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Global methods of solving equations on manifolds

Kefeng Liu and Shengmao Zhu

Abstract. We survey our recent works on certain global methods of
solving equations on complex manifolds and present several geometric
applications.
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1. Introduction

In [21], we developed a global method to deal with various problems re-
lated to variations of complex structures. These problems can be reduced to
solving certain ∂-equations over complex manifolds. With the help of Hodge
theory, we change the ∂-equation into an associated integral equation, the
novelty is that we use the Banach fixed point theorem or the quasi-isometry
formula to obtain a global solution of the associated integral equation. These
global solutions have many geometric applications. In this survey, we present
several results in [21] and describe some geometric applications of our meth-
ods. In most cases we will only outline the main ideas of proofs and refer
the reader to [21] for details.

1.1. A simple approach to classical deformation theory. The
first ∂-equation which we deal with is the famous Maurer-Cartan equation
arising from the deformation theory of complex structures. In the classi-
cal deformation theory developed by Kodaira et al. [22, 14], in order to
construct a complex analytic family of compact complex manifold M , the
starting point is to solve an integrable equation, i.e. Maurer-Cartan equa-
tion. When H2(M,T 1,0M) = 0, Kodaira et al. showed that the deformation
is unobstructed and constructed the solution of Maurer-Cartan equation by
formal power series. Then they showed the convergence of this series through
comparing with an artificial majorant series.

In our new approach [21], the existence and convergence of the solution
is directly derived from the classical Banach fixed point theorem. We think
that this is the elementary proof which Kodaira looked for (cf. the open
problem asked in page 55 of [22]). As a consequence, we also present a
simple proof of the unobstructed theorem for Calabi-Yau manifold due to
[29, 30]. The method is global in nature and can be applied to more general
deformation problems.

1.2. Variations of pluricanonical forms and deformation coho-
mology. The second ∂-equation is from the variation problem of holomor-
phic pluricanonical form which is closely related to Siu’s conjecture on the
invariance of plurigenera [26].

Let (M,ω) be a compact Kähler manifold of complex dimension n with
Kähler form ω, and ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami differ-
ential. Let m be a positive integer. We consider a pluricanonical form σ0
which is a holomorphic section of K⊗m

M over M , where KM denotes the
canonical line bundle of M . An important question is how to construct the
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pluricanonical forms σ(ϕ) on Mϕ, such that σ(0) = σ0. In fact, for projec-
tive manifolds, the existence of this variation was proved by Y.-T. Siu. In
general there is a famous conjecture due to Siu [26], about the invariance of
plurigenera for compact Kähler manifolds.

In our approach, Siu’s conjecture is reduced to solving the variation
equation (4.5). By using Hodge theory, we can provide a closed formula for
the solution of this variation equation under certain conditions. A related
new deformation cohomology theory is also introduced.

More precisely, let (L, h) be an Hermitian holomorphic line bundle over
(M,ω). Let ∇ = ∇′ + ∂ be the Chern connection of (L, h) with curvature
Θ. We introduce an operator

T∇′
= ∂

∗
G∇′

where G is the Green operator associated to the Laplacian �∂ = ∂∂
∗
+

∂
∗
∂. We consider the holomorphic line bundle LM = K

⊗(m−1)
M over (M,ω)

with the induced Hermitian metric hω = det(g)−(m−1), where g denotes the
Kähler metric associated to the Kähler form ω.

Let ϕ act on differential forms by contraction iϕ = ϕ� and the denote
the exponential operator ρϕ = eiϕ . We will establish the following result in
Section 4 to which we refer the reader for precise definitions of the notations
in the following theorem.

Theorem 1.1. Suppose (LM , hω) is a positive line bundle over a compact
Kähler manifold (M,ω) with curvature

√
−1Θ = ρω for a constant ρ > 0,

let ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami differential satisfying two
conditions divϕ = 0 and L∞-norm ‖ϕ‖∞ < 1. Then, for any holomorphic
pluricanonical form σ0 ∈ An,0(M,LM ),

σ(ϕ) = ρϕ((I + T∇′
ϕ)−1σ0)

is a holomorphic pluricanonical form in An,0(Mϕ,LMϕ).

Note that Theorem 1.1 is global in the sense that it does not depend
on the local deformation family. Theorem 1.1 can be used to construct the
closed variation formula for pluricanonical forms of Kähler-Einstein manifold
of general type, see Definition 4.12.

Indeed, let π : M → Bε be a local Kuranishi family of compact Kähler-
Einstein manifolds of general type over a small disc. For t ∈ Bε, we assume
Mt = π−1(t) = Mϕ(t), where ϕ(t) ∈ A0,1(M0, T

1,0M0) denotes an integrable

Beltrami differential satisfying the Kuranishi gauge ∂
∗
ϕ(t) = 0. As an ap-

plication of Theorem 1.1, we obtain

Corollary 1.2. Given a local Kuranishi family of compact Kähler-
Einstein manifolds of general type, and any holomorphic pluricanonical form

σ0 ∈ An,0(M0,LM0),
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we have that

σ(t) = ρt((I + T∇′
ϕ(t))−1σ0)(1.1)

is a holomorphic pluricanonical form in An,0(Mt,LMt) with σ(0) = σ0, where
ρt = ρϕ(t).

Corollary 1.2 implies the invariance of plurigenera for Kähler-Einstein
manifolds of general type, which has been obtained in [27]. The new feature
of formula (1.1) is that it provides a simple closed explicit formula for the
variation which will have interesting geometric applications, such as cur-
vature computations for L2-metric on the vector bundle of pluricanonical
sections.

Next, motivated by our approach to Siu’s conjecture of invariance of
plurigenera, we introduce a new cohomology theory on compact Kähler man-
ifold M . Let us define an operator

Dϕσ = ∂σ +∇′(ϕ�σ)− (m− 1) div ϕ ∧ σ

for any σ ∈ An,∗(M,LM ). Then we show that D2
ϕ = 0. We therefore obtain

the following Dϕ-complex on M

0 → An,0(M,LM )
Dϕ−−→ An,1(M,LM )

Dϕ−−→ · · · Dϕ−−→ An,n(M,LM ) → 0.

We define the p-th deformation cohomology Hn,p
Dϕ

(M,LM ) as the p-th coho-

mology group of the complex (An,∗(M,LM ), Dϕ). Then we can reformulate
Siu’s conjecture [26] to terms of the deformation cohomology in the following
equivalent form.

Conjecture 1.3 (Invariance of plurigenera). Let M be a compact
Kähler manifold, and ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami dif-
ferential comes from the local Kuranishi family of M , then there exists an
isomorphism

Hn,0
Dϕ

(M,LM )
�−→ Hn,0

∂
(M,LM ).(1.2)

By using Hodge theory on the compact Kähler manifold M , we will show
that the harmonic projection map actually gives an explicit injection map
from Hn,0

Dϕ
(M,LM ) toHn,0

∂
(M,LM ), see Lemma 4.19. Therefore, the proof of

Conjecture 1.3 is reduced to construct an injective map from Hn,0

∂
(M,LM )

to Hn,0
Dϕ

(M,LM ).

1.3. Canonical families for compact Kähler manifolds. Then we
specialize the above discussions to the special case of m = 1. Namely, we
study the variations of canonical forms, such as the holomorphic (n, 0)-forms
over compact Kähler manifolds. In this case, we have the following global
variation formula.
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Theorem 1.4. Given any integrable Beltrami differential ϕ with ‖ϕ‖∞ <
1, and any holomorphic (n, 0)-form Ω0 on M , we have that

Ω(ϕ) = ρϕ((I + Tϕ)−1Ω0)(1.3)

is a holomorphic (n, 0)-form on Mϕ with Ω(0) = Ω0.

Next, we apply the above variation formula (1.3) to construct canonical
families of holomorphic (n, 0)-forms on Calabi-Yau and hyperkähler mani-
folds. Assume that M is a Calabi-Yau manifold, and let Ω0 be the nonwhere
vanishing (n, 0)-form on M .

For the local Kuranishi family {Mt}t∈Δε of the Calabi-Yau manifold M
as constructed in Theorem 3.8, the global variation formula (1.3) implies
that

Ωc(t) := ρϕ(t)(Ω0)(1.4)

is a canonical holomorphic (n, 0)-form on Mt for t ∈ Δε. Then, we compute
the cohomology class [Ωc(t)], and show that it has the following expansion:

[Ωc(t)] = [Ω0] +

N∑
i=1

[ηi�Ω0]ti +
1

2

N∑
i,j=1

[H(ηi�ηj�Ω0)]titj +O(|t|3)(1.5)

where O(|t|3) denotes the terms in
⊕n

j=2H
n−j,j(M) of orders at least 3 in

t. Here {ηi} is an orthonormal basis of the space of harmonic Beltrami dif-
ferentials H0,1(M,T 1,0M). By using formula (1.5), we immediately get that
the above expansion gives a local normal coordinate for the Weil-Petersson
metric of the Teichmüller space T of polarized Calabi-Yau manifolds.

Then we consider hyperkähler manifolds. By definition, a hyperkähler
manifold M carries a trivial canonical bundle. We still denote by T the Te-
ichmüller space of polarized hyperkähler manifolds, then we have the follow-
ing polynomial expansions for the canonical families of holomorphic forms.

Theorem 1.5. Fix p ∈ T , let (M,L) be the corresponding polarized hy-
perkähler manifold and Ω2,0 be a nonzero holomorphic nondegenerate (2, 0)-
form over M and {ηi}Ni=1 be an orthonormal basis H

1
L(M,T 1,0M) with re-

spect to the Kähler Ricci-flat metric. Then in a neighborhood U of p, there
exists a local canonical family of nondegenerate holomorphic (2, 0)-forms,

Ωc;2,0(t) = ρϕ(t)(Ω
2,0),

which defines a canonical family of (2, 0)-classes

[Ωc;2,0(t)] = [Ω2,0] +

N∑
i=1

[ηi�Ω2,0]ti +
1

2

N∑
i,j=1

[ηi�ηj�Ω2,0]titj

Moreover, let Ω = ∧nΩ2,0 be the canonical (2n, 0)-form on M , then in
a neighborhood U of p, the canonical family of holomorphic (2n, 0)-forms
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Ωc(t) = ρϕ(t) (Ω) defines a canonical family of (2n, 0)-classes

[Ωc(t)] = [Ω] +

N∑
i=1

[ηi�Ω]ti+· · ·+ 1

(2n)!

N∑
i1,..,i2n=1

[ηi1� · · ·�ηi2n�Ω]ti1ti2 · · · ti2n .

We also present a criterion about when T is locally Hermitian symmetric
under the Weil-Petersson metric. See Definition 6.3 and Proposition 6.4 for
the definition of locally Hermitian symmetric manifolds and precise results
there.

1.4. Solving the Beltrami equations. Finally, we present a global
method to solve the classical Beltrami equation which is very important in
the development of complex analysis and moduli theory of Riemann surfaces
and also has many important applications in other subjects. There is a huge
literature on the Beltrami equation. See, for examples [1], [3] and [9]. In
particular the construction by Ahlfors in [1] depends on rather deep analysis
and estimate of Calderón-Zygmund. The method of [3] is by using local
integral operators and their regularity theory. Our method is global in the
sense that we use L2-Hodge theory.

Given a measurable function μ0 on the unit disc D ⊂ C, suppose
sup |μ0| < 1, let μ = μ0

∂
∂z ⊗ dz be a Beltrami differential on D with coordi-

nate z. Recall that solving the Beltrami equation is equivalent to finding a
function f on the unit disc D, such that

∂f = μ∂f.

Our observation is that the Beltrami equation can be easily solved by using
the L2-Hodge theory on D. We will see that the L2-Hodge theory holds on
disk D with the Poincáre metric ωP . So we also have the operator T = ∂

∗
G∂

with norm ‖T‖ ≤ 1.
Note that the L∞-norm of μ is independent of the Hermitian metric on

D and is equal to sup |μ0|, i.e. ‖μ‖∞ < 1. Similarly, we show that for a
holomorphic one form h0 on D, the equation

∂h = −∂μh

has a solution

h = (I + Tμ)−1h0.

As a corollary we can directly get a solution of the Beltrami equation for
any measurable μ0. In particular, we have,

Theorem 1.6. Assume that ||μ||∞ = sup |μ0| < 1, if μ0 is of regularity
Ck, then the Beltrami equation

∂f = μ∂f

has a solution of regularity Ck+1.
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The rest of this paper is organized as follows. In Section 2, we briefly
review the Hodge theory on compact complex manifolds and the quasi-
isometry formula for compact Kähler manifolds. Then in Section 3, we
present a very simple and global method to solve the obstruction equation
for variation of complex structure by using the Banach fixed point theo-
rem. As a consequence, this gives a much simpler treatment of the local
deformation theory of Kodaira-Spencer-Kuranishi. Next, in Section 4, we
construct a closed formula for the variations of holomorphic pluricanonical
forms under certain conditions. A new deformation cohomology theory is
also introduced.

We discuss the variations of canonical forms in Section 5, and apply this
variation formula to the cases of Calabi-Yau and hyperkähler manifolds in
Section 6, and obtain the corresponding canonical families which are sim-
ply given by polynomial expansions in certain canonical local coordinates.
In Section 7, we present our result in [21] about solving the famous Bel-
trami equations with measurable coefficients by using L2-Hodge theory on
Poincaré disk. Section 8 is devoted to discussing various further applications
and extensions of our method.

Acknowledgements. The research of the first author is supported by
NSF. The second author would like to thank CSC to support his visit in
UCLA.

2. Hodge theory on compact complex manifolds

In this section, we briefly review the Hodge theory on compact complex
manifolds and fix the notations used in this article.

Let (E, h) be a Hermitian holomorphic vector bundle over a compact
complex manifold M with Hermitian metric g. Let ∇ = ∇′+∂ be the Chern
connections of (E, h). The Hermitian metrics on E and M induce an L2

inner produce on the space Ap,q(M,E) of E-valued (p, q)-forms on M . We
set the Laplacians

�∂ = ∂∂
∗
+ ∂

∗
∂ and �′ = ∇′∇′ ∗ +∇′ ∗∇′.

Hodge theory implies that there are Green operator G (resp. G′) and har-
monic projection H (resp. H′) in the Hodge decomposition corresponding to

�∂ (resp. �′
).

Proposition 2.1. We have the following identities:

�∂G = G�∂ = I −H, ∂G = G∂, ∂
∗
G = G∂

∗
, HG = GH = 0.

Moreover, ∂H = H∂ = 0, ∂
∗
H = H∂

∗
= 0. The similar identities holds

among the operators G′, H′, ∇′ and ∇′ ∗.

Then we suppose (M,ω) is an n-dimensional compact Kähler manifold
with Kähler metric ω, and ‖ · ‖L2 be the L2-norm on the space Ap,q(M) of
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smooth differential forms induced by the metric ω. We set

�∂ = ∂∂
∗
+ ∂

∗
∂, �∂ = ∂∂∗ + ∂∗∂ and Δd = dd∗ + d∗d,

where d = ∂ + ∂. On Ap,q(M), we have the equality of the Laplacians
�∂ = �∂ = 1

2Δd. We also let H to be the orthogonal projection from
Ap,q(M) to the harmonic space H

p,q(M) = ker�∂ . Then the corresponding
identities in Proposition 2.1 hold. Furthermore, since �∂ = �∂ on compact
Kähler manifold, we can derive the following quasi-isometry formula. For
any g ∈ Ap,q(M), we have

‖∂∗
G∂g‖2L2 = 〈∂∗

G∂g, ∂
∗
G∂g〉 = 〈∂∂∗

G∂g,G∂g〉
= 〈�∂G∂g,G∂g〉 − 〈∂∗

∂G∂g,G∂g〉
= 〈∂g,G∂g〉 − 〈∂G∂g, ∂G∂g〉
= 〈g,�∂Gg〉 − 〈g, ∂∂∗Gg〉 − ‖∂G∂g‖2L2

= 〈g, g −Hg〉 − 〈∂∗g,G∂∗g〉 − ‖∂G∂g‖2L2

= ‖g‖2L2 − ‖Hg‖2L2 − 〈∂∗g,G∂∗g〉 − ‖∂G∂g‖2L2

≤ ‖g‖2L2 .

The last inequality holds since the Green operator G is a non-negative op-
erator. We introduce the operator T = ∂

∗
G∂. Therefore,

‖Tg‖L2 = ‖∂∗
G∂g‖L2 ≤ ‖g‖L2(2.1)

which is referred to as being a quasi-isometry in [18].

3. A simple approach to classical deformation theory

The classical deformation theory of complex structures was developed
by Kodaira-Spencer and Kuranishi in 1960s [14, 22, 10, 11]. In this section
we present a simple and global method to solve the obstruction equation for
variation of complex structures by using the Banach fixed point theorem, the
details is given in [21]. As a consequence, this method also gives a much sim-
pler treatment of the general local deformation theory of Kodaira-Spencer-
Kuranishi, for example, two classical unobstructed deformation theorems
due to [14] and [29, 30] will follows easily from our method.

3.1. Beltrami differentials. Let M be a complex manifold with
dimCM = n, and we denote by X the underlying real manifold of M of
real dimension 2n. The associated almost complex structure of the complex
manifold M gives a direct sum decomposition of the complexified tangent
bundle,

TCX = T 1,0M ⊕ T 0,1M.
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Let J be another almost complex structure on X. Then, J gives another
direct sum decomposition,

TCX = T 1,0MJ ⊕ T 0,1MJ .

Denote by

ι1 : TCX → T 1,0M, ι2 : TCX → T 0,1M,

the two projection maps.

Definition 3.1 (cf. Definition 4.2 [12] ). Let J be an almost complex
structure on X, we say that J is of finite distance from the given complex
structure M on X, if the restriction map

ι1|T 1,0MJ
: T 1,0MJ → T 1,0M

is an isomorphism.

Therefore, if J is of finite distance from M , one can define a map

ϕ : T 1,0M → T 0,1M

by setting

ϕ(v) = −ι2 ◦
(
ι1|T 1,0MJ

)−1
(v).

This map is well-defined since ι1|T 1,0MJ
is an isomorphism. It is clear that

T 1,0MJ = {v − ϕ(v)|v ∈ T 1,0M}, T 0,1MJ = {v − ϕ(v)|v ∈ T 0,1M},
and their corresponding dual spaces are

Λ1,0MJ = {w + ϕ(w)|w ∈ Λ1,0M}, Λ0,1MJ = {w + ϕ(w)|w ∈ Λ0,1M}.
(3.1)

In this way, the complex conjugate

ϕ : T 0.1M → T 1,0M,

defined by ϕ(v) = ϕ(v) determines a T 1,0M -valued (0, 1)-form which is also
denoted by ϕ ∈ A0,1(M,T 1,0M) for convenience. By the condition

T 1,0M ⊕ T 0,1M = TCX = T 1,0MJ ⊕ T 0,1MJ ,

the transformation matrix (
In −ϕ
−ϕ In

)
from a basis of T 1,0M ⊕ T 0,1M to a basis of T 1,0MJ ⊕ T 0,1MJ must be
nondegenerate. Therefore det(In − ϕϕ) �= 0. In fact, we have

Proposition 3.2 (cf. Proposition 4.3 [12]). There is a bijective cor-
respondence between the set of almost complex structures of finite distance
from M and the set of all ϕ ∈ A0,1(M,T 1,0M) such that, at each point
p ∈ X, the map

ϕϕ : T 1,0M → T 1,0(M)

does not have eigenvalue 1.
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Definition 3.3. If ϕ ∈ A0,1(M,T 1,0M) satisfies the condition in Propo-
sition 3.2, we say that ϕ is a Beltrami differential. If ϕ satisfies the integra-
bility condition

∂ϕ =
1

2
[ϕ,ϕ],(3.2)

we call ϕ an integrable Beltrami differential. The equation (3.2) is usually
referred as Maurer-Cartan equation.

In conclusion, a Beltrami differential ϕ determines an almost complex
structure of finite distance from M . We denote the corresponding almost
complex structure (i.e. almost complex manifold) by Mϕ. An integrable Bel-
trami differential ϕ gives a new complex structure on X by the Newlander-
Nirenberg theorem [23], the corresponding complex manifold is denoted
by Mϕ.

3.2. Deformation theorems. In this section we first present a simple
method to solve the Kuranishi equations and the Maurer-Cartan equations
in deformation theory, by using the Banach fixed point theorem and Hodge
theory on compact complex manifold. As corollaries, we give simple and
global treatments of the two unobstructedness theorems, due to Kodaira-
Nirenberg-Spencer [14] and Bogomorov-Tian-Todorov [29, 30]. We will only
describe the proofs briefly, and refer the reader to [21] for details.

First note that in order to prove the existence of deformations, we only
need to show that for any η ∈ H

1(M,T 1,0M), there exists a family of
Beltrami differentials ϕ(t) ∈ A0,1(M,T 1,0M) satisfying the Maurer-Cartan
equation (3.2). We consider the following integral equation

ϕ = η +
1

2
∂
∗
G[ϕ,ϕ](3.3)

which is usually referred as the Kuranishi equation.
By using the Banach fixed point theorem and Hodge theory on holo-

morphic tangent bundle T 1,0M , we provide a simple proof for the following
results in the classical papers [14, 22]. We think that this is the elementary
proof which Kodaira looked for (cf. the open problem asked in page 55 of
[22]).

Proposition 3.4. Given an orthonormal basis η1, ..., ηN ∈
H

1(M,T 1,0M). Let η(t) =
∑N

i=1 ηiti, then there is a positive constant εk
which depends on a positive integer k, such that the Kuranishi equation (3.3)
with initial value η(t) has a unique solution ϕ(t) which analytically depends
on t for |t| < εk.

Proposition 3.5. For the above solution ϕ(t), if it satisfies
H[ϕ(t), ϕ(t)] = 0, then

(i) there exists ε > 0 such that ϕ(t) is smooth in (z, t) and analytic in
t for |t| < ε,

(ii) the solution ϕ(t) satisfies the Maurer-Cartan equation (3.2).
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In conclusion, in order to prove the existence of deformations, we only
need to prove that for the ϕ(t) constructed in Proposition 3.4, satisfies the
equation

H([ϕ(t), ϕ(t)]) = 0.(3.4)

Therefore, it immediately implies that

Theorem 3.6 (Kodaria-Spencer-Nirenberg, 1958). For a compact com-
plex manifold M with H2(M,T 1,0M) = 0, its deformation is unobstructed.

Furthermore, if M is a Calabi-Yau manifold, then as a easy consequence,
we can also prove that H[ϕ(t), ϕ(t)] = 0. Therefore, we obtain

Theorem 3.7 (Bogolomov-Tian-Todorov). For a Calabi-Yau manifold,
its deformation is unobstructed.

Indeed, let Ω0 be a nonzero holomorphic section ofKM . The key property
of Calabi-Yau is that the contraction operator

�Ω0 : A
0,k(M,T 1,0M) → An−1,k(M) is an isomorphism.

Furthermore, if we choose the Ricci-flat Kähler metric (i.e. Calabi-Yau met-
ric) g on M , �Ω0 induces an isomorphism between the two Hodge theories
on A0,k(M,T 1,0M) and An−1,k(M). Hence H[ϕ(t), ϕ(t)] = 0 if and only if
H([ϕ(t), ϕ(t)]�Ω0) = 0.

By the so-called Tian-Todorov Lemma which is a direct consequence of
the Cartan formula for Lie derivatives [16], we have

[ϕ(t), ϕ(t)]�Ω0 = −∂(ϕ(t)�ϕ(t)�Ω0) + 2ϕ(t)�∂(ϕ(t)�Ω0).

Since H∂ = 0, in order to prove H([ϕ(t), ϕ(t)]�Ω0) = 0, we only need to
show

∂(ϕ(t)�Ω0) = 0.

Applying �Ω0 to equation ϕ(t) = η(t) + 1
2∂

∗
G[ϕ(t), ϕ(t)], we obtain

(ϕ(t)− η(t))�Ω0 =

(
1

2
∂
∗
G[ϕ(t), ϕ(t)]

)
�Ω0

=
1

2
∂
∗
G ([ϕ(t), ϕ(t)]�Ω0)

= ∂
∗
G (ϕ(t)�∂(ϕ(t)�Ω0))−

1

2
∂
∗
G∂ (ϕ(t)�ϕ(t)�Ω0) .

Note that the harmonicity of η(t) implies the harmonicity of η(t)�Ω0, hence
∂(η(t)�Ω0) = 0 by Kähler condition. Let Ψ = ϕ(t)�Ω0, we have

Ψ = ∂
∗
G(ϕ(t)�∂Ψ) + ∂

(
1

2
∂
∗
G (ϕ(t)�ϕ(t)�Ω0)

)
.(3.5)

Applying the ∂-operator to equation (3.5), we obtain ∂Ψ = ∂∂
∗
G(ϕ(t)�∂Ψ).

Hence

‖∂Ψ‖k = ‖∂∂∗
G(ϕ(t)�∂Ψ)‖k ≤ Ck‖ϕ(t)‖k · ‖∂Ψ‖k(3.6)
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Therefore, ∂Ψ = 0 when t is small enough.
Furthermore, the above proof immediately implies the following result

of Todorov.

Theorem 3.8. There exists ε > 0, for t ∈ Δε, there is a unique ϕ(t) ∈
A0,1(M,T 1,0M) satisfies ϕ(t) = η(t) + 1

2∂
∗
G[ϕ(t), ϕ(t)], and ϕ(t) has the

following properties:

(1) ∂ϕ(t) = 1
2 [ϕ(t), ϕ(t)];

(2) ∂
∗
ϕ(t) = 0;

(3)
(
ϕ(t)−

∑N
i=1 ηiti

)
�Ω0 is ∂-exact, and ∂(ϕ(t)�Ω0) = 0.

4. Variations of pluricanonical forms

In this section, we will introduce a global method to construct a closed
variation formula for the pluricanonical form. A new deformation cohomol-
ogy theory will also be introduced, which is closely related to Siu’s conjecture
on the invariance of plurigenera for compact Kähler manifolds [26].

In Section 4.1, we derive the variation equation for variation of pluri-
canonical forms over compact Kähler manifold. In Section 4.2, we introduce
the quasi-isometry formula for Hodge theory of positive line bundle. Then we
solve the variation equation in Section 4.3. In Section 4.4, we present a closed
formula for the variation of pluricanonical forms over the Kähler-Einstein
manifolds of general type. The new deformation cohomology is introduced
in Section 4.5 which sheds some new light on Siu’s conjecture on invariance
of plurigenera for compact Kähler manifolds.

4.1. Variation equations. Let (M,ω) be a compact Kähler manifold
of dimension n, let ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami differ-
ential. Then ϕ determines a new complex manifold denoted by Mϕ. Given

a positive integer m, we introduce the line bundles LM = K
⊗(m−1)
M and

LMϕ = K
⊗(m−1)
Mϕ

. For a LM -valued (n, 0)-form σ on M , we can deform it via

ϕ. We define the map

ρϕ : An,0(M,LM ) → An,0(Mϕ,LMϕ)

as follows. For any x ∈ M , one can pick a local holomorphic coordinate
system {z1, ..., zn} near x, we write the integrable Beltrami differential ϕ as

ϕ = ϕi
k
dzk ⊗ ∂i.

Let σ = f(z)dz1 ∧ · · · ∧ dzn ⊗ e, where e = (dz1 ∧ · · · ∧ dzn)m−1, we define

ρϕ(σ) = f(z)((dz1 + ϕ(dz1)) ∧ · · · ∧ (dzn + ϕ(dzn)))⊗m.(4.1)

Equivalently we denote the contraction map by ϕ as iϕ = ϕ�, then one can
write

ρϕ = eiϕ

as the exponential operator of iϕ.
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Let {w1, ..., wn} be a local holomorphic coordinate system of Mϕ. Then

dwi = ∂jw
idzj + ∂jw

idzj = ∂jw
i(dzj + ϕ(dzj))

by the definition of the Beltrami differential ϕ. Indeed, if we let a = (aij) =
(∂jw

i) and a−1 = (aij), then

ϕi
k
= aij∂kw

j and ϕ = ϕi
k
dzk ⊗ ∂i.

Hence, the formula (4.1) can be rewritten as

ρϕ(σ) =
f(z)

det(a)m
(dw1 ∧ · · · ∧ dwn)⊗m.

Lemma 4.1. Given σ = f(z)dz1 ∧ · · · ∧ dzn ⊗ e ∈ An,0(M,LM ), then
ρϕ(σ) is holomorphic in An,0(Mϕ,LMϕ) if and only if for j = 1, ..., n,

∂jf = ϕi
j
∂if +mf∂iϕ

i
j
.(4.2)

Proof. Since a local smooth function h is holomorphic on Mϕ if and
only if

∂h = ϕ�(∂h),

i.e. for j = 1, ..., n,

∂jh = ϕi
j
∂ih.

Therefore, ρϕ(σ) is holomorphic i.e. f(z)
det(a)m is holomorphic on Mϕ, if and

only if

∂j

(
f(z)

det(a)m

)
= ϕi

j
∂i

(
f(z)

det(a)m

)
which is equivalent to(

∂jf −mfaik∂jaki

)
=
(
ϕi
j
∂if −mfϕi

j
apl∂ialp

)
(4.3)

through a straightforward computation.
We claim that

aik∂jaki − ϕi
j
apl∂ialp = ∂iϕ

i
j
.(4.4)

In fact, we have

∂iϕ
i
j
= ∂i(a

ik∂jw
k) = ∂ia

ik∂jw
k + aik∂i∂jw

k

= −aip∂iapla
lk∂jw

k + aik∂jaki

= −aip∂lapiϕ
l
j
+ aik∂jaki

which gives (4.4). Therefore, substituting (4.4) into (4.3), we obtain
(4.2). �
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Let D = D′ + ∂ be the Chern connection of the holomorphic bundle
T 1,0M over M . The connection matrix is given by θ = (∂gg−1), where
g = (gij) denotes the Kähler metric matrix associated to the Kähler form

ω. We define the divergence operator div as tr ◦D′. For ϕ = ϕi
j
dzj ⊗ ∂i ∈

A0,1(M,T 1,0M), we have

D′ϕ = ∂(ϕi
j
dzj)∂i − ϕi

j
dzj(∂gg−1)pi ∂p

= ∂kϕ
i
j
dzk ∧ dzj∂i − ϕi

j
dzj∂kgilg

lpdzk∂p.

Therefore

div ϕ = tr ◦D′(ϕ) = ∂iϕ
i
j
dzj + ϕi

j
∂kgilg

lkdzj

= (∂iϕ
i
j
+ ϕi

j
∂igklg

lk)dzj

= (∂iϕ
i
j
+ ϕi

j
∂i log det(g))dz

j

where we have used the Kähler condition ∂kgil = ∂igkl.
Let ∇′ be the (1, 0)-component of the naturally induced Chern connec-

tion on the holomorphic line bundle LM = K
⊗(m−1)
M . The induced Hermitian

metric on LM is given by (det g)−(m−1). For a holomorphic section e of LM ,
we have

∇′e = ∂
(
(det g)−(m−1)

)
(det g)(m−1)e

= −(m− 1)∂i log(det g)dz
i ⊗ e.

Proposition 4.2. Given σ ∈ An,0(M,LM ), then ρϕ(σ) is holomorphic
in An,0(Mϕ,LMϕ) if and only if

∂σ = −∇′(ϕ�σ) + (m− 1) div ϕ ∧ σ.(4.5)

Proof. Let σ = fdz1 ∧ · · · ∧ dzn ⊗ e ∈ An,0(M0,LM0), then

ϕ�σ = (−1)n+ifϕi
j
dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn ∧ dzj ⊗ e,

by a straightforward computation. We have

∇′(ϕ�σ) = (−1)n+i∂(fϕi
j
)dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn ∧ dzj ⊗ e

+ (−1)ifϕi
j
dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn ∧ dzj ∧∇′e

= −∂i(fϕ
i
j
)dzj ∧ dz1 ∧ · · · ∧ dzn ⊗ e

+ (m− 1)fϕi
j
∂i log(det g)dz

j ∧ dz1 ∧ · · · ∧ dzn ⊗ e.

We also have

(m−1) div ϕ ∧ σ=(m− 1)f
(
∂iϕ

i
j
+ ϕi

j
∂i log(det g)

)
dzj∧dz1∧· · ·∧dzn ⊗ e,

∂σ = (∂jf)dz
j ∧ dz1 ∧ · · · ∧ dzn ⊗ e.

Therefore, identity (4.5) follows from Lemma 4.1. �



GLOBAL METHODS OF SOLVING EQUATIONS ON MANIFOLDS 255

Remark 4.3. Note that σ ∈ An,0(M,LM ) can also be regarded as a
smooth section of the holomorphic line bundle K⊗m

M since An,0(M,LM ) =

A0,0(M,K⊗m
M ). The equation (4.5) is called the variation equation of the

pluricanonical form, which gives the criterion when the variation pluricanon-
ical form is holomorphic under the new complex structure.

On the other hand, if we let ∇̂′ be the (1, 0)-part of the Chern connection
on K⊗m

M , it is easy to see that the variation equation (4.5) is equivalent to
the equation

∂σ = ϕ�∇̂′σ +mdiv ϕ ∧ σ.

4.2. Bundle-valued quasi-isometry over compact Kähler man-
ifold. In this section, we first refine the bundle-valued quasi-isometry for-
mula obtained in [18]. Let (E, h) be a Hermitian holomorphic vector bundle
over the compact Kähler manifold (M,ω) and ∇ = ∇′ + ∂ be the Chern
connection of (E, h). With respect to the metrics on E and M , we set

�∂ = ∂∂
∗
+ ∂

∗
∂ and �′ = ∇′∇′ ∗ +∇′ ∗∇′.

Accordingly, we have the Green operator G (resp. G′) and harmonic
projection H (resp. H′) in the Hodge decomposition corresponding to �∂
(resp. �′). Then we have the Proposition 2.1.

Let {zi}ni=1 be the local holomorphic coordinates on M and {eα}rα=1 be
a local frame of E. Let h = (hαβ) where hαβ = h(eα, eβ), and the inverse

matrix h−1 = (hαβ). By the curvature formula of Chern connection Θ =
∂(∂hh−1), we obtain

Θδ
ijα

= −
(

∂2hαβ
∂zi∂zj

)
hβδ −

∂hαβ
∂zi

∂hβδ

∂zj
.

Let Rij =
∑r

α=1Θ
α
ijα

, we define the Chern-Ricci form of (E, h) by

Ric(E, h) =

√
−1

2
Rijdz

i ∧ dzj .

In particular, when E = T 1,0M , the corresponding Chern-Ricci form is given
by

Ric(ω) =

√
−1

2
∂∂ log(det g).

Let Θijαβ = Θγ

ijα
hγβ , we obtain

Θijαβ = −
∂2hαβ
∂zi∂zj

+ hδγ
∂hαδ
∂zi

∂hγβ
∂zj

.

Definition 4.4. An Hermitian vector bundle (E, h) is said to be semi-
Nakano positive (resp. Nakano-positive), if for any non-zero vector u =
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uiα∂i ⊗ eα, ∑
i,j,α,β

Θijαβu
iαujβ ≥ 0, (resp. > 0).

In particular, for a line bundle, we say that it is positive, if it is Nakano-
positive.

Proposition 4.5 (cf. Theorem 1.1(2) in [18]). If (L, h) is a positive
line bundle over a compact Kähler manifold (M,ω) and

√
−1Θ = ρω for a

constant ρ > 0, then for any f ∈ An−1,•(M,L), we have

‖∂∗
G∇′f‖ ≤ ‖f‖.(4.6)

For reader’s convenience, we provide the proof of Proposition 4.5 here.

Proof. By the well-known Bochner-Kodaira-Nakano identity

�∂ = �′ + [
√
−1Θ,Λω],

and [ω,Λω] = (k − n)I on Ak(M), we have

�∂(∇
′f) = �′(∇′f) + ρq(∇′f) = (�′ + ρq)(∇′f),

for any f ∈ An−1,q(M,L). Hence

Ker�∂ ⊆ Ker�′

which implies that H∇′f = 0. Thus

�∂G(∇′f) = ∇′f = �′G′(∇′f)

by H
′(∇′f) = 0 and the Hodge decomposition for ∇′f . Then

〈∇′f,G(∇′f)〉 = 〈∇′f,�−1
∂

(∇′f)〉
= 〈∇′f, (�′ + ρq)−1(∇′f)〉
≤ 〈∇′f,�′ −1(∇′f)〉
= 〈∇′f,G′(∇′f)〉.
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Therefore,

‖∂∗
G∇′f‖2 = 〈∂∗

G∇′f, ∂
∗
G(∇′f)〉

= 〈G∇′f, ∂∂
∗
G(∇′f)〉

= 〈G∇′f, (�∂ − ∂
∗
∂)G(∇′f)〉

= 〈G∇′f,∇′f〉 − 〈∂G∇′f, ∂G∇′f〉
≤ 〈∇′f,G(∇′f)〉
≤ 〈∇′f,G′(∇′f)〉
= 〈f,∇′ ∗∇′G′f〉〉
= 〈f, f −H

′(f)−∇′∇′∗G′f〉
= ‖f‖2 − ‖H′(f)‖2 − 〈∇′ ∗f,G′∇′ ∗f〉
≤ ‖f‖2. �

We introduce the operator

T∇′
= ∂

∗
G∇′.

The quasi-isometry formula (4.6) implies that T∇′
is an operator of norm

less than or equal to 1 in the L2 Hilbert space of the L-valued forms. So we
have

Corollary 4.6. Let (L, h) be a positive line bundle over a compact
Kähler manifold (M,ω), with

√
−1Θ = ρω for a constant ρ > 0. Let

ϕ ∈ A0,1(M,T 1,0M) be a Beltrami differential acting on the Hilbert space
Ln,•
2 (X,L) by contraction such that its L∞-norm ‖ϕ‖∞ < 1. Then the oper-

ator I + T∇′
ϕ is invertible.

Example 4.7. We will consider the holomorphic line bundle LM =

K
⊗(m−1)
M over the compact Kähler manifold (M,ω), the corresponding Her-

mitian metric is given by hω = (det g)−(m−1). In this case, the curvature of
the Chern connection of LM is given by

Θ = −(m− 1)∂∂ log(det g).

Therefore

√
−1Θ = −2(m− 1)Ric(ω).(4.7)

In particular, if (M,ω) is a Kähler-Einstein manifold of general type as
defined in Definition 4.12, i.e. Ric(ω) = −ω, then we have

√
−1Θ = 2(m− 1)ω.
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4.3. Solving the variation equations. As discussed in Section 4.1,
in order to construct the variation of a pluricanonical form over Mϕ, we need
to solve the variation equation (4.5).

Before going further, we need the following lemma.

Lemma 4.8. Let ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami differen-
tial and let σ ∈ An,0(M,LM ), we set

Ψ = ∂σ +∇′(ϕ�σ)− (m− 1) div ϕ ∧ σ,(4.8)

then we have the identity:

∂(∇′(ϕ�σ)− (m− 1) div ϕ ∧ σ) = −
(
∇′(ϕ�Ψ)− (m− 1) div ϕ ∧Ψ

)
.

(4.9)

Proof. Locally, we write ϕ = ϕi
j
dzj⊗∂i ∈ A0,1(M,T 1,0M), σ = fdz1∧

· · · ∧ dzn ⊗ e ∈ An,0(M,LM ) where e = (dz1 ∧ · · · ∧ dzn)⊗(m−1). Then

div ϕ = (∂iϕ
i
j
+ ϕi

j
∂i log det(g))dz

j .

For brevity, we introduce the notations dZ = dz1 ∧ · · · ∧ dzn and dZ [k] =

dz1 ∧ · · · ∧ d̂zk ∧ · · · ∧ dzn, where the hat indicates that the corresponding
term is to be dropped.

By the computations in the proof of Proposition 4.2, we have

∇′(ϕ�σ)− (m− 1) div ϕ ∧ σ = −
(
(∂if)ϕ

i
j
+mf∂iϕ

i
j

)
dzj ∧ dZ ⊗ e.

Therefore

∂(∇′(ϕ�σ)− (m− 1) div ϕ ∧ σ)

(4.10)

= −∂l

(
(∂if)ϕ

i
j
+mf∂iϕ

i
j

)
dzl ∧ dzj ∧ dZ ⊗ e

=
∑

1≤l<j≤n

(
(∂j∂ifϕ

i
l
− ∂l∂ifϕ

i
j
) + ∂if(∂jϕ

i
l
− ∂lϕ

i
j
)

+m(∂jf∂iϕ
i
l
− ∂lf∂iϕ

i
j
) +mf(∂j∂iϕ

i
l
− ∂l∂iϕ

i
j
)
)
dzl ∧ dzj ∧ dZ ⊗ e.

On the other hand side, since

Ψ = ∂σ +∇′(ϕ�σ)− (m− 1) div ϕ ∧ σ

=
(
∂jf − ϕi

j
∂if −mf∂iϕ

i
j

)
dzj ∧ dZ ⊗ e,

we have

ϕ�Ψ = (ϕk
l
dzl ⊗ ∂k)�

(
∂jf − ϕi

j
∂if −mf∂iϕ

i
j

)
dzj ∧ dZ ⊗ e

=
n∑

k=1

(−1)kϕk
l
(∂jf − ϕi

j
∂if −mf∂iϕ

i
j
)dzl ∧ dzj ∧ dZ [k] ⊗ e.
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Thus

∇′(ϕ�Ψ)

= ∂

(
n∑

k=1

(−1)kϕk
l
(∂jf − ϕi

j
∂if −mf∂iϕ

i
j
)

)
dzl ∧ dzj ∧ dZ [k] ⊗ e

+ (−1)n+1
n∑

k=1

(−1)kϕk
l
(∂jf − ϕi

j
∂if −mf∂iϕ

i
j
)dzl ∧ dzj ∧ dZ [k] ∧∇′e

= −∂k

(
ϕk
l
(∂jf − ϕi

j
∂if −mf∂iϕ

i
j
)
)
dzl ∧ dzj ∧ dZ ⊗ e

+ ϕk
l

(
∂jf − ϕi

j
∂if −mf∂iϕ

i
j

)
(m− 1)∂k log(det g)dz

l ∧ dzj ∧ dZ ⊗ e.

We also have

−(m− 1) div ϕ ∧Ψ = −(m− 1)
(
∂iϕ

i
l
+ ϕi

l
∂i log det(g)

)
·
(
∂jf − ϕi

j
∂if −mf∂iϕ

i
j

)
dzl ∧ dzj ∧ dZ ⊗ e.

Therefore

−
(
∇′(ϕ�Ψ)− (m− 1) div ϕ ∧Ψ

)(4.11)

= m(∂kϕ
k
l
)
(
∂jf − ϕi

j
∂if −mf∂iϕ

i
j

)
+ ϕk

l
∂k

(
∂jf − ϕi

j
∂if −mf∂iϕ

i
j

)
· dzl ∧ dzj ∧ dZ ⊗ e

=
∑

0≤l≤j≤n

(
m
(
∂kϕ

k
l
∂jf − ∂kϕ

k
j
∂lf

)
+
(
ϕk
l
∂k∂jf − ϕk

j
∂k∂lf

)
+
(
ϕk
j
∂kϕ

i
l
∂if − ϕk

l
∂kϕ

i
j
∂if

)
+mf

(
ϕk
j
∂k∂iϕ

i
l
− ϕk

l
∂k∂iϕ

i
j

))
· dzl ∧ dzj ∧ dZ ⊗ e.

Since ϕ is integrable, i.e. ∂ϕ = 1
2 [ϕ,ϕ], we obtain

ϕk
l
∂kϕ

i
j
− ϕk

j
∂kϕ

i
l
= ∂lϕ

i
j
− ∂jϕ

i
l
,

and

∂i

(
∂lϕ

i
j
− ∂jϕ

i
l

)
= ∂i

(
ϕk
l
∂kϕ

i
j
− ϕk

j
∂kϕ

i
l

)
= ϕk

l
∂i∂kϕ

i
j
− ϕk

j
∂i∂kϕ

i
l
.

Comparing the two expressions in formulas (4.10) and (4.11), we finally
obtain the identity (4.9). �

Proposition 4.9. Suppose that (LM , hω) is a positive line bundle over
a compact Kähler manifold (M,ω) with

√
−1Θ = ρω for a constant ρ > 0,

let ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami differential which satis-
fies the conditions that div ϕ = 0 and L∞-norm ‖ϕ‖∞ < 1. Then for any
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holomorphic σ0 ∈ An,0(M,LM ), a solution of the following integral equation

σ − σ0 = −∂
∗
G∇′(ϕ�σ)(4.12)

is a solution of the equation

∂σ = −∇′(ϕ�σ).(4.13)

Proof. Suppose that σ ∈ An,0(M,LM ) satisfies the equation (4.12).
First, by using the positivity condition for LM , we have

∂σ = −∂∂
∗
G∇′(ϕ�σ)

= (∂
∗
∂ − �∂)G∇′(ϕ�σ)

= (∂
∗
∂G− I +H)∇′(ϕ�σ)

= −∇′(ϕ�σ) + ∂
∗
∂G∇′(ϕ�σ).

Let Φ = ∂σ +∇′(ϕ�σ), then under the condition div ϕ = 0, we obtain

∂∇′(ϕ�σ) = −∇′(ϕ�Φ)

by Lemma 4.8. Therefore

Φ = ∂σ +∇′(ϕ�σ)
= ∂

∗
∂G∇′(ϕ�σ)

= ∂
∗
G∂∇′(ϕ�σ)

= −∂
∗
G∇′ (ϕ�Φ) .

By quasi-isometry formula (4.6) and the condition ||ϕ||∞ < 1, we have

||Φ||2 ≤ ||ϕ�Φ||2 ≤ ||ϕ||∞||Φ||2 < ||Φ||2

and we get the contradiction ‖Φ‖2 < ‖Φ‖2 unless Φ = 0. Hence,

∂σ = −∇′(ϕ�σ). �

Remark 4.10. When (LM , hω) is semi-positive, we can obtain the same
conclusion as in Proposition 4.9, if we substitute the global condition ‖ϕ‖∞ <
1 by requiring that ϕ (with the Hölder norm as in [22]) is small enough. We
leave further discussion of the variation equation (4.5) to another paper.

By Corollary 4.6, it is easy to see that the integral equation

σ − σ0 = −∂
∗
G∇′(ϕ�σ) = T∇′

ϕ�σ

has a unique solution given by

σ = (I + T∇′
ϕ)−1σ0.

In conclusion, we obtain
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Theorem 4.11. Suppose that (LM , hω) is a positive line bundle over a
compact Kähler manifold (M,ω) with curvature

√
−1Θ = ρω for a constant

ρ > 0, let ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami differential satisfy-
ing the two conditions div ϕ = 0 and L∞-norm ‖ϕ‖∞ < 1. Then, given any
holomorphic pluricanonical form σ0 ∈ An,0(M,LM ),

σ(ϕ) = ρϕ((I + T∇′
ϕ)−1σ0)

gives a holomorphic pluricanonical form in An,0(Mϕ,LMϕ).

Theorem 4.11 gives a closed formula for the variation of pluricanonical
forms. Note that the above construction is global in the sense that it does not
depend on the local deformation theory of Kodaira-Spencer and Kuranishi
[22]. Some application of Theorem 4.11 will be discussed in the following
section.

4.4. Applications to Kähler-Einstein manifold of general type.
The invariance of plurigenera for Kähler-Einstein manifold of general type
has already been known, see for example [27]. Here we derive an explicit
and closed formula as a direct application of Theorem 4.11.

Let (M,ω) be a Kähler manifold. Denote the associated Kähler form by

ω =
√
−1
2 gijdz

i ∧ dzj . The corresponding Chern-Ricci form Ric(ω) is given
by

Ric(ω) =

√
−1

2
∂∂ log(det g).

Definition 4.12. We say (M,ω) is a Kähler-Einstein manifold of general
type if Ric(ω) = −ω.

In the following discussion, we assume that (M,ω) is a Kähler-Einstein
manifold of general type.

Proposition 4.13 (cf. Theorem 1.1 in [27] ). Let ϕ ∈ A0,1(M,T 1,0M)

be an integrable Beltrami differential, then ∂
∗
ϕ = 0 if and only if div ϕ = 0.

Now we assume that

π : M → Bε

is a Kuranishi family of Kähler-Einstein manifolds of general type. Let t
be the holomorphic coordinate on Bε. For t ∈ Bε, we let Mt = π−1(t) be
the fiber with the complex structure induced by the integrable Beltrami
differential ϕ(t) ∈ A0,1(M0, T

1,0M0), which satisfies⎧⎨⎩ ∂ϕ(t) =
1

2
[ϕ(t), ϕ(t)]

∂
∗
ϕ(t) = 0,

where ∂, ∂
∗
are the operators on M0 and ∂

∗
is defined with respect to

the Kähler-Einstein metric g0. We can choose ε small enough, such that
‖ϕ(t)‖∞ < 1.
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Let LM0 = K
⊗(m−1)
M0

be the holomorphic line bundle over M0, and the

corresponding Hermitian metric be given by h0 = (det g0)
−(m−1). Let ∇ =

∇′ + ∂ be the Chern connection of (LM0 , h0). We have
√
−1Θ = −2(m −

1)Ric(ω0) by formula (4.7). Recall the operator T∇′
= ∂

∗
G∇′ we introduced,

we have

Corollary 4.14. Given any holomorphic pluricanonical form σ0 ∈
An,0(M0,LM0), we have that

σ(t) = ρt((I + T∇′
ϕ(t))−1σ0)

is a holomorphic pluricanonical form in An,0(Mt,LMt) with σ(0) = σ0, where
ρt = ρϕ(t).

Proof. Since (M0, ω0) is Kähler-Einstein of general type, i.e. Ric(ω0) =
−ω0. Hence

√
−1Θ = 2(m − 1)ω0. Thus (LM0 , h0) is a line bundle which

satisfies the conditions in Theorem 4.11. Then Corollary 4.14 followed by
Theorem 4.11 and Proposition 4.13. �

By using Corollary 4.14, one can write down the curvature formula of
the induced L2 metric on the generalized Hodge bundle over the base Bε

with fiber H0(Mt,K
⊗m
Mt

) as shown in [27].

4.5. Deformation cohomology. Let us fix the same notations as in
Section 4.1, and let (M,ω) be a compact Kähler manifold of dimension n.

For a positive integer m ≥ 1, we let LM := K
⊗(m−1)
M and ∇ := ∇′+∂ be the

Chern connection of LM with the induced Hermitian metric. In particular,
when m = 1, ∇ = d is the ordinary de Rham differential operator.

Motivated by the variation equation (4.5) for varying a pluricanonical
section under the deformation of complex structure. We introduce the de-
formed differential operator Dϕ as follows:

Definition 4.15. For any σ ∈ An,∗(M,LM ), we define

Dϕσ = ∂σ +∇′(ϕ�σ)− (m− 1) div ϕ ∧ σ.

According to the proof of Lemma 4.8, we have D2
ϕ = 0 on σ ∈

An,∗(M,LM ). Therefore, we obtain the following Dϕ-complex on M

0 → An,0(M,LM )
Dϕ−−→ An,1(M,LM )

Dϕ−−→ · · · Dϕ−−→ An,n(M,LM ) → 0,

which induces a new cohomology on M .

Definition 4.16. We define the p-th deformation cohomology on M as
follows

Hn,p
Dϕ

(M,LM ) :=
Ker(Dϕ : An,p(M,LM ) → An,p+1(M,LM ))

Im(Dϕ : An,p−1(M,LM ) → An,p(M,LM )
.
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Let ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami differential. On the
complex manifold Mϕ, we have the corresponding ∂ϕ-complex

0 → An,0(Mϕ,LMϕ)
∂ϕ−→ An,1(Mϕ,LMϕ)

∂ϕ−→ · · · ∂ϕ−→ An,n(Mϕ,LMϕ) → 0

which gives the Dolbeault cohomology Hn,p

∂ϕ
(Mϕ,LMϕ) on Mϕ.

By the definition of the map ρϕ given in (4.1) and the variation equation
(4.5), we have

Lemma 4.17. The map ρϕ gives an isomorphism

Hn,0
Dϕ

(M,LM )
�−→ Hn,0

∂ϕ
(Mϕ,LMϕ).

Now, we can reformulate Siu’s conjecture [26] of invariance of plurigenera
as follows:

Conjecture 4.18 (Invariance of plurigenera). Let M be a compact
Kähler manifold, and ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami dif-
ferential comes from the local Kuranishi family of M , then there exists an
isomorphism

Hn,0
Dϕ

(M,LM )
�−→ Hn,0

∂
(M,LM ).

In order to prove Conjecture 4.18, we need to find an isomorphic map
from Hn,0

Dϕ
(M,LM ) to Hn,0

∂
(M,LM ).

Let
H : An,∗(M,LM ) → H

n,∗(M,LM )

be the harmonic projection map. By using Hodge theory, we have

Lemma 4.19. Let ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami differ-
ential coming from a local Kuranishi family, then H gives an injective map

H : Hn,0
Dϕ

(M,LM ) → Hn,0

∂
(M,LM ).

Proof. Given any σ ∈ Hn,0
Dϕ

(M,LM ), then

Dϕσ = ∂σ +∇′(ϕ�σ)− (m− 1) div ϕ ∧ σ = 0.(4.14)

It is clear that Hσ ∈ Hn,0

∂
(M,LM ). In order to show that H is injective, we

only need to show that if Hσ = 0, then σ = 0.
We assume Hσ = 0 in the following. Applying the operator ∂

∗
G to

formula (4.14), we obtain

∂
∗
G∂σ = −∂

∗
G(∇′(ϕ�σ)− (m− 1) div ϕ ∧ σ).

Since

∂
∗
G∂σ = ∂

∗
∂Gσ = (�∂ − ∂∂

∗
)Gσ = �∂Gσ − ∂G∂

∗
σ = σ −Hσ = σ,

We get

σ = −∂
∗
G(∇′(ϕ�σ)− (m− 1) div ϕ ∧ σ).



264 KEFENG LIU AND SHENGMAO ZHU

Consider the Hölder norm ‖ · ‖k as in [22], by the standard estimates of the

operator ∂
∗
G∇′, there is a constant Ck, such that

‖σ‖k ≤ Ck‖ϕ‖k‖σ‖k.

Therefore, if ‖ϕ‖k < 1
Ck

, we must have σ = 0. �

Therefore, the proof of Conjecture 4.18 is reduced to find an injective
map from Hn,0

∂
(M,LM ) to Hn,0

Dϕ
(M,LM ).

Lemma 4.19 is clearly stronger than the semi-continuity relation

dimHn,0

∂ϕ
(Mϕ,LMϕ) = dimHn,0

Dϕ
(M,LM ) ≤ dimHn,0

∂
(M,LM )

for small ϕ. We refer to [33] for a more general discussion of the deformation
cohomologies and applications.

Example 4.20. If m = 1, for any σ0 ∈ Hn,0

∂
(M), we construct the map

Φ(σ0) = (I + Tϕ)−1(σ0).

Then Proposition 5.2 shows that Φ(σ0) ∈ Hn,0
Dϕ

(M). It is clear that Φ is an

injective map form Hn,0

∂
(M) to Hn,0

Dϕ
(M).

5. Variations of holomorphic canonical forms

In this section, we consider the special case m = 1. Namely, we study
the variations of holomorphic canonical forms over compact complex mani-
fold. We emphasize that the results in this section do not need the Kähler
condition.

Let ϕ ∈ A0,1(M,T 1,0M) be an integrable Beltrami differential. Recall
the definition of the map

ρϕ : A0(M,KM ) → A0(Mϕ,KMϕ)(5.1)

in (4.1). Then ρϕ(Ω) = f(z)(dz1+ϕ(dz1))∧ · · · ∧ (dzn+ϕ(dzn)) if we write
Ω = f(z)dz1 ∧ · · · ∧ dzn in local coordinate (U, z).

5.1. Variation equations for holomorphic canonical forms.

Proposition 5.1. Given an integrable Beltrami differential ϕ ∈
A0,1(M,T 1,0M), for any (n, 0)-form Ω on M , the corresponding (n, 0)-form
ρϕ(Ω) on Mϕ is holomorphic, if and only if

∂Ω = −∂(ϕ�Ω).(5.2)

Proof. By Lemma 4.1, for Ω = f(z)dz1 ∧ · · · ∧ dzn ∈ An,0(M,KM ),
then ρϕ(Ω) is holomorphic in An,0(Mϕ,KMϕ) if and only if for j = 1, ..., n,

∂jf = ϕi
j
∂if + f∂iϕ

i
j
= ∂i(fϕ

i
j
)

which is equivalent to equation (5.2) obviously. �
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One can also derive the variation equation (5.2) by using more direct
method, see [18, 21]. The solution of the equation (5.2) can be used to
construct the variation of a holomorphic canonical form from M to Mϕ. See
[21] for more details.

5.2. Closed formulas for variations of canonical forms. From the
discussions in Section 5.1, we know that, given an integrable Beltrami dif-
ferential ϕ on M , in order to find an (n, 0)-form Ω on M such that the cor-
responding (n, 0)-form ρϕ(Ω) = eiϕΩ is holomorphic on Mϕ, we only need
to find an (n, 0)-form Ω on M such that Ω satisfies the variation equation

(5.3) ∂Ω = −∂(ϕ�Ω).
In [21], we will show that the equation (5.3) can be solved by using the Hodge
theory on M and the quasi-isometric formula (2.1) reviewed in Section 2.
The method is the same as discussed in previous section, and we have

Proposition 5.2. Let ϕ be an integrable Beltrami differential of M with
L∞-norm ||ϕ||∞ < 1. Given a holomorphic (n, 0)-form Ω0 on M , if Ω is a
solution of the equation

Ω = Ω0 − ∂
∗
G∂ (ϕ�Ω) = Ω0 − TϕΩ,(5.4)

then Ω is the solution of the equation (5.3).

Conversely, we have

Proposition 5.3. If the (n, 0)-form Ω satisfies the equation (5.3), then
there exists a unique holomorphic (n, 0)-form Ω0, such that Ω satisfies the
equation (5.4).

Furthermore, it is easy to show that the equation (5.4) has a unique
solution. Indeed, if we assume that the equation (5.4) has two different
solutions Ω and Ω′, i.e. Ω− Ω′ �= 0. Then

Ω− Ω′ = −Tϕ(Ω− Ω′).

By quasi-isometry (2.1), we have

‖Ω− Ω′‖ = ‖Tϕ(Ω− Ω′)‖ ≤ ‖ϕ(Ω− Ω′)‖ ≤ ‖ϕ‖∞‖Ω− Ω′‖ < ‖Ω− Ω′‖,
which contradicts to Ω− Ω′ �= 0.

Moreover, this unique solution of the equation (5.4) is given by

Ω = (I + Tϕ)−1Ω0,

which is a smooth (n, 0)-form, since Ω0 is holomorphic.
In conclusion, we have

Theorem 5.4. Given any integrable Beltrami differential ϕ with ‖ϕ‖∞ <
1, and any holomorphic (n, 0)-form Ω0 on M , we have that

Ω(ϕ) = ρϕ((I + Tϕ)−1Ω0)

is a holomorphic (n, 0)-form on Mϕ with Ω(0) = Ω0.
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Applying Theorem 5.4 to the integrable Beltrami differential ϕ(t) from
the local Kodaira-Spencer-Kuranishi deformation theory, one can choose t
small enough such that ‖ϕ(t)‖∞ < 1, we immediately obtain

Corollary 5.5. For any holomorphic (n, 0)-form Ω0 ∈ An,0(M), and
the Beltrami differential ϕ = ϕ(t) with |t| < ε small, there is a holomorphic
(n, 0)-form Ω(t) on Mt,

Ω(t) = ρt((I + Tϕ)−1Ω0),

where ρt = ρϕ(t), with Ω(0) = Ω0.

6. Applications to Calabi-Yau and hyperkähler manifolds

In this section, we apply the above closed formula in Theorem 5.4 to
construct the canonical families of holomorphic forms over Calabi-Yau and
hyperkähler manifolds, and give several geometric applications. As applica-
tion we give a characterizition when the Teichmüller space of Calabi-Yau
manifold with Weil-Petersson metric is locally symmetric under the Weil-
Petersson metric. In Section 6.3, we construct the canonical families over
hyperkähler manifolds, as an application, we deduce that the Teichmüller
space of hyperkähler manifolds is locally Hermitian symmetric with the Weil-
Petersson metric.

6.1. Canonical family of classes on Calabi-Yau manifolds. Fix-
ing a nowhere vanishing holomorphic (n, 0)-form Ω0 on M , we consider the
Kuranishi family {Mt}t∈Δε constructed by Theorem 3.8. Then Tϕ(t)Ω0 =

∂
∗
G∂(ϕ(t)�Ω0) = 0. As a direct application of the Theorem 5.4, we obtain

that the holomorphic canonical form on Mt is given by

ρϕ(t)

(
(I + Tϕ(t))−1Ω0

)
= ρϕ(t)(Ω0).(6.1)

Let Ωc(t) := ρϕ(t)(Ω0) denote this holomorphic family of canonical forms
on Mt for t ∈ Δε, we have the following result which was first observed in a
joint project of the first author with X. Sun, A. Todorov and S.-T. Yau by
using the Kodaira-Spencer-Kuranishi local deformation theory.

Theorem 6.1. The cohomology class [Ωc(t)] has the following expansion:

[Ωc(t)] = [Ω0] +

N∑
i=1

[ηi�Ω0]ti +
1

2

N∑
i,j=1

[H(ηi�ηj�Ω0)]titj +O(|t|3)(6.2)

where O(|t|3) denotes the terms in
⊕n

j=2H
n−j,j(M) of orders at least 3 in t.

Proof. Let us consider the Taylor expansion of ϕ(t), by Hodge theory,
we have

[Ωc(t)] = [Ω0]+

N∑
i=1

[H(ηi�Ω0)]ti +
∑
|I|≥2

[H(ϕI�Ω0)]tI +
∑
k≥2

1

k!

[
H(ϕ(t)k�Ω0)

]
.
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Since ηi�Ω0 is harmonic and that ϕI�Ω0 is ∂-exact for |I| ≥ 2, we have

[Ωc(t)] = [Ω0] +

N∑
i=1

[ηi�Ω0]ti +
∑
k≥2

1

k!

[
H(ϕ(t)k�Ω0)

]
.

It is obvious that the degree two terms in
∑

k≥2
1
k!

[
H(ϕ(t)k�Ω0)

]
is given

by

1

2

N∑
i,j=1

[H(ηi�ηj�Ω0)]titj .

�

6.2. Weil-Petersson geometry of the Teichmüller space of
Calabi-Yau. Let (M,L) be a polarized Calabi-Yau manifold. Recall that
a basis of the quotient space (Hn(M,Z)/Tor)/m(Hn(M,Z)/Tor) is called
a level m structure on the polarized Calabi-Yau manifold with m ≥ 3. It is
a well-known fact that there is a quasi-projective space Zm parameterizing
the polarized Calabi-Yau manifold with level m structure. We define the Te-
ichmüller space T to be the universal cover of the base space Zm. One can
look at [28, 19] for more details about the construction of the Teichmüller
space T .

Proposition 6.2. The Teichmüller space T is a simply connected
smooth complex manifold, and there is a versal family U → T containing M
as a fiber, is local Kuranishi at each point of the Teichmüller space T .

Let p ∈ T , we denote the corresponding polarized Calabi-Yau manifold
by (M,L). Then the holomorphic tangent space of T at p is given by

H
1
L(M,T 1,0M) = {ϕ ∈ H

1(M,T 1,0M), [ϕ�ω] = 0},

where ω is any Kähler form in the polarization L. Clearly, we have

H
1
L(M,T 1,0M) = H

1(M,T 1,0M)

by the condition H2(M,OM ) = 0 in the definition of Calabi-Yau manifold.
By Theorem 3.8, there is a normal coordinate t in the neighborhood U

of p, such that t(p) = 0. The Weil-Petersson metric of the Teimüller space
T in local coordinate (U, t) is given by

gWP
ij

= − ∂2

∂ti∂tj
log Q̃(Ωc(t),Ωc(t)),

where Q̃(·, ·) = (
√
−1)nQ(·, ·) and Q is the Poincaré bilinear form

Q(σ, τ) = (−1)
n(n−1)

2

∫
M

σ ∧ τ.

for any d-closed forms σ, τ on M .
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By using the definition of Ωc(t) and the expansion formula (6.2), one
can show that

gWP
ij

= δij + δij

N∑
k=1

tktk + titj −
N∑

r,s=1

qir,jstrts +O(|t|3),(6.3)

where qir,js = Q̃(H(ηi�ηr�Ω0),H(ηj�ηs�Ω0)). Formula (6.3) immediately im-
plies that the Weil-Petersson metric is Kähler and the coordinate t is a
normal coordinate at t = 0.

Therefore, the Christoffel symbols at point t = 0 is zero, i.e. Γk
ij(0) = 0.

So the full curvature tensor at t = 0 is given by

RWP
ijkl

(0) =
∂2gWP

kl

∂ti∂tj
(0) = δijδkl + δilδkj − qik,jl.(6.4)

Note that the above expression of the Weil-Petersson curvature formula (6.4)
first appeared in [31].

Let ∇ be the Levi-Civita connection associated to the underlying Rie-
mannian metric g, and J be the complex structure of M .

Definition 6.3. An Hermitian manifold (M, g) is called locally Hermit-
ian symmetric if

∇R = 0 = ∇J.

If the metric is complete, then (M, g) is an Hermitian or locally Hermit-
ian symmetric space.

Proposition 6.4. Let T be the Teichmüller space of polarized and
marked Calabi-Yau manifolds and Ωc(t) the canonical form given by (6.1).

If the Weil-Petersson potential Q̃(Ωc(t),Ωc(t)) is a polynomial in terms of
the normal coordinate t, then T is locally Hermitian symmetric with respect
to the Weil-Petersson metric.

Proof. By the theorem of Nomizu and Ozeki [24], if ∇kR = 0 for some
positive integer k, then ∇R = 0. Therefore, if g is a Kähler metric on M , in
order to prove (M, g) is locally Hermitian symmetric, we only need to show
that ∇kR = 0 for some positive integer k.

If the Weil-Petersson potential Q̃(Ωc(t),Ωc(t)) only has finite terms, i.e.
it is a polynomial of the normal coordinate t = (t1, .., tN ), then the coeffi-
cients of the Weil-Petersson metric and its curvature tensor

gWP
kl

= − ∂2

∂tk∂tl
log Q̃(Ωc(t),Ωc(t))

RWP
ijkl

=
∂2gij

∂tk∂tl
− gpq

∂giq
∂tk

∂gpj
∂tl

is a polynomial in the variables t = (t1, .., tN , t1, ..., tN ). On the other hand,
from formula (6.3), the coordinate t is a normal coordinate at the point
t = 0. So we have that the Christoffel symbols at the point t = 0 vanish,
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i.e. Γk
ij(0) = 0. Thus at the point t = 0, the covariant derivative ∇jT = ∂jT

for any (0,m)-tensor T . Therefore, for a large enough integer k, we have
∇mR(0) = 0. Thus the Teichmüller space T is locally Hermitian symmetric
with respect to the Weil-Petersson metric. �

If the Weil-Petersson metric is complete, then as a consequence, we know
that the Teichmüller space T is an Hermitian symmetric space under the
assumption in the above theorem.

6.3. Canonical families on hyperkähler manifolds. First let us re-
call the definition of hyperkähler manifold. Let M be a compact and simply-
connected Kähler manifold of complex dimension 2n ≥ 4, if there exists a
non-zero holomorphic nondegenerate (2, 0)-form Ω2,0 on M , unique up to a
constant such that det(Ω2,0) �= 0 at each point x ∈ M and H1(M,OM ) = 0,
then M is called a hyperkähler manifold.

By its definition, the (2n, 0)-form ∧nΩ2,0 gives a nonzero holomorphic
section of canonical line bundle KM , hence KM is trivial. Similarly, we also
denote by T the Teichmüller space of the polarized hyperkähler manifolds.

First we review the following well-known result,

Proposition 6.5 (Bochner’s principle). On a compact Kähler Ricci-
flat manifold, any holomorphic tensor field (covariant or contravariant) is
parallel.

The proof rests on the following formula, which follows from a straight-
forward computation [4]: if τ is any holomorphic tensor field,

Δ(‖τ‖2) = ‖∇τ‖2.(6.5)

From this it follows immediately that τ is parallel.
For Ω2,0, by using the following formulas

(∂ψ)Ap,αBq
= (−1)p

∑
α

∇αψAp,Bq
,(6.6)

(∂
∗
ψ)Ap,Bq

= (−1)p+1
∑
α,β

gβα∇αψAp,βBq

and their conjugates, which can be found in [22], we obtain

∂(η�Ω2,0) = ∂η�Ω2,0, ∂
∗
(η�Ω2,0) = ∂

∗
η�Ω2,0,(6.7)

for η ∈ A0,k(M,T 1,0M). Therefore, the map ι given by

ι(ϕ) = ϕ�Ω0

is an isometry with respect to the Hermitian metrics on both spaces induced
by g. Moreover, ι preserves the Hodge decomposition.

Let us assume that {ηi}Ni=1 is an orthonormal basis H1
L(M,T 1,0M) with

respect to the Kähler Ricci-flat metric. Then we have the following result.
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Theorem 6.6. Fix p ∈ T , let (M,L) be the corresponding polarized hy-
perkähler manifold and Ω2,0 be a nonzero holomorphic nondegenerate (2, 0)-
form over M . Then in a neighborhood U of p, there exists a local canoni-
cal family of nondegenerate holomorphic (2, 0)-forms Ωc;2,0(t) = ρϕ(t)(Ω

2,0)
which defines a canonical family of (2, 0)-classes

[Ωc;2,0(t)] = [Ω2,0] +
N∑
i=1

[ηi�Ω2,0]ti +
1

2

N∑
i,j=1

[ηi�ηj�Ω2,0]titj .(6.8)

Proof. By using the Beltrami differentials ϕ(t) constructed in Theorem
3.8, we have

ρϕ(t)(Ω
2,0) = Ω2,0 +

N∑
i=1

ηi�Ω2,0ti +
1

2
(ηi�ηj�Ω2,0 + ϕ(ij)�Ω2,0)titj

+
∑
|I|≥3

(
ϕI�Ω2,0 +

1

2

∑
J+K=I

ϕJ�ϕK�Ω2,0

)
tI

In order to prove the expansion (6.8), we only need to show the following:

(a) ηi�Ω2,0 is harmonic for 1 ≤ i ≤ N ;
(b) For any multi-index I with |I| ≥ 2, ϕI�Ω2,0 is ∂-exact, which im-

plies that H(ϕI�Ω2,0) = 0;
(c) For any multiple-index J,K with |J | ≥ 2, H(ϕJ�ϕK�Ω2,0) = 0.

Indeed, (a) follows directly from the isomorphism (6.7) of two corre-
sponding Hodge theories, and that ηi is harmonic. As to (b), since Ω2,0 is a
nowhere vanishing holomorphic (2, 0)-form, we can define Ω∗2,0 ∈
Γ(M,∧2T 1,0M) by requiring Ω∗2,0�Ω2,0 = 1 pointwise on M . Actually, in a
coordinate chart {z1, z2, .., z2n}, we can assume

Ω2,0 =

2n∑
i,j=1

aijdz
i ∧ dzj , Ω∗2,0 =

2n∑
i,j=1

bij
∂

∂zi
∧ ∂

∂zj

with aij = −aji and bij = −bji. Then, if we define matrices A = (aij) and
B = (bij), then det(A) �= 0 and

〈Ω2,0,Ω∗2,0〉 =
2n∑
i,j

aijbij = tr(ABT ) = 1.

Therefore, locally, the matrix B can be defined by B = 1
2n(A

−1)T . It is
easy to check that this definition is independent of the local coordinates and
∇Ω∗2,0 = 0 by the Bochner’s principle. Then, by Theorem 3.8, we have

ϕI� ∧n Ω2,0 = ∂ψI , |I| ≥ 2,

which implies that

ϕI�Ω2,0 = ∧n−1Ω∗2,0�(ϕI� ∧n Ω2,0) = ∧n−1Ω∗2,0�∂ψI = ∂(∧n−1Ω∗2,0�ψI).
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As to (c), we first assume that H(ϕJ�ϕK�Ω2,0) = c · Ω2,0 for some con-
stant c, then we need to show c = 0.

From Hodge decomposition, we have

ϕJ�ϕK�Ω2,0 = c · Ω2,0 + dα1 + d∗α2

for α1 ∈ A1(M) and α2 ∈ A3(M). By Bochner principle 6.5, formulae (6.6)
and their conjugates, which can be found in [22], we obtain

dα1 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0 = d(α1 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0)

d∗α2 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0 = d∗(α2 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0) = 0.

Thus, we have

(ϕJ�ϕK�Ω2,0) ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0(6.9)

= c ∧n Ω2,0 ∧ ∧nΩ2,0 + d(α1 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0).

On the other hand, since

0 = ϕJ�
(
(ϕK�Ω2,0) ∧ ∧nΩ2,0

)
= (ϕJ�ϕK�Ω2,0) ∧ ∧nΩ2,0 + (ϕK�Ω2,0) ∧ (ϕJ� ∧n Ω2,0)

we have∫
M
(ϕJ�ϕK�Ω2,0) ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0

= −
∫
M
(ϕJ� ∧n Ω2,0) ∧ (ϕK�Ω2,0) ∧ ∧n−1Ω2,0

= −
∫
M

∂ψJ ∧ (ϕK�Ω2,0) ∧ ∧n−1Ω2,0 (since ϕK�Ω2,0 is ∂-exact)

= −
∫
M

∂(ψJ ∧ (ϕK�Ω2,0) ∧ ∧n−1Ω2,0)

= −
∫
M

d(ψJ ∧ (ϕK�Ω2,0) ∧ ∧n−1Ω2,0)

where in the last “=”, we have used that

ψJ ∧ (ϕK�Ω2,0) ∧ ∧n−1Ω2,0

is a (2n− 1, 2n)-form which is ∂-closed.
Therefore, by using Stokes formula and formula (6.9), we obtain

0 =

∫
M
(ϕJ�ϕK�Ω2,0) ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0 = c ·

∫
M

∧nΩ2,0 ∧ ∧nΩ2,0.

So we have c = 0. The proof is completed. �

Again assume that {ηi}Ni=1 is an orthonormal basis H1
L(M,T 1,0M) with

respect to the Kähler Ricci-flat metric, and let Ω = ∧nΩ2,0. The we deduce
the following corollary.
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Corollary 6.7. Fix p ∈ T , let (M,L) be the corresponding polarized
hyperkähler manifold and Ω2,0 the nondegenerate holomorphic two form over
M . then in a neighborhood U of p, then there exists a canonical family of
holomorphic (2n, 0)-forms Ωc(t) = ρϕ(t) (Ω) which defines a canonical family
of (2n, 0)-classes

[Ωc(t)]=[Ω]+
N∑
i=1

[ηi�Ω]ti + · · ·+ 1

(2n)!

N∑
i1,..,i2n=1

[ηi1� · · ·�ηi2n�Ω]ti1ti2 · · · ti2n .

Proof. First, we know that the harmonic projection on M , H(ρϕ(t)(Ω))

∈ H
2n,0(Mt) and H(ρϕ(t)(Ω

2,0)) ∈ H
2,0(Mt). Then, we have

H(∧n
H(ρϕ(t)(Ω

2,0))) ∈ H
2n,0(Mt).

Since dimH
2n,0(Mt) = 1, there exists λ ∈ C such that

H(ρϕ(t)(Ω)) = λH(∧n
H(ρϕ(t)(Ω

2,0))).

On the other hand, by Theorem 6.6, we have

PrH2n,0(M)(H(ρϕ(t)(Ω))) = PrH2n,0(M)(H(∧n
H(ρϕ(t)(Ω

2,0))) = Ω.

Hence λ = 1, and we obtain

[Ωc(t)] = [ρϕ(t)(Ω)] =

⎡⎣∧n

⎛⎝Ω2,0 +

N∑
i=1

ηi�Ω2,0ti +
1

2

2N∑
i,j=1

(ηi�ηj�Ω2,0)titj

⎞⎠⎤⎦
= [Ω]+

N∑
i=1

[ηi�Ω]ti + · · ·+ 1

(2n)!

N∑
i1,..,i2n=1

[ηi1� · · ·�ηi2n�Ω]ti1ti2 · · · ti2n

which is a polynomial in terms of the coordinate t = (t1, t2, ..., tN ). �

As a direct consequence of the Proposition 6.4, we obtain

Corollary 6.8. The Teichmüller space T of polarized and marked hy-
perkähler manifold is locally Hermitian symmetric with the Weil-Petersson
metric.

7. Solving the Beltrami equations

In this section, we briefly review a global method given in [21] to solve
the Beltrami equation by using the L2-Hodge theory on complete manifolds.

7.1. L2-Hodge theory on Poincaré disk. First, it is not hard to
show that the L2-Hodge theory [13] holds on the disk D with Poincarè
metric gP . So there exists a bounded operator G on Lp,q

2 (D, gP ), called the
Green operator such that

(7.1) �∂G = G�∂ = I −H,HG = GH = 0,
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Moreover, the Poincaré metric is Kähler, we have the identity

�∂ = �∂ =
1

2
Δd.(7.2)

We consider the operator

T = ∂
∗
G∂

in L2-Hodge theory. Therefore we have the following quasi-isometry formula
in L2-Hodge theory. Its proof is completely the same as in the case for
compact Kähler manifold as given in Section 2.

Proposition 7.1. For g ∈ Dom(∂) ⊂ Lp,q
2 (D, gP ), we have that

‖Tg‖2 ≤ ‖g‖2.

Proposition 7.1 tells us that T is an operator of norm less than or equal
to 1.

7.2. Beltrami equations. Beltrami equations are very important in
the development of complex analysis and moduli theory of Riemann surfaces.
It also has many important applications in other subjects. There is a huge
literature on the topic. See, for examples [1], [3] and [9]. In particular the
construction by Ahlfors in [1] depends on rather deep analysis and estimate
of Calderón-Zygmund. The method of [3] is by using local integral operators
and their regularity theory. Our method is global in the sense that we use
L2-Hodge theory.

Given a measurable function μ0 on the unit disc D ⊂ C, suppose
sup |μ0| < 1, let μ = μ0

∂
∂z ⊗ dz be a Beltrami differential on D with coordi-

nate z. Recall that solving the Beltrami equation is equivalent to finding a
function f on the unit disc D, such that

∂f = μ∂f.

Our observation is that the Beltrami equation can be solved by using the
L2-Hodge theory and quasi-isometry Proposition 7.1 with the same method
as in Section 5.

Note that the L∞-norm of μ is independent of the Hermitian metric on
D and is equal to sup |μ0|, i.e. ‖μ‖∞ < 1. Similarly, we show that for a
holomorphic one form h0 on D, the equation

∂h = −∂μh

has a solution

h = (I + Tμ)−1h0.(7.3)

As a corollary we can directly get a solution of the Beltrami equation for
any measurable μ0. In particular, we have,



274 KEFENG LIU AND SHENGMAO ZHU

Theorem 7.2. Assume that ||μ||∞ = sup |μ0| < 1, if μ0 is of regularity
Ck, then the Beltrami equation

∂f = μ∂f

has a solution of regularity Ck+1.

Proof. First note that the solution h is a (1, 0)-form of regularity Ck

on D. Recall the definition of the map ρ in formula (5.1), it follows that

d(ρμ(h)) = ∂h+ ∂μh = 0.

According to Poincaré lemma, there is a function f of regularity Ck+1

on D, such that

ρμ(h) = df = ∂f + ∂f.

Since

ρμ(h) = h+ μh,

by considering the types, we obtain

h = ∂f and μh = ∂f.

Therefore

∂f = μ∂f. �

8. Conclusions and generalizations

Our method have several generalizations and interesting geometric ap-
plications. First, the method used in Section 3 can be applied to treat the
deformation theory of many other structures, such as pseudogroup struc-
tures [15], holomorphic vector bundles [7], and general differential graded
Lie algebra [8] etc.

In [21], by using the construction briefly reviewed in Section 5, we pro-
vide a closed formula for certain canonical sections of Hodge bundles on
marked and polarized moduli spaces of projective manifolds. Especially, for
the case of Teichmüller space of Riemann surface, this gives a very clean
formula which should have applications in geometry of moduli space of Rie-
mann surfaces. Furthermore, although we only consider canonical form i.e.
holomorphic (n, 0)-forms in this paper (cf. Section 5), our method also works
for a general (p, q)-form σ0 with dσ0 = 0. In [32], we construct the variation
formula for d-closed (p, q)-forms on compact complex manifolds with mild
condition which simplifies the approach in [25].

Finally, an interesting problem is to prove the invariance of plurigenera
for compact Kähler manifolds [26] by using the method in Section 4.
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