2.4) one has that

(2.3.12) Λk �
∫
EN,k

WN,k dvg � N

2
dvg(EN,k),

i.e. dvg(EN,k) � CN−1. Therefore, by Proposition 2.11, |φNm,k| converges to
1 in measure, and hence one may choose a subsequence that converges almost
everywhere to 1. Therefore, by dominated convergence, |φNm,k| converges to
1 in L2, and by property (4) we get that |φk| = 1 almost everywhere. Finally,
property (6) follows from the second part of (3), since any bounded sequence
of measures contains a *-weakly convergent subsequence. �

3. Analytic tools

3.1. Capacity and quasi-continuous representatives. Through-
out this section let Ω ⊂ R

2 be an open set. Recall that the capacity of
a set E ⊂ Ω is defined by

Cap(E,Ω) = inf
UE

⎧⎨⎩
∫
Ω

|∇u|2 dxdy

⎫⎬⎭ ,

where u ∈ UE ⊂ H1
0 (Ω) iff u � 1 almost everywhere on an open neighbour-

hood of E. The standard mollification argument shows that it is sufficient
to consider only test-functions from C∞

0 (Ω) such that 0 � u � 1 and u ≡ 1
in a neighbourhood of E.

If a certain property holds everywhere on Ω except for a subset Z ⊂ Ω
such that Cap(Z,Ω) = 0, then we say that it holds quasi-everywhere on Ω
(or q.e. on Ω). A subset A ⊂ Ω is quasi-open if for any ε > 0 there exists an
open set Aε such that Cap(A�Aε,Ω) < ε. A function f : Ω → R is called
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quasi-continuous if for any ε there exists a set Eε such that Cap(Eε,Ω) < ε
and f : Ω \ Eε → R is a continuous function.

The next proposition, as well as its corollaries below, is well-known. Its
proof, which essentially follows [HePi, Section 3.3.4], is included to make
the presentation self-contained.

Proposition 3.1. Let {un} ⊂ C∞
0 (Ω) be a Cauchy sequence with respect

to H1
0 (Ω)-norm. Then there exists a subsequence {unk

} converging pointwise
outside of a set of capacity 0. Moreover, the convergence is uniform outside
of a set of arbitrarily small capacity.

Proof. Choose a subsequence {unk
} such that ||unk

− unk+1
||2
H1

0 (Ω)
�

2−3k. To simplify the notations we continue to denote that subsequence by
{uk}. Set

Ek =
{
x ∈ Ω| |uk(x)− uk+1(x)| > 2−k

}
.

Then one has that 2k|uk − uk+1| ∈ UEk
. Therefore,

Cap(Ek,Ω) � 22k
∫
Ω

|∇|uk − uk+1||2 dxdy � 2−k.

Set Fm =
⋃

k�m

Ek, then one has

Cap(Fm,Ω) �
∞∑

k=m

Cap(Ek,Ω) �
∞∑

k=m

2−k = 21−m.

If x ∈ Ω \ Fm, then for all k � m one has |uk(x) − uk+1(x)| � 2−k.
Therefore, for any k, n � m one has

|uk(x)− un(x)| �
n−1∑
i=k

|ui(x)− ui+1(x)| � 21−k,

i.e. {uk} converge uniformly on Ω \ Fm.
SetG =

⋂
m
Fm. Then outside ofG the sequence {uk} converges pointwise.

Moreover, for any n one has

Cap(G,Ω) � Cap(Fn,Ω) � 21−n.

Since n is arbitrary, one has Cap(G,Ω) = 0. �

The last assertion of Proposition 3.1 immediately implies:

Corollary 3.2. Any function u ∈ H1
0 (Ω) has a quasi-continuous rep-

resentative ũ. Moreover, ũ is unique up to a set of zero capacity.

Remark 3.3. In the following, when we work with a function u ∈ H1
0 (Ω),

we always assume that u is a quasi-continuous representative.
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Under this convention the capacity can be computed using the following
formula,

Cap(E,Ω) = inf
VE

⎧⎨⎩
∫
Ω

|∇u|2 dxdy

⎫⎬⎭ ,

where VE = {u ∈ H1
0 (Ω)| u is quasicontinuous, u � 1 q.e. on E}. Further-

more, the sets {u > c}, {u < c} are quasi-open.
If A ⊂ Ω is quasi-open, we define H1

0 (Ω) to be a set of u ∈ H1
0 (Ω) such

that u = 0 q.e. in Ω\A. This definition agrees with the classical definition of
H1

0 (A) if A is open. The following proposition is a straightforward corollary
of Proposition 3.1 and Corollary 3.2.

Proposition 3.4. Suppose that un → u in H1
0 (Ω). Then there exists a

subsequence {unk
} such that for any ε > 0 there exists a set Eε ⊂ Ω with

Cap(Eε,Ω) < ε such that unk
⇒ u in Ω\Eε.

Our next goal is to define quasi-continuous representatives for H1-func-
tions. Let F � Ω be a compact subset of Ω with the extension property ,
i.e. all functions in H1(F ) can be extended to H1(R2) and, as a result to
H1

0 (Ω) as well. For example, all Euclidean balls and, in general, all Lipschitz
domains possess the extension property. Let u ∈ H1(F ) and let v ∈ H1

0 (Ω)
be its extension. Then v has a quasi-continuous representative ṽ and, as
a result, ṽ|F is a quasi-continuous representative of u. In the following we
assume that functions from H1(F ) are quasi-continuous.

Corollary 3.5. Suppose that p ∈ Ω and let Br(p) � Ω be a ball of
radius r. Suppose that un → u in H1(Br(p)). Then there exists a subsequence
unk

such that for any ε > 0 there exists a set Eε ⊂ Br(p) with Cap(Eε,Ω) <
ε such that unk

⇒ u in Br(p)\Eε.

Proof. Apply Proposition 3.4 to the extensions of un. �

The following proposition is a simplified version of the isocapacitory
inequality (see, for example, [Kok2]).

Proposition 3.6. Let μ �= 0 be a Radon measure on Ω, μ(Ω) < ∞.
Then for any F ⊂ Ω one has,

(3.1.1) μ(F ) � 1

λD
1 (Ω, μ)

Cap(F,Ω).

Proof. Without loss of generality Cap(F,Ω) < ∞. For a fixed ε > 0
let uε ∈ H1

0 (Ω) be such that uε|F � 1, uε � 0 and∫
Ω

|∇uε|2 dxdy � Cap(F,Ω) + ε.
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Since μ �= 0, we have λD
1 (Ω, μ) < ∞. Using uε as a test-function for the

Rayleigh quotient, one obtains,

λD
1 (Ω, μ)μ(F ) � λD

1 (Ω, μ)

∫
Ω

u2ε dμ �
∫
Ω

|∇uε|2 dxdy � Cap(F,Ω) + ε.

Since ε is arbitrary, the proof is complete. �
Lemma 3.7. Let [a, b] ⊂ R be a bounded interval. Then any f ∈ H1[a, b]

is absolutely continuous and one has

||f ||2C0 � max(b− a, 2)||f ||L2 ||f ||H1 .

Proof. Absolute continuity follows from the Rellich compactness the-
orem.

For two point x, y ∈ [a, b] we write

f2(x)− f2(y) =
1

2

∫ y

x
f(t)f ′(t)dt � 1

2
||f ||L2 ||f ′||L2 .

Integrating in y we obtain for all x

f2(x) � b− a

2
||f ||L2 ||f ′||L2 + ||f ||2L2 � max(b− a, 2)||f ||L2 ||f ||H1 ,

where in the last step we used inequality
√
c +

√
d � 2

√
(c+ d) for c, d �

0. �
The following proposition is essentially well-known and is a version of the

“absolute continuity on lines” property of functions in H1 (see, for instance,
[HKST, Chapter 6]). However, our formulation differs from the standard
one due to the fact that we always take a particular representative of an H1

function, see Remark 3.3.

Proposition 3.8. Let R = [a, b] × [c, d] � Ω be a rectangle. For any
quasicontinuous u ∈ H1(R) let X ⊂ [a, b] be a set consisting of points x
such that ux(y) := u(x, y) is absolutely continuous as a function of y and
(ux)′(y) ∈ L2[c, d]. Then X is a set of full measure.

Proof. Let v ∈ H1
0 (Ω) be an extension of u. Let {vn} be a sequence of

functions in C∞
0 (Ω) that converge to v in H1

0 (Ω). By Proposition 3.4 we can
assume that vn converge to v outside of a set of capacity 0. Let un = vn|R,
then un ∈ C∞(R) and un converge to u pointwise in R outside of a set of
capacity 0.

By Fubini’s theorem one has that the functions∫ d

c
(un(x, y)− u(x, y))2 +

(
d

dy
(un(x, y)− u(x, y))

)2

dy

tend to 0 in L1[a, b] and, therefore, up to a choice of a subsequence, pointwise
to 0 for almost all x ∈ [a, b]. As a result, for almost all x ∈ [a, b] the sequence
{uxn} converges in H1[c, d] and, therefore, uniformly as well. The problem is
that, they may converge to a different representative of an H1 function.
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Let X ′ be a set of x ∈ [a, b] for which there exists y such that un(x, y)
does not converge to u(x, y). We claim that X ′ has measure 0. First, let us
see why it completes the proof of the proposition. Indeed, for almost all x
{uxn} converge and outside of X ′ it converges to ux both in C[c, d] and in
H1[c, d]. Therefore, for such x the function ux is absolutely continuous and
(ux)′ ∈ L2[c, d].

To show that X ′ has measure 0 we take φε ∈ C∞
0 (Ω) such that φε � 1

on the set where un(x, y) does not converge to u(x, y) and |φε|H1(R) < ε. We
let c(x) = |φx

ε |C[c,d], h(x) = |φx
ε |H1[c,d]. Then by Lemma 3.7 one has

(3.1.2) c(x)2 � Ch(x)2.

Note that c(x) � 1 on X ′. Therefore, integrating from c to d we obtain the
following,

|X ′| � C|φε|2H1(R) < Cε2.

Since ε is arbitrary, we conclude that X ′ has measure 0. �
3.2. Three auxiliary lemmas. Recall that if V ∈ L∞(Ω), the first

Dirichlet eigenvalue of Δ− V on A is defined as

inf
u∈H1

0 (A)

∫
A

|∇u|2 − V u2 dxdy∫
A u2 dxdy

.

Lemma 3.9. Let A ⊂ Ω be quasi-open and let V ∈ L∞(Ω). Suppose that
φ ∈ H1(Ω) is a weak solution to Δφ − V φ = 0 on A. Assume that the first
eigenvalue of Δ − V in H1

0 (A) is positive. Then for any ψ ∈ H1(Ω) such
that (φ− ψ) ∈ H1

0 (A) one has∫
Ω

|∇ψ|2 − V ψ2 dxdy �
∫
Ω

|∇φ|2 − V φ2 dxdy

Proof. From the eigenvalue condition we have that

(3.2.1)

∫
Ω

|∇(φ− ψ)|2g − V (φ− ψ)2 dxdy � 0.

Moreover, pairing up the equation for φ with ψ − φ, we obtain∫
Ω

∇φ · ∇(ψ − φ)− V φ(ψ − φ) dxdy = 0,

or, equivalently,

(3.2.2)

∫
Ω

∇φ · ∇ψ − V φψ dxdy =

∫
Ω

|∇φ|2 − V φ2 dxdy,

Summing up (3.2.1) and two copies of (3.2.2) yields∫
Ω

|∇φ|2 + |∇ψ|2 − V (φ2 + ψ2) dxdy � 2

∫
Ω

(|∇φ|2 − V φ2) dxdy.



CONFORMALLY MAXIMAL METRICS FOR EIGENVALUES ON SURFACES 223

Rearranging the terms completes the proof. �
In what follows we use the following notations: Br(p) denotes the ball of

radius r with center at p; Sr(p) = ∂Br(p) is a circle of radius r with center
at p and Ar,R(p) = BR(p) \Br(p) is an annulus around p.

Lemma 3.10. Let Br(p) ⊂ BR(p) � Ω be two balls. Let u, v ∈ H1(BR(p))
be such that u|SR(p) > v|SR(p) and u|Sr(p) < v|Sr(p). Then there exists a quasi-

open set A satisfying Br(p) ⊂ A ⊂ BR(p) and (u−v)|A ∈ H1
0 (A). Moreover,

the extension of (v−u)|A by zero to a function in H1
0 (Ω) is quasi-continuous.

Proof. Let û, v̂ ∈ H1
0 (Ω) be extensions of u, v respectively. Set Â =

{v − u > 0} be a quasi-open subset of Ω. Moreover, ŵ = (v − u)+ is quasi-
continuous such that ŵ = 0 on SR(p) and ŵ = v − u on Sr(p). Therefore,
the function

w(x) =

⎧⎪⎨⎪⎩
0 x ∈ Ω \BR(p)

ŵ(x) x ∈ BR(p) \Br(p)

v(x)− u(x) x ∈ Br(p)

is quasi-continuous. Then A = {w > 0} ∪ Br(p) = (Â ∩ BR(p)) ∪ Br(p) is
quasi-open and w is an extension of (v − u)|A by zero. �

Lemma 3.11. Let U = AR,r(p) � Ω be an annulus around a point p ∈ Ω.
Let {un} ⊂ H1(U) and u ∈ H1(U) be such that {un} is equibounded in
H1(U) and un → u in L2(U). Then up to a choice of a subsequence the set
{ρ|un|Sρ ⇒ u|Sρ} has full measure in (r,R).

Proof. Without loss of generality, assume u = 0. Applying Proposi-
tion 3.8 in polar coordinates we see that the set Ai of ρ such that ui|Sρ is

absolutely continuous on Sρ and its derivative is in L2(Sρ) has full measure.
Then A = ∩iAi has full measure. The remainder of the proof is very similar
to the proof of Proposition 3.8.

For ρ ∈ (r,R) define hi(ρ) = ||ui||H1(Sρ), li(ρ) = ||ui||L2(Sρ) and ci(ρ) =

||ui||C0(Sρ). Application of Lemma 3.7 yields that for all ρ ∈ A one has

ci(ρ)
2 � Cli(ρ)hi(ρ).

By Fubini’s theorem li ∈ L2(r,R) and hi ∈ L2(r,R). Since ||ui||H1(Ar,R)�
C0, one has ||hi||L2(r,R) � C0.

Integrating over (r,R) yields

||ci||2L2(r,R) � CC0||li||L2(r,R) → 0.

Thus, c2i → 0 in L2(r,R). Therefore, there exists a subsequence ik such that
cik(ρ) → 0 for almost all ρ ∈ (r,R). �

Corollary 3.12. Let BR0(p) � Ω. Suppose that {un} is a bounded
sequence in H1(BR0(p)) such that un → u in L2(BR0(p)), u ∈ H1(BR0(p)).
Then for any r0 < R0 up to a choice of a subsequence there exist r0 < r <
R < R0 and a sequence {vn} ⊂ H1(BR) such that
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1) ||vn − u||∞ → 0
2) vn > un on Sr(p)
3) vn < un on SR(p)
4) ||vn − u||H1(BR) → 0

5) ||∇vn||2L2(BR) − ||∇u||2L2(BR) → 0

Proof. We apply Lemma 3.11 to AR0,r0 . We get the subsequence such
that the set {ρ|un|Sρ ⇒ u|Sρ} is dense in (r0, R0). Choose any r < R
from this set. Define a sequence N(k) such that for n � N(k) one has
|un − u|Sr∪SR

< 2−k. For n ∈ [N(k), N(k + 1)) we set vn to be u + hk
where hk is a radial function with hk ≡ 2−k on Br and linear on AR,r with

hk(r) = −hk(R) = 2−k. The properties 1)-3) follow immediately. Moreover,∫
BR

|∇hk|2 = 2π

∫ R

r

(
21−k

R− r

)2

ρ dρ = π22−2kR+ r

R− r
,

and 4) follows.
In the following computation we use || · || to denote || · ||L2(BR). One has,∣∣||∇vn||2 − ||∇u||2

∣∣ � ||∇vn −∇u||(||∇u||+ ||∇vn||)
and 5) follows from 4) and equiboundedness of {vn} in H1(BR). �

3.3. Some properties of Radon measures. Given a Radon measure
ν on Ω, one can define the corresponding Laplace eigenvalues with Dirichlet
boundary conditions variationally by the following formula (see [Kok2]):

(3.3.1) λD
k (M,ν) = inf

Ek

sup
u∈Ek

∫
Ω
|∇u|2 dxdy∫
Ω
u2 dν

,

where the supremum is taken over Ek ⊂ C∞
0 (Ω) which form k-dimensional

subspaces in L2(dν). Furthermore, we assume the convention that the in-
fimum over an empty set is equal to +∞ and, as a result, all eigenvalues
corresponding to the zero measure are equal to +∞.

The following two auxiliary results on Radon measures will be used in
Section 4.

Proposition 3.13. Suppose that μ is a finite Radon measure on U ⊂ Ω
such that λD

1 (U, μ) � C > 0. Then for any quasi-continuous v ∈ H1
0 (U) such

that |v| � 1 one has∫
U
|v| dμ �

(
μ(U) +

1

C

)(∫
U
|∇v|2 dvg

)1/3

.

Proof. Set γ3 =
∫
U |∇v|2 dvg. We decompose U = U1 ∪ U2, where

U1 = {0 � |v| < γ} and U2 = {γ � |v|}. Using |v|/γ as a test-function we
obtain

Cap(U2, U) � γ.
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Then the isocapacitory inequality (3.1.1) implies

μ(U2) �
γ

C
.

Finally, one obtains∫
U
|v| dμ �

∫
U1

|v| dμ+

∫
U2

|v| dμ � γμ(U1) + γ/C �

Finally, we recall the following proposition related to ∗-weak convergence
of Radon measures.

Proposition 3.14. Let V � U . Assume that un converge weakly in
L2(U) to u and u2n dvg converge *-weakly to dν as measures on V̄ . Then for
any W ⊂ V one has

ν(W̄ ) �
∫
W

u2 dvg.

Moreover, equality holds for all W ⊂ V iff un converge to u in L2(V ).

Proof. Let us first recall that *-convergence implies that

(3.3.2) ν(W̄ ) � lim sup

∫
W

u2n dvg � lim inf

∫
W

u2n dvg � ν(W )

for all W ⊂ V .
At the same time, for un converge to u weakly in L2(W ). Therefore, by

lower semicontinuity of the norm with respect to weak topology, one has

lim inf

∫
W

u2n dvg �
∫
W

u2 dvg.

Combining it with the inequality (3.3.2) we have a chain of inequalities

ν(W̄ ) � lim sup

∫
W

u2n dvg � lim sup

∫
W

u2n dvg �
∫
W

u2 dvg,

which yields the first assertion.
Assume that we have an equality for all W . Therefore, in the previous

chain all inequalities are actually equalities. In particular, one has that

lim

∫
V
u2n dvg =

∫
V
u2 dvg,

which yields un → u in L2(V ).
Assume that un → u in L2(V ), then it is easy to see that dν = u2 dvg.

Indeed, for any continuous function φ on V̄ one has∣∣∣∣∫
V
φ(u2n − u2) dvg

∣∣∣∣ � ||φ||∞
∣∣∣∣∫

V
u2n dvg −

∫
V
u2 dvg

∣∣∣∣→ 0. �



226 M. KARPUKHIN, N. NADIRASHVILI, A.V. PENSKOI, AND I. POLTEROVICH

3.4. Note on cut-off functions. Given R > r, a straightforward com-
putation shows that

Cap(Br(p), BR(p)) �
2π

ln R
r

.

Indeed, the following function provides a suitable test-function

(3.4.1) fr,R(ρ) =

⎧⎨⎩
ln ρ

R

ln r
R

on Ar,R(p)

1 on Br(p),

where ρ is the radial coordinate.
In the following, when we consider a cut-off function, we always mean

the function defined by (3.4.1) for a suitable choice of radii r,R.

4. Regularity properties of the limiting measure

The goal of this section is to prove the following theorem.

Theorem 4.1. Let dμk be the limiting measure as in property (6) of
Theorem 2.14. Then there exist at most k points p1, . . . , pl, l � k and a
harmonic map φk : M → S

d−1 such that

dμk =
|∇φk|2

Λ
dvg +

l∑
i=1

wiδpi ,

where wi ≥ 0.

Remark 4.2. We recall that |∇φk|2 is understood in the sense of Remark
2.15. The zeros of the gradient of a harmonic map are isolated, and, therefore,
the points where |∇φk| = 0 correspond to the conical singularities of the
limiting metric (see [Kok2, Section 5.3]).

4.1. Measure properties of μk. We first define the eigenvalues of a
Radon measure on a surface similarly to (3.3.1). Let M be a surface and let
C be a fixed conformal class on M with a smooth background metric g ∈ C.
Given a Radon measure ν on M , one can define the corresponding Laplace
eigenvalues variationally by the following formula (see [Kok2]):

(4.1.1) λk(M,ν) = inf
Ek

sup
u∈Ek

∫
M

|∇u|2 dvg∫
M

u2 dν

,

where the supremum is taken over Ek ⊂ C∞(M) which form (k + 1)-
dimensional subspaces in L2(dν). Similarly, given a domain U ⊂ M , we de-
fine the Dirichlet eigenvalues λD

k (U, ν) by replacing M by U in the Rayleigh
quotient and C∞(M) by C∞

0 (U) in the definition of Ek and requiring Ek to
be k-dimensional instead (k + 1)-dimensional. As before, all eigenvalues of
the zero measure are assumed to be equal to +∞.
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Lemma 4.3. Let ν be a Radon measure. Let U1, . . . , Uk+1 ⊂ M be a
disjoint collection of open sets. Then for at least one i one has λD

1 (Ui, ν) �
λk(M,ν).

Proof. If ν|Ui = 0 for some i, then it follows from (4.1.1) that
λD
1 (Ui, ν) = +∞, and the statement of the lemma is trivial. Assume that

ν|Ui �= 0 for all i = 1, . . . , k+1. This condition implies that λD
1 (Ui, ν) < +∞.

Arguing by contradiction, assume that for all i one has λD
1 (Ui, ν) < λk(M,ν).

Take the first Dirichlet eigenfunctions fi of Ui, continue them to the whole
M by zero, and apply the variational principle for λk(M,ν) to the subspace
of test-functions span{f1, . . . , fk+1}. We get a contradiction. �

Let νV be a Radon measure such that dνV = V dvg for some V ∈ L∞(M).
As before, we will write λk(V ) := λk(M,V ) = λk(M,νV ) and λD

k (Ω, V ) :=

λD
k (Ω, ν).

Definition 4.4. We say that a domain Ω ⊂ M satisfies σk-property for
some N ∈ N, if

λD
1 (Ω, VN ) � ΛN

k

(cf. [Pet3, p. 19, condition Ar,ε]), or, equivalently, if the first eigenvalue of
the Schrödinger operator Δ− ΛN

k VN on H1
0 (Ω) is non-negative.

In particular, if VN |Ω = 0, then Ω satisfies σk-property for any N since
in this case λD

1 (Ω, VN ) = +∞.

Definition 4.5. We say that the point p is good if there exists an open
neighbourhood Ωp that satisfies σk-property for a subsequence Nm → ∞.
Otherwise, we say that the point p is bad .

Note that for any subdomain of Up ⊂ Ωp the σk-property is satisfied
for the same subsequence Nm. Indeed, this immediately follows from the
domain monotonicity for Dirichlet eigenvalues.

Let G denote the set of all good points. Clearly, G is an open set, since
if p ∈ G, then Ωp ⊂ G.

Proposition 4.6. There exist k points p1, . . . , pk such that G ⊃ M\
{p1, . . . , pk}, i.e. all but at most k points are good.

Proof. Assume the contrary, i.e. there exists k + 1 bad points p1, . . . ,
pk+1. Pick disjoint open neighbourhoods Ui � pi. By Lemma 4.3 applied to
the measure νVN

, for any N ∈ N there exists i(N) such that λk(Ui, VN ) �
ΛN
k . Therefore, there exists a subsequence Nm such that i(Nm) ≡ i0 is

constant, i.e. the point pi0 is good. We arrive at a contradiction. �

For the remainder of this section for each point p we fix a small open
neighbourhood Ωp such that g is conformally flat on Ωp. This way we can use
the capacity estimates of Section 3 with Ω = Ωp whenever we are working
in the neighbourhood of p.
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4.2. Strong convergence in H1 in a neighbourhood of a good
point.

Proposition 4.7. Given a good point p, there exists a neighborhood
X � p and a sequence Nm → ∞ such that φNm,k → φk in H1(X).

Remark 4.8. This proposition could be viewed as an ε-regularity-type

theorem (see [CM]) in the following sense. We claim that if
1

λD
1 (Ω)

is small,

then weak H1 convergence of φNm,k implies strong convergence in H1(X)
for some X ⊂ Ω.

Proof. Assume, by contradiction, that there is no such neighborhood.
Let U be a neighbourhood of p such that U satisfies σk-property for all large
enough N . Let p ∈ Y � U . Choose a subsequence Nm → ∞ such that
|∇φNm,k|2 dvg converges *-weakly to dν as measures on Ȳ . Indeed, such a
subsequence exists because φNm,k is weakly convergent in H1 by assertion
(4) in Theorem 2.14, and hence the measures |∇φNm,k|2 dvg are bounded and
contain a *-weakly convergent subsequence. For any X ⊂ Y the restrictions
of these measures converge as measures on X̄. We claim that there exists a
point q ∈ supp(dν − |∇φk|2 dvg) ∩ Y . Indeed, by Proposition 3.14 applied
to |∇φNm,k| and V one has supp(dν − |∇φk|2 dvg) �= ∅. If the support is
concentrated on ∂Y then for any p ∈ X � Y one has dν|X = |∇φk|2 dvg|X .
Then by Proposition 3.14 |∇φNm,k| → |∇φk| in L2(X) which implies that

for any i one has |∇uiNm,k|2 → |∇uik|2 in L1(W ). Since φN
k → φk in L2(M),

this implies that components converge in H1(X) in contradiction with our
initial assumption. Let

(4.2.1) q ∈ supp(dν − |∇φk|2 dvg) ∩ Y,

and let r < R be such that BR(q) ⊂ Y . In the argument below we will be
consequently refining the disks Br(q) ⊂ BR(q) and the sequence {Nm} by
picking new r0, R0 satisfying r < r0 < R0 < R in a way that they satisfy
more and more conditions. Each condition will be preserved under such
refinement. After each refinement we will omit the index 0 from our notations
and keep the notation Nm for the subsequence. This way eventually we
obtain the disks Br(q) ⊂ BR(q) and a subsequence Nm → ∞ satisfying
conditions (C1)–(C4) below.

In view of (4.2.1), there exists ε > 0 such that

(C1) ν(Br(q))−
∫
Br

|∇φk|2 dvg > 2ε.

The condition (C2) is as follows,

(C2)

∫
Ar,R(q)

|∇φNm,k|2 dvg <
ε

3

for all Nm. In order to satisfy this condition we divide the initial annulus
Ar,R into K sub-annuli. Since the sequence φNm,k is bounded in H1(M), one
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can take K so large that for each Nm at least one of subannuli satisfies (C2).
Since there are finitely many such subannuli one can choose a subsequence
such that condition (C2) is satisfied for all members of the subsequence.

Properties (C1) and (C2) imply that for large enough Nm,

(C3)

∫
Br

|∇φNm,k|2 dvg �
∫
BR

|∇φk|2 dvg + ε

Indeed, condition (C1) and the last inequality in formula (3.3.2) yield

lim inf

∫
Br

|∇φNm,k|2 dvg −
∫
Br

|∇φk|2 dvg � ν(Br)−
∫
Br

|∇φk|2 dvg > 2ε.

Therefore, for large enough Nm one has∫
Br

|∇φNm,k|2 dvg �
∫
Br

|∇φk|2 dvg + 2ε.

At the same time, property (C2) together with the fact that φNm,k converge
weakly in H1 to φk (and thus lim infNm→∞ ‖φNm,k‖H1 ≥ ‖φk‖H1) implies
that ∫

Ar,R

|∇φk|2 dvg <
ε

3
.

Summing this up with the previous inequality yields (C3).
Finally, we would like to ensure that the annulus Ar,R satisfies

(C4)

∫
Ar,R

VN dvg � ε

9Λkd
.

It is achieved in the same way as for condition (C2).
At this point we apply Corollary 3.12 to each component uiNm,k and balls

Br ⊂ BR to get a sequence viNm,k. We then apply Lemma 3.10 to viNm,k and

uiNm,k to get a quasi-open set Ai
Nm

.
Since BR satisfies σk-property for all Nm, we can apply Lemma 3.9 with

φ = uiNm,k, ψ = viNm,k, V = VNm,k and A = Ai
Nm

to conclude∫
Ai

Nm

(|∇viNm,k|2 − ΛNm
k (viNm,k)

2VNm,k) dvg �∫
Ai

Nm

(|∇uiNm,k|2 − ΛNm
k (uiNm,k)

2VNm,k) dvg.

Rearranging yields

(4.2.2)∫
Ai

Nm

|∇viNm,k|2 dvg + ΛNm
k

∫
Ai

Nm

(
(uiNm,k)

2 − (viNm,k)
2
)
VNm,k dvg �∫

Ai
Nm

|∇uiNm,k|2 dvg.
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Analyzing the term in the middle, we note that the integrand is bounded in
absolute value by 3, and since Br ⊂ ANm

i ⊂ BR, condition (C4) implies∣∣∣∣∣ΛNm
k

∫
BR\Ωi

Nm

(
(uiNm,k)

2 − (viNm,k)
2
)
VNm,k dvg

∣∣∣∣∣ � ε

3d
.

Therefore, in inequality (4.2.2) one can replace the domain of integration in
the l.h.s by BR and in the r.h.s by Br with a loss of at most ε

3d to obtain∫
BR

|∇viNm,k|2 dvg + ΛNm
k

∫
BR

(
(uiNm,k)

2 − (viNm,k)
2
)
VNm,k dvg +

ε

3d
�∫

Br

|∇uiNm,k|2 dvg.

Recall that viNm,k were constructed using Corollary 3.12. By properties

1) and 5) for large enough Nm one can replace viNm,k by uik in the left hand
side of the previous inequality again with a loss of at most ε

3d to obtain∫
BR

|∇uik|2 dvg + ΛNm
k

∫
BR

(
(uiNm,k)

2 − (uik)
2
)
VNm,k dvg +

2ε

3d

�
∫
Br

|∇uiNm,k|2 dvg.

Finally, we sum this inequality over all i and use that |φNm,k| � |φk| = 1 dvg-
a.e., which implies that the middle term on the left-hand side is nonpositive.
Therefore, we obtain∫

BR

|∇φk|2 dvg +
2ε

3
�
∫
Br

|∇φNm,k|2 dvg.

Combining it with property (C3) we arrive at a contradiction. �

Remark 4.9. The ideas of the proof of Proposition 4.7 turn out to
be useful in the context of the stability problem for the functional λ̄1, see
[KNPS] for more details.

Corollary 4.10. Let p ∈ M be a good point. Then there exists a subse-
quence Nm → ∞ such that for any ε > 0 there exists a set Eε ⊂ Br(p) ⊂ Ω
with Cap(Eε,Ω) < ε such that φNm,k ⇒ φk in Br(p)\Eε.

Proof. The result follows immediately from Proposition 4.7 and Corol-
lary 3.5. �

Recall that G denotes the open set of all good points on M .

Proposition 4.11. Let ψ ∈ C∞
0 (G). Then for any i = 1, . . . , d, one has

(4.2.3)

∫
G
∇ψ · ∇uik dvg = Λk

∫
G
ψuik dμk.
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Remark 4.12. Proposition 4.11 means that the functions ui are weak
solutions in G of the equation

Δgu
i
kdvg = Λku

i
kdμk.

Proof. Applying partition of unity, it is enough to prove the propo-
sition for ψ with support in a small neighbourhood of a good point. In
particular, for any point p ∈ G, let Eε � Br(p) be a pair of neighbourhoods
such that Proposition 4.7 holds. We set X = Eε and Y = Br(p). Without
loss of generality, σk-property holds on Y for all large N . Fix ε > 0 and let
{Nm} and Eε ⊂ W denote the corresponding subsequence and the subset.
Assume suppψ ⊂ X.

Let βε ∈ C∞
0 (Ω) be a smooth function such that 0 � βε � 1, βε = 1 on

X and

(4.2.4)

∫
Ω
|∇βε|2 dvg = ε;

the latter is possible by Corollary 4.10. Recall that ΔφNm,k =

ΛNm
k VNm,kφNm,k. Pairing it with ψ(1− βε) we obtain∫

X
∇uiNm,k · ∇(ψ(1− βε)) dvg = ΛNm

k

∫
X
ψ(1− βε)u

i
Nm,kVNm,k dvg.

We pass to the limitNm → ∞. The limit of the l.h.s is easy, since φNm,k ⇀ φk

in H1(M). For the r.h.s. we write∣∣∣∣ΛNm
k

∫
X
ψ(1− βε)u

i
Nm,kVNm,k dvg − Λk

∫
X
ψ(1− βε)u

i
k dμk

∣∣∣∣ �∣∣∣∣∫
X
ψ(1− βε)(Λ

Nm
k uiNm,k − Λku

i
k)VNm,k dvg

∣∣∣∣
+

∣∣∣∣∫
X
ψ(1− βε)Λku

i
k (VNm,kdvg − dμk)

∣∣∣∣ .
The first summand tends to zero, because on supp(ψ(1 − βε)) one has

ΛNm
k uiNm,k ⇒ Λku

i
k by Proposition 4.7. The second summand tends to zero

by the definition of the *-weak convergence of measures (since uik are con-
tinuous on supp(ψ(1− βε))). Thus, we obtain

(4.2.5)

∫
X
∇uik · ∇(ψ(1− βε)) dvg = Λk

∫
X
uikψ(1− βε) dμk.

We claim that passing to the limit as ε → 0 in (4.2.5) yields (4.2.3). We
prove this in two steps. First, note that

(4.2.6)

∫
X
∇uik · ∇(βεψ) dvg → 0.
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Indeed, ∣∣∣∣∫
X
∇uik · ∇(βεψ) dvg

∣∣∣∣
� ||∇uik||L2(X)(sup |ψ|||∇βε||L2(X) + sup |∇ψ|||βε||L2(X)),

which tends to zero as ε → 0 in view of (4.2.4) and the Friedrichs inequality.
Second, we claim that

(4.2.7)

∫
X
uik ψ βε dμk → 0.

Since |uikψ| is bounded, it is sufficient to show that∫
Ω
|βε| dμk → 0.

Using the σk-property and the upper semicontinuity of eigenvalues, one ob-
tains λD

1 (Y, μk) � Λk. Therefore, the limit (4.2.7) follows Proposition 3.13.
Combining (4.2.6) and (4.2.7) we obtain (4.2.3) from (4.2.5), and this

completes the proof of the proposition. �

Recall that |φk|2 ≡ 1 dvg-a.e. If we informally apply Δ to this equality,
using Proposition 4.11 we obtain

|∇φk|2dvg = Λk dμk

weakly on G. The goal of the next proposition is to make this computation
rigorous.

Proposition 4.13. One has on G

dμk =
|∇φk|2
Λk

dvg.

Proof. Let V � U � G be such that U satisfies σk-condition for all
large enough N . It is sufficient to check that for any ψ ∈ C∞

0 (V ) one has

Λk

∫
V
ψ dμk =

∫
V
ψ|∇φk|2 dvg.

Let ρm,i ∈ C∞
0 (U) be such that their restrictions to V converge in H1(V )

to uik|V . Moreover, the family {ρm,i} can be chosen to be equibounded. Then,
by Proposition 3.13 ρm,i|V converge to uik in L2(V, dμk). Moreover, since |ψ|
and |∇ψ| are bounded one has ρm,iψ → uikψ in H1

0 (V ) and in L2(V, dμk).
Therefore, applying (4.2.3) with test function ρm,iψ and passing to the limit
m → ∞ yields ∫

V
∇uik · ∇(uikψ) dvg = Λk

∫
V
(uik)

2ψ dμk.

We then have∫
V
∇uik · ∇(uikψ) dvg =

∫
V
|∇uik|2ψ dvg +

1

2

∫
V
∇
(
(uik)

2
)
· ∇ψ dvg.
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Summing up over i we obtain∫
V
|∇φk|2ψ dvg +

1

2

∫
V
∇(|φk|2) · ∇ψ dvg = Λk

∫
V
|φk|2ψ dμk

As |φk|2 = 1 dvg-a.e. for the second summand on the l.h.s we have∫
V
∇(|φk|2) · ∇ψ dvg =

∫
V
Δψ dvg = 0,

since ψ ∈ C∞
0 (V ). Thus we arrive at∫

V
|∇φk|2ψ dvg = Λk

∫
V
|φk|2ψ dμk.

Finally, we note that by the isocapacitory inequality and σk condition, we
have that for any F ⊂ V one has

μk(F ) � 1

Λk
Cap(F,U).

Since φk is quasicontinuous we have that |φk|2 = 1 q.e. and we conclude
that |φk|2 = 1 dμk-a.e. on V , which concludes the proof. �

Proof of Theorem 4.1. Substituting the expression for dμk obtained
in Proposition 4.13 into formula (4.2.3) we show that on the set G of good
points, the map φk is a weak solution of

Δφk =
|∇φk|2
Λk

φk,

i.e. a weakly harmonic map to S
d−1. By a regularity theorem of Hélein

[Hel] this implies that φk ∈ C∞(G, Sd−1). Since G is equal to M without
a finite number of points, one can apply the removable singularity theorem
for harmonic maps [SU] to obtain a harmonic map φk : M → S

d−1 (we
note that similar regularity arguments were used in [Kok2, Section 4.4] and
[Pet3, Section 6.1]). Therefore,

dμk =
|∇φk|2
Λk

dvg +
k∑

i=1

wiδpi ,

where pi are the bad points from Proposition 4.6. This completes the proof
of Theorem 4.1. �

5. Atoms

In this section we focus on atoms arising at bad points pi. We perform
a procedure reminiscent of the bubble tree construction, see e.g. [Par].

Fix a bad point pi of weight wi. Choose a small renormalization constant
CR > 0 which will be specified later. To simplify notation, in the following
we omit the subscript i. Recall that we have a sequence Nm → ∞ and the
corresponding maps φNm,k. Denote by dνr the regular part of the measure
dμk.
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5.1. Bubble tree construction. Assume w > CR. We work in a small
neighbourhood of p, where the metric g is conformally flat. In what follows,
the distances in this neighbourhood are measured with respect to the flat
metric g0.

Let 1 � εm > 0 be a sequence of numbers, where am � bm means that
bm
am

→ 0. Without loss of generality we may assume that the ball Bm :=

B2εm(p) can be identified with a subset of R2. Choose δ′m � εm.

Lemma 5.1. Up to a choice of a subsequence one has μNm,k(Bm) =
w + o(1); μNm,k(Bm \Bδ′m/4(p)) = o(1).

Proof. Let am = 1
wν

r(Bm) � 1. Then μk(Bm) = (νr + wδp)(Bm) =
w(1 + am). Thus, by Theorem 2.14(6) and Theorem 4.1, for a fixed n there
exists mn such that for all m � mn one has

w(1− an) � μNm,k(Bδ′n/4(p)) � w(1 + 2an);

μNm,k

(
Bn \Bδ′n/4(p)

)
� 2wan.

We define a subsequence nl = max(ml, nl−1 + 1), which we rename {m} to
simplify notation. For this subsequence one has

w(1− am) � μNm,k(Bδ′m/4(p)) � w(1 + 2am);

μNm,k

(
Bm \Bδ′m/4(p)

)
� 2wam.

The second inequality yields μNm,k

(
Bm \Bδ′m/4(p)

)
= o(1) and summing up

the two inequalities gives μNm,k(Bm) = w + o(1). This completes the proof
of the lemma. �

Let m be large enough so that μNm,k(Bm\Bδ′m/4(p)) < min(CR, w−CR).
For each x ∈ Bεm(p) let α(x) be such that

μNm,k(Bm \Bα(x)(x)) = CR.

Let cm ∈ Bεm(p) be any point such that

α(cm) < 2 inf
x∈Bεm(p)

α(x)

and set αm = α(cm).

Lemma 5.2. One has |cm|, αm � εm, and hence Bεm(cm) ⊂ Bm (see
Figure 1, left). In addition, μNm,k(Bm \Bδ′m(cm)) = o(1).

Proof. By Lemma 5.1 one has α(p) � δ′m
4 . Therefore, αm < δ′m

2 .

Given any x ∈ Bm such that |x| > 3δ′m
4 , we have Bδ′m/2(x) ⊂ Bm \

Bδ′m/4(p). As a result, for large m one has

μNm,k(Bm \Bδ′m/2(x)) > w − (w − CR) = CR,

i.e. α(x) > δ′m
2 . The latter implies x �= cm and hence |cm| � 3δ′m

4 . In partic-
ular, Bδ′m/4(p) ⊂ Bδ′m(cm) and the last assertion of the lemma follows from
Lemma 5.1. �
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Figure 1. On the left, the neighbourhood Bεm(cm) of a bad
point with the center cm, and the masses of the correspond-
ing regions. On the right, the map Rm from Bm onto the
sphere. The image of the dark brown disk is the northern
hemisphere. As m → ∞, the image of the middle ring tends
to the southern hemisphere, and the image of the blue ring
gets squeezed into the south pole.

Define δm =
√
δ′mεm.

We then have a map Rm defined on Bm as follows:

Rm(x) = π(α−1
m (x− cm)),

where π is the inverse stereographic projection from the south pole to the
equatorial plane, so that Rm(Bαm(cm)) is the northern hemisphere (see
Figure 1, right). Let Ωm ⊂ S

2 be the image of Bδm(cm) under Rm. Since
εm � αm one has that

⋃
mΩm = S

2 \ {S}, where S is the south pole.
We further push-forward the measures μNm,k by (Rm)∗ to measures

dμ̃Nm,k = ṼNm,k dvg
S2

and pull-back the maps φNm,k to maps φ̃Nm,k on Ωm

satisfying

(5.1.1) Δg
S2
φ̃Nm,k = ΛNm

k ṼNm,kφ̃Nm,k.

Extend μ̃Nm,k by 0 to the whole S
2. Let μ̃ be a *-weak limit of μ̃Nm,k.

Lemma 5.3. The measure μ̃ satisfies μ̃(S2) = w, and μ̃-measure of the
southern hemisphere is at least CR.

Proof. The statement follows from Lemma 5.2 after noting that since
μNm,k(Bm \ Bδ′m(cm)) = o(1), the measures (Rm)∗(μNm,k|Bm) and μ̃Nm,k

have the same ∗-weak limit. �

Define τS = μ̃(S).

Lemma 5.4. Assume τS �= 0. Then up to a choice of a subsequence there
exists γ′m, βm such that

• αm � βm � γ′m � δ′m;
• μNm,k(Bδm(cm) \Bγ′

m
(cm)) = τS + o(1);

• μNm,k(Bγ′
m
(cm) \Bβm(cm)) = o(1).
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Figure 2. Decomposition of the disk Bδ′m(cm). The neck
region (shown in green) is collapsing into the south pole as
m → ∞ and creates the mass τS there. The bubble region
Bγm(cm) is shown in pink.

Proof. Let B̃r(S) be a neighbourhood of the south pole S ∈ S
2 defined

as the complement of Br−1(N), where the distance is measured in the metric
(π−1)∗gR2 .

Let 1 � β̃m � γ̃′m and let am = μ̃(B̃
˜βm

(S))− τS � 1. Then for a fixed

n there exists mn such that for all m � mn one has

n
αm

δ′m
� γ̃′n

τS − am � μ̃Nm,k(B̃γ̃′
n
(S)) � τS + am

μ̃Nm,k(B̃˜βn
(S) \ B̃γ̃′

n
(S)) � 3am

Define a subsequence jl = max(ml, jl−1 + 1) and set βjl =
αjl

β̃l
, γ′jl =

αjl

γ̃′l
.

Then one has,

γ′bjl =
αjl

γ̃′l
�

δ′jl
l
;∫

Bδjl
(cjl)\Bγ′

jl

(cjl)

VNjl
,k dvg = μ̃Nm,k(B̃γ̃′

l
(S)) = τS + o(1);

∫
Bγ′

jl

(cjl)\Bβjl
(cjl)

VNjl
,k dvg = μ̃Njl

,k(B̃˜βl
(S) \ B̃γ̃′

l
(S)) = o(1).

Renaming {jl} to {m} completes the proof of the lemma. �

Set γm =
√
γ′mβm. We illustrate the construction presented above by

Figure 2.
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Next, we study the regularity of the measure μ̃. It turns out that there
are two cases depending on the behaviour of the quantity α2

mNm. Fix an
open subset U � S

2 \ {S}. We claim that if

(5.1.2) α2
mNm → ∞,

then up to a choice of a subsequence, an analogue of Theorem 2.14 holds for
the restrictions of Ṽm,k and φ̃m,k to U .

Proposition 5.5. Assume that the bubble p is such that condition (5.1.2)
holds for a strictly increasing subsequence Nm, m = 1, 2, . . . . Then for any
given open set U � S

2 \ {S} one has:

(1) Δg
S2
φ̃Nm,k = ΛN

k ṼNm,k φ̃Nm,k.

(2) The (k + 1)-st Dirichlet eigenvalue of the Schrödinger operator

(5.1.3) Δg
S2
− ΛNm

k ṼNm,k

on U is non-negative.
(3) ||ṼNm,k||L∞ � CNm, ||ṼNm,k||L1 ≤ 1.

(4) There exists a weak limit φ̃Nm,k ⇀ φ̃k in H1(U) and φ̃Nm,k → φ̃k

in L2(U).

(5) |φ̃Nm,k| � 1 and |φ̃k| = 1 dvg
S2
-a.e.

(6) ṼNm,k dvg
S2

⇀∗ dμ̃U for some probability measure dμ̃U on U .

Proof. The first property is simply (5.1.1). Property (2) follows from
the fact that the operator (5.1.3) on U is unitary equivalent to the Schrö-

dinger operator Δ − ΛNm
k VNm,k on Bm. Since the (k + 1)-st eigenvalue of

the latter operator on M is zero, by the Dirichlet bracketing the (k + 1)-st
Dirichlet eigenvalue of (5.1.3) is non-negative.

The map Rm introduces the conformal factor

(5.1.4) gS2 =

(
αm

α2
m + (x− cm)2

)2

g0,

where g0 is the flat metric, locally conformal to g. Therefore,

ṼNm,k =

(
αm

α2
m + (x− cm)2

)−2

VNm,k.

At the same time, since U is a compact set away from the south pole,

(x− cm)

αm
< CU .

Therefore,

(5.1.5) |ṼNm,k| ≤ Cα2
mVNm,k,

and property (3) follows immediately from the analogous property in The-
orem 2.14. The same is true about property (4). In property (5), the only
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condition to check is that |φ̃k| = 1 holds almost everywhere in the new mea-
sure, i.e. dvg

S2
-a.e. Indeed, the conformal factor (5.1.4) satisfies the following

bound: (
αm

α2
m + (x− cm)2

)2

� α−2
m .

Recall the definition (2.3.3) of the set ENm,k. This set has the property that
|φk| = 1 on its complement, and by (2.3.12) one has that dvg0(ENm,k) ≤
CN−1

m .
Therefore, dvg

S2
(U ∩Rm(Bm ∩ENm)) � C(Nmα2

m)−1, which tends to 0

by (5.1.2).
Finally, property (6) easily follows from the compactness of the space of

measures. �
We claim that Proposition 5.5 allows us to apply the regularity results of

Section 4 to the measure μ̃U . Indeed, the definitions of good and bad points
are purely local as are the proofs of Propositions 4.7, 4.11 and 4.13. The
only statement that is not immediate is Proposition 4.6. However, its proof
can be easily modified to make use of assertion (2) of Proposition 5.5.

Thus, we can choose a subsequence such that μ̃Nm,k|U ⇀∗ μ̃U , where μ̃U

is regular outside a finite collection of points. Picking a diagonal subsequence
over an exhaustion of S

2 \ S, we have that μ̃ = μ̃r +
∑

j w̃jδq̃j + τSδS ,

μ̃r = Ṽ∞ dvg
S2

is a regular measure whose density is the energy density of a

harmonic map to a sphere, i.e. Ṽ∞ ∈ C∞(S2). We call q̃j secondary bubble
points. Note that there are at most k + 1 secondary bubbles.

We continue this procedure inductively at secondary bubbles q̃j until one
of the two things happen, either the weight w̃j < CR or the condition (5.1.2)
fails to hold. In the former case we call q̃j a terminal bubble. The following
lemma guarantees that this process terminates after finitely many steps.

Lemma 5.6. One has τS � CR, and the μ̃-mass of the closed southern
hemisphere is exactly CR unless there are secondary bubbles on the equator.
Furthermore, all secondary bubbles have mass at most max(CR, w − CR).

Proof. By the construction of αm, the mass of the open southern hemi-
sphere is at most CR. Therefore, τS � CR and the mass of the closed
southern hemisphere is exactly CR unless there exists a secondary bub-
ble q on the equator. Assume that its mass wq is strictly greater than
max(CR, w−CR) � w−CR. Let dm ∈ ∂Bαm(cm) be such that q = Rm(dm).
By Lemma 5.2 one has |dm| � |cm| + αm � εm, i.e. dm ∈ Bεm(p). Let
U = Rm(Bαm/3(dm)) be a fixed neighbourhood q. Since wq > w − CR for
large m one has

μ̃Nm,k(S
2 \ U) = μNm,k(Bm \Bαm/3(dm)) < CR.

Hence, α(dm) < αm
3 which contradicts the definition of αm.

Assume that there is a secondary bubble of mass strictly greater than
max(CR, w − CR) somewhere. Then it can not be in the open southern
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hemisphere since its mass is at most CR. The previous argument shows that
it can not be on the equator. Thus, it is in the open northern hemisphere.
But the mass of the closed southern hemisphere is at least CR, so we obtain
a contradiction with the fact that the total mass of the bubble is equal
to w. �

Let us now assume that the initial bubble p does not satisfy the condi-
tion (5.1.2), i.e. up to a choice of a subsequence α2

mNm = O(1). In this case

by inequality (5.1.5) the potentials ṼNm,k are uniformly bounded on any
given open set U � S

2 \ {S}. Therefore, once again one could choose a di-

agonal subsequence and imply that there exists a ∗-weak limit Ṽ∞ ∈ L1(S2)

such that ṼNm,k dvg
S2

⇀∗ Ṽ∞ dvg
S2
+τSδS , where τS � CR and Ṽ∞ ∈ L∞(U)

for all U � S
2 \ {S}. In particular, the bubble tree construction stops at

such bubbles since there are no secondary bubbles, only a possible mass
concentration near the south pole. We see that at any non-terminal bubble
(regardless the behaviour of α2

mNm) the measure μ̃ is regular up to possible
concentration at finitely many atoms.

Remark 5.7. Note that the argument above takes two different routes
depending on whether the condition (5.1.2) is satisfied. This condition pro-
vides a relation between the rescaling αm and the blow-up rate of the max-
imizing subsequence given by Nm. A dichotomy of this kind appears to be
intrinsic to the problem, as a similar issue arises in the bubble tree construc-
tion in [Pet3, Section 5].

Let us now describe the construction of the bubble tree. The root of
the tree is the surface M , and its direct descendants are the atoms pi. As
described above, each atom gives rise to bubbles, and each bubble, after ap-
propriate rescaling may give rise to secondary bubble points, and so on. Each
branch of the tree stops at a terminal bubble, and in view of Lemma 5.6 the
bubble tree is finite. We summarize its properties in the following theorem.

Theorem 5.8 (Bubble tree). For any non-terminal bubble b there exists
a point pb ∈ M , a sequence of points cbm → pb and a sequence of scales

αb
m � βb

m � γbm � γ′bm � δ′bm � δbm � εbm � 1

and for any terminal bubble b there exists a sequence of sequence of points
cbm → pb and a sequence of scales

δ′bm � δbm � εbm � 1

such that

1) Any two bubbles b1, b2 are either away from one another or one
of them is a descendent of the other. In the former case one has
that the intersection B

ε
b1
m
(cb1m) ∩ B

ε
b2
m
(cb2m) is empty. In the latter

case, b1 is secondary to b2 or b1 ≺ b2 if pb1 = pb2, εb1m � αb2
m and

B
ε
b1
m
(cb1m) ⊂ B

β
b2
m
(cb2m).
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2) As m → ∞, the following asymptotic relations hold:

μm,k(Bγ′b
m
(cbm) \Bβb

m
(cbm) ∪Bεbm

(cbm) \Bδ′bm
(cbm)) = o(1),

μm,k(Bδ′bm
(cbm) \Bγ′b

m
(cbm)) = τ bS + o(1),

where τ bS � CR.

3) Let Mm = M \
⋃

bBδbm
(cbm). Then

μm,k|Mm ⇀∗ V∞dvg,

where V∞ ∈ C∞(M). We will refer to Mm as the regular region.
4) Set Rb

m(x) = π((αb
m)−1(x − cbm)) and define the bubble region

Bm(b) = Bγb
m(cbm) \

⋃
a≺bBδam(c

a
m). Then

(5.1.6) (Rb
m)∗μm,k|Bm(b) ⇀

∗ Ṽ b
∞dvg

S2
,

where Ṽ b
∞ ∈ L1(S2) and for any U � S

2 \ {S} one has Ṽ b
∞|U ∈

L∞(U).

Definition 5.9. We say that the bubble b is of type I if Ṽ b
∞ ∈ L∞(S2).

Otherwise, we say that the bubble b is of type II .

Remark 5.10. The real difference between type I and type II bubbles

arises if Ṽ b
∞ /∈ Lp(S2) for any p > 1, since in this case one can not guarantee

that the spectrum of the corresponding Laplacian is discrete (see subsec-
tion 6.1 and [Kok2, Section 2.3] for details).

For Type II bubbles one needs to modify the scales obtained in Propo-
sition 5.8 in the way described below, see also Figure 3 for an illustration.

Figure 3. Fine structure of a type II bubble. The outer ring
A2

m contains an amount of mass bounded below by (5.1.8).
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Proposition 5.11. Let b be a bubble of type II. Then one can redefine
βb
m and additionally find ωb

m such that

αb
m � ωb

m � βb
m � γbm

and the following holds. Define A1
m(b) = Bβb

m
(cbm)\Bωb

m
(cbm), which is a part

of the bubble region, and a “collar region” A2
m(b) = Bγb

m
(cbm)\Bβb

m
(cbm). Then

(5.1.7) μm,k(A
i
m(b)) = o(1)

for i = 1, 2 as m → ∞, and

(5.1.8) μm,k(A
2
m(b)) �

∑
a

⎛⎝ 1√
ln γ′a

m
γa
m

+
1√
ln δam

δ′am

+
1√
ln εam

δam

⎞⎠+

∑
a is of type I

1√
ln γa

m
βa
m

.

Proof. Let B̃r(S) be a neighbourhood of the south pole S ∈ S
2 defined

as the complement of Br−1(N), where the distance is measured in the metric
(π−1)∗gR2 . Set

f(r) =

∫
˜Br(S)

Ṽ b
∞ dvg

S2
.

Since Ṽ b
∞ �∈ L∞(B̃r(S)) for any r, it is nonzero almost everywhere is some

neighborhood of S, and therefore f is a non-decreasing function satisfying
f(r) > 0 for r > 0. Fix a small r0 > 0. Let νm be the square root of the r.h.s
of (5.1.8), then νm = o(1) and for large enough m one has νm � f(r0). For
such m we define

β̃m = min{r| f(r) = νm}

and set ω̃m =

√
β̃m. Then 1 � ω̃m � β̃m. Set γ̃m = αb

m

γb
m

so that ∂B̃γ̃m(S) =

∂Rb
m(Bγb

m
(cbm)). For a fixed n there exists mn such that for all m � mn one

has the following,

nγ̃m � β̃n;

μ̃Nm,k(B̃˜βn
(S) \ B̃γ̃m(S)) �

1

2

∫
˜B

˜βn
(S)

Ṽ b
∞ dvg

S2
=

1

2
νn � νm;

μ̃Nm,k(B̃ω̃n(S) \ B̃γ̃m(S)) � 2

∫
˜Bω̃n (S)

Ṽ b
∞ dvg

S2

n→∞−−−→ 0

Define a subsequence jl = max(ml, jl−1+1) and set βb
jl
=

αb
jl

β̃l
, ωb

jl
=

αb
jl

ω̃l
.

After elementary calculations, the previous inequalities become

(5.1.9) lβb
jl
� γbjl
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(5.1.10) μjl,k(A
2
jl
(b)) � ljl

(5.1.11) μjl,k(A
1
jl
(b) ∪A2

jl
(b))

l→∞−−−→ 0

Let us rename the subsequence {jl} to {m}. Then (5.1.9) implies that
γm � βm, (5.1.10) implies (5.1.8) and (5.1.11) implies (5.1.7). This com-
pletes the proof of the proposition. �

5.2. Construction of test-functions. In this section we describe the
test-space for λi(VNm,k). Let us introduce some notation. In addition to the
bubble region Bm(b) and the regular region Mm introduced in Theorem
5.8, we set M ′

m = M \
⋃

bBεbm
(cbm), B′

m(b) = Bβb
m
(cbm) \

⋃
a≺bBεam(c

a
m),

and introduce the neck regions Am(b) = Bδbm
(cbm) \ Bγb

m
(cbm), A′

m(b) :=

Bδ′bm
(cbm)\Bγ′b

m
(cbm). For terminal bubbles we set Am(b) = Bm(b) = Bδbm

(cbm)

and A′
m(b) = B′

m(b) = Bδ′bm
(cbm).

First, we construct test-functions supported in Mm. For that we take
the eigenfunctions for (M,V∞) and multiply them by a logarithmic cut-off
function ρMm ∈ C∞

0 (Mm) equal to 1 on M ′
m. We denote such a space of test-

functions constructed from the first j eigenfunctions (including constants)
by FM

j .

Similarly, we define test-functions supported in the bubble region Bm(b)
for a type I bubble b. We take the eigenfunctions for (S2, V b

∞), transplant
them to M and multiply them by a logarithmic cut-off function ρbm ∈
C∞
0 (Bm(b)) equal to 1 on B′

m(b). We denote such a space of test-functions
constructed from the first j eigenfunctions (including constants) by F b

j .
For each terminal bubble b we simply use the logarithmic cut-off func-

tion ρbm ∈ C∞
0 (Am(b)) equal to 1 on A′

m(b). Similarly, for each neck re-
gion with non-zero mass on any bubble b we use the logarithmic cut-off
τ bm ∈ C∞

0 (Am(b)) equal to 1 on A′
m(b). We denote the space spanned by

these functions by Fneck. Note that dimFneck is equal to the number t of
terminal bubbles and necks of non-zero mass.

The situation for type II bubbles is more complicated. In particular,
the test-functions associated with type II bubbles are not supported on that
bubble, but rather equal constant outside the bubble. Let b a type II bubble.
First of all we modify the potential VNm,k to be equal to 0 on A1

m(b). This
only increases the eigenvalues and does not change the behaviour as m → ∞
since μNm,k(A

1
m(b)) → 0.

Set B′′
m(b) = Bωb

m
(cbm). Let Ṽ b

m be a potential on S
2 defined by

(5.2.1) Ṽ b
m dvS2 =

{
(Rb

m)∗(VNm,k dvg) on Rb
m(B′′

m(b))

0 otherwise
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Let ψb
m be a linear combination of the eigenfunctions of (S2, Ṽ b

m). In particu-
lar, ψb

m is harmonic on the complement to Rb
m(B′′

m(b)). Let θbm ∈
C∞
0 (Rb

m(B 1
2
βm

(cbm))) be a cut-off function equal to 1 on Rb
m(B2ωb

m
(cbm)).

Define

(5.2.2) ψ̃b
m = (ψb

m − ψb
m(S))θbm + ψb

m(S),

where S is the South pole.
The following proposition shows that the Rayleigh quotients of the func-

tions ψ̃b
m and ψb

m are close as m → ∞.

Proposition 5.12. As m → ∞, we have the inequality

(5.2.3)

∫
S2

|∇ψ̃b
m|2 � (1 + o(1))

∫
S2

|∇ψb
m|2.

Also, for any m,

(5.2.4)

∫
S2

(ψ̃b
m)2Ṽ b

mdvg
S2

=

∫
S2

(ψb
m)2Ṽ b

mdvg
S2
.

Proof. The equality (5.2.4) is immediate, since ψ̃b
m = ψb

m on the sup-

port of Ṽ b
m. To prove the inequality we note that

(5.2.5) u = ψb
m − ψb

m(S)

is harmonic on the annulusRb
m(A1

m(b)). The nodal line of u passes through S.
By maximum principle the nodal set can not contain a closed arc outside
Rb

m(B′′
m(b)), therefore the nodal set goes all the way from S to Rb

m(∂B′′
m(b)).

We will use the following lemma.

Lemma 5.13. There exists a universal constant C such that

||u||2
L∞( ˜A1

m(b))
� C

∫
A1

m(b)
|∇u|2,

where Ã1
m(b) = B2ωb

m
(cbm) \B 1

2
βm

(cbm) ⊂ A1
m(b).

Proof of Lemma 5.13. Let x be a point where |u| achieves the maxi-

mum on Ã1
m(b). Assume for simplicity of notations that the coordinates are

chosen in such a way that cbm = 0. Then the nodal line of u intersects both
boundary components of the annulus B2|x|(0) \B 1

2
|x|(0). We will show that

(5.2.6) |u(x)|2 � C

∫
B2|x|(0)\B 1

2 |x|(0)
|∇u|2,

which obviously implies the required inequality.
Note that both sides of the inequality (5.2.6) are scale-invariant. There-

fore, without loss of generality, we may assume that |x| = 2. Since the nodal
line intersects both boundary components, one has that

(5.2.7)

∫
B4(0)\B1(0)

u2 � C

∫
B4(0)\B1(0)

|∇u|2.
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Indeed, for each ρ ∈ [1, 4] let xρ ∈ ∂Bρ be a point such that u(xρ) = 0. Let

s be a natural parameter along ∂Bρ, i.e. s =
φ

2πρ in polar coordinates. Then

one has∫
Sρ

u2 =

∫
Sρ

(∫ s

xρ

∂su(ρ, s) ds

)2

�
∫
Sρ

(
2πρ

∫
Sρ

|∂su(ρ, s)|2 ds
)

�

(2πρ)2
∫
Sρ

|∇u|2.

Therefore, one has on A = B4 \B1 that∫
A
u2 =

∫ 4

1

(∫
Sρ

u2

)
dρ �

∫ 4

1

(
(2πρ)2

∫
Sρ

|∇u|2
)
dρ � 64π2

∫
A
|∇u|2,

which proves inequality (5.2.7).
As was mentioned above, u is harmonic in A1

m(b). Therefore, u2 is sub-
harmonic, and hence

u2(x) � 1

π

∫
B1(x)

u2 � 1

π

∫
B4(0)\B1(0)

u2 � C

∫
B4(0)\B1(0)

|∇u|2.

Here in the first inequality we used the mean value theorem, and in the
second inequality the inclusion B1(x) ⊂ B4(0) \ B1(0), which follows from
the normalization |x| = 2. This completes the proof of Lemma 5.13. �

Let us continue with the proof of Proposition 5.12. Let αm > 0 be a
number to be chosen later. Combining the Cauchy-Schwarz inequality with
the arithmetic-geometric mean inequality and using (5.2.2), we obtain for
any αm > 0:

(5.2.8)

∫
S2

|∇ψ̃b
m|2 � (1 + αm)

∫
|∇ψb

m|2(θbm)2 +

(
1 +

1

αm

)∫
u2|∇θbm|2,

where u is defined by (5.2.5). Note that by construction supp(∇θbm) ⊂ Ã1
m(b).

Therefore, using Lemma 5.13 to estimate the second term and taking into
account that θbm � 1 to estimate the first one, we get:∫

S2

|∇ψ̃b
m|2 �

(
1 + am + C

(
1 +

1

αm

)∫
|∇θbm|2

)∫
|∇ψb

m|2.

Setting αm =
(∫

|∇θbm|2
)1/2

, and noting that with this choice αm = o(1) by
Section 3.4, completes the proof of Proposition 5.12. �

Let us now define the space of test-functions associated with a type II

bubble. We denote by Eb
j the space of test-functions ψ̃b

m constructed from

the functions ψb
m which are represented as linear combinations of the first j

eigenfunctions orthogonal to constants. Note that by our construction, if one
takes the constant function on the type II bubble, then it yields a constant
function on M , i.e. constant test-functions on different type II bubbles yield
the same test-function on M . To compensate for that we need to add (s−1)
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functions, where s is the number of type II bubbles. For (s − 1) of those
bubbles we add a logarithmic cut-off ρbm ∈ C∞

0 (Bγ′b
m
(cbm)) which is equal to

1 on Bγb
m
(cbm). We denote by ã the remaining type II bubble and by E the

s-dimensional space spanned by 1 and these (s− 1) functions.

5.3. Eigenvalue bounds. In the notation of the previous subsection,
let

F = FM
j+1

⊕
b of type I

F b
jb+1

⊕
a of type II

Ea
ja ⊕ Fneck ⊕ E

for some fixed natural numbers j, ja and jb, where the index b runs over all
bubbles of type I, and the index a runs over all bubbles of type II.

Proposition 5.14. For any given natural numbers k, j, ja, jb, where the
index b runs over al bubbles of type I, and the index a runs over all bubbles
of type II, one has as m → ∞:

λdimF−1(M,VNm,k)

� max
b of type I, a of type II

{λj(M,V∞), λjb(S
2, Ṽ b

∞), λja(S
2, Ṽ a

m)}+ o(1).

Proof. Let u ∈ F . Then there exists a constant Dm such that for any
bubble b of type I

(5.3.1) um =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψM on M ′

m

ρMmψM + (1− ρMm )Dm on Mm \M ′
m

ψb on B′
m(b)

ρbmψb + (1− ρbm)Dm on Bm(b) \ B′
m(b),

where ψM and ψb are linear combinations of the first j+1 eigenfunctions of

(M,V∞) and the first jb+1 eigenfunctions of (S2, Ṽ b
∞), respectively (in both

cases, the constants are included). Furthermore, for any bubble b of type I
with neck of non-zero mass or a terminal bubble one has

(5.3.2) um =

{
Cb on A′

m(b)

τ bmCb + (1− τ bm)Dm on Am(b) \ A′
m(b),

where Cb are some constants. If the neck mass is zero, then u = Dm on
Am(b). Finally, for type II bubbles a with non-zero mass neck one has

(5.3.3) um =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ̃a
m on B′

m(a)

Da
m on A2

m(a)

Caρam +Da
m(1− ρam) on Bγ′a

m
(cam) \Bγa

m
(cam)

Ca on Bδ′am(c
a
m) \Bγ′a

m
(cam)

Caτam +Dm(1− τam) on Bδam(c
a
m) \Bδ′am(c

a
m),

where Dã
m = Dm and ψ̃a

m is obtained by the cut-off construction from a

linear combination ψa
m of the first ja + 1 eigenfunctions of (S2, Ṽ a

m) defined
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by (5.2.2). Finally, for type II bubble a with zero mass neck one has

(5.3.4) um =

⎧⎪⎨⎪⎩
ψ̃a
m on B′

m(a)

Da
m on A2

m(a)

Dmρam +Da
m(1− ρam) on Bδam(c

a
m) \Bγa

m
(cam).

We are now ready to estimate the Rayleigh quotient of u. We do it step
by step.

1. On Mm. Since the space FM
j+1 is finite dimensional, there exists a

constant Cj such that for any x ∈ M ,

(5.3.5) |ψM (x)|2 � Cj

∫
M

(
ψM
)2

V∞.

Then we have for any 0 ≤ δ ≤ 1:∫
Mm\M ′

m

|∇u|2 �

∫
Mm\M ′

m

(1 + 2δ)(ρMm )2|∇ψM |2 + (1 + δ +
1

δ
)(ψM )2|∇ρMm |2

+ (1 +
2

δ
)D2

m|∇ρMm |2 �

(1 + 2δ)

∫
Mm\M ′

m

|∇ψM |2 + (1 +
2

δ
)

∫
Mm\M ′

m

|∇ρMm |2C
∫
M
(ψM )2V∞

+ (1 +
2

δ
)D2

m

∫
|∇ρMm |2

Here the first inequality follows, similarly to (5.2.8), from the Cauchy-Scwarz
inequality combined with the arithmetic-geometric mean inequality. Set δ =√∫

|∇ρMm |2 = o(1). This yields∫
Mm

|∇u|2 � (1 + o(1))

∫
Mm

|∇ψM |2 + o(1)

∫
M

(ψM )2V∞

+ (2 + o(1))D2
m

√∫
|∇ρMm |2

� λj(M,V∞)(1 + o(1))

∫
M

(ψM )2V∞ + IMm ,

where

IMm = (2 + o(1))D2
m

√∫
|∇ρMm |2.

Note that by construction the space Fj+1 is generated by the first j + 1
eigenfunctions including constants, and hence the j-th nonzero eigenvalue
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λj appears on the right-hand side of the inequality. At the same time, using
(5.3.5) one has

(5.3.6)

∣∣∣∣∣∣∣
∫
M

(ψM )2V∞ −
∫

M ′
m

(ψM )2VNm,k

∣∣∣∣∣∣∣ �⎛⎝Cj

∫
M

(ψM )2V∞

⎞⎠
∣∣∣∣∣∣∣
∫
M

V∞ −
∫

M ′
m

VNm,k

∣∣∣∣∣∣∣ � o(1)

∫
M

(ψM )2V∞

Here in the last inequality we used the third assertion of Theorem 5.8, as well
as the fact that by construction μm,k(Mm \M ′

m) = o(1). Putting everything

together and taking into account that u|M ′
m
= ψM , we have that∫

Mm

|∇u|2 � λj(M,V∞)(1 + o(1))

∫
Mm

u2VNm,k + IMm .

The term IMm will be dealt with later.
2. On Bm(b). The same argument follows through on Bm(b) for type I

bubbles b. One has∫
Bm(b)

|∇u|2 � λj(S
2, Ṽ b

∞)(1 + o(1))

∫
Bm(b)

u2VNm,k + Ibm,

where

Ibm = (2 + o(1))D2
m

√∫
|∇ρbm|2.

3. On Am(b) for type I bubbles. On the neck regions Am(b) of non-
zero mass for type I bubbles and terminal bubbles one has∫

Am(b)

|∇u|2 � (1 + δ)(Cb)2
∫

|∇τ bm|2 + (1 +
1

δ
)D2

m

∫
|∇τ bm|2.

Since ∫
A′

m(b)

u2VNm,k = (Cb)2(τ bS + o(1)).

Setting δ =
√∫

|∇τ bm|2 one has∫
Am(b)

|∇u|2 � o(1)

∫
Am(b)

u2VNm,k + Jb
m,

where

Jb
m = (2 + o(1))D2

m

√∫
|∇τ bm|2
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4. On Am(a) for type II bubbles. Similar argument on the neck
regions Am(a) for type II bubbles (this bound holds for both zero and non-
zero mass of the neck) yields∫

Am(a)

|∇u|2 � o(1)

∫
Am(a)

u2VNm,k + Ja
m +Ka

m,

where

Ja
m = (2 + o(1))D2

m

√∫
|∇τam|2; Ka

m = (2 + o(1))(Da
m)2

√∫
|∇ρam|2.

5. On B′
m(a) for type II bubbles. By the construction of test-functions

one has ∫
B′

m(a)

|∇u|2 � (λja(S
2, Ṽ a

m) + 1)

∫
B′

m(a)
u2VNm,k

6. Dealing with I, J, K terms. We note that by condition (5.1.8) and
the estimate in Section 3.4, one has∑

a

(Iam + Ja
m) +K ã

m � D2
m

∫
A2

m(ã)

VNm,k =

∫
A2

m(ã)

u2VNm,k.

Similarly, for type II bubble a �= ã one has

Ka
m � (Da

m)2
∫

A2
m(a)

VNm,k =

∫
A2

m(a)

u2VNm,k.

Summing all these terms together completes the proof of Proposition
5.14. �

Let wM =
∫
M V∞ be the area of the regular part of the surface M . If

wM �= 0, then define dM by

λdM (M,V∞) < Λk(M, C) � λdM+1(M,V∞).

Similarly, for all type I bubbles b we set wb =
∫
S2
Ṽ b
∞dvg

S2
, where Ṽ b

∞ is

defined by (5.1.6). For each b such that wb > 0, define db by

(5.3.7) λdb(S
2, Ṽ b

∞) < Λk(M, C) � λdb+1(S
2, Ṽ b

∞).

Finally, for any type II bubble a let wm
a =

∫
S2
Ṽ a
mdvg

S2
, where Ṽ a

m is defined

by (5.2.1). Set wa = limm→∞wm
a ; note that the limit exists due to (5.1.7).

For any type II bubble a such that wa > 0, define da by

(5.3.8) lim sup
m→∞

λda(S
2, Ṽ a

m) < Λk(M, C) � lim sup
m→∞

λda+1(S
2, Ṽ a

m).

Let t be the number of necks of non-zero mass and terminal bubbles, and
recall that we have assumed that the total area of the surface M is equal to
one.
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Proposition 5.15. One has

(dM + 1) +
∑

b : wb 
=0

(db + 1) +
∑

a : wa 
=0

(da + 1) + t � k.

In particular, t � k.

Proof. We argue by contradiction. Assume that

(dM + 1) +
∑

b : wb 
=0

(db + 1) +
∑

a : wa 
=0

(db + 1) + t � k + 1.

Then by Proposition 5.14 one has

λk(M,VNm,k) � max{λdM (M,V∞), λdb(S
2, Ṽ b

∞), λda(S
2, Ṽ a

m)}+ o(1).

Passing to the lim sup as m → ∞ and using the definition of dM , da, db one
has

Λk(M, C) � max{λdM (M,V∞), λdb(S
2, Ṽ b

∞), lim supλda(S
2, Ṽ a

m)}
< Λk(M, C). �

We can now complete the proof of the main result of the paper.

Proof of Theorem 1.1. Let, as before, M be a surface with a fixed
conformal class C. Using the fact that t � k one has

wM +
∑

b is not terminal

wb +
∑

a is not terminal

wa � 1− kCR.

Thus, summing up the inequalities

wMΛk(M, C) � wMλdM+1(M,V∞) � ΛdM+1(M, C)
wbΛk(M, C) � wbλdb+1(S

2, Ṽ b
∞) � Λdb+1(S

2)

waΛk(M, C) � wa lim supλda+1(S
2, Ṽ a

m) � Λda+1(S
2).

yields, provided wM > 0,

(1−kCR)Λk(M, C) � ΛdM+1(M, C)+
∑

b : wb 
=0

Λdb+1(S
2))+

∑
a : wb 
=0

Λda+1(S
2)

� max
k′

{Λk′(M) + Λk−k′(S
2)},

where 1 ≤ k′ < k if there is at least one bubble of non-zero mass. Since the
choice of CR is arbitrary, passing to the limit CR → 0 we obtain:

(5.3.9) Λk(M) � max
1≤k′<k

{Λk′(M) + Λk−k′(S
2)}.

At the same time, it was shown in [KNPP] that Λj(S
2) = 8πj for any

j ≥ 1. Thus, if

Λk(M, C) > max
k′<k

{Λk′(M, C) + 8π(k − k′)} = Λk−1(M, C) + 8π

then there are no bubbles and hence there exists a metric h smooth outside
of isolated conical singularities such that Λk(M) = λ̄k(M,h). This proves
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the second assertion of Theorem 1.1 provided wM > 0. If wM = 0 then
instead of (5.3.9) we would get

(5.3.10) Λk(M) ≤ 8πk.

In view of (1.1.6) and [CES, Theorem B] it follows that M is a sphere and
(5.3.10) is an equality. Moreover, it follows from the results of [KNPP] that
(1.1.3) holds.

Finally, for k = 1, Proposition 5.15 implies that only one of the weights
wM , wb, wa could possibly be non-zero. If wM �= 0, then there are no bubbles
and we obtain the existence of a regular conformally maximal metric. If one
of the bubbles has a non-zero mass, then by (5.3.10) one has

Λ1(M, C) � 8π,

which once again implies that M is a sphere. This completes the proof of
Theorem 1.1. �

6. The Yang-Yau method for higher eigenvalues

6.1. Spectra of Lp-measures. In this section we collect some proper-
ties of the eigenvalues λk(M,μ) of M with fixed conformal class [g] and the
measure dμ = ρdvg (see subsection 2.1 for the setup), where ρ ∈ Lp(M) :=
Lp(M, g) for some p > 1. For the proof of the following proposition see [KS,
Propositions 2.13 and 2.14], [GKL, Section 2], as well as [Kok2, Exam-
ple 2.1].

Proposition 6.1. Suppose that ρ ∈ Lp(M) for some p > 1 and ρ ≥ 0.
Then the spectrum of the Laplacian on (M,ρdvg) is discrete, and the eigen-
values form a sequence

0 = λ0(M,ρdvg) < λ1(M,ρdvg) ≤ λ2(M,ρdvg) ≤ · · · ↗ ∞.

The eigenvalues λk(M,ρdvg) have finite multiplicity, and the correspond-
ing eigenfunctions φk ∈ H1(M) := H1(M, g) satisfy the equation

Δgφk = λk(M,ρdvg)ρφk

in the weak sense.

The following lemma appears to be known, but the authors were unable
to find the exact reference. For similar results with slightly different formu-
lations see [KS, Proposition 3.14] and [CKM, Lemma 4.5]. We include the
proof below for completeness.

Lemma 6.2. Let M be a surface endowed with the metric g, and [g]
be the corresponding conformal class. Let ρn be a sequence of non-negative
functions such that ρn → ρ in Lp(M) for some p > 1. Then

lim
n→∞

λk(M,ρndvg) = λk(M,ρdvg), k = 0, 1, 2, . . .
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Proof. The statement of the lemma is trivial for k = 0 since the cor-
responding eigenvalues are equal to zero. By the upper semi-continuity of
eigenvalues (see Proposition 2.3 or [Kok2, Proposition 1.1]) it is sufficient
to show that

lim inf
n→∞

λk(M,ρndvg) � λk(M,ρdvg), k ≥ 1.

Replace {n} with a subsequence {nm} so that

lim
m→∞

λi(M,ρnmdvg) = lim inf
n→∞

λi(M,ρndvg)

for all i � k. To simplify notation, we rename the subsequence back to {n}.
Let Ek,n be the space spanned by λi(M,ρndvg)-eigenfunctions for i =
1, . . . , k.

Let fn ∈ Ek,n be normalized so that
∫
f2
nρn dvg = 1. In particular one

has

(6.1.1)

∫
M

|∇fn|2 dvg � λk(M,ρndvg) � λk(M,ρdvg) + o(1),

i.e. the Dirichlet integrals of fn are uniformly bounded. Furthermore, we
claim that

(6.1.2) ‖fn‖H1(M) � Ck.

In order to show this we recall the following theorem.

Theorem 6.3 ([AH], Lemma 8.3.1). Let (M, g) be a Riemannian man-
ifold. Then there exists a constant C > 0 such that for all L ∈ H−1(M) with
L(1) = 1 one has

(6.1.3) ‖u− L(u)‖L2(M) � C‖L‖H−1(M)

⎛⎝∫
M

|∇u|2g dvg

⎞⎠1/2

for all u ∈ H1(M).

We apply Theorem 6.3 to Ln(u) =
∫
M uρn dvg. Let q be the Hölder dual

of p. Then ∫
M

uρn � ‖ρn‖Lp(M)‖u‖Lq(M) � C‖ρ‖Lp‖u‖H1(M).

The last inequality follows from the Rellich-Kondrachov theorem (see, for in-
stance, [Kaz, Theorem 1.1]), stating that the embeddingH1(M) ⊂ Lq(M) is
compact for any 1 � q < ∞. Therefore, ‖Ln‖H−1(M) are uniformly bounded.
Theorem 6.3 then yields∫

M

(
fn −

∫
fnρn dvg

)2

dvg =

∫
M

f2
n dvg � C

∫
M

|∇fn|2 � Ck,

where the first equality follows from the fact that eigenfunctions are orthogo-
nal to constants. Together with (6.1.1) this implies (6.1.2). As a consequence,
by Rellich-Kondrachov theorem we get ‖fn‖Lq(M) � Ck,q for any 1 � q < ∞.
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Let φn,i ∈ Ek,n be a normalized basis of eigenfunctions so that∫
M

φn,iφn,jρn = δij .

Then, by (6.1.2), up to a choice of a subsequence, {φn,i} converges as n → ∞
weakly in H1(M) and strongly in L2q(M). Here the first assertion follows
from the Banach-Alaoglu theorem, and the second one from the compactness
of the embedding H1(M) ⊂ Lq(M). Let φi ∈ H1(M) be the corresponding
limits. We claim that {φi} is a normalized collection of eigenfunctions for the
measure ρ, and the values λi = limn→∞ λi(M,ρndvg) are the corresponding
eigenvalues.

Indeed, since φi,n → φi in L2q(M), then φi,nφj,n → φiφj in Lq(M).
Therefore,∣∣∣∣∫ (φiφjρ− φi,nφj,nρn) dvg

∣∣∣∣ �
‖φi,nφj,n − φiφj‖Lq‖ρn‖Lp + ‖φi,nφj,n‖Lq‖ρ− ρn‖Lp → 0,

i.e. the functions φi are normalized so that
∫
φiφjρ dvg = δij . In particular,

φi are linearly independent.
Finally, we show that φi are (weak) eigenfunctions for the measure ρ with

the corresponding eigenvalues λi. Indeed, given ψ ∈ C∞(M), we obtain∫
∇φi∇ψ dvg = lim

n→∞

∫
∇φi,n∇ψ dvg =

lim
n→∞

λi(M,ρn dvg)

∫
φi,nψρn dvg = λi

∫
φiψρ dvg.

Note that a priori we do not claim that λi is necessarily the i-th eigenvalue
for the measure ρ, but simply that it is some eigenvalue λi � λi(M,ρdvg);
however, the equality in fact holds by the upper-semicontinuity property
mentioned earlier. This completes the proof of Lemma 6.2. �

Corollary 6.4. Suppose that ρ ∈ Lp(M, g) for some p > 1 and ρ ≥ 0.
Then

λk(M,ρdvg)

∫
M

ρ dvg � Λk(M, [g]).

Proof. Any non-negative ρ ∈ Lp(M, g) can be approximated in
Lp(M, g) by smooth positive functions ρn. For such ρn one has gn = ρng ∈ [g]
and

λk(M,ρndvg)

∫
M

ρn dvg = λk(M, gn)Area(M, gn).

An application of Lemma 6.2 completes the proof. �

6.2. Proof of Theorem 1.6. We prove part (i) first. Let g be a Rie-
mannian metric on M and [g] be the corresponding conformal class. Fol-
lowing [YY], let π : M → S

2 be a conformal branched covering of degree d,
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where S
2 is endowed with standard metric g0 on a unit sphere and the cor-

responding conformal structure. Consider the push-forward dμ = π∗dvg of
the volume measure on M . By [YY, equation (2.4)] the measure dμ satisfies
dμ = ρdvg0 , where ρ ∈ Lp(S2, g0) for some p > 1.

Remark 6.5. The local expression for dμ obtained in [YY, equation
(2.4)] implies that dμ = dvg∗ , where g∗ = ρg0 is a metric on S

2 with conical
singularities at images of branch points. Note, however, that the conical
angles at these singularities are smaller than 2π, which forces the conformal
factor to be unbounded around the singularity.

Consider the (k+1)-dimensional subspace E∗
k+1 ∈ H1(S2, g0) spanned by

the eigenfunctions corresponding to the eigenvalues 0, λ1(S
2, μ), . . . ,

λk(S
2, μ). Consider now the space Ek+1 ∈ H1(M, g) consisting of functions

u = u∗ ◦ π, u∗ ∈ E∗
k+1. Then, by the variational principle,

(6.2.1) λk(M, g) ≤ sup
u∈Ek+1

∫
M |∇u|2dvg∫
M u2dvg

=

d · sup
u∈E∗

k+1

∫
S2
|∇u∗|2dvg0∫
S2
(u∗)2dμ

= d · λk(S
2, μ) ≤ 8πkd

μ(S2)
.

Here the first inequality follows from the variational principle, the last in-
equality is true by (1.1.5) and Corollary 6.4, and the equality in the middle
follows from [YY, Lemma, p. 59]. Setting u = 1 in part (i) of the same
Lemma in [YY] we note that Area(M, g) = μ(S2). Finally, as was shown in

[EI], we can set d =
[
γ+3
2

]
. Therefore, (6.2.1) implies (1.2.2).

In order to prove part (ii), we argue in the same way, using the method of
[Kar1] instead of [YY]. The key observation is that an analogue of [Kar1,
Proposition 1] holds for Λk with the factor 8π on the right replaced by 8πk,
and the factor 12π replaced by 4π(2k + 1), where the former is true by
(1.1.5), and the latter follows from (1.1.7). We leave the rest of the details
to the reader. �

Remark 6.6. In view of [Kar1, Lemma 3], if M is the Dyck’s surface
(i.e. a non-orientable surface with an orientable double cover of genus two),
inequality (1.2.3) can be improved to Λk(M) ≤ 16πk, k ≥ 1.
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