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Abstract. Moduli spaces of stable sheaves on smooth projective sur-
faces are in general singular. Nonetheless, they carry a virtual class,
which —in analogy with the classical case of Hilbert schemes of points—
can be used to define intersection numbers, such as virtual Euler char-
acteristics, Verlinde numbers, and Segre numbers.

We survey a set of recent conjectures by the authors for these num-
bers with applications to Vafa-Witten theory, K-theoretic S-duality, a
rank 2 Dijkgraaf-Moore-Verlinde-Verlinde formula, and a virtual Segre-
Verlinde correspondence. A key role is played by Mochizuki’s formula
for descendent Donaldson invariants.
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1. Introduction

Hilbert schemes parametrizing closed subschemes of a quasi-projective
variety were introduced by A. Grothendieck [Gro]. The case of 0-dimensional
subschemes of an irreducible smooth projective surface S has attracted a
lot of attention. The Hilbert scheme S[n], parametrizing 0-dimensional sub-
schemes Z ⊂ S of length n, is irreducible and smooth of dimension 2n by a
result of J. Fogarty [Fog]. Particularly notable are H. Nakajima’s operators

on the direct sum (over all n) of the cohomology of S[n], which make it into
an irreducible representation of the Heisenberg algebra [Nak1, Groj]. We
will not survey the vast literature on Hilbert schemes of points on surfaces.
Instead, we briefly discuss two invariants, namely their topological Euler
characteristics and Segre numbers.

Euler characteristics. In 1990, the first-named author determined the
Betti numbers of S[n] [Got1]. The formula specializes to the following ex-

pression for the Euler characteristics e(S[n]) of S[n] in terms of the Euler
characteristic e(S) of S

(1)

∞∑
n=0

e(S[n]) qn =

∞∏
n=1

(1− qn)−e(S).

Up to a factor, this is equal to η(q)−e(S), where η(q) denotes the Dedekind
eta function

η(q) = q
1
24

∞∏
n=1

(1− qn).
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The appearance of a function with “modular properties” is related to a
symmetry in physics called S-duality [VW], which we discuss in detail in
Sections 2.2 and 2.4.

Formula (1) has a beautiful application to enumerative geometry dis-
covered by S.-T. Yau and E. Zaslow [YZ]. Let |L| be a “general” complete
linear system on a K3 surface (containing only irreducible reduced curves,
which are at worst nodal cf. [Che]). Then |L| contains finitely many ratio-
nal curves. Their number, ng, only depends on the arithmetic genus g of |L|
given by 2g − 2 = L2. The famous Yau-Zaslow formula states

∞∑
g=0

ng q
g−1 = Δ(q)−1,

where Δ(q) = η(q)24 is the discriminant modular form. The idea of Yau-
Zaslow is to realize ng as the Euler characteristic of the relative compactified

Jacobian Jac
g
(C/|L|) of degree g line bundles on the fibres of the universal

curve C → |L|. Since Jac
g
(C/|L|) is birational to S[g], and both are holo-

morphic symplectic, their Euler characteristics are equal. Formula (1) for
e(S) = 24 yields the result. The influence of the Yau-Zaslow formula on
enumerative geometry can be measured by the large number of essentially
different proofs [BL, Beau, KMPS, MPT, PT, Tod].

Segre numbers. Let L be a line bundle on a smooth projective sur-
face S. Denote by Z ⊂ S × S[n] the universal subscheme and consider the
projections p : Z → S and q : Z → S[n]. For any line bundle L on S, one
defines the corresponding tautological vector bundle by L[n] = q∗p∗L. The
Segre numbers are defined by

(2)

∫
S[n]

s2n(L
[n]),

where s2n denotes the degree 2n Segre class. In 1999, M. Lehn [Leh] con-
jectured the following remarkable formula

(3)

∞∑
n=0

∫
S[n]

s2n(L
[n]) zn =

(1− t)LKS−2K2
S (1− 2t)(L−KS)

2+3χ(OS)

(1− 6t+ 6t2)
1
2
L(L−KS)+χ(OS)

,

where

z =
t(1− t)(1− 2t)4

(1− 6t+ 6t2)3
.

Lehn’s conjecture forKS-trivial surfaces was proved by A. Marian, D. Oprea,
and R. Pandharipande [MOP1]. The general case was established by the
same authors in [MOP2] building on [MOP1] and work of C. Voisin [Voi].

The Segre number (2) has an interesting interpretation in enumerative
geometry. For S ↪→ P3n−2 and L ∼= O(1)|S , (2) counts the number of (n−2)-
dimensional projective linear subspaces of P3n−2 that are n-secant to S.

These Euler characteristics and Segre numbers are examples of inter-
section numbers on S[n]. More precisely, both can be expressed in terms
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of polynomial expressions in Chern classes of tautological bundles L[n] and
the holomorphic tangent bundle TS[n] . Indeed, by the Poincaré-Hopf index
theorem

e(S) =

∫
S[n]

c2n(TS[n]).

Now let P (L) be any polynomial expression in terms of Chern classes of L[n]

and TS[n] . Using nested Hilbert schemes, parametrizing Z0 ⊂ Z1 ⊂ S with
�(Z1 \Z0) = 1, the first-named author, Lehn, and G. Ellingsrud proved that
there exists a polynomial Q ∈ Q[x, y, z, w], independent of S and L, with
the following universal property [EGL, Thm. 4.1]. For any line bundle L on
any smooth projective surface S, we have∫

S[n]

P (L) = Q(L2, LKS ,K
2
S , χ(OS)).

This result is often the first step in proofs of identities like (1) and (3). For
instance, together with the multiplicative nature of total Chern and Segre
classes, (1) and (3) are determined by two resp. four universal series. More
precisely, there exist A,B ∈ 1 + qQ[[q]] and W,X, Y, Z ∈ 1 + zQ[[z]] such
that

∞∑
n=0

e(S[n]) qn = Aχ(OS)BK2
S ,

∞∑
n=0

∫
S[n]

s2n(L
[n]) zn = WL2

Xχ(OS)Y LKSZK2
S .

In the first case, A,B are easily determined: evaluate on S = P2 and S =
P1 × P1, which are toric surfaces with torus T . The torus action lifts to S[n]

and e(S[n]) equals the Euler characteristic of its fixed point locus (S[n])T ⊂
S[n]. These fixed loci are described by collections of monomial ideals of total
colength n, so the problem is reduced to Euler’s formula for enumerating
partitions. In contrast, proving Lehn’s conjectural formulae for W,X, Y, Z
is much harder and took almost two decades [MOP1, Voi, MOP2].

Remark 1.1. As an aside, we briefly mention another application of the
universality result of [EGL] to enumerative geometry. The generalization of
the Yau-Zaslow formula to counting nodal curves of any genus in any (suffi-
ciently ample) complete linear system |L| on any smooth projective surface S
is known as the Göttsche-Yau-Zaslow formula [Got3]. There are now many
proofs of this formula (in algebraic geometry by [Tze, KST, Ren], see the
introduction to [KST] for references to other approaches). In [KST], the
Göttsche-Yau-Zaslow formula is expressed in terms of intersection numbers
of the form ∫

S[n]×P

cn(L
[n])

c(TS[n]×P)

c(L[n](1))
,



SHEAVES ON SURFACES AND VIRTUAL INVARIANTS 71

where P ⊂ |L| is an appropriate linear subsystem, c denotes total Chern
class, and O(1) is the tautological line bundle on P. Universality implies that
the Göttsche-Yau-Zaslow formula is determined by four universal functions.

Gieseker-Maruyama moduli spaces. Let H be a polarization on a
smooth projective surface S satisfying b1(S) = 0. Let ρ ∈ Z>0 and choose
Chern classes c1 ∈ H2(S,Z) and c2 ∈ H4(S,Z) ∼= Z. We denote by

M := MH
S (ρ, c1, c2)

the moduli space of rank ρ Gieseker H-semistable torsion free sheaves E
on S with c1(E) = c1 and c2(E) = c2. These moduli spaces were intro-
duced by D. Gieseker (surfaces) and M. Maruyama (arbitrary dimension)
[Gie, Mar1, Mar2], see also [HL, Sim]. Gieseker-Maruyama moduli spaces
generalize Hilbert schemes by the isomorphism

S[n] ∼= MH
S (ρ, 0, n), Z �→ [IZ ],

where IZ ⊂ OS denotes the ideal sheaf of Z ⊂ S. The moduli space M is
a projective scheme and therefore provides an algebro-geometric compacti-
fication of the moduli space of rank ρ Gieseker H-stable vector bundles on
S with Chern classes c1 and c2.

In order to avoid complicated automorphism groups, we assume that all
sheaves E in M are Gieseker H-stable. When (i) KSH < 0 and all sheaves
in M are μ-stable or (ii) KS = 0, the obstruction spaces Ext2(E,E)0 vanish
for all [E] ∈ M and M is smooth of expected dimension. In the smooth
setting, the analog of (1) has been studied in many cases (though mostly
for ranks 2 and 3). A selection: [Al1, Al2, Got1, Got2, Got4, GH, Kly,
Koo, Man, Moz, Wei, Yos1, Yos2, Yos3]. For S = P2, ρ = 2, c1 = H,
where H is the class of a line, A. Klyachko found the following formula using
torus localization [Kly]

(4)
∑
c2

e(MH
P2(2, H, c2)) q

c2− 1
2 = 3η(q)−6

∞∑
n=1

H(4n− 1)qn−
1
4 ,

where H(Δ) is a Hurwitz class number. More precisely, H(Δ) denotes the
number of (equivalence classes of) positive definite integral binary quadratic
forms AX2+BXY +CY 2 with discriminant −Δ = B2−4AC and weighted
by the size of its automorphism group. By a result of D. Zagier [Zag], this
is a mock modular form of weight −3/2 in agreement with the S-duality
predictions of C. Vafa and E. Witten [VW]. In fact, when Vafa and Witten
were writing their paper, [Kly, Yos1] provided some of the few higher rank
examples of such generating functions in the mathematics literature.

In this survey, we are interested in smooth projective surfaces with holo-
morphic 2-form, i.e. pg(S) > 0. Typically, these are surfaces of general
type and their Gieseker-Maruyama moduli space are singular. (Although,
for c2 � 0, M is irreducible and generically smooth of expected dimension,
see [HL, Ch. 9] for references.)
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Virtual invariants. The fundamental class of M is in general out of
reach. However, the moduli space M carries a perfect obstruction theory in
the sense of K. Behrend and B. Fantechi [BF] or J. Li and G. Tian [LT].
For Gieseker-Maruyama moduli spaces on surfaces, this was worked out by
T. Mochizuki [Moc]. Then the virtual tangent bundle is given by

(5) T vir
M = Rπ∗RHom(E,E)0[1],

where E denotes the universal sheaf on S × M , π : S × M → M is the
projection, and (·)0 denotes the trace-free part.1

This leads to a virtual class of degree equal to the expected dimension
of M

(6) [M ]vir ∈ H2vd(M), vd := 2rc2 − (r − 1)c21 − (r2 − 1)χ(OS).

One can now define the virtual Euler characteristic of M by the virtual
Poincaré-Hopf formula [FG]

evir(M) :=

∫
[M ]vir

cvd(T
vir
M ).

In Section 5.2, for any line bundle L on S, we define the analog of L[n] for
the Gieseker-Maruyama moduli space M , denoted by LM , and we study the
virtual Segre numbers ∫

[M ]vir
svd(LM ).

We present a series of conjectures on virtual Euler characteristics and Segre
numbers of Gieseker-Maruyama moduli spaces on arbitrary smooth projec-
tive surfaces S satisfying b1(S) = 0 and pg(S) > 0. More precisely, we will
cover the following topics:

• Section 2. Conjecture for virtual Euler characteristics ofM for rank
ρ = 2. Application to Vafa-Witten theory. Conjecture for virtual
Euler characteristics of M for ρ = 3. Application to S-duality for
ρ = 3.

• Section 3. Conjecture for virtual χy-genera of M for ρ = 2 and
3. Application to K-theoretic S-duality conjecture. Conjecture for
virtual elliptic genera of M for ρ = 2 (Dijkgraaf-Moore-Verlinde-
Verlinde type formula). Conjecture for virtual cobordism classes of
M for ρ = 2.

• Section 4. Conjectural Verlinde-type formula for M for ρ = 2. Ap-
plication to a Verlinde-type formula for Higgs pairs on surfaces.
Conjecture for virtual Verlinde numbers of M in arbitrary rank.
Conjecture motivated by virtual Serre duality.

1Although E may only exist étale locally, Rπ∗RHom(E,E)0 exists globally [Cal,
Thm. 2.2.4], see also [HL, Sect. 10.2]. Hence we do not need to assume E exists glob-
ally on S ×M .
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• Section 5. Conjecture for virtual Segre numbers of M in arbitrary
rank. Application to a virtual Segre-Verlinde correspondence in ar-
bitrary rank.

• Section 6. Mochizuki’s formula. Universal function. Verifications of
conjectures.

Quot schemes. Instead of virtual invariants of Gieseker-Maruyama
moduli spaces on surfaces, one can also consider virtual invariants of Quot
schemes on surfaces. This has recently been explored in depth by Oprea-
Pandharipande [OP], see also [JOP, Lim]. This direction is currently at-
tracting a lot of activity and leading to beautiful results.

Acknowledgements. Our work is influenced by many colleagues. We
would like to thank A. Gholampour, Y. Jiang, T. Laarakker, J. Manschot,
A. Marian, H. Nakajima, D. Oprea, R. Pandharipande, A. Sheshmani,
Y. Tanaka, R.P. Thomas, R.A. Williams, S.-T. Yau, and K. Yoshioka. M.K is
supported by NWO grant VI.Vidi.192.012.

2. Virtual Euler characteristics

2.1. Rank 2. Let (S,H) be a smooth polarized surface satisfying
b1(S) = 0 and pg(S) > 0. We denote by SW(a) the Seiberg-Witten in-
variant of S in class a ∈ H2(S,Z). Here we use Mochizuki’s convention:

SW(a) = S̃W(2a−KS), where S̃W(b) denotes the usual Seiberg-Witten in-
variant in class b ∈ H2(S,Z) of differential geometry [Moc, Sect. 6.3.2]. We
refer to a as a Seiberg-Witten basic class when SW(a) �= 0. The Seiberg-
Witten basic classes of S are algebraic and satisfy a(a − KS) = 0, i.e. the
virtual dimension of the linear system |a| is zero. Moreover, Seiberg-Witten

invariants satisfy the duality SW(a) = (−1)χ(OS)SW(KS − a). For S min-
imal of general type, the Seiberg-Witten basic classes are 0 and KS , and
SW(KS) = (−1)χ(OS) [Mor, Thm. 7.4.1].

We denote the normalized Dedekind eta function by η(x) = x−
1
24 η(x). In

order to formulate our first conjecture, we use the following theta functions

θ2(x) =
∑
n∈Z

x(n+
1
2
)2 , θ3(x) =

∑
n∈Z

xn
2
.

Conjecture 2.1 ([GK1, Conj. 6.7]). Let (S,H) be a smooth polarized
surface satisfying b1(S) = 0 and pg(S) > 0. Suppose M := MH

S (2, c1, c2)
contains no strictly Gieseker H-semistable sheaves. Then evir(M) equals the

coefficient of xvd(M) of

4

(
1

2η(x2)12

)χ(OS)
(
2η(x4)2

θ3(x)

)K2
S ∑
a∈H2(S,Z)

SW(a)(−1)ac1

(
θ3(x)

θ3(−x)

)aKS

.
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For any smooth polarized surface (S,H) satisfying b1(S) = 0, ρ > 0,
and c1 ∈ H2(S,Z) such that MH

S (ρ, c1, c2) does not contain strictly Gieseker
H-semistable sheaves for any c2, we define the following generating function

Zinst
S,H,ρ,c1(q) := q

− 1
2ρ

χ(OS)+
ρ
24

K2
S

∑
c2

evir(MH
S (ρ, c1, c2)) q

vd
2ρ ,

where vd = vd(MH
S (ρ, c1, c2)) is given by (6). With this normalization, it is

not hard to show that Conjecture 2.1 implies the following formula [GK1,
Eqn. (29)]

Zinst
S,H,2,c1(q) = 2

(
1

2Δ(q
1
2 )

1
2

)χ(OS)
(
θ3(q) + θ2(q)

2η(q)2

)−K2
S

×
∑

a∈H2(S,Z)

SW(a) (−1)ac1

(
θ3(q) + θ2(q)

θ3(q)− θ2(q)

)aKS

+ 2ic
2
1

(
1

2Δ(−q
1
2 )

1
2

)χ(OS)
(
θ3(q) + iθ2(q)

2η(q)2

)−K2
S

×
∑

a∈H2(S,Z)

SW(a) (−1)ac1

(
θ3(q) + iθ2(q)

θ3(q)− iθ2(q)

)aKS

,

where i =
√
−1. In particular, the right-hand-side is independent of the

polarization H and only depends on c1 modulo 2H2(S,Z).

Remark 2.2. For surfaces with Seiberg-Witten basic classes 0 and
KS �= 0, our conjecture for Zinst

S,H,2,c1
(q) coincides with line 2 of [VW, (5.38)],

i.e. part of the contribution to the SU(2) Vafa-Witten partition function,
which we discuss in Section 2.2. For arbitrary smooth polarized surfaces
(S,H) satisfying b1(S) = 0 and pg(S) > 0, it coincides with terms two and
three in [DPS, Eqn. (6.1)] by R. Dijkgraaf, J.-S. Park, and B.J. Schroers.
As we will see in Section 2.2, our conjecture coincides with the instanton
part of the SU(2) Vafa-Witten partition function.

Remark 2.3. Conjecture 2.1 implies a blow-up formula for virtual Euler
characteristics [GK1, Prop. 6.9]. Surprisingly, it is identical to the blow-up
formula for topological Euler characteristics derived in [Got4, Prop. 3.1],
[Yos1]. Our conjectures for rank 3 virtual Euler characteristics and rank 2
and 3 virtual χy-genera, discussed later in this survey, yield blow-up formu-
lae which are also identical to those of their “motivic counterparts”. More
precisely, for the case of virtual χy-genera (virtual in the sense of virtual
classes), we get the same blow-up formula as the one for “motivic” χy-genera
which follows from the work of W.-P. Li and Z. Qin [LQ1, LQ2]. Proving
the blow-up formula for virtual Euler characteristics and virtual χy-genera
is an interesting open problem.
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When S is a K3 surface and assuming “stable equals semistable”,
MH

S (ρ, c1, c2) is smooth of expected dimension vd and deformation equiv-

alent to S[vd/2] [OG, Huy, Yos4]. Therefore Conjecture 2.1 holds for K3
surfaces by (1). In addition, consider the following list of surfaces:

elliptic surfaces of type2 E(n) with n ∈ {3, 4, 5, 6, 7, 8}, blow-ups of a K3
surface in one or two points, double covers of P2 branched along a smooth
curve of degree 2d with d ∈ {4, 5, 6, 7}, certain double covers of P1 ×P1 and
the Hirzebruch surfaces F1,F2,F3 [GK1, Sect. 7.4], smooth quintics and
sextics in P3, smooth surfaces of bidegree (4, 3), (5, 3), (6, 3), (4, 4), (5, 4),
(4, 5) in P2 × P1, smooth surfaces of tridegree (3, 3, 3), (3, 3, 4), (3, 3, 5),
(3, 4, 4) in P1 × P1 × P1, smooth complete intersections of hypersurfaces of
degrees 2 and 4, or 2 and 5, or 3 and 3, or 3 and 4 in P4, smooth complete
intersections of hypersurfaces of degrees 2 and 2 and 3 in P5.

In each of these cases, and for certain values of c1, we verified Conjec-
ture 2.1 for Gieseker-Maruyama moduli spaces up to high virtual dimension.
The precise upper bound on virtual dimension, up to which we verified Con-
jecture 2.1, depends on the case and usually lies between 25 and 70.

These verifications rely on a certain universal function (Theorem 6.4),
which we derived from Mochizuki’s formula as described in detail in Sec-
tion 6.

2.2. Application: Vafa-Witten invariants. In 1994, Vafa-Witten
proposed new tests for S-duality ofN = 4 supersymmetric Yang-Mills theory
on a real 4-manifold M [VW]. This theory involves a gauge group, denoted
by G, and coupling constants θ and g grouped into a complex parameter

τ :=
θ

2π
+

4πi

g2
.

Suppose M underlies a complex smooth projective surface S and G equals
SU(ρ) or its Langlands dual SU(ρ)/Zρ. After topological twisting, Vafa-
Witten argued that S-duality implies that the partition functions satisfy

(7) ZSU(ρ)(−1/τ) = (−1)(ρ−1)χ(OS)
(ρτ

i

)− e(S)
2
ZSU(ρ)/Zρ

(τ).

Roughly speaking: the theory for gauge group SU(ρ) and “strong coupling
−1/τ” is equivalent to the theory for Langlands dual gauge group SU(ρ)/Zρ

at “weak coupling τ”. Referring in parts to the mathematics literature
[Kly, Yos1, Yos2, Nak2, Nak3], Vafa-Witten performed some non-trivial
modularity checks for S = P2 (using (4)), K3, blow-ups, and ALE spaces
(mostly for rank ρ = 2).

In [VW, Sect. 5], using superconducting cosmic strings, Vafa-Witten
predicted a formula for the partition function, when S is a smooth projec-
tive surface having a connected smooth curve in |KS |. Their formula was

2An elliptic surface of type E(n) is an elliptic surface S → P1 with section, 12n
rational 1-nodal fibres, and no further singular fibres.
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generalized to arbitrary smooth projective surfaces S satisfying pg(S) > 0
in [DPS]. At the time, there existed no mathematical verifications, or even
a definition, of the Vafa-Witten partition function for this setting. For S
any smooth projective surface satisfying H1(S,Z) = 0 and pg(S) > 0, and
arbitrary c1, the formula predicted by physics is as follows [DPS, Eqn. (6.1)]:

ZS,H,2,c1(q) =

(
1

2Δ(q2)
1
2

)χ(OS)
(
θ3(q)

η(q)2

)−K2
S

(−1)χ(OS)

×
∑

a∈H2(S,Z)

SW(a) δa,c1

(
θ3(q)

θ2(q)

)aKS

+ 2

(
1

2Δ(q
1
2 )

1
2

)χ(OS)
(
θ3(q) + θ2(q)

2η(q)2

)−K2
S

×
∑

a∈H2(S,Z)

SW(a) (−1)ac1

(
θ3(q) + θ2(q)

θ3(q)− θ2(q)

)aKS

+ 2ic
2
1

(
1

2Δ(−q
1
2 )

1
2

)χ(OS)
(
θ3(q) + iθ2(q)

2η(q)2

)−K2
S

×
∑

a∈H2(S,Z)

SW(a) (−1)ac1

(
θ3(q) + iθ2(q)

θ3(q)− iθ2(q)

)aKS

,

(8)

where q = e2πiτ , τ ∈ H (the upper half plane), and for any a, b ∈ H2(S,Z)

δa,b :=

{
1 if a− b ∈ 2H2(S,Z)
0 otherwise.

Terms two and three of (8) coincide with our conjecture for virtual Euler
characteristics Zinst

S,H,2,c1
(q) of the previous section. In Section 2.4, we discuss

in which sense (8) satisfies the S-duality transformation (7). In this section,
we focus on equation (8) itself.

Around the time we were working on [GK1], Y. Tanaka and R.P. Thomas
[TT1] discovered the mathematical definition of SU(ρ) Vafa-Witten invari-
ants using a symmetric perfect obstruction theory on the moduli space of
Higgs pairs on S. Also around that time, A. Gholampour, A. Sheshmani
and S.-T. Yau [GSY2] were studying certain reduced Donaldson-Thomas
invariants of the non-compact Calabi-Yau threefold X = Tot(KS), which
(up to an equivariant parameter) are equal to Tanaka-Thomas’s invariants.
We briefly describe both works.

Let (S,H) be a smooth polarized surface and L ∈ Pic(S). Tanaka-
Thomas [TT1] consider the moduli space of isomorphism classes of H-
semistable Higgs pairs

N⊥ := NH
S (ρ, L, c2) =

{
[(E, φ)] : detE ∼= L, trφ = 0, c2(E) = c2

}
,
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where E is a rank ρ torsion free sheaf, φ : E → E ⊗ KS is a trace-free
morphism, and the pair (E, φ) satisfies a (Gieseker) semistability condition
with respect to H. Assuming “stable equals semistable”, Tanaka-Thomas
show that N⊥ admits a symmetric perfect obstruction theory (symmetric in
the sense of Behrend [Beh]). The C∗-scaling action on the Higgs field lifts
to N⊥. Although N⊥ is not proper, its fixed locus (N⊥)C

∗
is proper and

Tanaka-Thomas define SU(ρ) Vafa-Witten invariants by

(9) VWH
S (ρ, L, c2) :=

∫
[NH

S (ρ,L,c2)C
∗ ]vir

1

e(Nvir)
∈ Q,

which is the virtual localization formula of T. Graber and Pandharipande
[GP]. In particular, e(Nvir) denotes the equivariant Euler class of the virtual
normal bundle to (N⊥)C

∗
. There are two types of components of (N⊥)C

∗
.

Higgs pairs with φ = 0 form a component isomorphic to the Gieseker-
Maruyama moduli spaceM := MH

S (ρ, L, c2) (the instanton branch). Tanaka-
Thomas show that the contribution of M to (9) is

(−1)vd(M)evir(M) ∈ Z.

We refer to the other components of (N⊥)C
∗
as the monopole branch. When

(i) KSH < 0 and all sheaves in M are μ-stable or (ii) KS = 0, there are no
contributions from the monopole branch to (9), M is smooth of expected
dimension, and evir(M) = e(M) [TT1, Prop. 7.4]. For surfaces containing a
connected smooth canonical curve, Tanaka-Thomas calculated the contribu-
tion of the monopole branch for ρ = 2 and c2 ≤ 3, and obtained a match with
the first term of (8). Together with Conjecture 2.1, this provides compelling
evidence that Tanaka-Thomas found the right mathematical definition of
the SU(ρ) Vafa-Witten generating function, i.e.

(10) ZS,H,ρ,c1(q) := q−
1
2ρ

χ(OS)+
ρ
24

K2
S

∑
c2

(−1)vdVWH
S (ρ, c1, c2) q

vd
2ρ ,

where vd := 2ρc2 − (ρ− 1)c21 − (ρ2 − 1)χ(OS).

Remark 2.4. Initially, Tanaka-Thomas proposed two candidate defini-
tions for SU(ρ) Vafa-Witten invariants [TT1]. Their second definition is
by integrating Behrend’s constructible function over N⊥. Since N⊥ is non-
proper, this definition is in general not equal to the above definition using
virtual classes (and in fact produces the “wrong” numbers from the point of
view of physics). As recounted in the introduction of [TT1], Conjecture 2.1
played a crucial role in the realization that definition (9) is the correct one.

The components of the Higgs moduli space (N⊥)C
∗
can be indexed by

the ranks of the eigensheaves

E =
⊕
i

Ei ⊗ t−i
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of [(E, φ)] ∈ (N⊥)C
∗
, where t denotes a degree one character of C∗. The

following theorem of T. Laarakker [Laa1] deals with the components indexed
by eigenrank (1, . . . , 1).

Theorem 2.5 (Laarakker). Fix ρ > 1. Then there exist A,Cij ∈ Q((q
1
2ρ )),

for all 1 ≤ i ≤ j ≤ ρ − 1, and B ∈ q
ρ
24 Q((q

1
2ρ )) with the following prop-

erty.3 Let (S,H) be a smooth polarized surface satisfying H1(S,Z) = 0 and
pg(S) > 0.4 Suppose H, ρ, c1 are chosen such that NH

S (ρ, c1, c2) does not
contain strictly Gieseker H-semistable Higgs pairs for any c2. Then the con-
tribution of Higgs pairs with eigenrank (1, . . . , 1) to ZS,H,ρ,c1(q) is given by

Aχ(OS)BK2
S

∑
(a1,...,aρ−1)

ρ−1∏
i=1

SW(ai)
∏

1≤i≤j≤ρ−1

C
aiaj
ij ,

where the sum is over all (a1, . . . , aρ−1) ∈ H2(S,Z)ρ−1 satisfying

c1 −
ρ−1∑
i=1

iai ∈ ρH2(S,Z).

The proof of Laarakker’s theorem relies on a beautiful description, by
Gholampour-Thomas [GT1, GT2], of the components of (N⊥)C

∗
indexed

by (1, . . . , 1) in terms of nested Hilbert schemes. Consequently, the univer-
sal functions A(q), B(q), Cij(q) can be expressed in terms of intersection
numbers on products of Hilbert schemes of points on S. These can be deter-
mined (up to some order in q) by toric calculations similar to ours discussed
in Section 6.3. As an application, Laarakker calculated the first 15 non-zero
terms of the monopole contribution to ZS,H,2,c1(q) and found agreement
with (8). In Section 2.4, we discuss an application of Theorem 2.5 to SU(3)
Vafa-Witten invariants.

Remark 2.6. In [TT2], Tanaka-Thomas removed the “stable equals
semistable” assumption by using Joyce-Song pairs. Using their definition
of generalized Vafa-Witten invariants, Laarakker [Laa2] showed that the
“stable equals semistable” condition can be dropped from Theorem 2.5, as
expected from physics predictions.

As mentioned in the beginning of this section, Gholampour-Sheshmani-
Yau [GSY1, GSY2] provided an interpretation of Vafa-Witten invariants
in terms of reduced Donaldson-Thomas invariants of the non-proper Calabi-
Yau threefold X = Tot(KS) when b1(S) = 0. They consider the moduli
space

MX := MH
X (ch)

3We suppress the dependence of these universal functions on ρ.
4After normalizing by the order of the ρ-torsion subgroup of H2(S,Z), Laarakker’s

result holds without the condition H1(S,Z) = 0 [Laa1].
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of pure dimension 2 Gieseker H-stable sheaves on X with proper support
and Chern character

ch = (0, ρ[S], ch2, ch3).

The moduli space MX admits a symmetric perfect obstruction theory by
[Tho] and Gholampour-Sheshmani-Yau reduce this perfect obstruction the-
ory by taking out a trivial piece of rank pg(S) from the obstruction bundle
(similar to [BL, KT1, KT2, Lee, Li] for Gromov-Witten and Pandhari-
pande-Thomas invariants in various settings). The moduli space MX has a
C∗-action induced by the natural C∗-action on the fibres of X. Furthermore,
MC∗

X
∼= (N⊥)C

∗
and, after restriction to the fixed locus, the C∗-fixed parts

of T vir
MX

and T vir
N⊥ are equal (in K-theory). Since their C∗-moving parts only

differ by a trivial piece, Gholampour-Sheshmani-Yau’s invariants are equal
to VWH

S (ρ, L, c2) (up to an equivariant parameter).

2.3. Rank 3. In this section, we present a conjecture for the virtual
Euler characteristics of rank 3 Gieseker-Maruyama moduli spaces. Consider
the A2-lattice consisting of Z2 together with bilinear form 〈v, w〉 := vtAw
given by

A =

(
2 −1
−1 2

)
.

The dual lattice A∨
2 is given by Z2 and 〈v, w〉∨ := vtA∨w where

A∨ = A−1 =
1

3

(
2 1
1 2

)
.

Let ε := e
2πi
3 . We will use the following theta functions

ΘA2,(0,0)(x) :=
∑
v∈Z2

(x2)
1
2
〈v,v〉 =

∑
(m,n)∈Z2

x2(m
2−mn+n2),

ΘA2,(1,0)(x) :=
∑
v∈Z2

(x2)
1
2
〈v+( 1

3
,− 1

3
),v+( 1

3
,− 1

3
)〉=

∑
(m,n)∈Z2

x2(m
2−mn+n2+m−n+ 1

3
),

ΘA∨
2 ,(0,0)

(x) :=
∑
v∈Z2

(x6)
1
2
〈v,v〉∨ =

∑
(m,n)∈Z2

x2(m
2+mn+n2),

ΘA∨
2 ,(0,1)

(x) :=
∑
v∈Z2

(x6)
1
2
〈v,v〉∨e2πi〈v,(1,−1)〉∨ =

∑
(m,n)∈Z2

εm−nx2(m
2+mn+n2).

Conjecture 2.7 ([GK3, Conj. 1.1]). Let (S,H) be a smooth polarized
surface satisfying b1(S) = 0 and pg(S) > 0. Suppose M := MH

S (3, c1, c2)
contains no strictly Gieseker H-semistable sheaves. Then evir(M) equals the
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coefficient of xvd(M) of

9

(
1

3η(x2)12

)χ(OS)
(
ΘA∨

2 ,(0,1)
(x)

3η(x6)3

)−K2
S

×
∑
(a,b)

SW(a) SW(b) ε(a−b)c1 Z+(x)
ab Z−(x)

(KS−a)(KS−b),

where the sum is over all (a, b) ∈ H2(S,Z) × H2(S,Z) and Z±(x) are the
solutions to the following quadratic equation in ζ

ζ2 − 4Z(x)2 ζ + 4Z(x) = 0,

where Z(x) :=
ΘA∨

2 ,(0,0)(x)

ΘA∨
2 ,(0,1)(x)

.

As in the rank 2 case, Conjecture 2.7 holds for K3 surfaces by deforma-
tion invariance and (1). Moreover, we consider the following list of surfaces:

elliptic surfaces of type E(3), E(4), E(5), blow-ups of an elliptic surface
of type E(3) in one point, blow-ups of a K3 surface in one or two points,
double covers of P2 branched along a smooth octic, blow-ups of the previous
double covers in one point, double covers of P1×P1 branched along a smooth
curve of bidegree (6, 6), blow-ups of the previous double covers in one point,
smooth quintics in P3, blow-ups of a smooth quintic in P3 in one point,
certain surfaces with small values of pg(S) and K2

S constructed by Kanev,
Catanese-Debarre, and Persson [GK3, Sect. 2.4].

In each case, we verified Conjecture 2.7 for Gieseker-Maruyama moduli
spaces of certain virtual dimensions, considerably lower than in the rank 2
case, and for several choices of c1. The precise list of verifications can be
found in [GK3, Sect. 2.4]. As in the rank 2 case, our method for these
verifications is discussed in Section 6.

2.4. Application: S-duality in rank 3. Formula (8) for SU(2) Vafa-
Witten invariants was already known to physicists in 1994 [VW]. One may
wonder whether the recent mathematical developments in Vafa-Witten the-
ory led to the discovery of any new formulae. Two new directions are:

• A new conjectural formula for the SU(3) Vafa-Witten invariants,
which we describe in this section.

• Refinements of Vafa-Witten invariants, which are discussed in Sec-
tion 3.

Remark 2.8. In the physics literature, there exists a formula for the
SU(ρ) Vafa-Witten invariants for any prime rank ρ and any smooth projec-
tive surface S satisfying H1(S,Z) = 0 and containing a smooth connected
canonical curve, i.e. [LL, Eqn. (5.13)]. This formula appears incorrect. Take
S an elliptic surface of type E(3), ρ = 3, c1 = B, where B is the class of a
section, c2 = 3, and a suitable polarization H. Then a result of T. Bridge-
land [Bri] implies that M := MH

S (3, B, 3) is smooth of expected dimension
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and consists of a single reduced point. Hence evir(M) = e(M) = 1, which
does not match the instanton part of [LL, Eqn. (5.13)].

Let S be a smooth projective surface satisfyingH1(S,Z) = 0 and pg(S) >
0, and consider the SU(ρ) Vafa-Witten partition function ZS,H,ρ,c1(q) defined
in (10). Let ρ = 1 or ρ prime. Vafa-Witten predicted that ZS,H,ρ,c1(q) only
depends on [c1] ∈ H2(S,Z)/ρH2(S,Z) and is the Fourier expansion of a
meromorphic function ZS,H,ρ,c1(τ) on H satisfying [VW, (5.39)], [LL, (5.22)]

ZS,H,ρ,c1(τ + 1) = (−1)ρχ(OS) e
πiρ
12

K2
S e

−πi(ρ−1)
ρ

c21 ZS,H,ρ,c1(τ),

ZS,H,ρ,c1(−1/τ) = (−1)(ρ−1)χ(OS) ρ1−
e(S)
2

(τ
i

)− e(S)
2

∑
[a]

e
2πi
ρ

ac1ZS,H,ρ,a(τ),

(11)

where the sum is over all [a] ∈ H2(S,Z)/ρH2(S,Z). S-duality transformation
(11) implies (7) as follows. Define

ZSU(ρ) := ρ−1ZS,H,ρ,0, ZSU(ρ)/Zρ
:=

∑
[a]

ZS,H,ρ,a,

where the sum is over all [a] ∈ H2(S,Z)/ρH2(S,Z) and ZS,H,ρ,a was defined
in (10). Taking c1 = 0, (11) implies (7).

Remark 2.9. There is an important subtlety in the previous discussion.
By definition (10), the generating function ZS,H,ρ,c1(q) is obviously zero for
non-algebraic classes c1 ∈ H2(S,Z). For the above discussion to make sense,
we need the following more precise formulation: conjecturally there exists

a series Z̃S,H,ρ,c1(q) defined for any S,H, ρ as above and any possibly non-
algebraic c1 ∈ H2(S,Z) such that:

• Z̃S,H,ρ,c1(q) only depends on [c1] ∈ H2(S,Z)/ρH2(S,Z),

• Z̃S,H,ρ,c1(q) = ZS,H,ρ,c1(q) for algebraic classes c1 ∈ H2(S,Z),

• Z̃S,H,ρ,c1(q) is the Fourier expansion of a meromorphic function

Z̃S,H,ρ,c1(τ) on H satisfying (11).

Clearly it is desirable to have a geometric definition of ZS,H,ρ,c1(q) for non-
algebraic classes c1 ∈ H2(S,Z). Y. Jiang [Jia] recently introduced important
ideas for such a definition by considering the Vafa-Witten theory of μρ-
gerbes. In [JK], the second-named author and Jiang give a mathematical
definition of the SU(ρ)/Zρ Vafa-Witten partition function, using K. Yosh-
ioka’s moduli spaces of twisted sheaves [Yos5], and prove the S-duality con-
jecture for K3 surfaces and arbitrary prime rank ρ.

The instanton contribution Zinst
S,H,3,c1

(q) to ZS,H,3,c1(q) is predicted by

Conjecture 2.7. Combined with the physicists’ S-duality prediction (11),
we conjectured [GK3, Conj. 1.5] the following formula for the monopole
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contribution Zmono
S,H,3,c1

(q) := ZS,H,3,c1(q)− Zinst
S,H,3,c1

(q)(
1

3Δ(q3)
1
2

)χ(OS)
(
ΘA2,(1,0)(q

1
2 )

η(q)3

)−K2
S

(12)

×
∑
(a,b)

SW(a) SW(b) δc1+a,bW+(q
1
2 )abW−(q

1
2 )(KS−a)(KS−b),

where the sum is over all (a, b) ∈ H2(S,Z)×H2(S,Z). Moreover, W±(x) are
the solutions of the following quadratic equations in ω

ω2 − 4W (x)2 ω + 4W (x) = 0,

where W (x) :=
ΘA2,(0,0)

(x)

ΘA2,(1,0)
(x) . Note that the instanton contribution (Conjec-

ture 2.7) involves the theta function of the lattice A∨
2 , whereas the monopole

contribution (12) involves the theta function of the lattice A2. Similarly, one
can write the instanton and monopole part of (8) in terms of the theta
function of the A∨

1 -lattice and A1-lattice respectively.
We now discuss some remarkable verifications of Conjecture (12). Recall

that the components of (N⊥)C
∗
can be indexed by eigenrank (Section 2.2).

Using cosection localization [KL1, KL2], Thomas [Tho, Thm. 5.23] proved
the following powerful theorem.

Theorem 2.10 (Thomas). Let S be a smooth projective surface satis-
fying pg(S) > 0 and let ρ be prime. Suppose NH

S (ρ, L, c2) does not contain
strictly Gieseker H-semistable Higgs pairs for any c2. Then only Higgs pairs
with eigenranks (ρ) and (1, . . . , 1) contribute to ZS,H,ρ,c1(q).

The component of NH
S (ρ, L, c2)

C∗
corresponding Higgs pairs with eigen-

rank (ρ) is precisely the Gieseker-Maruyama moduli space MH
S (ρ, L, c2) (in

this case, the Higgs field φ = 0). By Thomas’s theorem, all Higgs pairs
contributing to Zmono

S,H,3,c1
(q) have eigenrank (1, 1, 1). Using Theorems 2.5 and

2.10, Laarakker proved that the first 11 non-zero coefficients of Zmono
S,H,3,c1

(q)

are indeed as predicted by Conjecture (12). It is worth noting that, for prime
rank, calculations on the monopole branch are easier than their analogs on
the instanton branch (essentially because Theorem 2.5 does not involve tak-
ing residues as opposed to our universality results such as Theorem 6.4
described in Section 6).

In [GK3], we proved the following result.

Theorem 2.11 ([GK3, Prop. 4.10]). The conjectural formula for
ZS,H,3,c1(q), determined by Conjectures 2.7 and (12), satisfies the S-duality
transformation (11).

The proof combines properties of quite diverse mathematical objects:
Seiberg-Witten invariants, the lattice (H2(S,Z),∪), Gauss sums and Dede-
kind sums, and lattice theta functions.
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Remark 2.12. Roughly speaking, the S-duality transformation (11)
swaps the contributions of the monopole and instanton branch. We do not
know what this duality corresponds to geometrically. It is highly remark-
able that, for prime rank, our “non-abelian” calculations on the instanton
branch appear to contain the same information as Laarakker’s “abelian”
calculations on the monopole branch.

3. Refinements

The method we used for our verifications of Conjectures 2.1 and 2.7
holds quite generally; not just for virtual Euler characteristics (Section 6).
This allowed us to find refinements to virtual χy-genus, elliptic genus, and
cobordism class.

3.1. Virtual χy-genera. The normalised virtual χy-genus of a proper
C-scheme Z, with perfect obstruction theory with virtual tangent bundle
T vir
Z , is defined by [FG]

χvir
−y(Z) := y−

vd(Z)
2 χvir

−y(Z),

χvir
y (Z) :=

∑
p≥0

yp χ(Z,ΛpΩvir
Z ⊗Ovir

Z ) ∈ Z[y],

where vd(Z) := rkT vir
Z , Ovir

Z denotes the virtual structure sheaf of Z and
Ωvir
Z := (T vir

Z )∨. The normalized virtual χy-genus is a symmetric Laurent

polynomial in y
1
2 by [FG, Cor. 4.9]. Moreover, evir(Z) = χvir

−1(Z).
In order to formulate the analogs of Conjectures 2.1 and 2.7 for virtual

χy-genera, we require the following refinements of the lattice theta functions
of the previous section

θ2(x, y) =
∑
n∈Z

x(n+
1
2
)2yn+

1
2 , θ3(x, y) =

∑
n∈Z

xn
2
yn

and

ΘA2,(0,0)(x, y) :=
∑

(m,n)∈Z2

x2(m
2−mn+n2)ym+n,

ΘA2,(1,0)(x, y) :=
∑

(m,n)∈Z2

x2(m
2−mn+n2+m−n+ 1

3
)ym+n,

ΘA∨
2 ,(0,0)

(x, y) :=
∑

(m,n)∈Z2

x2(m
2+mn+n2)ym+n,

ΘA∨
2 ,(0,1)

(x, y) :=
∑

(m,n)∈Z2

εm−nx2(m
2+mn+n2)ym+n,

where ε = e
2πi
3 . The analog of Conjecture 2.1 for virtual χy-genus is straight-

forward.
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Conjecture 3.1 ([GK1, Conj. 6.7]). The statement of Conjecture 2.1
holds with the following replacements: evir replaced by χvir

−y, η(x
2)12 replaced

by
∞∏
n=1

(1− x2ny)(1− x2ny−1)(1− x2n)10,

and θ3(x) replaced by θ3(x, y
1
2 ). Note that η(x4)2 does not get replaced.

The analog of Conjecture 2.7 for virtual χy-genus involves a surprising
refinement of the quadratic equation.

Conjecture 3.2 ([GK3, Conj. 1.1]). The statement of Conjecture 2.7
holds with the following replacements: evir replaced by χvir

−y, η(x
2)12 replaced

by
∞∏
n=1

(1− x2ny)(1− x2ny−1)(1− x2n)10,

ΘA∨
2 ,(0,1)

(x) replaced by ΘA∨
2 ,(0,1)

(x, y), and Z±(x) replaced by Z±(x, y) which
are the solutions to the following quadratic equation in ζ

ζ2 − (Z(x, y)2 + 3Z(x, y)Z(x, 1)) ζ + Z(x, y) + 3Z(x, 1) = 0,

where Z(x, y) :=
ΘA∨

2 ,(0,0)(x,y)

ΘA∨
2 ,(0,1)(x,y)

. Note that η(x6)3 does not get replaced.

Specialising Conjectures 3.1, 3.2 to y = 1 yields Conjectures 2.1, 2.7
respectively.

For K3 surfaces, by using deformation equivalence as in Section 2, Con-
jectures 3.1 and 3.2 are reduced to the calculation of χy-genera of Hilbert
schemes of points carried out by the first named author and W. Soergel
[GS]. Furthermore, we verified Conjecture 3.1 for most surfaces listed in
Section 2.1, and several values of c1, but up to a lower virtual dimension
than in the case of virtual Euler characteristics. More precisely, for virtual
χy-genera, the upper bound for the virtual dimension is usually between 5
and 25. See [GK1, Sect. 7] for the precise list of verifications. Similarly, we
verified Conjecture 3.2 for several of the surfaces listed in Section 2.3, for
certain values of c1, with upper bound on the virtual dimension between 2
and 10 (depending on the case). See [GK3, Sect. 2.4] for the precise list
of verifications. The method we use for these verifications is discussed in
Section 6.

3.2. Application: K-theoretic S-duality. Recently, D. Maulik and
Thomas [MT] considered refinements of Vafa-Witten theory, in particular
the K-theoretic Vafa-Witten invariants of a smooth projective surface S
worked out in [Tho]. Let N⊥ := NH

S (ρ, L, c2) be a moduli space of stable
Higgs pairs on a smooth polarized surface (S,H). Consider

χ(N⊥,Ovir
N⊥) := χ(RΓ(N⊥,Ovir

N⊥)),
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viewed as a graded character. As we already mentioned in Section 2.2, Vafa-
Witten invariants of S can be seen as reduced Donaldson-Thomas invariants
counting 2-dimensional sheaves on X = Tot(KS) [GSY2]. N. Nekrasov and
A. Okounkov [NO] showed that in Donaldson-Thomas theory it is natural
to replace the virtual structure sheaf Ovir

N⊥ by its twisted version

Ôvir
N⊥ := Ovir

N⊥ ⊗
√
Kvir

N⊥ ,

where
√
Kvir

N⊥ is a choice of square root of Kvir
N⊥ = det(Ωvir

N⊥). Over the

fixed locus (N⊥)C
∗
, this choice of square root exists and is canonical [Tho,

Prop. 2.6]. The K-theoretic Vafa-Witten invariants are defined by [Tho,
(2.12), Prop. 2.13]

χ(N⊥, Ôvir
N⊥) = χ

(
(N⊥)C

∗
,

Ovir
(N⊥)C∗

Λ−1(Nvir)∨
⊗

√
Kvir

N⊥

∣∣∣
(N⊥)C∗

)
.

Here we use the notation [FG, Sect. 4]

(13) ΛyV :=

rk(V )∑
i=0

[ΛiV ] yi ∈ K0(Z)[y], Λy(V −W ) :=
ΛyV

ΛyW
∈ K0(Z)[[y]]

for any classes V,W of locally free sheaves of finite rank in the Grothendieck
groupK0(Z) of locally free sheaves of finite rank on a finite type C-scheme Z.
We use that ΛyV is an invertible element in K0(Z)[[y]]. Recall from Sec-

tion 2.2 that t denotes a degree one character of the C∗-scaling action on N⊥.
Furthermore, we define

t := cC
∗

1 (t), y = et.

One can show that χ(N⊥, Ôvir
N⊥) is invariant under y ↔ y−1 [Tho, Prop. 2.27].

We denote the generating series of K-theoretic Vafa-Witten invariants by

ZS,H,ρ,L(q, y) ∈ Q[y
1
2 , y−

1
2 ]((q)),

which is defined as in (10) with VWH
S (ρ, L, c2) replaced by χ(N⊥, Ôvir

N⊥),

where N⊥ := NH
S (ρ, L, c2).

Recall that (N⊥)C
∗
contains the Gieseker-Maruyama moduli spaceM :=

MH
S (ρ, L, c2) as a component. Thomas showed that its contribution to

χ(N⊥, Ôvir
N⊥) equals, up to sign, the normalized virtual χy-genus of M , i.e.

(−1)vd(M)χvir
−y(M).

Let (S,H) be a smooth polarized surface satisfying H1(S,Z) = 0 and
pg(S) > 0. Analogous to the case of virtual Euler characteristics, in [GK3]

we made conjectures for the monopole contribution to χ(N⊥, Ôvir
N⊥) for ρ = 2

and ρ = 3, which are obtained as follows from the unrefined case.
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• For rank ρ = 2: take line one of (8) and replace 4Δ(q2) by

φ−2,1(q
2, y2)Δ(q2)

(y
1
2 − y−

1
2 )2

= (y
1
2 + y−

1
2 )2q2

∞∏
n=1

(1− q2ny2)2(1− q2ny−2)2(1− q2n)20,

where φ−2,1(q, y) is a weak Jacobi form of weight −2 and index 1,
replace θ2(q) by θ2(q, y), and replace θ3(q) by θ3(q, y).

• For rank ρ = 3: take (12) and replace 9Δ(q3) by

φ−2,1(q
3, y3)Δ(q3)

(y
1
2 − y−

1
2 )2

,

replace ΘA2,(1,0)(q
1
2 ) by ΘA2,(1,0)(q

1
2 , y), replace W±(q

1
2 ) by

W±(q
1
2 , y), where W±(x, y) are the solutions in ω of

ω2 − (W (x, y)2 + 3W (x, y)W (x, 1))ω +W (x, y) + 3W (x, 1) = 0,

where W (x, y) :=
ΘA2,(0,0)

(x,y)

ΘA2,(1,0)
(x,y) .

By [Laa1], Theorem 2.5 also holds for the (1, . . . , 1) contribution to
K-theoretic Vafa-Witten invariants; the only modification needed is that

the universal functions have coefficients in Q(y
1
2 ) instead of Q. Using this,

Laarakker [Laa1] verified directly that the first few terms of these two mono-
pole conjectures are correct. More precisely, he checked the first 15 terms
for ρ = 2 and the first 11 terms for ρ = 3.

Based on our conjectural formulae, we found a K-theoretic S-duality
transformation, which we conjecture to be true for any prime rank ρ.

Theorem 3.3 ([GK3, Prop. 4.8, 4.10]). Our conjectural formulae for
ZS,H,ρ,c1(q, y) for ρ = 2 and ρ = 3 (given in Conjectures 3.1, 3.2, and this
section) are the Fourier expansions of meromorphic functions ZS,H,ρ,c1(τ, z)
on H× C satisfying5

ZS,H,ρ,c1(τ, z)
∣∣∣
(τ+1,z)

= (−1)ρχ(OS)e
πiρ
12

K2
Se−

πi(ρ−1)
ρ

c21ZS,H,ρ,c1(τ, z),

ZS,H,ρ,c1(τ, z)

(y
1
2 − y−

1
2 )χ(OS)

∣∣∣
(−1/τ,z/τ)

= (−1)ρχ(OS)ρ1−
e(S)
2 i−

K2
S
2 τ−5χ(OS)+

K2
S
2 e

2πiz2

τ

(
− ρ

2
χ(OS)− ρ(ρ2−1)

24
K2

S

)
×

∑
[a]

e
2πi
ρ

ac1 ZS,H,ρ,a(τ, z)

(y
1
2 − y−

1
2 )χ(OS)

,

where the sum is over all [a] ∈ H2(S,Z)/ρH2(S,Z), q = e2πiτ , and y = e2πiz.

5The meaning of our generating functions for non-algebraic c1 is as described in
Remark 2.9.
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We perform further checks of the K-theoretic S-duality transformation
in [GK3, Sect. 4], namely for ρ = 1, and for K3 surfaces and arbitrary prime
rank ρ. On the physics side, refined BPS indices were recently studied by
S. Alexandrov, J. Manschot, and B. Pioline [AMP].

3.3. Virtual elliptic genera. The virtual elliptic genus of a proper
C-scheme Z with perfect obstruction theory is defined by [FG]

Ellvir(Z) := y−
vd(Z)

2

∑
p≥0

(−y)p χ(Z, E(T vir
Z )⊗ ΛpΩvir

Z ⊗Ovir
Z ),

E(T vir
Z ) :=

∞⊗
n=1

Λ−yqnΩ
vir
Z ⊗ Λ−y−1qnT

vir
Z ⊗ Symqn(T

vir
Z ⊕ Ωvir

Z ),

where ΛyV was defined in (13) and Symy V = Λ−y(−V ). Virtual ellip-
tic genus refines complex elliptic genus, which has an interesting history
(cf. [Hir, Wit, Kri]) that we will not discuss. When Z is smooth and
T vir
Z = TZ , we write Ellvir(Z) = Ell(Z).

Just like (1) describes the Euler characteristics of S[n] in terms of e(S),

one can express the elliptic genera of S[n] in terms of Ell(S). This is achieved
by a famous formula originating from string theory in work of Dijkgraaf,
G. Moore, E. Verlinde, and H. Verlinde [DMVV] and proved by L. Borisov
and A. Libgober [BL1, BL2]. In order to describe the formula, we need the
notion of a Borcherds lift. For a formal series

f(q, y) =
∑

m≥0,n∈Z
cm,nq

myn,

and any a ∈ Z, we define a Borcherds type lift by

La(f) :=
∏

l>0,m≥0,n∈Z
(1− palqmyn)clm,n .

We set L(f) := L1(f). R. Borcherds original definition [Bor], for meromor-
phic functions f : H × C → C, is given in terms of Hecke operators. The
above formal version suffices for our purposes. Later in this section, we will
also encounter Borcherds type lifts of

f ev(q, y) :=
∑

m≥0,n∈Z
c2m,nq

2myn.

In addition, we will allow y to have half-integer powers.
For any smooth projective surface S, the Dijkgraaf-Moore-Verlinde-Ver-

linde formula states6

∞∑
n=0

Ell(S[n]) pn =
1

L(Ell(S))
.

6The original formula in [DMVV] is stated for orbifold elliptic genera of symmetric

products S(n) := Sn/Sn, where Sn denotes the symmetric group of degree n.
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When S is a K3 surface, this formula is of particular interest. The elliptic
genus of a K3 surface is given by

Ell(K3) = 2φ0,1(q, y),

where φ0,1(q, y) is a weak Jacobi form of weight 0 and index 1. (Together
with φ−2,1(q, y), encountered in the previous section, φ0,1(q, y) generates the
ring of weak Jacobi forms of even weight and integer index as a free algebra
over the ring of modular forms for SL(2,Z).) Moreover, V. Gritsenko and
V. Nikulin [GN] proved

L(2φ0,1(q, y)) =
χ10(p, q, y)

pΔ(q)φ−2,1(q, y)
,

where χ10(p, q, y) is the Igusa cusp form of weight 10 (a genus 2 Siegel
modular form). Taken together, one obtains

∞∑
n=0

Ell(K3[n]) pn−1 =
Δ(q)φ−2,1(q, y)

χ10(p, q, y)
.

We present a rank 2 analog of the DMVV formula, which involves
Borcherds type lifts of quasi- and weak Jacobi forms build from the fol-
lowing Jacobi-Eisenstein series

G1,0(q, y) := −1

2

y + 1

y − 1
+

∞∑
n=1

∑
d|n

(yd − y−d)qn,

Gk,0(q, y) :=
(
y
∂

∂y

)k−1
G1,0(q, y), ∀k > 1.

We define

φ0, k
2
(q, y) :=Gk,0(q, y)φ−2,1(q, y)

k
2 , ∀k �= 2.

Conjecture 3.4 ([GK2, Conj. 1.1, 7.7]). Let (S,H) be a smooth polar-
ized surface satisfying b1(S) = 0 and pg(S) > 0. Suppose M := MH

S (2, c1, c2)
contains no strictly Gieseker H-semistable sheaves. Then Ellvir(M) equals

the coefficient of pvd(M) of

4

(
1

2
Aell(p, q, y)

)χ(OS)
(
2Bell(p, q, y)

)K2
S

×
∑

a∈H2(S,Z)

SW(a)(−1)ac1

(
Bell(−p, q, y)

Bell(p, q, y)

)aKS

,
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where

Aell(p, q, y) :=
1

L2(φ0,1)
=

(
p2Δ(q)φ−2,1(q, y)

χ10(p2, q, y)

) 1
2

,

Bell(p, q, y) :=
L4(2φ0, 1

2
φ0, 3

2
)L(−2φ0, 1

2
)

L2
(
− 2φev

0, 1
2

|
(q

1
2 ,y)

− φ0, 1
2
|(q2,y2) + 2φ2

0, 1
2

) .
Specializing Conjecture 3.4 to q = 0 yields Conjecture 3.1.
As in Section 2, Conjecture 3.4 holds for K3 surfaces by deformation

equivalence and Borisov-Libgober’s result. Consider the following list of sur-
faces:

blow-ups up K3 surfaces in one point, elliptic surfaces of type E(3), E(4),
E(5), E(6), double covers of P2 branched along a smooth octic, double covers
of P1×P1 branched along a smooth curve of bidegree (6, 6) or (6, 8), double
covers of the Hirzebruch surface F1 → P1 branched along a smooth connected
curve in the complete linear system |OF1(6B+10F )| where B is the class of
the section satisfying B2 = −1 and F is a fibre class, smooth quintics in P3.

For each of the surfaces in this list, we verified Conjecture 3.4 for certain
values of c1 (sometimes with restrictions on H) and up to a certain virtual
dimension, usually with upper bound between 8 and 20, as detailed in [GK2,
Sect. 8]. The method we use for these verifications is discussed in Section 6.

3.4. Virtual cobordism classes. Finally, we turn our attention to
algebraic cobordism theory [LM, LP]. Denote the algebraic cobordism ring
over a point with rational coefficients by

Ω∗ :=
∞⊕
d=0

Ωd(pt)⊗Z Q.

Then Ω∗ is isomorphic to the polynomial ring freely generated by the cobor-
dism classes of Pd for all d ≥ 0. The graded piece Ωd(pt)⊗Z Q has a basis

vI := vi11 · · · vidd , where I = (i1, . . . , id) ∈ Zd
≥0 and |I| =

∑
kik = d.

Concretely, the cobordism class [Z] of a d-dimensional smooth projective
variety Z is

[Z] =

∫
Z

d∏
i=1

(
1 +

∞∑
k=1

xki vk
)
,

where x1, . . . , xd are the Chern roots of TZ . It follows that the class [Z] is
determined by the collection of all possible Chern numbers of Z (i.e. all pos-
sible intersection numbers obtained by capping monomials in Chern classes
of TZ with [Z]).

The cobordism classes of Hilbert schemes of points on surfaces were
studied in [EGL]. In loc. cit., it is shown that there exist two universal
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functions A,B ∈ 1 +Q[v1, v2, . . .][[p]] such that

∞∑
n=0

[S[n]] pn = Aχ(OS)BK2
S ,

for any smooth projective surface S. Consequently, A2 is the generating
function of cobordism classes of K3[n]. We now present a conjectural rank 2
analog of this formula.

Let Z be a projective C-scheme with a perfect obstruction theory. J. Shen
[She] constructed a virtual cobordism class

[Z]virΩ∗ ∈ Ωvd(Z),

where vd = rkT vir
Z (see also [CFK] and [LS] in the context of dg-manifolds

and derived schemes). Denote by π : Z → pt projection to a point. Shen
proved that π∗[Z]virΩ∗ is determined by the collection of virtual Chern numbers
of Z (i.e. all possible intersection numbers obtained by capping monomials in
Chern classes of T vir

Z with [Z]vir). More precisely, let T vir
Z = [E0 → E1] be a

resolution by vector bundles and denote the Chern roots of E0 by x1, . . . , xn
and the Chern roots of E1 by u1, . . . , um. Then

(14) π∗[Z]virΩ∗ =

∫
[Z]vir

∏n
i=1

(
1 +

∑∞
k=1 x

k
i vk

)∏m
j=1

(
1 +

∑∞
k=1 u

k
j vk

) .
Conjecture 3.5 ([GK2, Conj. 1.2, 7.7]). There exists a power series

Bcob(p,v) ∈ 1 + Q[v1, v2, . . .][[p]] with the following property. Let (S,H) be
a smooth polarized surface satisfying b1(S) = 0 and pg(S) > 0. Suppose
M := MH

S (2, c1, c2) contains no strictly Gieseker H-semistable sheaves.

Then π∗[M ]virΩ∗ equals the coefficient of pvd(M) of

4

(
1

2
Acob(p,v)

)χ(OS)
(
2Bcob(p,v)

)K2
S

×
∑

a∈H2(S,Z)

SW(a)(−1)ac1

(
Bcob(−p,v)

Bcob(p,v)

)aKS

,

where

Acob(p,v) :=
( ∞∑

n=0

[K3[n]] p2n
) 1

2
.

By the virtual Hirzebruch-Riemann-Roch theorem of [CFK, FG], the
virtual elliptic genera Ellvir(M) of Conjecture 3.4 can be expressed in terms
of q, y and virtual Chern numbers of M . As such, the universal functions
Acob(p,v) and Bcob(p,v) in Conjecture 3.5 determine the universal functions
of Conjecture 3.4. Since we have no explicit formulae for Acob(p,v) and
Bcob(p,v), Conjecture 3.5 does not imply Conjecture 3.4.
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The universal function Acob(p,v) is determined modulo p16 by calcula-
tions in [EGL]. Assuming Conjecture 3.5 holds for the blow-up of an elliptic
K3 surface and certain values of H, c1, we determined Bcob(p,v) modulo p14

and for v6 = v7 = · · · = 0. The first few coefficients are

1

Bcob(p,v)
= 1 + 2v1p− 16v3p

3 + 4(v41 − 3v2v
2
1 + v3v1)p

4

+ 4(v51 − 6v31v2 − 12v21v3 + 9v1v
2
2 + 22v2v3 + 38v5)p

5 +O(p6).

Conjecture 3.5 is verified in the same cases, and usually up to the same
virtual dimension, as in Section 3.3. The method for the verifications is
discussed in Section 6.

Remark 3.6. Remarkably, for any example of a non-zero virtual Chern
number ∫

[M ]vir
ci1(T

vir
M ) · · · cik(T vir

M )

that we calculated, we found an interesting positivity result. When K2
S > 0

and c2(S) > 0, the virtual Chern number appears to have sign (−1)vd(M).
This is similar to [EGL, Rem. 5.5], where it is observed that all Chern

numbers of S[n] are polynomials in K2
S and c2(S) with positive coefficients

at least for n ≤ 7.

4. Virtual Verlinde numbers

Let C be a smooth projective curve of genus g ≥ 2 and denote by M the
moduli space of rank 2 semistable vector bundles E on C with detE ∼= OC .
The Picard group of M is generated by the so-called determinant line bundle
L. The Verlinde formula, originating from conformal field theory [Ver], is
the following remarkable expression

(15) dimH0(M,L⊗r) =
(r + 2

2

)g−1
r+1∑
j=1

sin
( πj

r + 2

)2−2g
, ∀r ∈ Z≥0.

We will not survey the rich literature on the Verlinde formula (see the intro-
duction to [GKW] for some references). In this section, we study analogs
of the Verlinde formula for Gieseker-Maruyama moduli spaces on smooth
projective surfaces.

4.1. Hilbert schemes. Let S be a smooth projective surface. The ana-
log of the Verlinde formula for S[n] was studied in [EGL]. We first describe

the Picard group of S[n]. Any line bundle L on S induces a line bundle Ln

on the symmetric product S(n) := Sn/Sn by Sn-equivariant push-forward

of L � · · · � L along the morphism Sn → S(n). The pull-back of Ln along
the Hilbert-Chow morphism S[n] → S(n) is denoted by μ(L). Furthermore,
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consider E := detO[n]
S . The line bundles μ(L) and E generate the Picard

group of S[n]. We consider the Verlinde numbers

χ(S[n], μ(L)⊗ E⊗r).

Theorem 4.1 (Ellingsrud-Göttsche-Lehn). For any r ∈ Z, there exist
gr, fr, Ar, Br ∈ Q[[w]] with the following properties. For any smooth projec-
tive surface S and L ∈ Pic(S), we have

∞∑
n=0

wn χ(S[n], μ(L)⊗ E⊗r) = gχ(L)r f
1
2
χ(OS)

r ALKS
r B

K2
S

r .

Moreover

gr(w) = 1 + v, fr(w) = (1 + v)r
2
(1 + r2v)−1,

where w = v(1 + v)r
2−1.

In [EGL], it is shown that Ar = Br = 1 for r = 0,±1. Using Serre
duality and the (conjectural) Segre-Verlinde correspondence, discussed in
Sections 4.5 and 5.3 respectively, Marian-Oprea-Pandharipande [MOP3]
determined explicit formulae for Ar, Br for r = ±2,±3. Their calculations
led to the following conjecture.

Conjecture 4.2 (Marian-Oprea-Pandharipande). Ar and Br are alge-
braic functions for all r.

4.2. Rank 2. Let (S,H) be a smooth polarized surface satisfying
b1(S) = 0 and let M := MH

S (2, c1, c2). As usual, we assume M does not
contain strictly Gieseker H-semistable sheaves. Suppose a universal sheaf E
on S ×M exists. Using the slant product

/ : Hp(S ×M,Q)×Hq(S,Q) → Hp−q(M,Q)

and Poincaré duality on S, we define the μ-insertion

(16) μ(α) :=
(
c2(E)−

1

4
c1(E)

2
)
/PD(α) ∈ H∗(M,Q),

for any α ∈ H∗(S,Q).

Remark 4.3. Although in general E only exists étale locally on S ×M ,
we can write

c2(E)−
1

4
c1(E)

2 = −1

4
ch2(E⊗ E⊗ det(E)∗),

where E⊗E⊗det(E)∗ always exists globally on S×M (essentially because it
is invariant under replacing E by E⊗L for any line bundle L, so it glues from
étale local patches). Hence μ(α) is defined without assuming the existence
of a universal sheaf E on S ×M .
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Let L ∈ Pic(S) be such that c1(L)c1 is even. Then there exists a line
bundle μ(L) on M such that its first Chern class is (16) with α = c1(L)
[HL, Ch. 8]. The line bundle μ(L) is called a Donaldson line bundle. We
first turn our attention to7

χ(M,μ(L)⊗Ovir
M ),

which can be seen as a virtual Verlinde number and is also known as a K-
theoretic Donaldson invariant [GNY2]. The wall crossing behaviour of K-
theoretic Donaldson invariants for toric surfaces was determined in [GNY2].
The K-theoretic Donaldson invariants of rational surfaces, and their re-
lationship to strange duality, were studied by the first-named author and
Y. Yuan [GY, Got5].

We are interested in the case (S,H) is a smooth polarized surface sat-
isfying b1(S) = 0 and pg(S) > 0. Let L ∈ Pic(S) and suppose M :=
MH

S (2, c1, c2) does not contain strictly Gieseker H-semistable sheaves. In
[GKW, Conj. 1.1], together with R.A. Williams, we conjectured that

χ(M,μ(L)⊗Ovir
M ) is given by the coefficient of xvd(M) of

22−χ(OS)+K2
S

(1− x2)
(L−KS)2

2
+χ(OS)

∑
a∈H2(S,Z)

SW(a) (−1)ac1
(
1 + x

1− x

)(
KS
2

−a
)
(L−KS)

.

(17)

There are several directions into which (17) can be generalized. In Sec-
tion 4.4, we present a generalization to more general line bundles on M and
higher rank Gieseker-Maruyama moduli spaces. Another interesting gener-
alization concerns “virtual χy-genus valued in a Donaldson line bundle”

χvir
y (M,μ(L)) :=

∑
p

yp χ(M,μ(L)⊗ ΛpΩvir
M ⊗Ovir

M )

and its normalized version χvir
−y(M,μ(L)) := y−

vd(M)
2 χvir

−y(M,μ(L)). Together
with Williams, we conjectured the following formula.

Conjecture 4.4 ([GKW, Conj. 1.2]). Let (S,H) be a smooth polar-
ized surface satisfying b1(S) = 0, pg(S) > 0, and let L ∈ Pic(S). Sup-
pose M := MH

S (2, c1, c2) contains no strictly Gieseker H-semistable sheaves.

7When the Donaldson line bundle does not exist, we define χ(M,μ(L) ⊗ Ovir
M )

by the virtual Hirzebruch-Riemann-Roch formula:
∫
[M ]vir

eμ(c1(L)) td(T vir
M ). Similarly for

χvir
y (M,μ(L)) below.
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Then χvir
−y(M,μ(L)) equals the coefficient of xvd(M) of

4

(
1

2

∞∏
n=1

1

(1− x2n)10(1− x2ny)(1− x2ny−1)

)χ(OS)
(

2η(x4)2

θ3(x, y
1
2 )

)K2
S

×
( ∞∏

n=1

(
(1− x2n)2

(1− x2ny)(1− x2ny−1)

)n2)L2

2
( ∞∏

n=1

(
1− x2ny−1

1− x2ny

)n
)LKS

×
∑

a∈H2(S,Z)

(−1)ac1 SW(a)

(
θ3(x, y

1
2 )

θ3(−x, y
1
2 )

)aKS

×
( ∞∏

n=1

(
(1− x2n−1y

1
2 )(1 + x2n−1y−

1
2 )

(1− x2n−1y−
1
2 )(1 + x2n−1y

1
2 )

)2n−1 )L(KS−2a)

2

.

Similar to the discussion in Sections 2 and 3, for K3 surfaces one can
reduce Conjecture 4.4 to the calculation of χvir

y (S[n], μ(L)) [Got6]. Moreover,
the first-named author derived a formula for these numbers [Got6] (and in
fact, more generally, for elliptic genera of Hilbert schemes of points with
values in a Donaldson line bundle). This establishes the case of K3 surfaces.
Furthermore, consider the following list of surfaces:

K3 surfaces blown-up in at most two points, elliptic surfaces of type E(3),
E(4), E(5), blow-ups of an elliptic surface of type E(3) in one point, double
covers of P2 branched along a smooth octic, blow-ups of the previous surfaces
in one point, smooth quintics in P3, blow-ups of the previous surfaces in one
point.

As before, in each case we verified Conjecture 4.4 for certain values of c1
(sometimes with conditions on H) and up to a certain virtual dimension as
detailed in [GKW, Sect. 2.5]. Our method for these verifications is described
in Section 6.

4.3. Application: Verlinde formula for Higgs pairs. The origi-
nal Verlinde formula (15) was recently upgraded to the moduli space of
semistable Higgs pairs on a smooth projective curve by D. Halpern-Leistner
[H-L] and J.E. Andersen, S. Gukov, and Du Pei [AGDP]. We now discuss
an extension of Conjecture 4.4 to Higgs pairs.

Let (S,H) be a smooth polarized surface satisfyingH1(S,Z) = 0, pg(S) >
0, and let L ∈ Pic(S). Consider the moduli space of rank 2 Higgs pairs
N⊥ := NH

S (2, c1, c2) introduced in Section 2.2. As before, we assume N⊥

does not contain strictly Gieseker H-semistable Higgs pairs. In [GKW], we
studied the Verlinde numbers

(18) χ(N⊥, μ(L)⊗ Ôvir
N⊥),

which we define by a K-theoretic virtual formula similar to Section 3.2 (see
[GKW, Sect. 1.2] for details). The instanton contribution to this invariant
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is
(−1)vd(M)χvir

−y(M,μ(L)),

where M := MH
S (2, c1, c2) is the Gieseker-Maruyama moduli space and y

relates to the C∗-equivariant parameter t = cC
∗

1 (t) via y = et. This contri-
bution is determined by Conjecture 4.4. In [GKW, Conj. 1.3], we give a
conjectural formula for the monopole contribution to (18) in a very similar
shape to the formula of Conjecture 4.4. We prove this monopole formula
for K3 surfaces. More generally, we prove an analog of Theorem 2.5 for the
monopole contribution to (18). As in Laarakker’s calculations, this allows
us to show that the first 15 terms of our prediction for the monopole con-
tribution is correct.

Our conjectural formula for χ(N⊥, μ(L) ⊗ Ôvir
N⊥) interpolates between

K-theoretic Donaldson invariants and K-theoretic Vafa-Witten invariants:

• K-theoretic Donaldson invariants. Replacing x by xy
1
2 in the

formula of Conjecture 4.4 gives an expression for χvir
−y(M,μ(L)).

Setting y = 0 yields the formula for rank 2 K-theoretic Donaldson
invariants (17).

• K-theoretic Vafa-Witten invariants. Taking L = OS in Con-
jecture 4.4 and its monopole analog [GKW, Conj. 1.3], we obtain
the conjectural formula for the rank 2 K-theoretic Vafa-Witten in-
variants of Conjecture 3.1 and Section 3.2.

In [GK1, App. B], the first-named author and Nakajima conjectured a
formula interpolating between the Donaldson invariants and virtual Euler
characteristics of M := MH

S (2, c1, c2). Conjecture 4.4 implies this formula
([GKW, Prop. 4.8]).

4.4. Arbitrary rank. We want to generalize (17) to more general line
bundles and higher rank Gieseker-Maruyama moduli spaces. Let (S,H)
be a smooth polarized surface satisfying b1(S) = 0 and consider M :=
MH

S (ρ, c1, c2) for any ρ > 0. Assume M does not contain strictly Gieseker
H-semistable sheaves. We describe the analogs of the line bundles μ(L)⊗E⊗r

on S[n] (cf. [HL, Ch. 8]). We first suppose there exists a universal sheaf E
on S × M , but we point out in Remark 4.6 below how to get rid of this
assumption. Consider

(19) λE : K0(S) → Pic(M), α �→ det
(
πM !

(
π∗
Sα · [E]

))−1
,

where πM ! =
∑

i(−1)iRiπM∗. We fix a class c ∈ K(S)num in the numeri-
cal Grothendieck group of S satisfying rk(c) = ρ, c1(c) = c1, c2(c) = c2.
Restricting λE to

(20) Kc := {v ∈ K0(S) : χ(S, c⊗ v) = 0},
the map λE =: λ becomes independent of the choice of universal sheaf E
[HL, Ch. 8].

Let r ∈ Z, L ∈ Pic(S)⊗Q such that L := L⊗ det(c)
− r

ρ ∈ Pic(S) and ρ
divides Lc1 + r

(
1
2c1(c1 −KS)− c2

)
. Take a class v ∈ K0(S) satisfying:
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• rk(v) = r and c1(v) = L,
• c2(v) =

1
2L(L −KS) + rχ(OS) +

1
ρLc1 +

r
ρ

(
1
2c1(c1 −KS)− c2

)
.

The second condition is equivalent to v ∈ Kc ⊂ K0(S). We define

(21) μ(L)⊗ E⊗r := λ(v).

Remark 4.5. For ρ = 1 and c1 = 0, (21) coincides with the definition

of μ(L) ⊗ E⊗r on MH
S (1, 0, n) ∼= S[n] introduced in Section 4.1 (by [Got6,

Rem. 5.3(2)]). For r = 0, (21) coincides with the definition of μ(L) in Sec-
tion 4.2 (by [Got6, Rem. 5.3(1)]).

Remark 4.6. Without assuming the existence of a universal sheaf E on
S ×M , there still exists a homomorphism λ : Kc −→ Pic(M) such that for
any morphism φ : B → M and any B-flat family of coherent sheaves F on
S ×B, we have φ∗λ(v) = λF (v) for all v ∈ K0(S). Here Kc, λF are defined
in (20), (19) (with M replaced by B and E by F). See [HL, Ch. 8], [GNY2,
Sect. 1.1]. Given this λ, one then defines μ(L)⊗ E⊗r by (21).

Conjecture 4.7 ([GK4]). Let ρ > 0 and r ∈ Z. There exist Gr, Fr ∈
C[[w]], Ar, Br, Ai,r, Bij,r ∈ C[[w

1
2 ]], for all 1 ≤ i ≤ j ≤ ρ − 1, with

the following property.8 Let (S,H) be a smooth polarized surface satisfying
b1(S) = 0, pg(S) > 0, and let L ∈ Pic(S). Suppose M := MH

S (ρ, c1, c2)
contains no strictly Gieseker H-semistable sheaves. Then χ(M,μ(L)⊗E⊗r⊗
Ovir

M ) equals the coefficient of w
1
2
vd(M) of

ρ2−χ(OS)+K2
S Gχ(L)

r F
1
2
χ(OS)

r ALKS
r B

K2
S

r

×
∑

(a1,...,aρ−1)

ρ−1∏
i=1

εiaic1ρ SW(ai)A
aiL
i,r

∏
1≤i≤j≤ρ−1

B
aiaj
ij,r ,

where the sum is over all (a1, . . . , aρ−1) ∈ H2(S,Z)ρ−1 and ερ := e2π
√
−1/ρ.

Furthermore, Ar, Br, Ai,r, Bij,r are algebraic functions for all r, i, j.

When S is a K3 surface, it is shown in [GNY2, Prop. 1.10] that defor-
mation equivalence together with a result of A. Fujiki can be used to express

the Verlinde numbers of M in terms of those of S[ 1
2
vd(M)]. The latter are

determined by Theorem 4.1. Hence Conjecture 4.7 is true for K3 surfaces
and

Gr(w) = gr/ρ(w) = 1 + v,

Fr(w) = fr/ρ(w) = (1 + v)
r2

ρ2

(
1 +

r2

ρ2
v
)−1

,
(22)

where w = v(1 + v)
r2

ρ2
−1

.

8These universal functions depend on ρ and r. We suppress the dependence on ρ.
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For ρ = 2, 3, 4, and several values of r, we have explicit (conjectural)
algebraic expressions for Ar, Br, Ai,r, Bij,r [GK4]. We present some exam-
ples of these in Section 5.4. Similar to previous sections, we verified Conjec-
ture 4.7 for ρ = 2, 3, 4, and various values of r for a certain list surfaces and
up to certain virtual dimensions (using the strategy outlined in Section 6).
The precise list of verifications can be found in [GK4].

4.5. Virtual Serre duality. Applying virtual Serre duality [FG, Prop.
3.13], to the Verlinde numbers of Sections 4.1 and 4.4 gives

χ(M,μ(L)⊗ E⊗r ⊗Ovir
M ) = (−1)vd(M)χ(M,μ(−L)⊗ E⊗−r ⊗Kvir

M ⊗Ovir
M )

= (−1)vd(M)χ(M,μ(−L+ ρKS)⊗ E⊗−r ⊗Ovir
M ),

whereKvir
M := Λvd(M)Ωvir

M and we use c1(T
vir
M ) = −ρμ(KS) [HL, Prop. 8.3.1].

This puts constraints on the universal functions of Theorem 4.1 and Con-
jecture 4.7. We already know that

f−r/ρ = fr/ρ, g−r/ρ = gr/ρ,

for all r ∈ Z. In addition, for rank ρ = 1, we have (see also [EGL])

Ar =
B−r

Br
,

for all r ∈ Z. For any ρ > 0, virtual Serre duality suggests the following
relations.

Conjecture 4.8 ([GK4]). For any ρ > 0, we have

B−r(w
1
2 ) = gr/ρ(w)

(ρ2)Ar(−w
1
2 )ρBr(−w

1
2 ),

Bii,−r(w
1
2 ) = Ai,r(−w

1
2 )ρBii,r(−w

1
2 ),

Bij,−r(w
1
2 ) = Bij,r(−w

1
2 ),

for all i = 1, . . . , ρ− 1 and 1 ≤ i < j ≤ ρ− 1.

As a consequence of this conjecture, the universal functions Ar, Br,
Ai,r, Bij,r with r < 0 are determined by the universal functions with r > 0
(and vice versa). In the cases where we have explicit (conjectural) algebraic
expressions for Ar, Br, Ai,r, Bij,r, we show that they satisfy the equations of
this conjecture (see also Section 5.4).

5. Virtual Segre numbers

5.1. Hilbert schemes (Marian-Oprea-Pandharipande). Let S be

a smooth projective surface. Similar to the tautological bundles L[n] in the
introduction, we can consider K-theoretic tautological classes as follows. For
any α ∈ K0(S), we define

α[n] := q!(p
∗α) ∈ K0(S[n]),
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where p and q are projections from the universal subscheme as in the in-
troduction. In [MOP3], Marian-Oprea-Pandharipande prove the following
remarkable theorem.

Theorem 5.1 (Marian-Oprea-Pandharipande). For any s ∈ Z, there
exist Vs, Ws, Xs, Ys, Zs ∈ Q[[z]] with the following property. For any smooth
projective surface S and α ∈ K0(S) of rank s, we have

∞∑
n=0

zn
∫
S[n]

c(α[n]) = V c2(α)
s W c1(α)2

s Xχ(OS)
s Y c1(α)KS

s Z
K2

S
s .

Moreover

Vs(z) = (1 + (1− s)t)1−s(1 + (2− s)t)s,

Ws(z) = (1 + (1− s)t)
1
2
s−1(1 + (2− s)t)

1
2
(1−s)

Xs(z) = (1 + (1− s)t)
1
2
s2−s(1 + (2− s)t)−

1
2
s2+ 1

2 (1 + (1− s)(2− s)t)−
1
2 ,

where
z = t(1 + (1− s)t)1−s.

As we discussed in the introduction, Lehn’s conjecture provides explicit
formulae for (V−1W−1),X−1, Y−1, Z−1, cf. (3).

9 Lehn’s conjecture was estab-
lished in [MOP2] building on [MOP1, Voi]. Furthermore, Marian-Oprea-
Pandharipande proved closed formulae for Ys, Zs for s ∈ {−2,−1, 1, 2} in
[MOP3] and gave a conjectural formula for Y0 (note: Z0 = 1 is trivial).
This led to the following conjecture.

Conjecture 5.2 (Marian-Oprea-Pandharipande). Ys and Zs are alge-
braic functions for all s.

5.2. Arbitrary rank. We are interested in virtual Segre numbers on
Gieseker-Maruyama moduli spaces of any rank on any smooth polarized
surface (S,H) satisfying b1(S) = 0. This requires us to define the analog of

the tautological classes α[n]. As before, we consider M := MH
S (ρ, c1, c2) for

any ρ > 0. We assume M does not contain strictly Gieseker H-semistable
sheaves. For the moment we also assume there exists a universal sheaf E on
S ×M . For any class α ∈ K0(S), we define

ch(αM ) := ch(−πM !(π
∗
Sα · E · det(E)−

1
ρ )) ∈ A∗(M)Q,

where A∗(M)Q denotes the Chow ring with rational coefficients. When the

root det(E)−1/ρ does not exist, the right hand side is defined by a formal
application of the Grothendieck-Riemann-Roch formula. We note the fol-
lowing:

• For c1 = 0, M := MH
S (1, 0, n) ∼= S[n] and chi(αM ) = chi(α

[n]) for
all i > 0.

9Note that [MOP3] use a different change of variables compared to [Leh]. Hence the
formulae in Theorem 5.1 and (3) look different.
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• ch(αM ) is invariant upon replacing E by E⊗L for any line bundle

L on M (due to the factor det(E)−
1
ρ ). Hence αM is independent of

the choice of universal sheaf.
• After applying the Grothendieck-Riemann-Roch formula, the right
hand side involves the expression ch(E ⊗ det(E)−1/ρ) which can

be rewritten as ch(E⊗ρ ⊗ det(E)−1)1/ρ. The sheaf E⊗ρ ⊗ det(E)−1

always exists on S × M also when the universal sheaf E does not
exist globally on S×M . In this way, the insertion ch(αM ) is defined
without assuming the existence of a universal sheaf E on S ×M .

Conjecture 5.3 ([GK4]). Let ρ > 0 and s ∈ Z. There exist Vs, Ws,

Xs ∈ C[[z]], Ys, Zs, Yi,s, Zij,s ∈ C[[z
1
2 ]], for all 1 ≤ i ≤ j ≤ ρ − 1, with

the following property.10 Let (S,H) be a smooth polarized surface satisfying
b1(S) = 0 and pg(S) > 0. Suppose M := MH

S (ρ, c1, c2) contains no strictly
Gieseker H-semistable sheaves. For any α ∈ K0(S) such that rk(α) = s, the

virtual Segre number
∫
[M ]vir c(αM ) equals the coefficient of z

1
2
vd(M) of

ρ2−χ(OS)+K2
S V c2(α)

s W c1(α)2

s Xχ(OS)
s Y c1(α)KS

s Z
K2

S
s

×
∑

(a1,...,aρ−1)

ρ−1∏
i=1

εiaic1ρ SW(ai)Y
c1(α)ai
i,s

∏
1≤i≤j≤ρ−1

Z
aiaj
ij,s ,

where the sum is over all (a1, . . . , aρ−1) ∈ H2(S,Z)ρ−1 and ερ := e2π
√
−1/ρ.

Moreover

Vs(z) =
(
1 +

(
1− s

ρ

)
t
)1−s(

1 +
(
2− s

ρ

)
t
)s(

1 +
(
1− s

ρ

)
t
)ρ−1

,

Ws(z) =
(
1 +

(
1− s

ρ

)
t
) 1

2
s−1(

1 +
(
2− s

ρ

)
t
) 1

2
(1−s)(

1 +
(
1− s

ρ

)
t
) 1

2
− 1

2
ρ
,

Xs(z) =
(
1 +

(
1− s

ρ

)
t
) 1

2
s2−s(

1 +
(
2− s

ρ

)
t
)− 1

2
s2+ 1

2

×
(
1 +

(
1− s

ρ

)(
2− s

ρ

)
t
)− 1

2
(
1 +

(
1− s

ρ

)
t
)− (ρ−1)2

2ρ
s
,

where

z = t
(
1 +

(
1− s

ρ

)
t
)1− s

ρ
.

Furthermore, Ys, Zs, Yi,s, Zij,s are algebraic functions for all s, i, j.

For ρ = 2, 3, 4, and various values of s, we have explicit (conjectural)
algebraic expressions for Ys, Zs, Yi,s, Zij,s [GK4]. We give some examples of
these in Section 5.4. Similar to previous sections, we verified Conjecture 5.3
for ρ = 2, 3, 4, and various values of s for a certain list surfaces and up to
certain virtual dimensions (using the strategy outlined in Section 6). The
precise list of verifications can be found in [GK4].

10These universal functions depend on ρ and s. We suppress the dependence on ρ.
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5.3. Virtual Segre-Verlinde correspondence. In the rank 1 case,
using the explicit expressions for the universal functions of Theorems 4.1
and 5.1, one obtains

fr(w) = Ws(z)
−4sXs(z)

2,

gr(w) = Vs(z)Ws(z)
2,

where s = 1 + r and

(23) w = v(1 + v)r
2−1, z = t(1 + (1− s)t)1−s, v = t(1− rt)−1.

Based on work of D. Johnson [Joh], which was motivated by strange dual-
ity, Marian-Oprea-Pandharipande [MOP3] formulated the following “Segre-
Verlinde correspondence”.11

Conjecture 5.4 (Johnson, Marian-Oprea-Pandharipande). For any
r ∈ Z, s = 1 + r, and under the formal variable change (23), we have

Ar(w) = Ws(z)Ys(z),

Br(w) = Zs(z).

In particular, this conjecture implies that Conjectures 4.2 and 5.2 are
equivalent.

Similar to the rank 1 case, for any ρ > 0 and s ∈ Z, a direct calculation
shows that the universal functions of Conjectures 4.7 (equation (22)) and
5.3 are related as follows

fr/ρ(w) = Vs(z)
s
ρ
(ρ

1
2−ρ−

1
2 )2

Ws(z)
− 4s

ρ Xs(z)
2,

gr/ρ(w) = Vs(z)Ws(z)
2,

where s = ρ+ r and

(24) w = v(1 + v)
r2

ρ2
−1

, z = t
(
1 +

(
1− s

ρ

)
t
)1− s

ρ
, v = t

(
1− r

ρ
t
)−1

.

We present a “virtual Segre-Verlinde correspondence” for arbitrary rank ρ.

Conjecture 5.5 ([GK4]). For any ρ > 0, r ∈ Z, s = ρ+ r, and under
the formal variable change (24), we have

Ar(w
1
2 ) = Ws(z)Ys(z

1
2 ), Ai,r(w

1
2 ) = Yi,s(z

1
2 ),

Br(w
1
2 ) = Zs(z

1
2 ), Bij,r(w

1
2 ) = Zij,s(z

1
2 ),

for all 1 ≤ i ≤ j ≤ ρ− 1.12

11We slightly restated the formulation of [MOP3] by connecting the variables v, t
via v = t(1− rt)−1.

12The series Ar, Br, . . . and Ys, Zs, . . . depend on w
1
2 and z

1
2 , so strictly speaking we

rather use the coordinate transformation w
1
2 = v

1
2 (1 + v)

1
2
(r2/ρ2−1) etc.
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This conjecture implies that the algebraicity statements of Conjectures
4.7 and 5.3 are equivalent. Combining Conjectures 5.5 and 4.8, we obtain
interesting relations among the universal functions of Conjecture 5.3. In the
cases where we have explicit (conjectural) algebraic expressions for Ar, Br,
Ai,r, Bij,r, Yρ+r, Zρ+r, Yi,ρ+r, Zij,ρ+r, we show that they satisfy the equations
of this conjecture. We give some examples of this in Section 5.4.

5.4. Algebraicity. As mentioned in Sections 4.4 and 5.2, the alge-
braicity part of Conjectures 4.7 and 5.3 are supported by explicit conjec-
tural formulae for Ar, Br, Ai,r, Bij,r, Ys, Zs, Yi,s, Zij,s for several values
of ρ, r, s. In this section, we present three examples of such formulae. They
are verified on a list of surfaces and up to certain virtual dimensions using
the methods of Section 6. See [GK4] for the precise list of verifications and
many more examples. The formulae we present are connected by the virtual
Segre-Verlinde correspondence. This provides checks of Conjectures 4.7, 4.8,
5.3, and 5.5.

Example 1 (ρ = 2). For ρ = 2 we conjecture

Y1,s(z
1
2 ) =

Ys(−z
1
2 )

Ys(z
1
2 )

, Z11,s(z
1
2 ) =

Zs(−z
1
2 )

Zs(z
1
2 )

,

A1,r(w
1
2 ) =

Ar(−w
1
2 )

Ar(w
1
2 )

, B11,r(w
1
2 ) =

Br(−w
1
2 )

Br(w
1
2 )

,

for any s, r ∈ Z. For s = 1, r = −1, z = t(1 + 1
2 t)

1
2 , and w = v(1 + v)−

3
4 we

conjecture

Y1(z
1
2 ) = (1 + t) + t

1
2 (1 + 3

4 t)
1
2 , Z1(z

1
2 ) =

1 + 3
4 t

1 + 1
2 t

− 1
2 t

1
2
(1 + 3

4 t)
1
2

1 + 1
2 t

,

A−1(w
1
2 ) = 1 + 1

2v + v
1
2 (1 + 1

4v)
1
2 B−1(w

1
2 ) = 1 + 1

4v −
1
2v

1
2 (1 + 1

4v)
1
2 .

Taking v = t(1 + 1
2 t)

−1, this is consistent with the virtual Segre-Verlinde
correspondence.

Example 2 (ρ = 2). For ρ = 2, s = 3, r = 1, z = t(1 − 1
2 t)

− 1
2 , and

w = v(1 + v)−
3
4 , we conjecturally have

Y3(z
1
2 ) = 1 + t

1
2 (1− 1

4 t)
1
2 ,

Z3(z
1
2 ) =

1 + 1
2 t

(1− 1
2 t)

3
((1− 1

4 t)(1 +
1
2 t)−

3
2 t

1
2 (1− 1

4 t)
1
2 (1− 1

6 t)),

A1(w
1
2 ) =

1 + 1
2v + v

1
2 (1 + 1

4v)
1
2

1 + v
,

B1(w
1
2 ) = (1 + v)((1 + v)(1 + 1

4v)−
3
2v

1
2 (1 + 1

3v)(1 +
1
4v)

1
2 ).

Taking v = t(1 − 1
2 t)

−1, this is consistent with the virtual Segre-Verlinde
correspondence. Together with the previous example, we also immediately
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obtain the relations

A±1(w
1
2 ) = (1 + v)−

1
2

(
B∓1(−w

1
2 )

B±1(w
1
2 )

) 1
2

predicted by virtual Serre duality (Conjecture 4.8).

Example 3 (ρ = 3). We take ρ = 3 and define

a1 := (1 + 2
3 t)

1
2 (2 + 17

6 t), b1 :=
3
2 t(1 +

10
9 t)

1
2 ,

c1 := 6t+ 25
2 t

2 + 20
3 t

3, d1 := (6t+ 17
2 t

2)(1 + 2
3 t)

1
2 (1 + 10

9 t)
1
2 ,

a2 := (3 + 10
3 t)(1 +

2
3 t)

1
2 , b2 := (1 + 5

3 t)(1 +
10
9 t)

1
2 ,

c2 := 6t+ 35
3 t

2 + 50
9 t

3, d2 := (6t+ 20
3 t

2)(1 + 2
3 t)

1
2 (1 + 10

9 t)
1
2 .

On the Segre side, taking s = 1, z = t(1+ 2
3 t)

2
3 , and suppressing the argument

z
1
2 , we conjecturally have

Y1 =
1
2

(
a1 + b1 −

√
c1 + d1

)
, Y1Y1,1Y2,1 =

1
2

(
a1 + b1 +

√
c1 + d1

)
,

Y1Y1,1 =
1
2

(
a1 − b1 +

√
c1 − d1

)
, Y1Y2,1 =

1
2

(
a1 − b1 −

√
c1 − d1

)
,

Z1 =
a2 + b2 +

√
c2 + d2

2(1 + 2
3 t)

3
2

, Z1Z11,1Z12,1Z22,1 =
a2 + b2 −

√
c2 + d2

2(1 + 2
3 t)

3
2

,

Z1Z11,1 =
a2 − b2 −

√
c2 − d2

2(1 + 2
3 t)

3
2

, Z1Z22,1 =
a2 − b2 +

√
c2 − d2

2(1 + 2
3 t)

3
2

.

On the Verlinde side, we put

α1 := 2 + 3
2v, β1 :=

3
2v(1 +

4
9v)

1
2 ,

γ1 := 6v + 9
2v

2 + v3, δ1 := (6v + 9
2v

2)(1 + 4
9v)

1
2 ,

α2 := 3 + 4
3v, β2 := (1 + v)(1 + 4

9v)
1
2 ,

γ2 := 6v + 11
3 v

2 + 4
9v

3, δ2 := (6v + 8
3v

2)(1 + 4
9v)

1
2 .

Then for r = −2 and w = v(1 + v)−
5
9 , we conjecturally have

A−2 =
1
2

(
α1 + β1 −

√
γ1 + δ1

)
,

A−2A1,−2A2,−2 =
1
2

(
α1 + β1 +

√
γ1 + δ1

)
,

A−2A1,−2 =
1
2

(
α1 − β1 +

√
γ1 − δ1

)
,

A−2A2,−2 =
1
2

(
α1 − β1 −

√
γ1 − δ1

)
,

B−2 =
1
2

(
α2 + β2 +

√
γ2 + δ2

)
,

B−2B11,−2B12,−2B22,−2 =
1
2

(
α2 + β2 −

√
γ2 + δ2

)
,

B−2B11,−2 =
1
2

(
α2 − β2 −

√
γ2 − δ2

)
,

B−2B22,−2 =
1
2

(
α2 − β2 +

√
γ2 − δ2

)
.
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Taking v = t(1 + 2
3 t)

−1, this is compatible with the virtual Segre-Verlinde
correspondence.

6. Universal functions

For each of the virtual invariants of Gieseker-Maruyama moduli spaces
discussed in this survey, we can show that they are determined by a uni-
versal function in Chern numbers and Seiberg-Witten invariants. The main
ingredient for our universality results is Mochizuki’s formula for descendent
Donaldson invariants.

After introducing Mochizuki’s formula, we illustrate how to derive the
universal function in the case of virtual Euler characteristics in the rank 2
case (Theorem 6.4). The strategy for the other virtual invariants of this sur-
vey is similar. We end this section by discussing how the universal functions
can be applied to verifications of our conjectures in examples.

6.1. Mochizuki’s formula. This section is devoted to a remarkable
formula appearing in T. Mochizuki’s monograph [Moc, Thm. 7.5.2]. Let
(S,H) be a smooth polarized surface satisfying b1(S) = 0. Consider the
Gieseker-Maruyama moduli space M := MH

S (ρ, c1, c2) for arbitrary ρ > 1.
We assume M does not contain strictly Gieseker H-semistable sheaves. For
the moment, we also assume S×M has a universal sheaf E —an assumption
we get rid of in Remark 6.2.

For any α ∈ H∗(S,Q) and k ≥ 2, we consider the slant product

chk(E)/PD(α) ∈ H∗(M,Q),

where PD(α) denotes the Poincaré dual of α. For any polynomial expression
P (E) in slant products, we refer to the virtual intersection number∫

[M ]vir
P (E) ∈ Q

as a descendent Donaldson invariant of S. Similar to Donaldson-Thomas
theory, the word “descendent” refers to the fact that we allow k > 2.
Mochizuki’s formula reduces any descendent Donaldson invariant to an ex-
pression involving Seiberg-Witten invariants and intersection numbers on
products of Hilbert schemes of points. We introduce the required notation.

For any non-negative integers n = (n1, . . . , nρ), we define

S[n] := S[n1] × · · · × S[nρ].

For a tautological vector bundle L[ni] on S[ni], we denote its pull-back to
S[n] by the same symbol. Let Ii be the universal ideal sheaf on S × S[ni],
then we denote its pull-back to S×S[n] by the same symbol too. We denote
its twist by the pull-back of a divisor class ai ∈ A1(S) by Ii(ai).

We endow S[n] with the trivial action of T = (C∗)ρ−1. Let

t1, . . . , tρ−1 ∈ X(T) ∼= Zρ−1
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be the standard degree one characters of T. Then any character of T is of the
form

∏
i t

wi
i for some w1, . . . , wρ−1 ∈ Z. Any T-equivariant coherent sheaf F

on S[n] decomposes into eigensheaves

F =
⊕

w=(w1,...,wρ−1)∈Zρ−1

Fw ⊗
∏
i

t
wi
i .

We also endow S × S[n] with the trivial T-action, then projection π : S ×
S[n] → S[n] is obviously a T-equivariant morphism. Moreover, we write

H∗
T(pt,Z) = Z[t±1

1 , . . . , t±1
ρ−1],

where ti := cT1 (ti) denotes the T-equivariant first Chern class. The following
(rational) characters in X(T) ⊗Z Q play an important role in Mochizuki’s
formula

Ti := t
−1
i

∏
j<i

t
1

ρ−j

j , ∀i = 1, . . . , ρ− 1, Tρ :=
∏
j<ρ

t
1

ρ−j

j ,

Ti := cT1 (Ti), ∀i = 1, . . . , ρ.

(25)

For any Chern character ch ∈ H∗(S,Q) on S, we define

χ(ch) :=

∫
S
ch · td(S).

For any Chern character ch = (ρ, c1,
1
2c

2
1 − c2), we denote the corresponding

Hilbert polynomial by hch(t) = χ(ch ·etH). For any divisor class c ∈ A1(S),
we set χ(c) := χ(ec).

Let P (E) be any polynomial expression in slant products such that

P (E) = P (E⊗ L)

for any L ∈ Pic(S×M). Then P (E) is independent of the choice of universal

sheaf. For a T-equivariant coherent sheaf F on S×S[n], we denote by P (F)

the expression obtained from P (E) by replacing S×M by S×S[n], E by F ,
and all Chern classes by T-equivariant Chern classes. For any divisor classes
a = (a1, . . . , aρ), we define

Q
(
I1(a1)⊗ T1, . . . , Iρ(aρ)⊗ Tρ

)
:=

∏
i<j

e
(
−Rπ∗RHom(Ii(ai)⊗ Ti, Ij(aj)⊗ Tj)

−Rπ∗RHom(Ij(aj)⊗ Tj , Ii(ai)⊗ Ti)
)
,

where e(·) denotes T-equivariant Euler class and π : S × S[n] → S[n] is pro-
jection. Using Mochizuki’s notation [Moc, Sect. 7.5.2], for any non-negative
integers n = (n1, . . . , nρ) and any divisor classes a = (a1, . . . , aρ) on S, we
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define

Ψ̃(a,n, t) :=

(
ρ−1∏
i=1

t
−1+

∑
j≥i χ(1,aj ,

1
2
a2j−nj)

i

)( ∏
i<j

1

(Tj − Ti)χ(aj)

)

×
P

( ⊕ρ
i=1 Ii(ai)⊗ Ti

)
Q

(
I1(a1)⊗ T1, . . . , Iρ(aρ)⊗ Tρ

)(
ρ−1∏
i=1

e(O(ai)
[ni])

)

×
( ∏

i<j

e(O(aj)
[nj ] ⊗ TjT

−1
i )

)
.

Finally, we define

Ψ(a,n) := Rest1 · · ·Restρ−1Ψ̃(a,n, t),

where Resti(·) takes the residue of (·) in the variable ti at zero, i.e. the
coefficient of t−1

i after expanding (·) as a Laurent series in ti.

Theorem 6.1 (Mochizuki). Let (S,H) be a smooth polarized surface
such that b1(S) = 0 and pg(S) > 0. Consider the Gieseker-Maruyama moduli
space M := MH

S (ρ, c1, c2) for some ρ > 0. Assume the following:

(1) M does not contain strictly semistable sheaves,
(2) there exists a universal sheaf E on S ×M ,
(3) h(ρ,c1, 12 c

2
1−c2)

/ρ > heKS ,

(4) χ(ρ, c1,
1
2c

2
1 − c2) > (ρ− 2)χ(OS).

Let P (E) be any polynomial expression in slant products such that P (E) =
P (E⊗ L) for all L ∈ Pic(S ×M). Then∫

[M ]vir
P (E) = (−1)ρ−1ρ

∑
(a1,...,aρ)

(n1,...,nρ)

ρ−1∏
i=1

SW(ai)

∫
S[n]

Ψ(a,n),

where the sum is over all (a1, . . . , aρ) ∈ H2(S,Z)ρ and (n1, . . . , nρ) ∈ Z
ρ
≥0

satisfying

c1 = a1 + · · ·+ aρ,

c2 = n1 + · · ·+ nρ +
∑
i<j

aiaj ,

h(1,ai, 12a
2
i−ni)

<
1

ρ− i

∑
j>i

h(1,aj , 12a
2
j−nj)

∀i = 1, . . . , ρ− 1.

Remark 6.2. Mochizuki derives his formula for the Deligne-Mumford
stack M of oriented sheaves, i.e. pairs (E, φ) where [E] ∈ M , φ : detE ∼=
O(c1), and O(c1) is a fixed line bundle with first Chern class c1. Then S×M
always has a universal sheaf E . When M does not contain strictly Gieseker
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semistable sheaves, this can be used to define descendent Donaldson invari-
ants

∫
[M]vir P (E) for any polynomial in slant products. Mochizuki’s formula

for
∫
[M]vir P (E) only differs from the above formula by a factor ρ.

Furthermore, there exists a degree 1
ρ : 1 étale morphism M → M , which

can be used to derive Mochizuki’s formula for
∫
[M ]vir P (E) as stated above

(essentially by push-forward). Since we require P (E) to be invariant upon
replacing E by E⊗ L, it follows that P (E) is defined without assuming the
existence of a universal sheaf E on S ×M , so Condition (2) can be dropped
from Theorem 6.1. Finally, Mochizuki also extends his formula to the case
M has strictly semistable sheaves, but we will not discuss this.

Remark 6.3. Conjecturally, Condition (3) can be dropped from The-
orem 6.1 and the sum in the formula can be replaced by the sum over all
(a1, . . . , aρ) ∈ H2(S,Z)ρ and (n1, . . . , nρ) ∈ Z

ρ
≥0, i.e. without imposing the

inequalities (see also [GNY3, GK1]). Condition (4) is essential and cannot
be dropped.

6.2. Universal function. We now derive a universal function that de-
termines the virtual Euler characteristics of all rank 2 Gieseker-Maruyama
moduli spaces on any smooth polarized surface (S,H) satisfying b1(S) = 0
and pg(S) > 0. For each of the virtual invariants in this survey, we have a
similar universal function derived by a similar proof [GK1, GK2, GK3,
GK4, GKW].

Theorem 6.4 ([GK1]). There exist A1(t, q), . . . , A7(t, q) ∈ 1+qQ(t)[[q]]
with the following property. Let (S,H) be any smooth polarized surface such
that b1(S) = 0 and pg(S) > 0. Consider M := MH

S (2, c1, c2) and assume the
following:

(a) M does not contain strictly Gieseker H-semistable sheaves,
(b) h(2,c1, 12 c

2
1−c2)

/2 > heKS ,

(c) χ(2, c1,
1
2c

2
1 − c2) > 0,

(d) for any a1, a2 ∈ H2(S,Z) such that a1 is a Seiberg-Witten basic
class, a1 + a2 = c1, and a1H ≤ a2H, the inequality is strict.

Then evir(M) equals Rest of the coefficient of xvd(M) of the following expres-
sion

− 2
∑

(a1,a2)∈H2(S,Z)2

a1+a2=c1 and a1H≤a2H

SW(a1) 2
−χ(a2) tχ(OS)−1

( 2t

1 + 2t

)χ(a2−a1)

×
( −2t

1− 2t

)χ(a1−a2)
x−(a1−a2)2−3χ(OS)

×A1(t, x
4)a

2
1 A2(t, x

4)a1a2 A3(t, x
4)a

2
2 A4(t, x

4)a1KS A5(t, x
4)a2KS

×A6(t, x
4)K

2
S A7(t, x

4)χ(OS).

Proof. Reduction to Donaldson invariants. We first express vir-
tual Euler characteristics in terms of descendent Donaldson invariants. We



SHEAVES ON SURFACES AND VIRTUAL INVARIANTS 107

denote projections to the factors of S×M by πS and πM respectively. Recall
the virtual Poincaŕe-Hopf formula

evir(M) =

∫
[M ]vir

c(T vir
M ),

where c is total Chern class and T vir
M = RπM∗RHom(E,E)0[1] (see (5)).

By Grothendieck-Riemann-Roch, we can express c(T vir
M ) as a polynomial in

expressions of the following form

πM∗
(
π∗
Sα · cha(E) · chb(E)

)
,

where α is a component of td(S). Next, we write each such expression as
a polynomial in slant products. Denote by πij and πi the projections from
S × S ×M to factors (i, j) and i respectively. Then

(26) πM∗
(
π∗
Sα · cha(E) · chb(E)

)
= π3∗

(
π∗
1α · π∗

12Δ · π∗
23 cha(E) · π∗

13 chb(E)
)
,

where Δ ∈ H4(S × S,Q) is (Poincaré dual to) the class of the diagonal.
Consider the Künneth decomposition

Δ =
∑

i+j=4

θ
(i)
1 � θ

(j)
2 ,

where θ
(i)
1 ∈ H i(S,Q) and θ

(j)
2 ∈ Hj(S,Q). Substituting into (26) and using

the projection formula yields

πM∗
(
π∗
Sα · cha(E) · chb(E)

)
=

∑
i+j=4

(cha(E)/αθ
(i)
1 ) · (chb(E)/θ(j)2 ).

Leading term. By Theorem 6.1, we can express evir(M) as Rest of

−2
∑

(a1,a2)∈H2(S,Z)2

a1+a2=c1 and a1H≤a2H

∑
n1+n2=c2−a1a2

SW(a1)

∫
S[n1]×S[n2]

Ψ̃(a1, a2, n1, n2, t).

We isolate the part involving intersection numbers on Hilbert schemes and
put them into a separate generating function as follows∑

n1,n2≥0

qn1+n2

∫
S[n1]×S[n2]

Ψ̃(a1, a2, n1, n2, t).

We define its constant term by

C(a1, a2, t) := Ψ̃(a1, a2, 0, 0, t),

i.e. the term corresponding to n1 = n2 = 0. Defining t := t1, we obtain

C(a1, a2, t) = t−1+2χ(OS)+
1
2
a1(a1−KS)+

1
2
a2(a2−KS)(T2 − T1)

χ(a2−a1)−χ(a2)

× (T1 − T2)
χ(a1−a2)cT(RΓ(S,OS)−RHomS(OS(a1)

⊗ T1 ⊕OS(a2)⊗ T2,OS(a1)⊗ T1 ⊕OS(a2)⊗ T2)).
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By (25), we have T1 = −t and T2 = t, hence

C(a1, a2, t) = t−1+2χ(OS)+
1
2
a1(a1−KS)+

1
2
a2(a2−KS)(2t)−χ(a2)

( 2t

1 + 2t

)χ(a2−a1)

×
( −2t

1− 2t

)χ(a1−a2)
.

Furthermore, when a1 is a Seiberg-Witten basic class, we have a21 = a1KS .

Multiplicativity. Let S be any possibly disconnected smooth projective
surface and let a1, a2 ∈ A1(S) be arbitrary divisor classes on S. Define the
generating function

ZS(a1, a2, t, q) :=
1

C(a1, a2, t)

∑
n1,n2≥0

qn1+n2

∫
S[n1]×S[n2]

Ψ̃(a1, a2, n1, n2, t).

(27)

We claim that for any (S′, a′1, a
′
2) and (S′′, a′′1, a

′′
2), we have

ZS′�S′′(a′1 � a′′1, a
′
2 � a′′2, t, q) = ZS′(a′1, a

′
2, t, q)ZS′′(a′′1, a

′′
2, t, q).(28)

This follows from the decompositions

(S′ � S′′)[n1] × (S′ � S′′)[n2]

=
⊔

n11+n12=n1

⊔
n21+n22=n2

S′[n11] × S′[n21] × S′′[n12] × S′′[n22],

2⊕
i=1

Ii(ai)⊗ Ti

∣∣∣
S′[n11]×S′[n21]×S′′[n12]×S′′[n22]

=

2⊕
i=1

I ′
i(a

′
i)⊗ Ti ⊕

2⊕
i=1

I ′′
i (a

′′
i )⊗ Ti,

where we suppress various pull-backs, combined with the identity c(V +
W ) = c(V )c(W ) for the total Chern class.

Universality. By the general universality property [EGL, Thm. 4.1], there
exists a universal function13

G(x1, . . . , x7, t, q) ∈ Q[x1, . . . , x7](t)[[q]],

such that for any (S, a1, a2) we have

(29) ZS(a1, a2, t, q) = expG(a21, a1a2, a
2
2, a1KS , a2KS ,K

2
S , χ(OS), t, q).

Exponentiation is possible because ZS(a1, a2, t, q) starts with a 1 (due to
normalization by C(a1, a2, t)).

We now combine (28) and (29) in order to construct the universal func-
tions Ai(t, q). This follows from a (by now) standard cobordism argument
used in several different settings in modern enumerative geometry (notably

13More precisely, [EGL, Thm. 4.1] only deals with intersection numbers on a single
Hilbert scheme. The extension to intersection numbers on products of Hilbert schemes
was established in [GNY1, Sect. 5].
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[Got3, GNY1]). More precisely, we choose seven triples (S(i), a
(i)
1 , a

(i)
2 ) such

that the vectors

wi := ((a
(i)
1 )2, a

(i)
1 a

(i)
2 , (a

(i)
2 )2, a

(i)
1 KS(i) , a

(i)
2 KS(i) ,K2

S(i) , χ(OS(i))) ∈ Q7

form a Q-basis. Now consider an arbitrary triple (S, a1, a2). Then we can
decompose w = (a21, . . . , χ(OS)) as w =

∑
i niwi for some ni ∈ Q. If all

ni ∈ Z≥0, then (28) implies

(30) ZS(a1, a2, t, q) =
7∏

i=1

(
expG(wi, t, q)

)ni = exp
( 7∑

i=1

niG(wi, t, q)
)
.

Denote by W the matrix with column vectors w1, . . . , w7 and let M = (mij)
be its inverse. We define

Aj(t, q) := exp
( ∑

i

mijG(wi, t, q)
)
, ∀j = 1, . . . , 7.

Then (30) finally yields

ZS(a1, a2, t, q)

(31)

= A1(t, q)
a21 A2(t, q)

a1a2 A3(t, q)
a22 A4(t, q)

a1KS A5(t, q)
a2KS A6(t, q)

K2
S

×A7(t, q)
χ(OS).

Since the points w =
∑

i niwi, with ni ∈ Z≥0, lie Zariski dense in Q7, we
deduce that (31) holds for all triples (S, a1, a2). �

Remark 6.5. Consider Conditions (a)–(d) of Theorem 6.4. By Remark
6.3, Conditions (b) and (d) can be conjecturally dropped and the sum over
“a1 + a2 = c1 satisfying a1H ≤ a2H” can be replaced by the sum over all
“a1 + a2 = c1”. Some of the verifications of the conjectures mentioned in
this survey are unconditional, whereas others assume that Conditions (b)
and (d) can be dropped and we can sum over all “a1 + a2 = c1”. See [GK1,
Sect. 7] for details.

Condition (c) in Theorem 6.4 is necessary (Remark 6.3). Condition (c)
gives an upper bound on c2. However, this upper bound can be made arbi-
trarily large as follows. The map −⊗OS(mH) induces an isomorphism on
Gieseker-Maruyama moduli spaces and it does not change our virtual invari-
ants. However, the upper bound on c2 coming from Condition (c) becomes
arbitrarily large for m → ∞. Therefore, in principle, we can apply Theorem
6.4 for arbitrarily large values of c2. See also [GK1, Sect. 6.1].

Remark 6.6. For each of the virtual invariants discussed in this survey,
we have a universal function similar to the one in Theorem 6.4. The number
of universal functions Ai, the expression for the leading term C, and the
expression for ZS are of course different in each situation. Nonetheless, the
strategy is always the same as in the proof of Theorem 6.4. In particular,
in the first step we reduce the virtual invariant to an expression in terms of
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descendent Donaldson invariants. In the case of virtual χy-genera, elliptic
genera, and Verlinde numbers this requires the virtual Hirzebruch-Riemann-
Roch theorem [CFK, FG]. In the case of virtual cobordism classes, this
requires a theorem of Shen [She] stating that π∗[M ]virΩ can be expressed in
terms of the collection of virtual Chern numbers of M , cf. (14).

6.3. Toric calculations. The proof of Theorem 6.4 expresses the uni-
versal functions Ai(t, q) explicitly in terms of intersection numbers on Hilbert
schemes of points. We now show how this provides an algorithm for calcu-
lating Ai(t, q) up to, in principle, any order in q. Once we know all universal
functions Ai(t, q) explicitly up to a certain order in q, we can apply Theorem
6.4 to perform the verifications mentioned in Section 2.1. The same strategy
was used for the verifications of the other virtual invariants in this survey.

Recall that for any possibly disconnected smooth projective surface S
(not necessarily satisfying b1(S) = 0 or pg(S) > 0!) and any a1, a2 ∈ A1(S),
we defined ZS(a1, a2, t, q) by equation (27). Furthermore, we showed that
there exist A1, . . . , A7 ∈ 1 + qQ(t)[[q]] such that for any (S, a1, a2) we have
(cf. (31))

ZS(a1, a2, t, q) = A
a21
1 Aa1a2

2 A
a22
3 Aa1KS

4 Aa2KS
5 A

K2
S

6 A
χ(OS)
7 .

Consider the following triples

(S, a1, a2) = (P2, 0, 0), (P2, H, 0), (P2, 0, H), (P2, H,H),

(P1 × P1, 0, 0), (P1 × P1, H1, 0), (P
1 × P1, 0, H1),

where H ⊂ P2 is the class of a line and H1 := {pt} × P1. Then the cor-
responding vectors of Chern numbers form a basis of Q7 and the universal
functions Ai(t, q) are determined by the generating functions ZS(a1, a2, t, q)
for the above seven triples.

Note that S = P2 and S = P1 × P1 are toric surfaces with dense open
torus T = (C∗)2. Moreover, the chosen divisors a1, a2 are T -invariant. The

action of T on S lifts to an action of T on S[n] for each n. Therefore, we
can apply the Atiyah-Bott localization formula to the coefficients of the
generating function ZS(a1, a2, t, q).

The calculation of intersection numbers on Hilbert schemes of points
on toric surfaces is a well-studied subject, e.g. [ES] is one of the classical

references. The fixed locus (S[n])T consists of isolated reduced points. More
precisely, we can cover S by maximal T -invariant affine open subsets

{Uσ
∼= Spec C[xσ, yσ]}e(S)σ=1

and the fixed locus (S[n])T precisely consists of all collections of monomial
ideals

{Iσ ⊂ C[xσ, yσ]}e(S)σ=1

of total colength n. In turn, monomial ideals of finite colength in C[x, y] are
in bijective correspondence with partitions. Specifically, λ = (λ1 ≥ · · · ≥ λ�)
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corresponds to the ideal(
yλ1 , xyλ2 , . . . , x�−1yλ� , x�

)
,

where �(λ) = � denotes the length of λ. Hence we can index the fixed locus

(S[n])T by collections of partitions

λ = {λ(σ)}e(S)σ=1

of total size
e(S)∑
σ=1

|λ(σ)| =
e(S)∑
σ=1

�(λ(σ))∑
i=1

λ
(σ)
i = n.

We denote the closed subscheme corresponding λ by Zλ. It is well-known
how to determine explicit expressions for

TS[n] |Zλ
, L[n]|Zλ

= H0(L|Zλ
) ∈ KT

0 (pt) = Z[s±1
1 , s±1

2 ],

where s1, s2 are the equivariant parameters of T . In order to calculate the
K-group classes coming from T vir

M , the following lemma is useful [GK1,
Prop. 4.1].

Lemma 6.7. Let W and Z be 0-dimensional T -invariant subschemes sup-
ported on a maximal T -invariant affine open subset Uσ of a smooth projective
toric surface S. Suppose we choose coordinates such that Uσ = Spec C[x, y]
and the torus action is given by (s1, s2) · (x, y) = (s1x, s2y). Let D be a
T -invariant divisor on S and denote the character corresponding to D|Uσ by
χ(s1, s2). Then

RHomS(OW ,OZ(D)) = χ(s1, s2)W
∗Z

(1− s1)(1− s2)

s1s2
∈ KT

0 (pt),

where W ∗ and Z denote the classes of the T -representations of H0(OW )∗

and H0(OZ).

Using the method described in this section, we determined the universal
functions Ai(t, q) up to order q30. For instance, the first few coefficients of
A7(t, tq) are

A7(t, tq) = 1 +

(
24 t− 6

t

)
q +

(
360 t2 − 180 +

30

t2
− 9

4t4
+

3

32 t6

)
q2

+

(
4160 t3 − 3200 t+

1020

t
− 210

t3
+

135

4 t5
− 55

16 t7
+

5

32 t9

)
q3

+

(
40560 t4 − 43380 t2 + 20280− 6480

t2
+

7065

4 t4
− 6255

16 t6
+

975

16 t8

− 735

128 t10
+

495

2048 t12

)
q4 +O(q5).

Atiyah-Bott localization can also be used to express ZS(a1, a2, t, q) in
terms of the Nekrasov partition function with one fundamental matter and
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one adjoint matter. This is worked out in [GK1, App. B]. This may provide a
first step towards an approach to Conjecture 2.1 along the lines of [GNY3].
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[Got6] L. Göttsche, Refined Verlinde formulas for Hilbert schemes of points and moduli
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[GKW] L. Göttsche, M. Kool, and R.A. Williams, Verlinde formulae on complex

surfaces: K-theoretic invariants, Forum of Math. Sigma 9:e5 (2021) 1–31.
MR 4202490
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