Surveys in Differential Geometry XXIV

Associative submanifolds and gradient cycles

Simon Donaldson and Christopher Scaduto
Dedicated to Professor S.-T. Yau, for his 70th birthday

ABSTRACT. We discuss a model for associative submanifolds in G2 man-
ifolds with K3 fibrations, in the adiabatic limit. The model involves
graphs in a 3-manifold whose edges are locally gradient flow lines. We
show that this model produces analogues of known singularity formation
phenomena for associative submanifolds. We propose conjectures on the
existence of associative and special Lagrangian submanifolds in certain
product spaces, corresponding to the vertices of the graphs.

1. Introduction

There is a standard cross product R” x R” — R” which is related to
the 8-dimensional Cayley algebra in the same way that the familiar cross
product on R? is related to the quaternion algebra. The Euclidean form on
R7 can be recovered from the cross product by the formula

1
|z|? = —ETr (L2)

where L;(y) = = X y. One definition of a G structure on a 7-manifold M
is a cross product TM x T'M — TM which is equivalent to the standard
model at each point. Applying the formula above in each tangent space, the
cross product induces a Riemannian metric on M. The G5 structure is called
torsion-free if the cross product is parallel with respect to the Levi-Civita
connection of this Riemannian metric on M. A 3-dimensional submanifold
P C M is called associative if its tangent spaces are closed under the cross-
product. Associative submanifolds are interesting from many points of view.
They are examples of calibrated submanifolds in the sense of Harvey and
Lawson [11] and they are fundamental objects in Ga-geometry. The purpose
of this article is to explore a model for associative submanifolds in a class
of Gg-structures near to an “adiabatic limit”, which was discussed in [5].
(Related ideas were introduced earlier by Gukov, Yau and Zaslow in [10].)
In this case the 7-manifold M is equipped with a fibration 7 : M — N (with
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some singular fibres) over a 3-dimensional base and the smooth fibres are
diffeomorphic to K3 surfaces. Our model is built on the precise knowledge
of complex curves in the fibres coming from the standard theory of K3
surfaces. The basic idea is to describe associative submanifolds via certain
graphs in the base N. This idea is in the same vein as other constructions in
the literature, in particular of tropical curves in Calabi-Yau manifolds with
Strominger-Yau-Zaslow fibrations (see the further discussion in Section 5
below).

We should emphasise at the outset that in this article we only take the
first steps towards a more comprehensive theory that one can hope will
emerge in the future. In particular we do not prove anything about actual
associative submanifolds here. The main purpose of this article is to develop
an independent “adiabatic limit theory”, involving graphs in 3-manifolds,
and to show that it can mimic important known phenomena of singularity
formation for associative submanifolds.

Acknowledgements. This work was supported by the Simons Foun-
dation through the Simons Collaboration Special holonomy in geometry,
analysis and physics. The authors are grateful to Rodrigo Barbosa, Chris
Gerig and Andrew Neitzke for helpful discussions.

2. Review of standard theory and Joyce’s conjecture

We will now review more systematically some standard material on Ga-
geometry.

A G, structure on M defines a 3-form ¢, related to the cross product
and metric by

P(€1,82,&3) = (&1 x &2, &3)-

We also have the Hodge dual 4-form *¢. If the structure is torsion-free these
forms are parallel and hence closed. An alternative formulation of the asso-
ciative condition for a 3-dimensional submanifold P is that for each point x
of P and tangent vector v € T'M, the contraction i,(*¢) restricts to zero on
TP,. This leads to a “Floer type” description of associative submanifolds.
Let Py C M be some compact submanifold and let Py be a space of sub-
manifolds close to Py in a suitable sense. Then we can define a functional F
on Py by

1) FP) = [ w0

where W is a 4-chain in a small neighbourhood of Py in M with oW =
P — Py. The facts that x¢ is closed and that we are only working with small
deformations of Py means that this functional is well-defined, independent
of the choice of W. The derivative of F at P is given by

/Piv*d),
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where v is a variation vector field, and we see that the associative submani-
folds in Py are exactly the critical points of F. Globally, on a whole space of
submanifolds P, we do not usually get a well-defined functional but we have
a well-defined closed 1-form dF on P whose zeros are associative subman-
ifolds, in the familiar way in Floer-type theories. The linearisation of the
associative condition is an elliptic differential operator of index zero acting
on sections of the normal bundle. (The fact that the index is zero is a con-
sequence of the variational description, which implies that the linearisation
is a self-adjoint operator.)

The discussion above applies to any Gs structure for which the 4-form x¢
is closed. The condition that the 3-form ¢ is closed enters in the calibrated
theory: it means that a compact associative submanifold is absolutely vol-
ume minimising in its homology class with volume the homological invariant
([¢], [P]). In this case we get at least some partial compactness properties of
the set of associative submanifolds in a fixed homology class. A longstanding
theme in the literature is the possibility of developing an enumerative theory,
“counting” associative submanifolds, or—more ambitiously—defining Floer
homology groups. The fundamental difficulty in doing this comes from the
possible formation of singularities and corresponding failure of compactness.
A detailed understanding of this seems a long way off but there is a standard
conjecture in the field, due to Joyce [13], which suggests that it may only
be necessary to consider three phenomena. (See also the discussion in [4].)
We consider a generic 1-parameter family x;, for ¢ € [—1,1] on a compact
7-manifold M and fix a 3-dimensional homology class in M. We leave im-
precise the exact meaning of generic and the exact conditions imposed on
the structures. One expects that for all but a discrete set S C [—1, 1] of pa-
rameter values t there is a finite set of associative submanifolds in the given
homology class and that as we vary t in [—1,1] \ S a signed count of these
will be locally constant. The question is, what singularities can develop at
the exceptional parameter values t € S? Joyce conjectures that, in generic
1-parameter families, one will only encounter phenomena which we will refer
to in this article as:

(1) “multiple covers”;
(2) “crossing”;
(3) “surgery triples”.

In (1) we have in mind a situation where a 1-parameter family of em-
bedded submanifolds ¢; : II — M converge as t — 0 to a map ¢g : Il - M
which is a covering (possibly branched) of its image. Such behaviour has
been extensively studied for pseudo-holomorphic curves and there is some
work of Doan and Walpuski in the case of associative submanifolds [4], but
the theory has not yet been developed very far so we will ignore this multiple
cover phenomenon in this article.

For (2), observe that for dimensional reasons we expect that generically
associative submanifolds do not intersect (or self-intersect). However in a
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generic 1-parameter family we can expect to see associative submanifolds
P, Q; which intersect at some parameter value t = 0. It was predicted by
Joyce and confirmed by Nordstrom (in unpublished work, to appear) that
in this situation (if the intersection in the family is transverse) there will be
another family (P#Q): of associative submanifolds, defined either for ¢ > 0
or for t < 0 (but not both) described topologically by smoothing the singular
union Py U (g into a connected sum. The differential geometric model near
the intersection point is given by a “Lawlor neck”. Thus in this situation a
straightforward count of associative submanifolds in the homology class of
(P1Q)¢ will change at t = 0.

In (3) the differential geometric model is provided by families of special
Lagrangian submanifolds in C* found by Harvey and Lawson [11]. Take
standard complex co-ordinates z1, 22, 23 and for s > 0 define

Li={(z1, 22, z3) : Im(212223) =0, Re(z12223) >0, \z1]2—\z'2]2:s; \z2]2: \Z3|2}.

When s = 0 this is the cone over the standard torus 7% C S°. For s > 0 we
get a special Lagrangian submanifold in C? which, for a standard matching
of the structures, is an associative submanifold in C? x R. Topologically, this
submanifold is obtained from the cone by cutting out a neighbourhood of
the vertex and gluing D? x S! to the resulting 72 boundary. Permuting the
co-ordinates gives similar families L3, L3, both equal to the cone when s = 0.
Topologically, we obtain L3, L§ from L] (all for s > 0) by performing Dehn
surgeries on the circle in L formed by the core of D? x S'. The manifolds
form a “surgery triple”, with a cyclic symmetry between them, differing by
the way in which D? x S is attached to T2.

Returning to the compact 7-manifold M with a 1-parameter family of
structures X, Joyce explains in [13] that one could encounter a singular
associative P at parameter value t = 0 with a singularity modelled on the
cone as above. For ¢ < 0 there could be an associative submanifold P},
locally modelled on Ll_t, and for ¢ > 0 a pair of associative submanifolds
P}, P locally modelled on Lk, Lg. Or it could happen that P, P§ exist for
t < 0 and P} exists for t > 0. But either way a straightforward count of
associative submanifolds will change across ¢ = 0.

3. Kovalev-Lefschetz fibrations

3.1. Topology. We will use the terminology that the K3 manifold is
the oriented differentiable 4-manifold X underlying any complex K3 surface.
We recall that, with its cup product form, H?(X;R) is isomorphic to R3.
We write Ax C R*! for the integer lattice and O(Ax) C O(3,19) for its
automorphism group. We call a class o in Ax with o = —2 a —2-class. We
will frequently use Poincaré duality to identify Ho(X) with H?(X).

DEFINITION 1. A topological Kovalev-Lefschetz (KL) fibration consists
of data (M, ®, N, L, L, ) where:
e M is a compact 7-manifold, and ® is a class in H3(M,R);
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e N is a compact oriented 3-manifold, L C N is a link (a disjoint
union of embedded circles) and 7 : M — N is a smooth map;

e L C M is a submanifold and 7 restricts to a diffeomorphism from
L to L;

e at each point of M \ L the derivative of 7 is surjective;

e around a point of L and the corresponding point of L there are
co-ordinates in which 7 is given by the model 7y : C* xR — C xR

(2) mo(21, 22, 23, 1) = (21 + 25 + 255 t)

e cach fibre of m over points of N \ L is diffeomorphic to the K3
manifold X.

It is sometimes convenient to regard N as an orbifold with model at
points of L given by the map (z,t) — (22,t) from C x R to C x R.. (Recall
that for such codimension-2 orbifold points the orbifold is also a manifold.)

Given this structure we obtain a flat vector bundle Ey over N \ L with
fibre R*»!9 and structure group O(Ax) given by the cohomology along the
fibres. The monodromy of this bundle around a small loop about L is of
order 2, defined by reflection in a “vanishing cycle”—which is a —2 class
in H%(X). We can extend this flat vector bundle to a flat orbifold vector
bundle E over N and we have a corresponding sheaf £ over N of locally
constant sections. The Leray spectral sequence gives an exact sequence

(3) 0—R=H3}N;R) — H*M;R) — H'(N; E) — 0.

The class ® defines a lift of E to an affine orbifold bundle ET over N. This
is equivalent to saying that we have flat bundle EJ over N\ L with structure
group A, where A is the affine extension

R3Y 4+) = A — O(Ay),

and the monodromy around each component of L. maps to a reflection in
O(Ax). To summarise, from any topological KL fibration as above we can
obtain data (N, L, E™). The theme of this article is that we can study such
data in 3-dimensions, independent of the 7-dimensional picture which moti-
vated it.

In this article the dual of the sequence (3) will be important. Recall
the standard notion in algebraic topology of homology in a local co-efficient
system. In our case we have a local co-efficient system Ej over N \ L. The
group Hi(N \ L, Ey) can be defined by 1-cycles as follows. We consider an
oriented graph I' embedded in N \ L. Each edge 7 of the graph is labelled
by a constant section o, of Ey over v and reversing the orientation of v is
equivalent to changing the sign of the label. At a vertex of the graph we
have

(4) Y ta, =0
vy

where the sum runs over edges  incident to the vertex and the sign =+ is
determined by ingoing/outgoing orientation. To obtain the homology group
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H(N\ L, Ey) we divide the group of 1-cycles by a subgroup of boundaries,
defined in a similar fashion.

To bring in the link L we make one change to the above recipe. We take
graphs in N and we allow an edge to terminate on a point of L provided
that its label is a multiple of the corresponding vanishing cycle. (To be more
precise, the vanishing cycle is defined up to sign in the fibres of Ey near L
and we allow the label to take either sign.) Any intersection point of the
graph with the link is assumed to be one of these terminal vertices. In this
fashion we obtain a group which we denote by Hi(N, E) which fits into an
exact sequence

(5) 0 — Hi(N;E) = H3(M;R) —» H3(N;R) =R =0

dual to (3).

The class ® € H3(M) gives a linear map from H3(M) to R and hence a
linear map x : H1(V; E) — R. This can be described as follows. Choose any
smooth orbifold section u of the affine bundle E+. That is, in an orbifold
chart around a point of L the section is given by a Z/2-equivariant map to
R31Y9 where Z/2 acts on R*! by the local monodromy. Let I' be a labelled
graph as above. For each edge ~ of I" with label ay and running from p to ¢
we can define

(6) (v, u) = ay(u(p) —u(q)).
Then the map x : Hi(N; E) — R defined by @ is induced at the chain level

3.2. Adiabatic G structures. We recall some material from [5]. One
standard model for the cross product on R7 is obtained by writing R7 =
R* @ R? where R* is taken with its standard orientation and Euclidean
structure and R3 is identified the 3-dimensional space of self-dual 2-forms
on R, It is more convenient to work with the 3-form (which determines
the cross product). If wy,ws,ws is a standard basis for AT and y; are co-
ordinates on R3, the model 3-form on R7 is ¢g = — >_ widy; + dy1dyadys.
(Here we are using a different sign convention from [5], which fits better
with the literature.)

We define a hyperkdhler structure on the K3 manifold X to be a triple
of closed 2-forms 21, 9, {23 such that

Q; A Qj = aijvolX,

for some volume form voly on X and a constant positive definite matrix
(ai;). It is more standard to require that a;; = d;; but this can always be
achieved by a change of basis and the extra freedom will be convenient. If
we have such a structure then we get a torsion-free Go-structure on X x R3
with 3-form

(7) = Qidy; + dyydyadys.
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The deep fact we need is the Torelli theorem for K3 surfaces. In our set-up
this can be stated as follows. Suppose that hi, he, hs € R¥9 = H2(X;R)
span a maximal positive subspace H in R*!Y. Suppose in addition that there
is no class a in Ax with a® = —2 which is orthogonal to H. Then there is
a hyperkéhler structure (€2;) on X with [€2;] = h; and this is unique up to
the action of diffeomorphisms of X which act trivially on H?(X).

We now return to our topological KL fibration and affine bundle ET over
the 3-manifold N and let u be a section of E*. We consider first the situation
over a co-ordinate neighbourhood B C N \ L with co-ordinates y;. Over B
the section u is given by a map up : B — R3'9. We say that up is positive if
at each point b of B the image of the derivative of up is a maximal positive
subspace Hj, in R*'9. We also assume that there is no —2 class orthogonal
to Hp. Then we can apply the Torelli theorem with h; the image of 9, under
the derivative of upg. So at each point b of B we get a hyperkahler structure
(€;) on the fibre 7~1(b) € M. A procedure for choosing forms ; on 7~ (B)
which restrict to ; on the fibres is explained in [5]. We say that up is
mazimal positive if it is positive and the image is a “maximal submanifold”
of R¥19—i.e. the image satisfies the Euler-Lagrange equation associated to
the volume functional, just as for minimal submanifolds in Euclidean spaces.
Write the induced volume form on B as Ady;dy.dys and introduce a positive
parameter €. Then we call the 3-form on 7=%(B) ¢ M

(8) ¢ = —€ > Qudy; + Ady1dysdys

an adiabatic solution to the torsion-free Go-equations. (This is independent
of the choice of local co-ordinates.) For a fixed € this is not an exact solution
but, roughly speaking, when € is small it can be deformed slightly to an exact
solution ¢.. (For more precise statements we refer to [5].) In the metric
induced by ¢. the diameter of the fibre is O(e!/?) while the diameter of
77 1(B) is O(1), so as € — 0 we are studying a collapsing family of metrics
(in the same spirit as the Calabi-Yau metrics discussed by Tosatti in this
volume [21]).

The most technical issue here is the behaviour of the section u near a
point p of the link L, which we now describe.

e There is an orthogonal decomposition
(9) R¥™W=HoRso K

where H is a maximal positive subspace and ¢ is the vanishing
cycle. We require that +4§ are the only —2 classes in H @ RJ.

e There are local co-ordinates (z,t) centred at p (with z € C and
t € R) so that L is locally defined by z = 0 and the section u is
given by a multivalued map (1(z,t), f(z,t), F(z,t)) with respect to
the decomposition of R*>!? as follows.

(1) I is the identity under a linear identification H = C ® R;
(2) Fis a smooth single-valued function which vanishes along with
its first derivatives at the origin;
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(3) f is a 2-valued function (defined up to sign) with
(10) f(z,t) = Re(b(t)2*?) +n(z,1)

where b is smooth and nowhere zero and 7(z,t) = O(|z|*/?).
More precisely we require that all ¢ derivatives of 7 are O(|z|%/?)
and the first derivatives of 7 in the z factor are O(|z|3/2).

In a standard way, we can avoid the use of multivalued functions by
passing to an orbifold chart, as explained in [5]. We define a branched mazx-
imal positive section of ET to be a section which satisfies these conditions
near L and the conditions described before in local coordinates B C N \ L.

The conclusion is that we have a notion of an adiabatic Go-structure
which is a quadruple (N, L, E,,u) where E, is a flat affine orbifold bundle
over N with monodromy around L given by reflections and w is a branched
maximal positive section.

We should mention that, at the time of writing, there are no real exam-
ples of these structures known and it has not been shown that they lead to
collapsing families of torsion-free Ga-structures ¢. on compact 7-manifolds.
But one can hope that this will change.

4. Adiabatic associative submanifolds

Let (€;) be a hyperkahler structure on X. For each nonzero vector v €
R? there is a complex structure J,, on X for which > v;Q; is a Kéhler form.
If ¥ € X is a smooth complex curve with respect to the complex structure
Jy then it is easy to check that > x Rwv is an associative submanifold in the
product X x R3 with the Gy-structure (7). Let « be a class in the integer
lattice Ax C R with a®> > —2 and let p(a) € H be the orthogonal
projection to the subspace H spanned by [;] so p(a) = > v;[] for a
vector v in R3. The vector v is not zero: if a2 > 0 this follows from the fact
that H is a maximal positive subspace and if a? = —2 it is the condition
arising in the Torelli theorem. By construction, « has type (1, 1) with respect
to the complex structure J, and it corresponds to a holomorphic line bundle
L of positive degree. The Riemann-Roch theorem implies that dim H°(L) >
a?/2 +2 > 1, so a is represented by a J,-complex curve. In this article
we restrict attention to the case when o? = —2, that is, a —2 class. Then
standard theory gives that there is a unique J, complex curve X in the class
« and this is “generically” a smooth embedded 2-sphere. More precisely, we
will say that the pair (a, H) is irreducible if we cannot write a as a sum of
—2 classes a; with p(o;) = A\ip(«) for A\; > 0. Then if (o, H) is irreducible the
J, complex representative is a smooth 2-sphere. If (o, H) is not irreducible
the representative could have a number of components, as we will discuss
further in Section 6.4 below.

Let ¢, be the adiabatic 3-form in (8) over 7~1(B) C M. To simplify the
formulae we work in local co-ordinates centred at a point b in B, chosen so
that a;; = 6;; at b where the integral of the volume form volx is 1. So, at
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the point b,
/ Q; A Qj = 5ij
X
and A = 1. Then at this point
(11) *Pe = EZ Qidyjdyk + e2voly,

where the sum runs over cyclic permutations of (123). Thus the family of
4-forms €' * ¢, has a well-defined limit ¥ = Qdy;dyi, as e — 0. Of course
U is defined over all of B, with a more complicated formula in a general co-
ordinate system. Recall that the associative condition for a submanifold P
in the Go-structure ¢, is that i, * ¢, restricts to 0 on P for all tangent vectors
v in the 7-manifold. Thus, while the 4-form ¥ does not correspond to a Gs-
structure we can consider the same condition. We say that a submanifold P
is “W-associative” if 7, ¥ restricts to zero on P for all v € T M.

Let a be a —2 class. In a trivialisation of the bundle ET over B the
section u is given by a map up : B — R*! and we have a function h, on
B defined by

ha(y) = <Oé, up (y)>

We also have a Riemannian metric on B induced by the embedding in R31?.
Let 7y : (a,b) — B be a gradient flowline for the function hg, i.e.

v (s) = (gradha).s) -

Assume that at each point v(s) the pair (a, Hy()) is irreducible, where
H., ) is the positive subspace in R3'9 defined by the image of dup. We can
apply the preceding discussion at each point v(s) and we see that there is a
unique embedded 2-sphere ¥, C 77 1((s)) in the class o which is complex
with respect to the complex structure defined by the velocity vector +/(s).
Thus we obtain a 3-dimensional submanifold P, C 7~!(B) which fibres over

the flowline v with fibre over v(s) the 2-sphere ;. Then we have
PROPOSITION 1. The submanifold P, is V-associative.

To see this we can work in adapted co-ordinates at a point in B as above
and assume that the gradient of h, is a multiple of 9y,. From the nature of
P, the condition that 7, ¥ restricts to 0 is automatic if v is a tangent vector
along the fibres or a lift of 9,,. Taking lifts of d,,,d,, the W-associative
condition is just that €2 and 3 vanish on the fibre of P,, which is just
the condition that this fibre is a complex curve with respect to the complex
structure corresponding to y,.

5. Calibrated 1-cycles

We will now formulate the main definition of this article. Let
(N,L,E*,u) be an adiabatic Gy structure. We want to consider two sit-
uations: “orbits” and “graphs”.
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FI1GURE 1. Local diagram of gradient cycle I' which has one
univalent vertex terminating at the link L.

Orbits. Let I' C N \ L be an oriented embedded circle. Suppose that
there is a constant —2 section « of the bundle Ey over I', so the pair (I, )
is a cycle for the group H;(N, E) discussed in Section 3.1. Locally, we have
a function h, as considered above. This function is not globally defined but
its gradient vector field is defined on a neighbourhood of I" in N \ L. We
say that (I', «) is a gradient orbit if it is an integral curve of this vector field
(compatible with the orientation of I' in the obvious way). We also require
that for each point ¢ on I' the pair (o, Hy) is irreducible, where H, is the
positive subspace defined by the derivative of u at q.

Graphs. Let I’ be an oriented graph with each vertex having valence 1
or 3. Let ¢ : I' = N be a continuous embedding which is smooth on each
edge and which maps the vertices of valence 1 to L and all other points
of I' to N\ L. We call the image ' of ¢+ an embedding of I'. (Thus I' does
not depend on the parametrisation ¢.) Suppose that for each edge v of T’
there is a label by a constant —2 section . of E, that the label of the
edge containing a vertex of valence 1 is the corresponding vanishing cycle
and that the condition (4) holds at each vertex of valence 3. So (I', {a}) is
a cycle for the group Hi(N, E). We say that (I', {o,}) is a gradient graph
if each edge ~ is an integral curve of the gradient vector field defined by
o (compatible with the orientations). We also require that the irreducible
condition holds at each point of I'. (At a vertex ¢ of valence 3 this means
that (oy, Hy) is irreducible for each of the —2 classes a1, ag, a3 labelling the
three edges.) Note that the sign ambiguity in the vanishing cycle near to L
is taken care of by the orientation of the graph.

In either case we call I' (with the appropriate labels) a gradient cycle.
See Figure 1 for an example.

Discussion.

(1) We could vary the definition of gradient cycles in a number of ways.
We could
(a) allow vertices of higher valence;
(b) relax the condition that ¢ is an embedding;
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(c) relax the irreducible requirement on («, Hy);

(d) allow I" to meet L in interior points of edges.
But the definition we have given simplifies some statements and
one expects that for generic sections u the gradient cycles obtained
under such weaker hypotheses will satisfy our stronger conditions.
The topic of Section 6 below is to study situations where these
various conditions fail, in 1-parameter families.
The fundamental idea underlying these definitions is that if the
adiabatic Go-structure (N, L, E™,u) corresponds to a 1-parameter
family ¢. of KL fibred torsion-free Ga-structures on a 7-manifold
M then for small € a gradient 1-cycle I' should yield an associative
submanifold P(T') in (M, ¢.). In the case of orbits it is relatively
straightforward to prove such a result. First, at the topological
level, since the irreducible condition holds over I' we clearly have a
compact 3-manifold P(I') C M fibered over I with 2-sphere fibres
(and in fact P(T) is diffeomorphic to S? x S!). Then the analysis
problem is to show that this can be deformed into an associative
submanifold.

In the case of a graph I" the problem is harder but, as a first step,
we will construct a topological model: a submanifold P(I') C M.
For a vertex of valence 1 on an edge v which terminates at a point
p in L the construction is essentially the well-known “thimble” of
a Lefschetz fibration. For the topological discussion in our model
around p we can deform ~ to be the positive real axis in C C CxR.
Then the thimble is simply given by R* € C3 € C3 x R and the
fibre of my over a point n > 0 is the 2-sphere {(z1,22,23) : 2z; €
R, 27 =n}.

The case of a vertex of valence 3 is more interesting. We can sup-
pose that all orientations are outgoing so we have three —2 classes
a1, 0, a3 with a; + ag + a3 = 0. This implies that o;.c; = 1.
In the hyperkéahler structure on the fibre X these classes are rep-
resented by embedded spheres 31,3, 33 which are complex with
respect to three complex structures Ji, Jo, J3. Standard theory of
K3 surfaces shows that this configuration of embedded spheres is
unique up to diffeomorphisms of X, so for the topological discus-
sion we can take any convenient model. The model we use involves
the non-compact manifold Xy obtained as either a smoothing or
resolution of the As-singularity which, again by standard theory,
can be embedded in the K3 manifold X. We use the “Gibbons-
Hawking” description of Xy (but for our present purposes only at
the topological level). For this we take three points A, B,C in R?
and construct an S'-bundle Z — R3\ {4, B,C} with Chern class
1 on small spheres around the three points. The restriction of Z to
such a sphere gives the Hopf fibration of S3 so we can complete Z
to a 4-manifold Xy which has a circle action with three fixed points
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\/

FIGURE 2. Thickening of Y C R?. The rays are spanned by
vectors vy, vg, v3 which sum to zero.

and the quotient by the action is a smooth map y : Xo — R3. The
pre-image by p of the line segment from A to B is a 2-sphere in X
with self-intersection —2 and taking the three sides of the triangle
ABC we get a configuration of spheres of the desired kind. We can
suppose that A, B and C lie in the standard plane R? C R3. Let
vi=A—DB,vy=B—-C,v3=C — A, so v; are vectors in R? with
>v;=0.Let Y C R? be the union of the three rays RTv; and let
Q2 C R? be a thickening of Y, as in Figure 2, with three boundary
components, asymptotic to the three pairs of rays. Let F :  — R?
be a smooth map which takes the three boundary components of
Q to the points A, B, C' with the obvious ordering (so, for example,
the boundary component asymptotic to v; and v3 is mapped to A).
For a suitable large number R the set {z € Q : |z| > R} has three
connected components, corresponding to the three rays. We choose
the map F' so that it maps these three components to the three
edges of the triangle, again with the obvious ordering. The graph
of F is a surface S with boundary in R? x R? ¢ R3 x R? and the
boundary of S lies in {A, B,C} x R2. It follows that the preimage

Py = (p xid)"1(S) € Xo x R?

is a 3-dimensional submanifold of X, x R2. By construction, Py
has three ends, which are small deformations of 3; x R v;. Finally,
taking R? ¢ R3 we can regard Py as a submanifold of Xy x R3.

There are many other ways of describing this submanifold
Py C Xp. The approach above has the advantage that it makes ev-
ident the symmetry between the three 2-spheres. Using this model
at each vertex of valence 3 we can construct a 3-dimensional sub-
manifold P(I') C M for any graph I

The problem of constructing a nearby associative submanifold
P(I') motivates the following conjecture.
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CONJECTURE 1. Let ay,as, a3 be —2 classes on the K8 mani-
fold X with oy +as+a3 =0. Let R® = H C H*(X) be a mazimal
positive subspace corresponding to a hyperkdhler structure and v; be
the projection of a; to H. Assume that the (a;, H) are irreducible.
Then there is an associative submanifold ITI C X x R? with three
ends asymptotic to ¥; x RTv; where ¥; is the complex curve repre-
senting oy, for the complex structure defined by v;, and 11 is unique
up to the translations of R3.

Since the vectors v; lie in a plane this associative submanifold
should in fact be a special Lagrangian submanifold in X x C.
Gradient cycles are the zeros of a closed 1-form on a suitable
infinite-dimensional space of cycles. This is simplest to set up in
the case of orbits. Let Iy be an embedded circle in N \ L with
constant section a over I'g and let V,, be the corresponding gra-
dient vector field, defined in a neighbourhood of I'g. Let ¢ be the
2-form on this neighbourhood given by the contraction of the vol-
ume form with V. Locally we have a function h, and o = *dh,.
Recall that h, is obtained as the restriction of a linear function
on R31 to the image of U, which is a maximal submanifold. The
maximal condition implies that the restriction of linear functions
to the submanifod are harmonic, with respect to the induced met-
ric. So hg is a harmonic function and o is a closed 2-form. For any
1-cycle I' close to I'g choose a 2-chain W of the obvious kind with
OW =T —T'y and define

F(T) = /W o

Then the gradient orbits in this neighbourhood are the critical
points of this functional. The derivative is a well-defined 1-form

given by
(5.7:—/2'50,
r

where £ is a variation vector field along I'.

We can proceed in a similar way for graphs. For each edge v
we consider a variation vector field &,. These satisfy a matching
condition &, = &,, at a vertex of valence 3 and are tangent to L at
vertices of valence 1. We define a 1-form by

0F = Z/igway.
v 7

where o, is the closed 2-form in a neighbourhood of « defined as
above. The reader can check that this is a closed 1-form on an
infinite dimensional space of labelled embedded graphs, with zeros
the gradient graphs.
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One can go on to develop at least some elements of a “Floer the-
ory”, with chain complex generated by gradient graphs and bound-
ary map defined by suitable 2-cycles in N x R (which should cor-
respond to Cayley submanifolds in M x R). In the same vein, one
can develop theory for adiabatic co-associative submanifolds in M,
but we will not go into these variants further in this article.

There is also an adiabatic analogue of the calibrated property.
For a segment 7(s) with label a we define the weighted length to
be

[0 @ halsgods

Then the weighted length of any cycle I" is bounded below by |x|[I']|
where x : Hi(E) — R is the map discussed in Section 3.1 above
and equality holds if and only if £1I" is a gradient cycle.

5.1. Related literature. There is a web of connections between the
ideas that we discuss in this article and existing literature. To give a proper
account of this would go far beyond the space available here and the authors’
knowledge, so we will just indicate some of these connections.

e In classical algebraic topology, graphs of gradient lines on a mani-
fold can be used to describe cup products and higher operations in
the framework of Morse Theory [3].

e In symplectic topology, similar graphs appear in describing pseudo-
holomorphic curves [7], [1] in various contexts. These include rela-
tions to tropical geometry, Calabi-Yau manifolds with Lagrangian
torus fibrations, and the Strominger-Yau-Zaslow approach to mir-
ror symmetry [9].

e Invariants of 3-manifolds, related to Chern-Simons theory, obtained
by counting graphs of gradient lines have been studied by Fukaya
[6] and Watanabe [22]. This leads to connections with the theory
of finite type invariants of 3-manifolds, see e.g. [16].

e In the more specific context of Go-manifolds fibred over a 3-di-
mensional base with K3 fibres, the basic idea in this article was
discussed in [5] for the particular case of an arc joining two com-
ponents of the link. Some closely related ideas appear in the ear-
lier paper [18], in the case where the fibre is a hyperkdhler ALE
4-manifold. Similar ideas have been considered in the case of Spe-
cial Lagrangian submanifolds in Calabi-Yau 3-folds fibred over a
2-dimensional base ([15, Section 3|, [19, Section 1.4]) and there
are connections to the theory of Spectral Networks. A recent arti-
cle [14] gives some explicit examples of fibrations of noncompact
G9-manifolds, and associative submanifolds.

e In 3-manifold topology, Hutchings defined a “periodic Floer ho-
mology” using the integral curves of the gradient vector field of a
circle-valued harmonic function, in the case when the vector field
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N
—

FIGURE 3. Flow lines of the vector field 2z1/2 on C.

has no zeros [12]. This was shown by Lee and Taubes to agree with
Seiberg-Witten-Floer homology [17]. In this case the 3-manifold is
necessarily a surface bundle over the circle. A general theory in the
case of a vector field with zeros does not seem to have been devel-
oped yet but it seems likely that the work of Taubes [20] and Gerig
[8] on holomorphic curves in near symplectic manifolds would be
relevant to that.

6. Theory of gradient cycles

6.1. Terminating manifolds. In this subsection we discuss gradient
flow lines corresponding to the vanishing cycle near the link L. We work
in the unit ball B3 in standard local co-ordinates (z,t) as in Section 3.2,
so we have maps f : B> — R and F : B> — R!8 such that f(z,t) =
Re(b(t)2%/2) +n(z,t), where 1, F' satisfy the conditions stated in Section 3.2.
We have a (non-smooth) Riemannian metric g on B? defined by the graph
of (f,F)in R¥ = C x R x R x R'® and a vector field V on B? given by
the gradient of f in the metric g. Without loss of generality assume that
b(0) = 4/3 and take the standard branch of 2%/ near the positive real axis.
Let Vp be the gradient vector field of Re(4/32%/2) on C x R with respect to
the Euclidean metric go. Thus Vy = (22'/2,0) and there is an integral curve
7o(s) = (s%,0) of Vo through the origin. See Figure 3. Let so < 1 be a small
number to be fixed later.

PROPOSITION 2. There is a unique function h : [0,s0) — C x R with
|h(s)| < Cs? and |h'(s)| < Cs? such that xo + h is an integral curve of V.

To see this write V =V + W so we want to solve the equation
(12) W' = Vo(xo + h) — Vo(zo) + W(zo + h).
Straightforward calculations show that our hypotheses on 7, F' imply that
W (2, 8)] = 022 + [t]]21/2),
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with the corresponding estimates for the derivatives. We have an elementary
estimate that if (| < (1/2)|z| and if we set
22+ Q)2 = 2212 — 27120 = g(2,0)
then
la(2, )l < CI¢I|z| =2
and if |G1], 1Co] < (1/2)|2] then

lq(2,G1) — a(2, G2)| < ClG = Gl (|G| + [Ga])]2] 732

Thus if we write h = (hc, hr) for the components in C x R and assume
that |h(s)| < s?/2 (which is certainly true for small s if h satisfies the
conditions of the Proposition), then we have

[Vo(zo + h) = Vo(z0)] (s) = s~ 'he + Q(h)(s)
where
Q(h)(s)] < Clh(s)|*s ™.
And if hy(s), ha(s) are two such functions we have
|Q(h1)(5) = Q(h2)(s)| < Clhi(s) — ha(s)|(Iha(s)] + [ha(s))s™>.

Our equation (12) becomes
(13) Lh = Q(h) + W(xzo + h)
where L is the linear operator Lh = h’ — s~ *(hc,0). We have an inverse
operator S to L which acts separately on the C and R components:

S(pc, pr) = (Sc(pc); Sr(pr))

where .
(Scpc)(o) = [ s~ pls)ds
0
and

(Sror)(0) = /0 " pr(s)ds.

Weset h = S(p) in (13), so the equation becomes the fixed point equation
p = F(p) where

Flp) = Q(S(p)) + W(xo + Sp).
For a given sy we define a weighted norm on functions on [0, sg]

ol = sup s~2|p(s)].
Then .
1S(p)(s)] < §||p||83-

Thus if ||p|| < 1 (say) then h = S(p) satisfies the condition |h(s)| < s3/2 <
s2/2 (since sy < 1). It is now straightforward to find a fixed point using the
contracting mapping theorem and we get uniqueness in the standard way.
(In fact the proof gives uniqueness of the solution within the larger class of

functions h with |h(s)| < s2/2.)
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FIGURE 4. Terminal submanifolds meeting at the link.

For small ¢+ we have a similar integral curve (s2,t) + hy(s) of the vector
field V' passing through (0,t). For x > 0 write

(I)($>t) = (.’L’,t) + ht(ﬁ)

Then ® is a C' map on a neighbourhood of the origin in the manifold
with boundary RT x R ¢ C x R and its image is a C'-submanifold T}
with boundary on the axis z = 0. Each point of T} lies on a gradient line
terminating on the axis. There are two other submanifolds 75, T35 obtained in
the same way starting with the model solutions ws?, w?s? where w = ¢27/3,
The general picture is much the same as the standard picture for a Morse-
Bott function in three dimensions with a 1-dimensional critical submanifold
and Hessian of index (1,1) in the normal plane. In that case one would have
ascending and descending submanifolds near the critical set. In our case
the multivalued nature of the function mans that we cannot consistently
differentiate between ascending and descending, so we call these terminating
submanifolds. See Figure 4.

Using similar techniques one can show that the only flow lines (for the
vector field corresponding to the vanishing cycle) which terminate on the
link L are those that we have constructed above.

REMARK. Locally on L, there are three terminating submanifolds but it

seems possible that these could be permuted as we move around a component
of L.

6.2. Expected dimension and transversality. The set of gradient
cycles has “expected dimension” 0. This notion can be made precise in var-
ious ways. One approach would be to set up a Fredholm theory in suitable
infinite dimensional spaces where the expected dimension appears as the in-
dex of a linearised operator. The fact that the dimension is 0 is essentially a
consequence of the local variational description discussed in Section 5. But
since we are studying ordinary differential equations we can also proceed
with more elementary methods. For example suppose that we have a gra-
dient cycle formed by a single arc v running from one component L’ of L
to another component L”. Fix a disc D transverse to v at an interior point
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q. Near L’ the arc v lies in a 2-dimensional terminating manifold 77. We
follow the gradient flow along paths close to v and extend 7" until it inter-
sects D in a 1-dimensional submanifold S’ C D. Similarly we have another
submanifold S” C D extending a terminating manifold 7” near L”. By con-
struction S’, S” intersect at ¢ and the intersection points S’ NS” correspond
to gradient cycles near . So the meaning of “expected dimension” in this
case is that if S/, S” are transverse then their intersection has dimension 0.
Of course this is the same as the usual discussion in Morse-Bott theory of
gradient flow lines between critical submanifolds. Similarly, for a gradient
cycle I which is an orbit we take a transverse disc D and represent nearby
gradient cycles as the fixed points of a return map ¢ : D — D, in a standard
way.

Now let I' be a gradient cycle for a section ug which is a graph with all
vertices of valence 3. Let V' be the set of vertices ¢; and F be the set of edges
o and let I C E x V be the incidence set. Choose a disc D, C N transverse
to the flow line ~,. Parametrise v,(s) so that s = 0 corresponds to the
intersection point with D, and suppose that the two end points correspond
tos =1}, s=—I; for IX > 0. Let

Dy = Dy % (—¢,¢)2.

For a triple (z,11,72) in 15(1 we have two points in N given by following the
flow line through z to parameter values I} + n; and —I; + 1. Let B; be
a small ball around the point in N corresponding to the vertex ¢; and for
(a,i) € I let B,; be a copy of B;. The construction above gives a map

fiHEa—) H Baﬂ'.

a€E (ai)EA

By hypothesis, for each vertex ¢; there are exactly three pairs (a,) in I say
(a1,1), (a2,1), (as,i). Let A; be the diagonal in By, ; X By, i X By, i, 50 we

have a submanifold
A* = HAZ C HBa,i-
I

By construction gradient cycles close to I' correspond to points in HDa
which map by f to A* and we have one such point O corresponding to I'.
Let n be the number of the vertices in I' and m the number of edges. Then
A* has codimension 6n in [[, B,; and [] D,, has dimension 4m. But since
the graph is trivalent we have 2m = 3n so 4m = 6n and if f is transverse
to A* at O the set of nearby gradient cycles has dimension 0.

When the transversality condition holds for all gradient cycles of ug we
say that the set of gradient cycles is “cut out transversally”.

We expect that for a single section ug the transversality conditions con-
sidered above may fail and the set of gradient cycles might have some more
complicated structure but, in the usual way in such theories, we can hope to
achieve transversality after suitable generic perturbations. There are many
kinds of perturbations we could consider; here we will discuss perturbations
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of the section ug, dropping the maximality condition. (Doing this we lose the
“Floer-type”, variational, description: there are other kinds of perturbations
one could use which retain that.) Thus we let H be a space of small pertur-
bations ug + o with o supported away from the link L. (For most purposes
we can work with a suitable large finite dimensional space of perturbations.)
Then in the setting above our map f extends to

F:Hx[[Da— ][] Bai
A
where we use the gradient lines defined using ug + o € H.

PROPOSITION 3. The map F' is transverse to A* at (ug, O).

To see this we need to compute the derivative of F' with respect to wu.
For this we utilize the “perturbation theorem” for flows (see 32.1 in [2] for
example). Let ®° be the flow of a smooth vector field X on a manifold,
defined near a point x and write y(s) = ®°(z). Consider a vector field Y
defined on a neighbourhood of «(s) and let ®§ be the flow of X +¢Y. Then

d S
(14) GH @0 = [ (@05
More generally the same formula holds for a flow defined by a 1-parameter
family of vector fields X; with ¢-derivative Y at t = 0.

Let v(s) = 74(s) be the flow line corresponding to an edge of I', as
considered above, with s = 0 at the intersection point 0 with the transverse
disc D,. Write [T = [F so that ¢4 = (") is a vertex of I'. We consider first
perturbations ug + to where ¢ is supported in a small ball around ~(I*/2)
(say). We get perturbed gradient lines ;(s) passing through the same point
0. For s <0 we have y(s) = v(s) but for s > 0 they are different. Let V' be

the derivative

d
V= —~(").
dt%( )

So V is a vector in the tangent space of N at ¢.

LEMMA 1. We can choose a pair of such perturbations o1,09 giving
vectors Vi, Va in TNy, such that Vi, Va,y'(I7) form a basis of TN, .

Assuming this Lemma we deduce Proposition 3 as follows. Focusing on
the vertex ¢4 and the edge v,, we have a ball B around ¢4 and a map

Ff :H x D, x (—¢,¢) = B,

which gives one component of the map F. The derivative of F,f with respect
to n € (—¢,¢€) is given by +/(I7) and the derivative with respect to the two
variations provided by the Lemma gives Vi, Vo. The derivatives of all other
components of the map F' with respect to these variations vanish so taking
4m similar variations (two for each pair (a,7) € A) we see that the derivative
of F' is surjective so certainly F' is transverse to A*.
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We now prove the Lemma. Recall that in a local description, the gradient
vector fields we are considering are given by the projection of a fixed vector «
in R*! to the tangent space of the image of the map « from a neighbourhood
Bin N to R*. We take u = ug+to and choose o to be a normal variation
so that for each z € B the value o(x) is orthogonal to the image of du in
R31. One gets the following formula for the ¢-derivative Y of the gradient
vector field X:

(15) Y = grad(o,a) —0SX

where S is the second fundamental form of the image submanifold. In our
application using the formula (14) we only need the value of Y on the curve
v so we choose ¢ to vanish on v and this means that the second term in
the formula (15) vanishes. The derivative (®°), appearing in the formula
(14) preserves the tangent vectors to 7, so for our purposes we only need to
consider the component of Y normal to «. It is straightforward to construct
a o of this kind realising any normal vector field and then to use (14) to
produce the desired o1, 09.

The whole discussion above can be adapted without difficulty to general
gradient cycles and using standard techniques we obtain:

COROLLARY 1. There is a residual set P of positive sections such that
for any u € P the set of gradient cycles is a 0-manifold cut out transversally.

The results of this section can be extended to many situations when the
cycles are allowed self-intersections although there are some difficulties in
proving a completely general result.

6.3. Crossing. We have now reached the main point of this article,
which is to study phenomena for gradient cycles in 1-parameter families
analogous to those we outlined in Section 2 for associative submanifolds. In
the remainder of Section 6 we will be content to make whatever transversal-
ity assumptions are relevant, without analysing the exact meaning of these.
In this subsection we study what happens when, in a generic 1-parameter
family, two gradient graphs cross in the complement of the link.

Let I' C N be a gradient graph for a section ug and ¢ a point of I’
which is not a vertex, so ¢ lies in the interior of some gradient flowline ~,
an integral curve of a local vector field V. We introduce a notion of “cut”
gradient graphs. Let D be a small disc in N, centred at ¢ and transverse to ~y.
For each z in D there is gradient flowline v, through z. The intersection of
'\ {¢} with a small ball centred at g has two components. By a cut gradient
graph we mean a small deformation of I' away from ¢ but near ¢ we allow
these two components to deform to possibly different gradient curves «,, v,-.
We have a moduli space M of such cut gradient graphs which maps to D x D.
Our dimension analysis above shows that M is a 2-manifold and we suppose
that the image of M in D x D intersects the diagonal transversally at (g, q).
So we can assume that M is embedded in D x D.
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Next suppose that I';, 'y are two such gradient graphs (for the same
section ug) which intersect at a point ¢ (not a vertex of either graph). So ¢
lies on 1 and 2 which are integral curves of vector fields Vi, Vo which we
assume are linearly independent at ¢. In our situation we want to assume
that the V; are defined by —2 classes «; with a1.cis = 1 but this condition will
not play a fundamental role in the discussion below. We choose transverse
discs Dy, D2 as above and we have moduli spaces My, Ms of cut graphs. Let
I C D1 x D5 be the set corresponding to pairs of intersecting flow lines. It is
clear that I is a 3-dimensional submanifold of D; x Dy and the intersection
point defines a map f from I to N. In the 8-manifold

D1XD2XD1XD2:D1XD1XD2XDQ

we have two subsets I x I and My x Ms. Let J be their intersection. We
assume that this intersection is transverse, so J is a 2-manifold and F =
(f x f) givesamap F : J — N x N. By our hypotheses the point (g, q) lies
in the image of F: it is the image of the point Q = (¢,¢,q,q) in J.

We now introduce a 1-parameter family of sections w; for [t| < € so
I't, 'y deform in families Ff. We can deform all the constructions above in
the family, so for each ¢ we have a 2-manifold J; and a map F; : J; — N x N.
The difference is that for ¢ # 0 we do not expect that the image of F;
meets the diagonal in N x N. We can choose a family of co-ordinate charts
Yy : B> — N which linearise the vector fields Vi + VZ. In other words,
V! + VJ is the image by di; of a constant vector field n on the unit ball
B3 in R3. Let G; : J; — R? be the composite of (wt_l X 1/}15_1) o F; with the
difference map (z,y) — = — y from R? x R? to R3.

Let J be the 3-manifold formed by the family of 2-manifolds J;, so we
have a map 7 : J — (—¢,¢) with fibres the J; and a map G : J — R?,
equal to G on the fibres. By construction we have a point Q) in Jy C J with
G(Q) = 0. We make the transversality assumptions:

(1) @ is a regular point of 7,

(2) the vector n does not lie in the image of dGy at Q.
Let Z C R3 be the ray generated by n. These transversality assumptions
imply that the pre-image G~1(Z) is a 1-manifold with boundary embedded in
J and it intersects the fibres J; either for small positive ¢ or for small negative
t (but not both). Without loss of generality, suppose that the intersection
occurs for small positive t. Then, by construction, for such ¢ there is a
gradient graph I'* of the kind indicated in the right of Figure 5. In other
words, in the family a new gradient graph is “born” at t = 0.

The above discussion gives an adiabatic analogue of the Joyce-Nordstrom
crossing for associative submanifolds outlined in Section 2. One can see that
the topology matches up. Recall that for each gradient graph I' we have
defined, at the topological level, a submanifold P(I') C M". In the situation
above, the fact that a;.ag = 1 implies that P, = P(I';) intersect in one point
and one can check that the submanifold P(I') corresponding to the graph
I'* is the connected sum P;§Ps.
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s

t>0 t>0

FI1GURE 5. An adiabatic analogue of Joyce-Nordstrém cross-
ing: a new gradient cycle is “born” at t = 0.

6.4. Splitting of flowlines and surgery triples. In this subsection
we discuss an adiabatic analogue of the “surgery triple” outlined in Sec-
tion 2. The essential phenomenon arises for general pairs of vector fields on
a manifold. Let V7, V5 be non-zero vector fields on the open unit ball B® and

1, ®5 be the local flows they generate. Fix 6 > 0 so that ®; are defined
with values in B3 for s < 26 on the half-sized ball %B?’. Define

1
C':{:ceﬁBS:Vl(a?):)\Vg(x) for some A > 0},
and
/ 1 3 1 3 s1 / S2 /
S={(z,2") € §B XEB : O (z) = o', @3 (x) = 2’ for some 0 < s1,52 < I}

So we have an inclusion map F : S — B3 x B3 and we can consider C' as
contained in the diagonal B3 C B? x B3.

The set C corresponds to the intersection of the two sections of the
unit sphere bundle defined by V;/|V;|. We assume that this intersection is
transverse, so that C is a 1-dimensional submanifold of B3.

PROPOSITION 4. Under this transversality assumption, C lies in the
closure S of S and near C' the closure S has the structure of a 2-manifold
with boundary C.

To prove the Proposition, let ¢ be a point of C' and choose local co-
ordinates (xg,x1,x2) centred on ¢ so that V; = 8%0' The statement of the
Proposition is unchanged if we multiply V5 by a positive function so we can
suppose that

0 0 0

‘/2:8—%+§18—:B1+§28—x2’

where &; are functions of xg,z1, s vanishing at the origin. The transver-
sality condition is that the 2 x 2 matrix % (1,7 = 1,2) is invertible. The
J

submanifold C' is the common zero set of {1, &2. The local flow ®§ of V; is
just translation in the zg factor and we have

5(0,%) = (s, ¢5(x))
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t<0 t>0 t>0

FIGURE 6. An adiabatic analogue of a surgery triple: a new
gradient cycle is “born” at t = 0.

for a family of diffeomorphisms ¢, of neighbourhoods of 0 in R?. If a < b
and x € R? is a fixed point of the diffeomorphism ¢, o ¢, ' then the pair
((a,x), (b,x)) lies in S and all points of S arise in this way. The Proposition
is now a consequence of the following simple fact. Suppose that 1, is a
family of diffeomorphisms of a neighbourhood of 0 in R? with 1)y equal to
the identity. Let n be the vector field given by the s derivative of ¥ at s = 0.
Suppose that n vanishes at the origin and that the graph of 7 is transverse
to the zero section there. Under these conditions it is standard that for small
s there is a unique fixed point of 15 close to the origin. Applying this to
bpd, 1 we get a local parametrisation of S by pairs (a,b) with a < b which
extends to the diagonal a = b, mapped to C.

Let V' be the vector field V; + V5. Let v be the flow line of V' through
the origin and choose a transversal disc D as before, parametrising nearby
flow lines v, of V. The quotient by the flow defines a map p : B> — D so
we get a map

G=(pxpoF:S—DxD.

This extends to S, mapping C to the diagonal in D x D. Let M be a 2-
dimensional submanifold of D x D. If (z,2") € D x D is an intersection point
of M and S we have a configuration of flow lines of the kind seen on the
right of Figure 6. This consists of a segment of a flow line v, for V' ending
at a point z, a pair of flow lines of Vj, V5 from z to another point 2’ and a
segment of the flow line ~,, starting from z’.

Suppose now that the origin in B? lies in the submanifold C. Let ViV
be a 1-parameter family of deformations, so for each t we have submanifolds
Cy, S;. Let C, S be the corresponding sets in B3 x B3 x (—¢, €) so we have a
map

G:S = DxDx(—¢¢),
which maps the boundary C to the diagonal times (—¢, €). Similarly, a family
M; C D x D defines a 3-dimensional submanifold M C D x D x (—¢,e).
By construction the image of G intersects M at the point 0 = (0,0,0).
We make the transversality assumption that this intersection is transverse;
then the intersection is a 1-dimensional manifold I with boundary 0 and the
derivative of the projection map I — (—¢,€) at 0 is non-zero. Depending
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on the sign of this derivative there is a configuration of the kind described
above for the vector fields V! and submanifolds M; either for small positive ¢
or for small negative ¢, but not both. Without loss of generality we suppose
the first case.

In our situation we take B® to be a co-ordinate chart centred at a point
gin N\ L and V to be the gradient vector field defined by a —2 class a.
We suppose that ¢ lies on a segment v of a cycle I' which satisfies all the
conditions to be a gradient cycle except that the irreducibility condition
fails at g. We let M be the submanifold parametrising cut gradient cycles,
as before. The central assumption is that o« = a1 + ag for —2 classes «;
giving gradient vector fields V; with V3 = AV4 at ¢. Then we see that as we
vary our section u in a l-parameter family u;, satisfying the transversality
hypotheses, there will be a family of gradient cycles Ty “born” at t > 0. See
Figure 6.

We interpret this as the adiabatic analogue of a surgery triple obtained
by the three Harvey-Lawson smoothings of a cone singularity. We get evi-
dence for this from the topology of the situation. The condition that V; =
AV, at ¢ means that we are in the exceptional case where the complex curve
> C X is reducible, a union of two embedded spheres Y1, 39 intersecting in
a point in X. For a nearby point ¢’ in I" the corresponding curve ¥’ C X
is smooth but “close” to singular, with a small circle A C ¥’ (the vanishing
cycle) which shrinks to a point as ¢’ moves towards q. Now consider a small
deformation of T' to I'; for ¢t < 0. We have a 3-manifold P_ = P(T;) in M"
and we can deform A slightly to a circle A_ in P_. We also have a 3-manifold
P defined by T for t > 0. We leave the reader to check that P is obtained
from P_ by O-surgery on A_. The third 3-manifold in the picture is given
by Py = P(T'y) for t > 0, which contains a small circle Ay. In fact Py is
diffeomorphic to P_ but we can consider a more refined notion. Let UL be
small tubular neighbourhoods of A+ in P4. There is a natural diffeomor-
phism F : P_\ U_- — P. \ U, well-defined up to a small isotopy. Then,
relative to F', the 3-manifolds P, P_ are different: i.e. we cannot extend F'
to a diffeomorphism from P_ to Py. Relative to F', and with suitable ori-
entations, the manifold P, is obtained from P_ by +1 surgery on A_. This
follows from the fact that if we have a standard family of complex structures
I, on X parametrised by 7 in the unit disc in C such that the —2 class «
is represented by a smooth curve for 7 # 0 and the singular curve ¥; U Xo
for 7 = 0 then the monodromy of the family of curves is given by the Dehn
twist in the vanishing cycle A. This Dehn twist is trivial in the mapping
class group of S? but is non-trivial in the appropriate relative mapping class

group.

6.5. Other transitions. In this subsection we outline (without full
proofs) two phenomena involving gradient flow lines near the link L. The
first is another version of “crossing”. Suppose that I'1, 'y are two gradient
graphs for a section ug each of which has a vertex of valence 1 at the same
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point p of the link L. As usual we consider a 1-parameter family of sections
u; and suppose that I'; deform in families I'. So we have vertices p1 (t), pa(t)
say on L which coincide at ¢t = 0. We make the transversality assumption
that the map ¢ — (p1(t), p2(t)) is transverse to the diagonal at t = 0. Then
one can show that there is another family of gradient graphs (Flﬂfg)t defined
either for small positive ¢ or for small negative ¢, but not both. The gradient
graph is obtained by deforming the union of two flow lines terminating on
L into a single flow line. The basic model is given by the gradient curves of
the function Re(2%/2) with respect to the Euclidean metric, as in Subsection
6.1. Then, up to parametrisation, there are gradient curves

e(s) = (s + ie)%

which converge in an obvious sense as ¢ — 0 to the union of two line seg-
ments. This can be seen in any of the three sectors in Figure 3. It is easy to
see that P((I'1#T2)") is topologically the connected sum of P(I';) and P(Is).

For the second phenomenon we consider a gradient cycle I'_. which
contains a segment -y that passes close to a component Lg of the link L. We
have two —2 classes «,d where « is the label of v and § is the vanishing
cycle and we suppose that a.d = 1. The multi-valued setting means that the
gradient vector field V" associated to « is not well-defined on a neighbourhood
of Lo, even up to sign. We can define V on a cut neighbourhood but there
will be a jump by the addition of the vector field Vs associated to § across
the cut. Since Vs vanishes on L the value of V' at points of L is well-defined
and is not zero.

The basic phenomenon can be seen in the model case where we work on
C with the gradient vector field V' of the multivalued function Re(2%/2 +iz)
which we interpret by making a cut along the positive real axis. The jump
across the cut is by Vs = %zl/ 2. There is a family of flow lines v for t <0
given up to parametrisation by Im(2%2 + iz) = t. These do not meet the
cut. The function Im(2%/2 4 iz) extends continuously across the cut but its
derivative does not. If we attempt to extend the definition to ¢ > 0 the same
equation defines a set which meets the cut at the point p, = ¢. But p; also
lies on a flow line of Vg through the origin. Instead of a single flow line we
get a configuration of three flow lines meeting at the point p;. If we change
our point of view and define the multivalued function by making a cut along
the negative real axis (say) then the flow lines are associated to the three
vector fields V, Vs, V + V5.

In a similar fashion, for a 1-parameter family of sections u; we may see
a gradient cycle I'_ for ¢ = —e which deforms in a family I'y where I'g
meets Lg. This family I'; can be extended to ¢ > 0 but with a graph of a
different topological type, inserting a vertex p; of valence 3 and a vertex of
valence 1 on Lg. The labels of the three edges meeting at p;, with outgoing
orientations, are —a, o + 6,/ —d. The essential point here is that the mon-
odromy of the flat bundle around Lg takes a to oo+ §. For an illustration of
the family I'y as it changes from ¢ < 0 to ¢ > 0 see Figure 7.
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FIGURE 7. A gradient cycle passes through the link L in a
cross-section, where L corresponds to the origin in C.

In this case we do not change the “count” of gradient cycles and the

3-manifolds P(I';) are homeomorphic for ¢ positive and negative.
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