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Abstract. In this note, we survey the developments that led to the
invention of Mixed-Spin-P field theory (MSP theory) which interpolates
Gromov-Witten theory of quintic Calabi-Yau threefolds and Landau-
Ginzburg theory of the corresponding quintic polynomials.
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1. Introduction

We look at the Fermat quintic polynomial in five variables

G(x1, . . . , x5) = x51 + · · ·+ x55,

and the Fermat quintic threefold defined by

Q := {[x1, . . . , x5] ∈ P4 | G(x1, . . . , x5) = 0}.
The variety Q is a smooth projective Calabi-Yau threefold of h1,1(Q) = 1
and h2,1(Q) = 101, where the latter is the dimension of the moduli space of
Calabi-Yau threefolds that are deformations of Q.
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174 J. LI AND C.-C.M. LIU

The mirror family Q̌ψ of the Fermat quintic Q is obtained by taking a
crepant resolution of each member of the quotient family

{y51 + · · ·+ y55 − 5ψy1 · · · y5 = 0}/Γ ⊂ P4/Γ.

where Γ is the quotient of {(ai) ∈ (μ5)
5 : a1 · · · a5 = 1} by {(a, . . . , a) : a ∈

μ5}. It acts on P4 via scaling the five homogeneous coordinates of P4.
The complex moduli M of Q̌ψ is 1-dimensional; its affine part is given

by letting the variable ψ shown above to be in the weighted projective line
P[5, 1], after gluing Cz = SpecC[z] and [Cψ/μ5] = [SpecC[ψ]/μ5] via C∗

z →
C∗
ψ/μ5, z �→ (5ψ)−5.
The moduli M has three special points: the maximally unipotent mon-

odromy (MUM) point at ψ = ∞ (z = 0); the conifold point at ψ = 1
(z = 5−5) and the orbifold point at ψ = 0 (z = ∞).

Mirror symmetry conjecture for Fermat quintic threefold Q is the begin-
ning of the subject now called the Mirror Symmetry. It is illustrated in the
following Figure 1.

Figure 1. Mirror symmetry for quintic Calabi-Yau three-
folds. The right hand side is the LG/CY correspondence; the
left hand side is the B-model theory.

The lower-right corner is the Gromov-Witten (GW) theory of Q, with

its generating function of the genus g GW invariants FQ
g , mathematically a

virtual count of genus g algebraic curves in Q.
The upper-right corner is the Fan-Jarvis-Ruan-Witten (FJRW) theory

of the Fermat quintic polynomial W , with its generating function of the
genus g FJRW invariants FG

g , mathematically a virtual count of solutions
to the Witten’s equation associated to G.
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The left hand side two corners are B-model theory on the mirror quintic
Q̌, representing the genus g free energy FB

g . Genus zero B-model on Q̌ is de-
fined in terms of classical variation of Hodge structures and period integrals.
The periods

∫
γ Ω of the holomorphic 3-form Ω on Q̌ satisfy the Picard-Fuchs

equation and can be expressed in terms of explicit hypergeometric series
Ik(z) (resp. ωk(ψ)) near z = 0 (resp. ψ = 0) at the lower-left (resp. upper-
left) corner. Bershadsky-Cecotti-Ooguri-Vafa (BCOV) developed a physical
theory of all genus B-model [BCOV]. Genus one BCOV theory is defined in
terms of analytic torsion. A mathematical theory of higher genus B-model
has been developed by Costello and S. Li [CoLi1, CoLi2], though the two
corners remain to be further developed.

Heuristically, this theory is along the following line. Let F3 −→ M
be the holomorphic line bundle on M such that F3|ψ = H3,0(Q̌ψ,C). Fol-

lowing the Kodaira-Spencer theory in [BCOV], FB
g (where g > 1) is a

non-holomorphic section of the line bundle (F3)⊗(2−2g), which after taking
certain holomorphic limit and expanding in specifically chosen local holo-
morphic coordinate q (resp. t) around ψ = ∞ (resp. ψ = 0) at the lower-left
(resp. upper-left) corner of the figure, give rise to a power series, which mir-

ror conjecture predicts that it should be equal to FQ
g (q) (resp. FG

g (t)). As
the B-model theory often is calculated explicitly by string theorists at low
genera, the mirror symmetry conjecture often gives the precise expression

of the GW generating function FQ
g (q) up to some genus.

We now recount the milestone mirror symmetry conjectures on quintic
Calabi-Yau threefold since early 90’s.

Genus zero. In [CdGP], Candelas-de la Ossa-Green-Parkes derived

their genus zero mirror formula for FQ
0 (q) by relating it to {Ik(z) : k =

0, 1, 2, 3}, where q(z) = I1(z)/I0(z) is known as the mirror map. Their
derivation was proved a few years later (in 1996-7) by Givental [Giv1] and
Lian-Liu-Yau [LLY1]. They proved the genus zero mirror theorems for com-
plete intersections in projective spaces, and later extended their theory to
smooth complete intersections in projective toric manifolds [Giv2, LLY2,
LLY3].

For FJRW theory, Chiodo-Ruan proved a genus-zero mirror formula
for FG

0 (t) in terms of {ωk(ψ) : k = 1, 2, 3, 4}, and established a genus-
zero LG/CY correspondence for quintic Calabi-Yau threefolds [ChRu]. The
LG/CY correspondence involves change of variables (the GW mirror map
q = q(z) and the FJRW mirror map t = t(ψ)) and analytic continuation of
the hypergeometric series (or more Hodge theoretically, parallel transport
with respect to the Gauss-Manin connection).

Genus one. Shortly after [CdGP], Bershadsky-Cecotti-Ooguri-Vafa
(BCOV) derived the genus-one and genus-two mirror formulae for the quintic

3-fold [BCOV]. The BCOV genus-one mirror formula for FQ
1 (q) was proved
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by A. Zinger fifteen years later in [Zin], via genus one reduced Gromov-
Witten theory developed by Li-Zinger [LiZi], using a result of Vakil-Zinger
[VaZi]. Zinger proved a mirror formula for a smooth Calabi-Yau hypersur-
face in a projective space of any dimension. Zinger’s result was extended
to smooth Calabi-Yau complete intersections in projective spaces by A.
Popa [Pop]. There is an alternative proof based on quasimap theory devel-
oped by Ciocan-Fontanine, Kim, and Maulik [CFKM]: the main results in
[Zin, Pop] also follow from (i) Kim and Lho’s mirror theorem for genus-one
quasimap invariants of smooth Calabi-Yau complete intersections [KiLh],
and (ii) Ciocan-Fontanine and Kim’s wall-crossing formula relating all-genus
GW invariants and quasimap invariants of these targets [CFK]. Recently,
Chang-Guo-Li-Zhou provided another proof of the BCOV genus-one mir-

ror formula for FQ
1 [CGLZ] via torus localization in Mixed-Spin-P (MSP)

theory developed in [CLLL].
The mathematical treatment of the genus-one BCOV theory was done by

Fang-Lu-Yoshikawa in [FLY], where they defined what is nowadays called
the BCOV invariant for compact Calabi-Yau threefolds, and confirmed the
explicit formula of the BCOV invariant of the mirror quintic Q̌ψ predicted in
[BCOV]. Recently, D. Eriksson, G. Freixas i Montplet, and C. Mourougane
introduced and studied the BCOV invariant of Calabi-Yau manifolds of ar-
bitrary dimension [EFM].

For FJRW theory, Guo-Ross proved a genus-one mirror formula for
FG
1 via torus localization in MSP theory [GuR1], and proved a genus-one

LG/CY correspondence for quintic Calabi-Yau threefolds [GuR2]. Indeed,
the MSP theory is defined for G = xr1 + · · · + xrr for any positive integer
r > 1. It is expected that genus-one mirror formula for G = xr1 + · · · + xrr
and LG/CY correspondence for Calabi-Yau hypersurfaces in Pr−1 can be
proved via torus localization in MSP theory for any r > 1.

Genus g ≥ 2. For all genus GW invariants FX
g for any Calabi-Yau

threefold X, the conceptual breakthrough came after BCOV developed their
Kodaira-Spencer theory. Based on it, Yamaguchi-Yau derived their polyno-
miality statement and their functional equation (a version of Holomorphic

Anomaly Equation) for FQ
g [YYau], known as Yamaguchi-Yau polynomi-

ality conjecture and Yamaguchi-Yau functional equation conjecture. The
Kodaira-Spencer theory allows BCOV to develop their Feynman rule for

quintic Q, a rule that can effectively derive FQ
g after knowing all FQ

<g, and

knowing 3g − 2 more constraints of FQ
g .

Built on [BCOV, YYau], Huang-Klemm-Quackenbuch (HKQ) argued

how to determine the 3g-3 constants of FQ
g , for g ≤ 51 [HKQ]. The constant

term of FQ
g (where g > 1) is the genus g degree zero GW invariant of Q,

which is known. The boundary conditions at the orbifold point ψ = 0 impose
	35(g−1)
 constraints on the 3g−3 unknowns, whereas the “gap condition” at
the conifold point ψ = 1 imposes 2g−2 constraints on the 3g−3 unknowns.
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To determine the remaining �25(g − 1)� unknowns, HKQ used Gopakumar-
Vafa conjecture to express GW invariants in terms Gopakumar-Vafa (GV)
invariants, also known as BPS invariants, which they fix up to genus g = 51
by the classical Castelnuovos’ bound.

Recently, mathematical advancements along this direction are accelerat-
ing. In [GJR1, GJR2], Guo-Janda-Ruan made some penetrating discovery
on high genus GW invariants of quintic Calabi-Yau threefold; later Chen-
Janda-Ruan [CJR] developed the theory of logarithm gauged linear sigma
model (log GLSM), which represents a big step toward mathematical theory
of GW invariants of Calabi-Yau threefold.

Around the same time, inspired by Witten’s vision, Chang-Li-Li-Liu de-
veloped their MSP theory [CLLL]. This theory and its more recent develop-
ment, the N -Mixed-Spin-P (NMSP) theory by Chang-Guo-Li-Li [CGLL],
allows Chang-Guo-Li to prove the Yamaguchi-Yau polynomiality conjecture,
the Yamaguchi-Yau functional equation conjecture [YYau], the BCOV’s
Feynman rule for quintic Q [CGL1, CGL2], and verifying BCOV genus
two formula on quintic. We expect this theory will lead to further under-
standing of all genus GW invariants of the complete intersection Calabi-Yau
threefolds in the product of weighted projective spaces.

In this note, we will survey the developments that led to the invention
of Mixed-Spin-P field theory (MSP theory).

Acknowledgments. We are greatly indebted to Professor Shing-Tung
Yau for his guidance and tremendous support over the years. We wish to
thank Huai-Liang Chang and Wei-Ping Li for collaboration of work surveyed
in this paper. The first named author is partially supported by National Nat-
ural Science Foundation of China no.12071079. The second named author is
partially supported by NSF grant DMS-1564497.

2. Gromov-Witten (GW) theory

Gromov-Witten theory of the quintic threefold Q can be viewed as a
mathematical theory of A-model topological strings on Q.

2.1. Moduli of curves. Let g, � be non-negative integers. A genus g, �
pointed prestable curve is (C, z1, . . . , z�), where C is a genus g connected pro-
jective curve with at most nodal singularities; z1, . . . , z� are distinct smooth
points on C. A prestable curve is stable if its automorphism group (as a
pointed curve) is finite.

The moduli Mg,� of genus g, � pointed prestable curves is a smooth Artin

stack of dimension 3g−3+�. It contains the moduliMg,� of genus g, � pointed

stable curves as an open substack. The moduliMg,� is non-empty if and only
if 2g − 2 + � > 0. When non-empty, it is a smooth Deligne-Mumford stack
of dimension 3g − 3 + �.
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2.2. Moduli of stable maps. Gromov’s compactness theorem says
that a sequence of smooth closed pseudo-holomorphic curves in a symplectic
manifold of a fixed genus and uniformly bounded area converges to a pseudo-
holomorphic cusp-curve (which is a curve with nodal singularities) [Gro].
In algebraic geometry this led to the notion of stable maps by Kontsevich
[Kon2].

A genus g, � pointed, degree d prestable map to Q is a morphism

u : (C, z•) −→ Q z• = (z1, · · · , z�),
where (C, z•) is a genus g, � pointed prestable curve, and d = deg u∗OP4(1).
An isomorphism between two prestable maps ((C, z•), u) and ((C ′, z′•), u

′)
is an isomorphism (C, z•) → (C ′, z′•) that commutes with the u and u′.
An automorphism of an object is an isomorphism from the object to itself.
A prestable map is stable if its group of automorphisms is finite.

Let Mg,�(Q, d) be the moduli of genus g, � pointed, degree d stable maps
to Q. It is a proper, Deligne-Mumford stack with a projective coarse moduli
space. When d = 0, it is Mg,� ×Q.

2.3. Perfect obstruction theory and virtual fundamental class.
The need to construct virtual fundamental class was called for setting up
an algebro-geometric construction of the GW invariants of projective mani-
folds [KoMa]. In [LiTi, BeFa], Li-Tian and Behrend-Fantechi fulfilled this
task by constructing virtual fundamental classes of moduli spaces that have
(relative) perfect obstruction theories.

Usually, a moduli stack in algebraic geometry has its tautological ob-
struction theory. Simply said, associated to each object ξ in the moduli
stack we have vector spaces T−1

ξ , T 0
ξ , T

1
ξ , · · · , where T−1

ξ is the space of in-

finitesimal automorphisms of ξ, T 0
ξ is the space of infinitesimal deformations

of ξ, and T 1
ξ is the space of the obstructions to deforming ξ, etc. The moduli

stack is said to have a perfect obstruction theory if for all ξ in the moduli
stack,

T−1
ξ = T i>1

ξ = 0.(1)

The meaning of T−1
ξ = 0 is that it makes the moduli stack a DM stack

at ξ. The (non-)vanishing of the higher obstruction class T i>1
ξ = 0 remains

a mystery. However, when all higher obstruction vanishes, T 1
ξ glue to an

obstruction sheaf of the moduli stack. In this case we say that the moduli
stack is virtually smooth.

We now look at the moduli space Mg,�(Q, d). It comes with a forgetful
map

πQ/M : Q := Mg,�(Q, d) −→ Mg,�,(2)

forgetting the u in ((C, z•), u). The map πQ/M is virtually smooth: at ξ =
((C, z•), u) in Q, the relative tangent and obstruction spaces are

H0(C, u∗TQ) and H1(C, u∗TQ),
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representing the infinitesimal deformations of the map u, and the obstruc-
tions to deforming the map u, with (C, z•) fixed.

SinceH i>1(C, u∗TQ) = 0 by dimension reason, the map πQ/M is virtually
smooth. By Riemann-Roch, we see that the relative virtual dimension of
the map πQ/M is 3− 3g. Since Mg,� is smooth and Q is a DM stack, πQ/M

comes with a relative perfect obstruction theory. Applying the virtual cycle
construction mentioned to the pair Mg,�(Q, d) → Mg,�, we obtain a virtual
cycle

[Mg,�(Q, d)]virt ∈ A�(Mg,�(Q, d);Q),

of degree

vir. dimMg,�(Q, d) = (3− 3g) + dimMg,� = �.

For instance, for d = 0, [M0,�(Q, 0)]virt = [M0,�]× [Q], and

[Mg,�(Q, 0)]virt = c3g(E
∨�TQ)∩

(
[Mg,�]× [Q]

)
∈ A�(Mg,�×Q;Q), g > 0,

where E∨ is the dual of the Hodge bundle1 E = EMg,�
over Mg,�, and TQ is

the tangent bundle of Q.

2.4. Gromov-Witten invariants. Given a pair of non-negative in-
tegers (g, d) �= (0, 0) and (1, 0), the genus g degree d GW invariant of Q
is

Ng,d :=

∫
[Mg,0(Q,d)]virt

1 ∈ Q.(3)

The genus g GW potential of Q is

FQ
g (q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5

6
(log q)3 +

∞∑
d=1

N0,dq
d, g = 0;

−25

12
log q +

∞∑
d=1

N1,dq
d, g = 1;

∞∑
d=0

Ng,dq
d, g ≥ 2.

(4)

For instance, when d = 0 and g ≥ 2, Faber-Pandharipande in [FaPa]
calculated

Ng,0 =
(−1)g

2

∫
[Mg,0]

λ3
g−1

∫
[Q]

c3(TQ)

=(−1)g
|B2g||B2g−2|

4g(2g − 2)(2g − 2)!
χ(Q) = −200(−1)g

|B2g||B2g−2|
4g(2g − 2)(2g − 2)!

.

In [MaPa], Maulik-Pandharipande provide an algorithm of evaluating Ng,d

based on the degeneration formula proved by the first author [Li2].

1It is a rank g vector bundle on Mg,� whose fiber at (C, z•) is H
0(C, ωC).
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3. Chang-Li theory of stable maps with fields

String-theorists have been viewing the GW invariants of the quintics
a field theory on Riemann surfaces. For mathematicians, it is a theory on
the moduli of stable maps to Q. This paradox was finally resolved after
the discovery of the theory of stable maps with fields, after the work of
Guffin-Sharpe in [GuSh].

3.1. The LG model (KP4 , Ŵ ). Let C∗ act on C6 = C5×C by weights
(15,−5), via s · (x, p) = (sx, s−5p), s ∈ C∗. Then(

(C5 − {0})× C
)
/C∗ = KP4 ,

the canonical line bundle over P4. The function

W := p ·G(x) = p · (x51 + · · ·+ x55)

on (C5−{0})×C is invariant under the C∗-action, thus descends to a regular

Ŵ : KP4 −→ C.(5)

The pair (KP4 , Ŵ ) is an LG model, with Ŵ plays the role of superpotential.
The differential of the superpotential will play a significant role later. It

is

dŴ = 5
5∑

i=1

px4i dxi +
( 5∑
i=1

x5i

)
dp.(6)

Its critical locus is the Fermat quintic threefold embedded in P4 via the
0-section:

Crit(Ŵ ) = {[x•, p] ∈ KP4 | p = G(x) = 0} = Q ⊂ KP4 .(7)

3.2. Moduli of stable maps with fields. The Chang-Li theory of
stable maps with p-fields [ChLi1] is a mathematical theory of A-model

topological strings on the LG model (KP4 , Ŵ ). It generalizes the genus zero
Guffin-Sharpe-Witten model [GuSh, Wit2] to all genus cases.

Let g, �, d be non-negative integers such that either d > 0 or 2g−2+� > 0.
A genus g, � pointed, degree d stable maps (to P4) with a p-field is a triple

((C, z•), u, ρ),(8)

where u : (C, z•) → P4 is a genus g � pointed degree d stable map;

ρ ∈ H0(C, u∗OP4(−5)⊗ ωC),(9)

called a p-field. Isomorphisms between two objects in (8) are defined in
obvious way.

We let

Mg,�(P
4, d)p

be the moduli of stable maps to P4 with fields, of the given topological data.
When g = 0, it is Mg,�(P

4, d) as the p-fields all vanish in this case. When
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g > 0, there are always stable maps (C, z•, u) with non-trivial p-fields. Thus
Mg,�(P

4, d)p is never proper.
We rewrite it to make it a field theory over algebraic curves. A map

u : C → P4 is given by five sections ϕ1, . . . , ϕ5 of u∗OP4(1) with no common
zeros:

u(z) = [ϕ1(z), . . . , ϕ5(z)].

Replacing u∗OP4(1) by an L ∈ Picd(C), replacing u by (ϕ1(z), . . . , ϕ5(z)),
we arrive at

Mg,�(P
4, d)p

=

{
[(C, z•),L, ϕ, ρ] stable

∣∣∣∣ (C, z•) ∈ Mg,�, L ∈ Picd(C),

ϕ ∈ H0(C,L⊕5), ρ ∈ H0(L⊗(−5) ⊗ ωC)

}
.

Here ξ = [(C, z•),L, ϕ, ρ] is stable if ϕ has no common zero, and Aut(ξ) is
finite.

The six-tuple ϕ1, . . . , ϕ5, ρ are called fields in the physics literature. In
this form, the objects are pointed curves with fields. It becomes a linear the-
ory. Subsequently, we will view Mg,�(P

4, d)p as the moduli space of pointed
curves with fields.

3.3. Perfect obstruction theory. Let Dg,� be the moduli space of
pairs ((C, z•),L) of genus g � pointed prestable curves with L ∈ Pic(C). It
is a smooth Artin stack. By sending a stable

ξ = [(C, z•),L, ϕ, ρ] ∈ Mg,�(P
4, d)p(10)

to ((C, z•),L) in Dg,�, and to (C, z•) in Mg,�, we get forgetful morphisms

P = Mg,�(P
4, d)p

πP/D−−−−→ D = Dg,�

πD/M−−−−→ M = Mg,�.

We now see that πP/D is virtually smooth. Indeed, the relative tangent
space of πP/D at ξ is the space of infinitesimal deformations of the fields
(ϕ, ρ) with ((C, z•),L) fixed, which is

TP/D,ξ = H0(C,L⊕5)⊕H0(C,L⊗(−5) ⊗ ωC);

its relative obstruction space to deforming the fields with ((C, z•),L) fixed
is

ObP/D,ξ = H1(C,L⊕5)⊕H1(C,L⊗(−5) ⊗ ωC),

By dimension reason, all higher relative obstructions vanish.
This gives a perfect relative obstruction theory of πP/D. Thus the virtual

cycle construction gives the virtual cycle

[Mg,n(P
4, d)p]virt ∈ A�(Mg,n(P

4, d)p,Q).

The dimension of the cycle is the virtual dimension of P , which by a direct
calculation is �.

As Mg,n(P
4, d)p is not proper for g > 0, an alternative construction that

gives a compactly supported virtual cycle is called for.
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3.4. Cosection localized virtual cycle. Let ED = π∗
D/MEM be the

Hodge bundle over D = Dg,�, c.f. at the end of subsection 2.3. Its total space

πE/D : ED −→ D

is a smooth stack over D, of relative dimension g.
The relative tangent space of πE/D at ((C, z•), θ) is H0(C,ωC), and the

relative obstruction space is H1(C,ωC) ≡ C. We define a D-morphism w,

P = Mg,�(P
4, d)p

w−−−−→ ED,(11)

via the assignment

[(C, z•),L, ϕ, ρ] −−−−→ [(C, z•), ρ
∑5

i=1 ϕ
5
i ].

Notice that w is well-defined because under the scaling of L, the term
ρ
∑5

i=1 ϕ
5
i has total weight zero.

This morphism induces a homomorphism between the two obstruction
sheaves,

σP/D : ObP/D −→ w∗ObED/D
∼= OP ,

which we call the LG-cosection. At ξ (see (10)), σP/D|ξ sends

ObP/D,ξ � (ϕ̇1, . . . , ϕ̇5, ρ̇) �−→ 5
5∑

i=1

ρϕ4
i ϕ̇i +

(
5∑

i=1

ϕ5
i

)
ρ̇(12)

= dŴ
∣∣∣ xi �→ ϕi, dxi �→ ϕ̇i,
p �→ ρ, dp �→ ρ̇

(cf. (6).) It is easy to argue that the cosection of the relative obstruction
sheaf factors through a cosection of the absolute obstruction sheaf ObP ,
defined via

TD −→ ObP/D −→ ObP −→ 0.

This allows one to apply the theory of cosection localized virtual cycle con-
structed by Kiem-Li [KiLi]:

Theorem 3.1 (Cosection localized virtual cycle). Suppose a moduli
stack has a perfect obstruction theory whose obstruction sheaf has a cosec-
tion σ. Then the cosection localized virtual cycle is a cycle which lies in
Deg(σ) = (σ = 0), and is rationally equivalent to its ordinary virtual cycle
of the perfect obstruction theory.

Applying this theorem, Chang-Li obtained a cosection localized virtual
cycle [ChLi1]:

[Mg,�(P
4, d)p]virtσ ∈ A�(Deg(σP/D)).

By (7), one sees that

DσP/D = (σP/D(ξ) = 0) =
{
locus where ρ =

5∑
i=1

ϕ5
i = 0

}
= Mg,�(Q, d).

embedded in Mg,�(P
4, d)p via zero p-fields.
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In [ChLi1], Chang and Li proved

Theorem 3.2 (Chang-Li). The cosection localized virtual cycle of
Mg,�(P

4, d)p, up to a sign, is identical to the virtual cycle of Mg,�(Q, d):

[Mg,�(P
4, d)p]virtσ = (−1)5d+1−g[Mg,�(Q, d)]virt ∈ A�(Mg,�(Q, d),Q).(13)

Defines the p-field invariants Np
g,d to be the degree of [Mg,0(P

4, d)p]virt,

the theorem says that

Np
g,d = (−1)5d+1−gNg,d.

4. Fan-Jarvis-Ruan-Witten (FJRW) theory

Fan-Jarvis-Ruan-Witten (FJRW) invariant is a generalization of Wit-
ten’s top Chern class. after constructing a virtual cycle via the perturbed
Witten’s equation and Kuranishi structures [FJR1, FJR2].

There were other algebraic construction of Witten’s top Chern class,
etc., notably by Polishuke-Vaintrob [PoVa] and Chiodo [Chi]. In [ChLiL],
Chang-Li-Li reconstruct FJRW invariants using the LG model parallel to
the theory of stable maps with fields. This provides the technical tool to
mathematically investigate the LG/CY correspondence.

4.1. The LG model ([C5/μ5], Ĝ). The LG model is essentially iden-
tical to the LG model described in Section 3.1.

Let C∗ act on C6 = C5 × C by weights (15,−5). Then

[(C5 × (C− 0))/C∗] = [(C5 × {1})/μ5] = [C5/μ5]

is a 5-dimensional Calabi-Yau orbifold. The function

W = p ·G(x) = p · (x51 + · · ·+ x55)

on C5×(C−0) is invariant under the C∗-action. Its restriction to C5×{1} =
C5 is G(x), which is invariant under the diagonal μ5-action on C5, thus
descends to a regular

Ĝ : [C5/μ5] −→ C.(14)

The pair ([C5/μ5], Ĝ) is our LG model, with Ĝ plays the role of superpoten-
tial.

The differential of the superpotential will be important later. It is

dĜ = 5

5∑
i=1

x4i dxi(15)

Its critical locus is the orbifold origin in [C5/μ5],

Crit(Ĝ) = {[x•] ∈ [C5/μ5] | x41 = · · · = x45 = 0} ⊂ [C5/μ5].
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4.2. Moduli of stable 5-spin curves. We follow the presentation of
[AbVi, AGV] on twisted curves. A genus g, � pointed twisted prestable
curve is a connected proper one-dimensional DM stack C together with �
disjoint zero-dimensional integral closed substacks z1, . . . , zn ⊂ C, such that

(i) C is étale locally a nodal curve;
(ii) formally locally near a node, C is isomorphic to the quotient stack

[Spec (C[x, y]/(xy))/μr], where ζ · (x, y) = (ζx, ζ−1y), ζ ∈ μr;

(iii) each marking zi ⊂ C is contained in the smooth locus of C;
(iv) C is a scheme away from the markings and the singular points of C;

the coarse moduli space C of C is a nodal curve of arithmetic genus
g.

Let π : C → C be the coarse moduli morphism; let zi = π(zi). The
resulting (C, z•) is a genus g, � pointed prestable curve. We say (C, z•) is
stable if (C, z•) is stable.

Let Mtw
g,� be the moduli of genus g, � pointed twisted prestable curves.

It is a smooth Artin stack of dimension 3g − 3 + �. The coarse moduli
morphism Mtw

g,� → Mg,� is the morphism sending (C, z•) to its coarse moduli

space (C, z•).
We introduce the notion of 5-spin curves. A genus g, � pointed stable

5-spin curve is a triple ((C, z1, . . . , z�),L, ρ) such that

(v) (C, z1, . . . , z�) is a genus g, � pointed twisted stable curve,

(vi) L is a representable line bundle on C; ρ : L⊗5 → ωlog
C is an isomor-

phism.

Here the log dualizing sheaves of (C, z•) is ωlog
C = ωC(z1+· · ·+z�). Comparing

with its coarse moduli π : C → C,

ωlog
C = π∗ωlog

C , ωlog
C = ωC(z1 + · · ·+ z�).(16)

Let ((C, z•),L, ρ) be a 5-spin curve. Let zj be its marking. By the rep-
resentability assumption, the group homomorphism Aut(zj) → Aut(L|zj ) ∼=
C∗ is injective. Further, (iv) implies that Aut(zj) acts trivially on L⊗5|zj .
Therefore, Aut(zj) is either trivial or isomorphic to μ5.

Definition 4.1. Let ((C, z•),L, ρ) be a 5-spin curve. We say its marking
zi is narrow if Aut(zj) act non-trivially on L|zj . We say ((C, z•),L, ρ) is
narrow if all its markings are narrow.

Let zi be its narrow marking. Then TC|zj is a non-trivial representation
of Aut(zj). Hence there is a unique mj ∈ {1, 2, 3, 4} so that as Aut(zj)-
representations.2

L|zj ∼= (TC|zj )⊗mj(17)

2This is consistent with [CLLL, p. 323], that for zi a stacky point, OC(zi)|zi ∼= TC|zi
has mi = 1.
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This way, to every marking zj we associate a unique integer mj ∈ [0, 4],
so that (17) holds. (When zj is a scheme point, we let mj = 0.) Thus we
associate to (C, z•) its type �,

γ = (γ1, . . . , γ�) = (ζm1 , . . . , ζm�) ∈ (μ5)
�, ζ = e2π

√
−1/5. mj ∈ [0, 4] ∩ Z.

(18)

Given a γ as above, we say a 5-spin curve ((C, z•),L, ρ) is γ-marked if the
mi in γ are that associated with its i-th marking.

Let M1/5
g,γ be the moduli space of stable genus g γ-marked 5-spin curves.

It is a proper smooth DM stack of dimension 3g− 3+ �, and is an open and

closed substack of M1/5
g,� , where the later is the moduli space of stable genus

g � pointed 5-spin curves. It is direct to see that M1/5
g,γ is non-empty if and

only if 2g − 2 + � > 0 and

2g − 2 + �−
∑�

j=1mj

5
∈ Z.

4.3. Moduli of stable 5-spin curves with fields. We fix an �-
pointed type γ. A genus g γ-marked 5-spin curve with five fields is a quadru-
ple

ξ = ((C, z1, . . . , z�),L, ρ, ϕ),(19)

where ((C, z•),L, ρ) is a genus g γ-marked 5-spin curve, and its five fields ϕ:

ϕ = (ϕ1, . . . , ϕ5) ∈ H0(C,L⊕5),

We say ξ is stable if Aut(ξ) is finite. One checks that it is stable if and only
if the 5-spin curve is stable.

Let

M1/5,5ϕ
g,γ

be the moduli space of genus g γ-marked stable 5-spin curve with five fields.
When g > 0, it is non-proper because there are points with 0 �= H0(C,L⊕5).

4.4. Witten’s top Chern class, its cosection localized construc-

tion. We use the LG model ([C5/μ5], Ĝ) to reconstruct the FJRW invariants
for narrow γ. Let γ be narrow. Let

πΦγ/Mγ
: Φγ := M1/5,5ϕ

g,γ −→ Mγ := M1/5
g,γ

be the forgetful morphism (forgetting ϕ). Let

ξ = ((C, z•),L, ρ, ϕ) ∈ Φγ = M1/5,5ϕ
g,γ(20)

be any closed point. The relative tangent space of πΦγ/Mγ
at ξ and the

relative obstruction space to deforming ξ, are respectively

TΦγ/Mγ ,ξ = H0(C,L⊕5) and ObΦγ/Mγ ,ξ = H1(C,L⊕5).
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Because Mγ is smooth, and because Aut(ξ) is finite when ξ ∈ Φγ , we see
that πΦγ/Mγ

is virtually smooth, and admits a relative perfect obstruction
theory, of relative virtual dimension

χ(L⊕5) =

5∑
i=1

(degL+ 1− g −
�∑

j=1

mj

5
) = 3− 3g + �−

�∑
j=1

mj .

Combined with dimMγ = 3g − 3 + �, we see that the virtual dimension of
Φγ is

dγ := (3g − 3 + �) + (3− 3g + �−
�∑

j=1

mj) =

�∑
j=1

(2−mj).(21)

Like before, we define a morphism

Φγ = M1/5,5ϕ
g,γ

w−−−−→ EMγ ,(22)

where EMγ , EMγ |(C,z•,..) = H0(C,ωC), is the Hodge bundle of Mγ = M1/5
g,γ .

Let ξ = (C, z•, ..) ∈ Φγ , let π : C → C be the coarse moduli morphism, and
let zj = π(zj) be the image markings. We get∑5

i=1 ϕ
5
i ∈ H0(C,L⊗5)

ρ−−−−→∼=
H0(C, ωlog

C ) = H0(C,ωlog
C ).

On the other hand since γ is narrow, H0(L|zi) = 0 since L|zi is a non-trivial
Aut(zi)-module. Thus

0 =
∑

(ϕi)
5|zi ∈ H0(ωlog

C |zi) = H0(ωlog
C |zi).

Consequently,
∑

ϕ5
i lifts to

(
∑

ϕ5
i )

lift ∈ H0(C,ωlog
C (−z1 − · · · − z�)) = H0(C,ωC) = EMγ |(C,z•,..).

(23)

Its family version defines the morphism w.
The morphism w induces a homomorphism of relative obstruction

sheaves

σΦγ/Mγ
: ObΦγ/Mγ

−→ w∗ObEMγ /Mγ
∼= OΦγ .

In explicit form, it is

σΦγ/M|ξ : ObΦ/M,ξ = H1(C,L)⊕5 −→ H1(C,ωC) = C,

which sends

H1(C,L)⊕5 � (ϕ̇1, . . . , ϕ̇5) �−→ 5

5∑
i=1

(ϕ4
i ϕ̇i)

lift.(24)

Indeed, it is (15) after substitutions xi �→ ϕi and dxi �→ ϕ̇i; the superscript
“lift” is as in (23).
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The homomorphism σΦγ/M gives a cosection of the relative obstruction
sheaf ObΦγ/Mγ

. Using w, one argues that it factors through the obstruction
sheaf of Φγ :

σ : ObΦγ −→ OΦγ .

As the (reduced part of) degeneracy locus of σ is

Deg(σ)red = {ξ | σ(ξ) = 0}red =
{
ϕ4
1 = · · · = ϕ4

4 = 0
}
red

= M1/5
g,γ ,

embedded in Φγ via “ϕ = 0”-section.
Applying Kiem-Li’s cosection localized virtual cycle construction

([KiLi]), we obtain the cosection localized virtual cycle

[M1/5,5ϕ
g,γ ]virtσ ∈ Adγ (M

1/5
g,γ ,Q),(25)

where dγ is given in (21).

Theorem 4.2 (Chang-Li-Li [ChLiL]). For narrow γ, the numerical

invariants derived from the cycle [M1/5,5ϕ
g,γ ]virtσ is identical to the FJRW-

invariants of the quintic G.

4.5. FJRW invariants. Let γ� := (ζ2, . . . , ζ2), �-tuple of ζ2. In this

case dγ� = 0, and [M1/5,5ϕ
g,γ�

]virtσ are zero cycles. We define the primary FJRW
invariants to be

θg,� :=

{
deg[M1/5,5ϕ

g,γ�
]virtσ , when 2g − 2 + � > 0 and 2g − 2− � ∈ 5Z;

0, otherwise.

(26)

It is direct to see that these are the primary FJRW invariants. Let γ be
narrow so that some γi = ζ, say γ� = ζ. We let γ′ = (γ1, · · · , γ�−1). Then an
easy argument shows that forgetting the �-th defines a morphism

φγ,γ′ : M1/5,5ϕ
g,γ −→ M1/5,5ϕ

g,γ′

such that φγ,γ′ has relative dimension one, and

[M1/5,5ϕ
g,γ ]virtσ = φ∗

γ,γ′([M1/5,5ϕ
g,γ′ ]virtσ ).

After eliminating all the mi = 1 from γ, we will have mj ≥ 2 left. Then by
dγ =

∑
(2−mj) (see (21)), the invariant is non-trivial only when all mj = 2.

This confirms that the primary FJRW invariants are all γ�-marked ones.
We define the genus g FJRW invariants of G generating function be

FG
g (t) =

∞∑
�=0

θg,�t
�.(27)
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5. Witten’s vision

The MSP theory originated from the attempt to realize the vision of
Witten. In [Wit2] he postulated that “there a continuous family of confor-
mal field theories (parameterized by the real line) interpolating from Landau-
Ginzberg to Calabi-Yau” ([p. 179]), and ([p. 193])

the C-Y/L-G correspondence arises upon examining this
relation (family) in the presence of a particular common
superpotential.

The superpotential is W = p ·G(si). Over the positive part of the real line,

“W restricts and descends to a holomorphic function Ŵ” and the theory
“reduces to the Calabi-Yau hypersurface G = 0” in the projective space. Over
the negative part of the real line, “W restricts and descends to a holomor-
phic function G(x)” on C5/μ5, which is “the superpotential of the familiar
Landau-Ginzberg orbifold.” ([p. 193]) He stated that the only “singularity is
at the origin.” He suggested that these two theories are “equivalent to each
other on dense open subsets.” ([p. 192])

Witten’s vision led to the journey to search for a “master theory” that
interpolates between the GW of quintic Q ⊂ P4 and FJRW of the Fermat
quintic G(x).

5.1. The LG models and their quantizations. In Section 3.1 and

4.1, we have introduced the LG models (KP4 , Ŵ ) and ([C5/μ5], Ĝ). They
are the restriction of the LG model on the Artin stack

W = descent of p ·G(x) : [(C5 × C)/C∗] −→ C,

where C∗ acts via the same weights (15,−5).
It is evident that the cosection localized virtual cycles of the moduli of

stable maps with fields, and of the moduli of stable 5-spin curves with five

fields are respectively the quantizations of the LG models Ŵ and Ĝ.
As we have seen, the quantization is via the process of associating to the

weight 1 variable xi the line bundle L; associating to the weight −5 variable
p the line bundle L⊗(−5) tensored with ωC .

3 Thus for the LG model

Ŵ : [((C5 − 0)× C)/C∗] = KP4 −→ C,

we substitute the symbol xi and p by ϕi ∈ H0(L) and ρ ∈ H0(L⊗(−5)⊗ωC);
substitute the GIT stability condition (x1, · · · , x5) �= 0 by (ϕ1, · · · , ϕ5) is
nowhere vanishing, which makes it a morphism u = [ϕ1, · · · , ϕ5] to P4; add
the stability condition Aut(ξ) finite to make the moduli of stable maps with

fields a DM stack. In the end, the LG function Ŵ is used to induce a cosection
of the obstruction sheaf, allowing us to obtain a compactly supported virtual
cycles that gives an alternative construction of the GW invariants of Q.

3Tensoring with ωC is the twisting by mass in Super-String theories. (We learned the
twisting by mass from [GuSh].)
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Similarly, for the LG model

Ĝ : [(C5 × (C− 0))/C∗] = [C5/μ5] −→ C,

we substitute the symbol xi and p by ϕi ∈ H0(L) and ρ ∈ H0(L⊗(−5)⊗ωlog
C );

substitute the GIT stability condition p �= 0 by ρ is nowhere vanishing, which

makes it an isomorphism ρ : L⊗5 ∼= ωlog
C ; add the stability condition Aut(ξ)

finite to make the moduli of 5-spin curves with fields a DM stack. In the end,

we use the LG function Ĝ to induce a cosection of the obstruction sheaf, to
obtain a compactly supported virtual cycles that reconstructs us the FJRW
invariants of G for narrow γ.

5.2. The master space LG model. We now introduce the master
space M that interpolates the two GIT quotients KP4 and [C5/μ5].

We introduce a new C∗-equivariant space. Let C∗ act on C5×C×P1 by
weight (15,−5, 1). We choose the semistable locus of this C∗-action to be

(C5 × C× CP1)ss = {(x, p, [u, v]) | (x, u) �= (0, 0), (p, v) �= (0, 0)}.(28)

We introduce the master space as the GIT quotient

M := [C5 × C× CP1//C∗] = [(C5 × C× CP1)ss/C
∗].

The function p ·G on C5 ×C pulls-back to a C∗-invariant function on C5 ×
C× P1, thus descends to a regular

W : M −→ C.

It is this pair we will be working with.

Figure 2. This is the geometric illustration of LG(M,W)
and its T -fixed part. Objects are placed according to their
P1 coordinates [u, 1].
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The pair (M,W) is a C∗-equivariant pair. Let T = C∗ and let it act on
M by

t · [x, p, [u, v]] = [x, p, [tu, v]].

Its T -fixed locus is

MT = KP4 × [0, 1] � o � [C5/μ5]× [1, 0], o = [0, 0, [1, 1]].

It is a disjoint union of three subvarieties of M.
We denote the LG model W : M → C by LG(M,W). Then we have

LG(M,W)T = LG(KP4 , W̃ ) � LG(o, 0) � LG([C5/μ5],W ).(29)

Heuristically speaking, it says that the T -equivariant theory LG(M,W)

interpolates between LG(KP4 , Ŵ ) and LG([C5/μ5], Ĝ), with extra contribu-
tions coming from LG(o, 0).

For the cosection localized virtual cycle, it is important to know Crit(W)
and Crit(W)T . We calculate

dW = 5
5∑

i=1

px4i dxi +
( 5∑

i=1

x5i

)
dp.

Its critical locus is

Crit(W)red =
{ 5∑

i=1

x5i = p = 0
}
∪
{
x1 = · · · = x5 = 0

}
= C(Q) ∪ P[5, 1],

where { 5∑
i=1

x5i = p = 0
}
= {(x1, · · · , x5, u) |

5∑
i=1

x5i = 0}/C∗ = C(Q)

is the cone over Q ⊂ P4;

{x = 0} = {(0, p, [1, v]) | p, v ∈ C}/C∗ ∼= P[5, 1].

Combined with the expression of MT , we conclude

Crit(W)Tred = Q � o � [ζ/μ5],

where Q =
{
u = p =

∑5
i=1 x

5
i = 0

}
, and ζ = (0, 1, [1, 0]) is an orbifold point

in M.
Taking the T -equivariant LG model W : M → C, and following the

quantization recipes specified in the previous subsection, we arrive at the
notion of Mixed-Spin-P (MSP) fields.

6. Mixed-Spin-P (MSP) fields as the quantization

The MSP theory is a mathematical theory of A-model topological strings
on the T -equivariant Landau-Ginzburg model (M,W). It provides an inter-
polation between the GW theory of the Calabi-Yau Q and the FJRW theory

of the Landau-Ginzburg model ([C5/μ5], Ĝ). In this section, we review the
theory of Mixed-Spin-P (MSP) fields developed by Chang-Li-Li-Liu [CLLL].
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6.1. Moduli of MSP fields. We let μ5 ≤ C∗ be the subgroup of 5-th
roots of unity. We let

μbr
5 = μ5 ∪ {(1, ρ), (1, ϕ)}, and μna

5 = μbr
5 − {1}.

For γ ∈ μ5, we let 〈γ〉 ≤ C∗ be the subgroup generated by γ; for the two
exceptional elements (1, ρ) and (1, ϕ), we agree that 〈(1, ρ)〉 = 〈(1, ϕ)〉 = 〈1〉.

Let g and � ≥ 0 be two non-negative integers; let d0, d∞ be two rational
numbers, and let γ = (γ1, . . . , γ�), where γj ∈ μna

5 = {ζ, ζ2, ζ3, ζ4, (1, ρ),
(1, ϕ)}.

Definition 6.1 (Prestable MSP fields). A genus g degree d = (d0, d∞)
γ-marked prestable MSP field is a 7-tuple

ξ = ((C, z•),L,N , ϕ, ρ, μ, ν),

where

MSP-1 (curve) (C, z•) = (C, z1, . . . , z�) is a genus g, � pointed twisted curve;
MSP-2 (line bundles) L, N are representable line bundles on C such that

• (degrees) deg(L ⊗N ) = d0, deg(N ) = d∞;
• (monodromies) if γj = ζmj where mj ∈ Z∩[1, 4] then zj = Bμ5

and L|zj ∼= (TC|zj )⊗mj as Aut(zj)-modules; if γj ∈ {(1, ρ),
(1, ϕ)} then zj is a scheme point and we define mj = 0;

MSP-3 (fields) ϕ ∈ H0(L⊕5), ρ ∈ H0(L⊗(−5) ⊗ωlog
C ), μ ∈ H0(L⊗N ), and

ν ∈ H0(N );
MSP-4 (constraints) letting

ΣC
(1, ρ) = {zj | γj = (1, ρ)}, ΣC

(1, ϕ) = {zj | γj = (1, ϕ)},

then for zj ∈ ΣC
(1, ρ) (resp. Σ

C
(1, ϕ)) we have ρ(zj) = 0 (resp. ϕ(zj) =

0).

Note that MSP-3 and MSP-4 can be combined into

MSP-3’ ϕ∈H0(L(−ΣC
(1, ϕ))

⊕5), ρ∈H0(L⊗(−5)⊗ωlog
C (−ΣC

(1, ρ))), μ ∈ H0(L⊗
N ), and ν ∈ H0(N ).

An isomorphism

((C, z•),L,N , ϕ, ρ, μ, ν) −→ ((C′, z′•),L′,N ′, ϕ′, ρ′, μ′, ν ′)

between two MSP fields is a triple (a, b, c), where a : (C, z•) ∼= (C′, z′•),
b : a∗L ∼= L′ and c : a∗N ∼= N ′ are isomorphisms that induce the obvious
isomorphisms of the data in the two MSP fields. As usual, an isomorphism
from ξ to itself is an automorphism of ξ.

Definition 6.2 (Stability). A prestable MSP field ξ is stable if (ϕ, μ),
(ρ, ν), and (μ, ν) are nowhere zero, and Aut(ξ) is finite.

Lemma 6.3. Let ξ be a γ-marked stable MSP field. Then L⊗N|zj is the
trivial Aut(zj)-module for all marked points zj. Therefore, L ⊗ N descends
to a line bundle on the coarse moduli C of C, and d0 = deg(L ⊗N ) ∈ Z.
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Proof. Suppose Aut(zj) is non-trivial. By MSP-2, Aut(zj) acts non-
trivially on L|zj , so ϕ(zj) = 0, which forces μ(zj) �= 0 since ξ is stable,
implying L ⊗N|zj ∼= C. �

Let Wg,γ,d be the moduli of genus g, γ-marked, degree d = (d0, d∞)
stable MSP fields. It is a DM stack, locally of finite type. We endow it with
the T action

t · [(C, z•),L,N , ϕ, ρ, μ, ν] = [(C, z•),L,N , ϕ, ρ, tμ, ν].(30)

6.2. Cosection localized virtual cycle. Let D′′ = Dg,γ,d be the
moduli space of triples ((C, z•),L,N ) satisfying MSP-1 and MSP-2. It is
a smooth Artin stack of dimension 5g − 5 + �.

Let

πW/D′′ : W = Wg,γ,d −→ D′′ = Dg,γ,d

be the forgetful morphism, forgetting ϕ, ρ, μ and ν. The relative tangent
space of πW/D′′ at ξ = ((C, z•),L,N , . . .) is

TW/D′′,ξ =H0(C,L(−ΣC
(1, ϕ))

⊕5)⊕H0(C,L⊗(−5) ⊗ ωlog
C (−ΣC

(1, ρ)))

⊕H0(C,L ⊗N )⊕H0(C,N );

its relative obstruction space to deforming ξ is

ObW/D′′,ξ =H1(C,L(−ΣC
(1, ϕ))

⊕5)⊕H1(C,L⊗(−5) ⊗ ωlog
C (−ΣC

(1, ρ)))

⊕H1(C,L ⊗N )⊕H1(C,N ).

Since all higher obstructions vanish, πW/D′′ is virtually smooth, and gives a
relative perfect obstruction theory.

We calculate the virtual dimension of Wg,γ,d. First by Riemann-Roch,
the relative virtual dimension of πW/D′′ is

5
(
degL(−ΣC

(1, ϕ)) + 1− g −
�∑

j=1

mj

5

)
+
(
degL⊗(−5) ⊗ ωlog

C (−ΣC
(1, ρ)) + 1− g

)
+
(
degL ⊗N + 1− g

)
+
(
degN + 1− g −

∑
mj 
=0

(1− mj

5
)
)

= d0 + d∞ + 6− 6g − 4
(
�ϕ +

1

5

�∑
j=1

mj

)
where �ϕ = �{j | γj = (1, ϕ)}. The virtual dimension of Wg,γ,d then is

dg,γ,d = d0 + d∞ + 1− g + �− 4
(
�ϕ +

1

5

�∑
j=1

mj

)
.(31)
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As before we let ED′′ be the Hodge bundle over D′′. We form a D′′-
morphism

W = Wg,γ,d
w−−−−→ ED′′ .

It sends ξ ∈ W to

w(ξ) =
(
(C, z•),L,N , ρ ·

5∑
i=1

ϕ5
i

)
.

We claim that ρ ·
∑5

i=1 ϕ
5
i belongs to H0(C,ωC), which is ED′′ |(C,z•),L,N ).

Indeed, by abuse of notation we denote by ΣC
(1, ϕ) (resp. ΣC

(1, ρ)) the divisor

of all zi ∈ ΣC
(1, ϕ) (resp zi ∈ ΣC

(1, ρ)), and denote by ΣC
o the divisor of all zi

which are orbifold points Bμ5. Then

ΣC = ΣC
(1, ρ) +ΣC

(1, ϕ) +ΣC
o and

H0(ωC) = H0
(
ωlog
C (−ΣC

(1, ρ) − ΣC
(1, ϕ) − 5ΣC

o )
)
.

Like in 5-spin curve case, we have

5∑
i=1

ϕ5
i ∈ H0

(
C,L⊗5(−5ΣC

(1, ϕ) − 5ΣC
o )
)

and

ρ ∈ H0
(
C,L⊗(−5) ⊗ ωlog

C (−ΣC
(1, ρ))

)
,

where we also use the condition (MSP-3’). Therefore,

ρ ·
5∑

i=1

ϕ5
i ∈ H0

(
C, ωlog

C (−ΣC
(1, ρ) − 5ΣC

(1, ϕ) − 5ΣC
o )
)
⊂ H0(C,ωC).

This proves that w is well-defined.
Like before, the morphism w induces a relative cosection

σW/D′′ : ObW/D′′ −→ w∗ObED′′/D′′ ∼= OW .

The cosection takes the same form as (12) and (24), and factors through a
cosection of absolute obstruction sheaf

σ : ObW −→ OW .

It is shown in [CLLL] that Deg(σ) is proper. Applying Kiem-Li’s work
of cosection localized virtual cycle [KiLi], we obtain a properly supported
virtual cycle.

Theorem 6.4 (Chang-Li-Li-Liu [CLLL]). The moduli of stable Mixed-
Spin-P fields is a T -equivariant DM stack, locally of finite type. It has a
T -equivariant virtual cycle

[Wg,γ,d]
virt
σ ∈ AT

dg,γ,d
(Deg;Q),

supported on a proper substack Deg ⊂ Wg,γ,d.
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7. Equivariant cohomology

In preparation for the discussion in the final section (Section 8), we give
a brief review on equivariant cohomology. In this section T = C∗.

Given any T space Y , the projection pY,T : Y → [Y/T ] induces a ring
homomorphism

p∗Y,T : H∗
T (Y ;Q) = H∗([Y/T ];Q) −→ H∗(Y ;Q).

If φT ∈ H∗
T (Y ;Q) and φ = p∗Y,Tφ

T ∈ H∗(Y ;Q), we say φ is the non-

equivariant limit of φT , and say φT is a T -equivariant lift of φ.

Example 7.1. If Y = • (a point), then

p∗•,T : H∗
T (•;Q) = Q[t] −→ H∗(•;Q) = Q

is a surjective ring homomorphism which sends a polynomial f(t) ∈ Q[t] to
f(0) ∈ Q. In other words, it is given by evaluation at zero.

Example 7.2. Let T = C∗ act on P5 by

t · [ϕ1, . . . , ϕ5, ν] = [ϕ1, . . . , ϕ5, tν]

where t ∈ T and ϕ1, . . . , ϕ5, ν are homogenous coordinates on P5. Then

p∗P5,T : H∗
T (P

5;Q) = Q[H, t]/〈H5(H + t)〉 −→ H∗(P5;Q) = Q[H]/〈H6〉
is a surjective ring homomorphism given by H �→ H, t �→ 0.

If h : Y → Z is a T -equivariant map, then we have a commutative
diagram

Y
h ��

pY,T

��

Z

pZ,T

��
[Y/T ]

hT �� [Z/T ]

which induces the following commutative diagram

H∗(Y ;Q) H∗(Z;Q)
h∗

��

H∗
T (Y ;Q)

p∗Y,T

��

H∗
T (Z;Q)

h∗
T��

p∗Z,T

��
(32)

In the above diagram, all the arrows are homomorphisms of Q-algebras. The
homomorphism h∗T (resp. h∗) defines a structure of H∗

T (Z;Q)-module (resp.
H∗(Z;Q)-module) on H∗

T (Y ;Q) (resp. H∗(Y ;Q)). In particular, let Z = •,
we see that H∗

T (Y ;Q) is a module over H∗
T (•;Q) = Q[t], and

p∗Y,T (f(t)φ) = f(0)p∗Y,Tφ

for all φ ∈ H∗
T (Y ;Q) and f(t) ∈ Q[t].

Suppose that Y is a proper smooth algebraic variety or a proper smooth
DM stack which is of pure dimension r and is equipped with a T -action.
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There is a T -equivariant fundamental class [Y ]T ∈ AT
r (Y ;Q), and there is a

Q[t]-linear map ∫
[Y ]T

: H∗
T (Y ;Q) −→ H∗

T (•;Q) = Q[t](33)

sending Hk
T (Y ;Q) to Hk−2r

T (•;Q), where

H�
T (•;Q) =

{
Qt�/2, if � ∈ 2Z≥0,

0, otherwise.

There is a fundamental class [Y ] ∈ Ar(Y ;Q), and there is a Q-linear map∫
[Y ]

: H∗(Y ;Q) −→ H∗(•;Q) = H0(•;Q) = Q(34)

sendingHk(Y ;Q) toHk−2r(•;Q). The maps (33) and (34) fit in the following
commutative diagram

H∗
T (Y ;Q)

∫
[Y ]T ��

p∗Y,T

��

Q[t]

p∗•,T
��

H∗(Y ;Q)

∫
[Y ] �� Q

(35)

Example 7.3. Let T act on P5 as in Example 7.2. Then∫
[P5]T

Hk =

{
(−t)k−5, k ≥ 5,

0, k < 5,
and

∫
[P5]

Hk = δk,5.

Suppose that T acts on a non-proper, possibly singular DM stack W
equipped a T -equivariant perfect obstruction theory of virtual dimension r,
and that there is a T -equivariant cosection σ such that the degeneracy locus
Degσ is a proper substack of W . There is a T -equivariant cosection localized
virtual cycle

[W ]virt,Tσ ∈ AT
r (Deg;Q),

and there is a Q[t]-linear map∫
[W]virt,Tσ

: H∗
T (Y ;Q) −→ H∗

T (•;Q) = Q[t](36)

sending Hk
T (W ;Q) to Hk−2r

T (•;Q). There is a cosection localized virtual
cycle

[W ]virtσ ∈ AT
r (Deg;Q),

and there is a Q-linear map∫
[W]virtσ

: H∗(W ;Q) −→ H∗(•;Q) = H0(•;Q) = Q(37)
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sending Hk(W ;Q) to Hk−2r(•;Q). The maps (36) and (37) fit in the follow-
ing commutative diagram

H∗
T (W ;Q)

∫
[W]

vir,T
σ ��

p∗Y,T

��

Q[t]

p∗•,T

��
H∗(W ;Q)

∫
[W]virtσ �� Q

(38)

8. Toward a mathematical theory of LG/CY correspondence

8.1. MSP invariants. Using the universal family

π : ΣC ⊂ C → W = Wg,γ,d with (L,N , ϕ, ρ, μ, ν)

we define the evaluation maps (associated to the marked sections ΣC
i ):

evi : W → X := P5 ∪ μ5.

In case 〈γi〉 �= 1, define evi to be the constant map to γi ∈ μ5; in case
γi = (1, ϕ), define evi(γi) = 1 ∈ μ5. In case γi = (1, ρ), let si : W → C be the
i-th marked section of the universal curve,4 by (MSP-4) of Definition 6.1 we
have s∗i ρ = 0, thus s∗i ν is nowhere zero and s∗iN ∼= OW . Thus, s∗i (ϕ, μ) is a
nowhere zero section of s∗iL⊕6, defining the evaluation morphism

evi = [s∗iϕ1, · · · , s∗iϕ5, s
∗
iμ] : W → P5(39)

such that ev∗iOP5(1) = s∗iL.
Let T = C∗ act on P5 by

t · [ϕ1, . . . , ϕ5, μ] = [ϕ1, . . . , ϕ5, tμ],

and let T act trivially on μ5. It makes evi T -equivariant.
We introduce the MSP state space. As a vector space over Q (resp.

module over H∗(BT ;Q) = Q[t]), The MSP state space is the cohomology
with rational coefficient

HMSP = H∗(X;Q), X = P5 ∪ μ5.

Parallelly, the T -equivariant MSP state space is the T -equivariant coho-
mology

HMSP,T = H∗
T (X;Q).

In terms of generators of Q[t] = H∗
T (pt;Q)-modules,

H∗
T (P

5;Q) = Q[H, t]/〈H5(H + t)〉 = Q[t]1ρ ⊕
5⊕

i=1

Q[t]H i

and

H∗
T (μ5;Q) = Q[t]1ϕ ⊕

4⊕
m=1

Q[t]1m
5

4As γi = (1, ρ), the i-th marking is a scheme marking.
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as graded Q[t]-modules, where the degrees are given by (cf. the formula (31)
of the virtual dimension):

deg 1ρ = 0, degH = deg t = 2, deg 1ϕ = 8, and deg 1m
5
=

8

5
m.

(40)

The (non-equivariant) MSP state space is a graded vector space over Q,
obtained by replacing Q[t] by Q in the above formula.

We formulate the gravitational descendants. Given

a1, . . . , a� ∈ Z≥0, φ1, . . . , φ� ∈ HMSP = H∗(X;Q),

we define the MSP-invariants

〈τa1φ1 · · · τa�φ�〉MSP
g,�,d :=

∫
[Wg,�,d]virtσ

�∏
k=1

ψak
k ev∗kφk ∈ Q,(41)

where

[Wg,�,d]
virt
σ =

∑
γ∈(μna

5 )�

[Wg,γ,d]
virt
σ .

Similarly for φT
i ∈ HMSP,T , define T -equivariant genus g MSP-invariants:

〈τa1φT
1 · · · τa�φT

� 〉
MSP,T
g,�,d :=

∫
[Wg,�,d]

virt,T
σ

�∏
k=1

(ψT
k )

akev∗kφk ∈ H∗(BT ;Q) = Q[t],

(42)

[Wg,�,d]
virt,T
σ =

∑
γ∈(μna

5 )�

[Wg,γ,d]
virt,T
σ .

In (42), ψT
k ∈ H2(Wg,�,d;Q) is some natural T -equivariant lift of ψk ∈

H2(Wg,�,d;Q) in (41).
Note that the map

p∗X,T : HMSP,T = H∗
T (X;Q) −→ HMSP = H∗(X;Q) = H∗

T (X;Q)
∣∣∣
t=0

is surjective. Given φ1, . . . , φ� ∈ HMSP there exist φT
1 , . . . , φ

T
� ∈ HMSP,T such

that p∗X,Tφ
T
i = φi, i.e., φ

T
i is a T -equivariant lift of φi. Then

〈τa1φ1 · · · τa�φ�〉MSP
g,�,d = p∗•,T 〈τa1φT

1 · · · τa�φT
� 〉

MSP,T
g,�,d

= 〈τa1φT
1 · · · τa�φT

� 〉
MSP,T
g,�,d

∣∣∣
t=0

.

8.2. Torus localization. The T -fixed substack WT
g,�,d ⊂ Wg,�,d is a

disjoint union of connected components:

WT
g,�,d =

⋃
Γ∈Gg,�,d

FΓ(43)

where Gg,�,d is a finite set of decorated graphs.
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Let iΓ : FΓ ↪→ Wg,�,d be the inclusion. By torus localization of cosection
localized virtual cycles proved by Chang-Kiem-Li [CKL] and the irregular
vanishing proved by Chang-Li [ChLi3],

∫
[Wg,�,d]virtσ

�∏
k=1

ψak
k ev∗kφk = p∗•,T

⎛⎜⎝ ∑
Γ∈Greg

g,�,d

∫
[FΓ]

virt,T
σΓ

i∗Γ
∏�

k=1(ψ
T
k )

akev∗kφ
T
k

eT (Nvirt
Γ )

⎞⎟⎠ ,

(44)

where Greg
g,�,d ⊂ Gg,�,d is the subset of regular graphs; [FΓ]

virt,T
σΓ is the co-

section localized virtual cycle of FΓ; eT (N
virt
Γ ) is the T -equivariant Euler

class of the virtual normal bundle Nvirt
Γ of FΓ in Wg,�,d; φ

T
i ∈ HMSP,T is

a T -equivariant lift of φi ∈ HMSP; the map p∗•,T : Q[t] → Q is given by

evaluation at zero: f(t) �→ f(0).
Note that as the virtual dimension of Wg,�,d is known, the identity (44)

gives a infinitely many vanishing relations. To get a hold of these relations,
we notice that the right hand side of (44) can be expressed in terms of the
invariants of the following three theories:

(0) LG(KP4 , Ŵ ) = GW(Q) = GW theory of a quintic threefold,
(1) LG(o, 0) = GW(point) = GW theory of a point, determined by

Witten’s conjecture [Wit1] first proved Kontsevich [Kon1], and

(∞) LG([C5/μ5], Ĝ) = FJRW(G) = FJRW theory of the quintic poly-
nomial G.

Suppose that φj ∈ HMSP,T is homogeneous of degree 2bj . Then

〈τa1φ1 · · · τa�φ�〉MSP,T
g,�,d ∈ Qt

∑�
j=1(aj+bj−1)+g−1−d0−d∞ ∩Q[t](45)

which is zero unless

�∑
j=1

(aj + bj − 1) + g − 1− d0 − d∞ ∈ Z≥0.

8.3. MSP correlators. We introduce formal variables q0, q∞ and de-
fine MSP correlators

〈〈τa1φ1 · · · τa�φ�〉〉MSP,T
g,� :=

∑
d0,5d∞∈Z≥0

〈τa1φ1 · · · τa�φ�〉MSP,T
g,�,d0,d∞

qd00 qd∞∞ .(46)

Then

〈〈τa1φ1 · · · τa�φ�〉〉MSP,T
g,�

∈
(
t
∑�

j=1(aj+bj−1)+g−1
Q

�
q0
t
,
(q∞

t

)1/5�)
∩Q[t]

�
q0, q

1/5
∞

�
.
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Therefore, the MSP correlator (46) is a homogeneous element in the graded

polynomial ring Q[t, q0, q
1/5
∞ ] of degree

2
( �∑

j=1

(aj + bj − 1) + g − 1
)
,

where the grading is given by

deg t = deg q0 = 2, deg(q1/5∞ ) = 2/5.

To proceed, we recall the notion of stable dual graphs, and stable tri-
partite dual graphs. Suppose that 2g− 2+ � > 0. Given a genus g, � pointed
nodal curve (C, z1, . . . , z�), the dual graph of C is a decorated graph Γ where
each vertex v corresponds to an irreducible components Cv of C is labelled
by the arithmetic genus gv of Cv, each edge corresponds to a node in C, and
each leg corresponds to a marked point. The curve (C, z1, . . . , z�) is stable
if for each vertex v in its dual graph, 2gv − 2 + �v > 0, where �v is the
number of nodes and marked points in Cv, or equivalently, the valency of v.
The strata of the Deligne-Mumford moduli space Mg,� of genus g, � pointed
stable curves are in one-to-one correspondence with stable dual graphs of
genus g with � legs.

1

0

stable dual graphs
of genus 1 with 1 leg

stable dual graphs of genus 2

2 1 1 1 01

0 0 0 0 0

A tripartite stable dual graph is a stable dual graph where each vertex
has an additional decoration by an element in {0, 1,∞}, so that the set of
vertices is a disjoint union V = V0 ∪ V1 ∪ V∞. If 2g − 2 + � > 0 the set of all
tripartite stable graphs of genus g with � legs is a non-empty finite set.

The MSP correlator (46) can be expressed as a finite sum over tripartite
stable dual graphs of genus g and with � legs, where contribution from a
genus gv, �v-valent vertex v in V0, V1, V∞ is a genus gv, �v correlator in
GW(Q), GW(point), and FJRW(G), respectively. A genus gv, �v correlator

in GW(Q) (resp. FJRW(G)) can be expressed in terms of FQ
gv(q) (resp.

FG
gv(t)) and its derivatives with respect to log(q) (resp. t) up to order �v. The

propagators are genus-zero invariants. One may also consider the MSP-[0, 1]
(resp. MSP-[1,∞]) theory, which is a sub-theory of the MSP theory defined
using MSP moduli spaces Wg,�,d=(d0,0) (resp. Wg,�,d=(0,d∞)) and insertions

from the subspace H∗(P5) (resp. H∗(μ5)) of the MSP state space HMSP.
The correlators in the MSP-[0, 1] (resp. MSP-[1,∞]) theory depend only on
one-variable q0 (resp. q∞), and can be expressed as a sum over bipartite
stable dual graphs with V = V0 ∪ V1 (resp. V = V1 ∪ V∞).
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Via direct calculations, one sees that the Yamaguchi-Yau polynomiality
conjecture and the BCOV Feynman sum formula pops up without much
efforts. To get a real hold of BCOV Feynman sum formula, Chang-Guo-
Li-Li introduced the NMSP field theory in [CGLL]. In a nutshell, this is
via adding N many MSP fields to approximate BCOV Feynman integral.
Miraculously, this led to a proof of Yamaguchi-Yau polynomiality conjecture
in [CGL1], and a proof of BCOV Feynman sum formula (cf. [CGL2]).
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