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Abstract. We show that the non-gravitational sectors of certain 6d
and 5d supergravity theories can be decomposed into superconformal
field theories (SCFTs) which are coupled together by pairwise identify-
ing and gauging mutual global symmetries. In the case of 6d supergrav-
ity, we consider F-theory on compact elliptic Calabi-Yau 3-folds with
base B = T 4/Zn × Zm and we show in many examples that the non-
gravitational field theory sectors can be described as configurations of
coupled 6d (1, 0) SCFTs. We also conjecture that the effective 2d (0, 4)
SCFTs living on the self-dual strings of the 6d theories lead to holograph-
ically dual descriptions of type IIB string theory on AdS3 ×S3 ×B and
moreover that their elliptic genera can be used to compute the degen-
eracies of 5d spinning BPS black holes along with all-genus topological
string amplitudes on the corresponding compact 3-fold. In the case of
5d supergravity, we consider M-theory on compact Calabi-Yau 3-folds
and using similar ideas as in the 6d case we show the complete non-
gravitational sector of 5d supergravity theories can be decomposed into
coupled 5d N = 1 SCFTs. Furthermore, using this picture we propose
a generalized topological vertex formalism which, excluding some curve
classes, seems to capture all-genus topological string amplitudes for the
mirror quintic.
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1. Introduction

There has been quite a bit of progress recently in understanding N =
(1, 0) supreconformal field theories (SCFTs) in six dimensions [1, 2, 3]. 6d
(1, 0) SCFTs arise as the low energy effective descriptions of F-theory on
non-compact elliptic Calabi-Yau (CY) 3-folds. It is natural to ask whether
these advances in our understanding of the 6d SCFTs lead to a deeper un-
derstanding of the compact case, namely F-theory on compact CY 3-folds.
One goal of this paper is to give an affirmative answer to this question at
least for a special class of elliptic 3-folds where the base B of F-theory is
B = T 4/Zm × Zn, extending the work in [4]. In particular, we are able
to identify the full non-gravitational sector of the resulting 6d (1,0) super-
gravity theories in terms of 6d (1, 0) SCFTs—it turns out that the non-
gravitational dynamics of these theories can be described in terms of collec-
tions of 6d SCFTs coupled together by gauging their global symmetries in
a specific manner. We confirm these results by checking gauge and gravita-
tional anomaly cancellation for these models along with the fact that the
lattice associated to the 6d self-dual strings is both of the correct signature
(1, T ) (where T is the number of tensor multiplets) and self-dual, as should
be the case.

One of the successes of recent work on 6d (1, 0) SCFTs is an improved un-
derstanding of the strings charged under the tensor multiplets. These strings
are described at low energy by N = (0, 4) supersymmetric quantum field
theories in 2d. In particular for a large number of them, concrete gauge theo-
ries have been proposed and checked in multiple ways [5, 6, 7, 8, 9, 10, 11].
It is natural to ask what can be learned from these strings in the case of
F-theory on a compact 3-fold, where the strings belong to the spectrum of a
6d (1,0) supergravity theory rather than an SCFT. This question has been
raised and discussed in [12] (see also [13]). It was proposed that for any
F-theory model on an elliptic 3-fold with compact base B, the correspond-
ing strings are holographically dual to AdS3×S3×B. Moreover the elliptic
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genus of the strings leads to a count of 5d black holes, obtained by compacti-
fying the 6d theory on a circle and considering strings wrapped on the circle
carrying Kaluza-Klein (KK) momenta. However an explicit description of
such strings in terms of concrete 2d (0, 4) supersymmetric field theories is
in general unknown. The central charge of these 2d systems is enough to
capture the black hole entropy to leading order for large KK momentum.
For the examples we consider, where B = T 4/Zm × Zn, we show from the
associated anomaly polynomials that the resulting strings indeed lead to the
correct central charges expected from the black hole entropy. Furthermore,
for the specific case of B = T 4/Z2×Z2 we are able to identify a concrete 2d
(0, 4) quiver gauge theory which has many, but not all, of the needed ingre-
dients. The fact that this quiver model correctly reproduces the anticipated
central charge is a strong indication that the model is close to the correct
one. An important indication that some features are missing is the fact that
the proposed gauge theory has more symmetries than expected from the
corresponding strings. This suggests that perhaps some suitable modifica-
tion of these quiver gauge theories leads to the correct (0, 4) theory living on
the corresponding strings. This also implies that computing the correspond-
ing spinning BPS black holes states, which are also captured by all-genus
topological string amplitudes, is related to computing the elliptic genus of
a suitably modified version of these 2d gauge theories. In other words, the
all-genus topological string amplitudes for the CY 3-fold T 6/Z2 × Z2 (with
Hodge numbers (h1,1, h2,1) = (51, 3)) can be computed using the elliptic
genus of the proposed theory. An important consistency check is that these
elliptic genus computations reproduce the expected asymptotic degeneracy
for spinning black holes.

The basic ingredient in the identification of the 6d field theory sector of
our models is the observation that local elliptic 3-folds with base of the form
B = C

2/Zn × Zm, which look like local patches of the compact base T 4/Zn×
Zm, can be related to 6d (1, 0) SCFTs [14]. This geometric observation has a
very natural field theoretic interpretation: the non-gravitational sector of the
corresponding supergravity theory can be obtained by “stitching” together
these SCFTs, where the stitching corresponds to additional gauging of global
symmetries.

Motivated by the power of 6d SCFTs in capturing compact topological
string amplitudes, we find it is possible to use 5d SCFTs very much in
the same spirit, and taking inspiration from some of the constructions in
[15], we introduce an approach which appears to capture a large part of the
associated topological string amplitudes for a class of compact Calabi-Yau
3-folds. In particular, for the mirror of the quintic 3-fold we propose that the
all-genus amplitudes for topological strings, excluding those associated to a
finite list of curve classes, can be computed by viewing the mirror quintic
as 10 copies of the 5d SCFT T5 whose global symmetries are gauged by 10
SU(5) gauge groups.
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Our computational methodology entails generalizing the standard notion
of the topological vertex (+) to include its mirror (−), and further gener-
alizing these two types of vertices by appending an additional integer N ,
leading to the notions of N− vertices and speculatively, N+ vertices (note
that the 1− vertex was already studied in [16], and the groundwork for the
N− vertices was pursued in [15].) However, it turns out that straightforward
application of the N− vertices is not enough to describe the mirror quintic
and that an additional modification of the vertex formalism is required. To
circumvent this problem, we apply a modification of the generalized vertex
formalism described above to a closely related geometry which in certain loci
is essentially a complex structure deformation of the local geometry of the
mirror quintic. Remarkably, this additional modification appears to compute
all-genus topological string amplitudes for the mirror quintic with the excep-
tion of invariants associated to a finite list of curve classes. The invariants
predicted by this modified formalism agree with independent mathematical
computations of the same invariants for curve classes of low degree; further-
more, our modified formalism makes numerous predictions for invariants
which have yet to be computed by other means.

The organization of this paper is as follows. In Section 2 we review some
basic features of F-theory on compact elliptic CY 3-folds in order to intro-
duce the 6d perspective on compact 3-folds. In Section 3 we present our
orbifold models, including a discussion of the associated AdS3 × S3 × B
holography, as well as connections with black hole entropy and topological
strings. In Section 4 we present a 5d perspective on compact CY 3-folds and
apply this perspective to the computation of topological string amplitudes
in the specific example of the mirror quintic. In Section 5 we present our
conclusions. In Appendix A we describe the geometry of the resolved mirror
quintic. Appendix B summarizes the structure of Kähler parameters and
framing factors for a trivalent SU(5) gauging in a particular phase. In Ap-
pendix C we compute the triple intersection numbers of the mirror quintic
using its decomposition into local 3-folds associated to 5d field theories.

2. F-theory review

We begin by reviewing some properties of F-theory compactifications on
elliptically fibered Calabi-Yau 3-folds which are used in later sections.

2.1. 6d supergravity and compact elliptic 3-folds. F-theory com-
pactified on an elliptically fibered CY 3-fold X yields a 6d supergravity the-
ory with eight supercharges as a low energy effective field theory [17, 18, 19].
X has an elliptic fibration over a complex surface B and may be described
by a Weierstrass equation1

(2.1) y2 = x3 + f(s, t)x+ g(s, t),

1It is also possible to consider an F-theory compactification on X which has a torus
fibration without a section [20].
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where x, y, s, t are complex coordinates on a local patch. Globally, f and g
are sections of line bundles O(−4KB) and O(−6KB) respectively where KB

is the canonical divisor of the base B. The elliptic fiber degenerates along
the discriminant locus where the discriminant Δ vanishes. The discriminant
of the Weierstrass equation (2.1) is given by

(2.2) Δ = 4f3 + 27g2,

which is a section of a line bundle O(−12KB). The discriminant locus is
a complex curve inside the base B. Physically, the discriminant locus is a
location of 7-branes in type IIB string theory. When we do not consider 6d
theories with enhanced supersymmetry, the base B is either an Enriques
surface, a blow up of P2, Hirzebruch surface Fn or a surface with orbifold
singularities whose resolution gives one of the geometries above [19, 21, 22].

A specific choice of the sections f and g of the base B may lead to a
configuration where several 7-branes are put on top of each other. In this
case, the worldvolume theory on the 7-branes can support a non-abelian
gauge algebra g. In terms of the geometry, the non-abelian gauge theory is
realized by having singularities over a complex curve on which the 7-branes
are wrapped. The type of the singularities characterizes the gauge algebra
g of the worldvolume theory on the 7-branes. The singularity type is clas-
sified by the Tate’s algorithm using the Tate form of the above Weierstrass
equation [23, 24]

(2.3) y2 + a1(s, t)xy + a3(s, t)y = x3 + a2(s, t)x
2 + a4(s, t)x+ a6(s, t).

Suppose N 7-branes are wrapped on a curve C in B and the defining equa-
tion of C is given by σ(s, t) = 0 on a local patch. The discriminant (2.2) on
the local patch can be written as

(2.4) Δ = σNY

where Y is a residual polynomial of the discriminant. The lowest order of
σ in a1, a2, a3, a4, a6 may fix the singularity type or equivalently the non-
abelian gauge algebra g for the worldvolume theory of the 7-branes.2 On the
other hand, an abelian gauge algebra requires an additional section for the
elliptic fibration of X [19, 25]. The number of abelian gauge factors is equal
to the rank of the Mordell-Weil group.

Let us consider the case when 7-branes are wrapped on a smooth curve
C and there is a simply laced non-abelian gauge algebra g on the 7-branes.
First, we note that if C is a genus g curve, then we have g hypermultiplets
in the adjoint representation [26]. On the curve C, which carries singular
fibers associated to the simply laced non-abelian gauge algebra g, there can
be a special point where the singularity is enhanced. Physically, this special
point is a point of intersection between the 7-branes wrapping C and another
configuration of 7-branes. Then there is charged matter localized at this

2When g = so(4k + 4), (k = 1, 2, · · · ), we need an extra condition for the defining
equation.
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intersection point. If the enhanced singularity is associated to a non-abelian
gauge algebra g′ ⊃ g⊕ h, then the representation of the charged matter can
be determined from the embedding of g into g′ [23, 27]. Namely, we consider
a decomposition of the adjoint representation of g′ under g

(2.5) adj(g′) = adj(g) + dim (adj(h))1+
∑
i

(ri + r̄i).

Then ri appearing in (2.5) is the representation of the localized matter.3

The number of the intersection points where the singularity is enhanced to
the type g′ is related to the number of hypermultiplets in the representation
ri. The charged matter may also acquire a vacuum expectation value (vev),
which breaks the gauge symmetry associated to g. This corresponds to con-
sidering more generic polynomials for a1, a2, a3, a4, a6 on a local patch of B,
and the maximally Higgsed phase is realized by the most generic polynomials
for a1, a2, a3, a4, a6 for a given choice of base.

Charged matter for a non-simply laced gauge algebra arises in a subtler
fashion. A non-simply laced gauge algebra g is realized by acting with an
outer automorphism on a degenerated fiber associated to a simply laced
gauge algebra g̃ on C. Due to a decomposition of the adjoint representation
of g̃ under g

(2.6) adj(g̃) = adj(g) +
∑
i

(d− 1)ri,

there may be hypermultiplets in the representation ri of g. In order to see
their number, one may consider a branched cover C̃ of C with degree d.
Then the number of hypermultiplets in the representation ri is given by
[28]

(2.7) nri = (d− 1)(g − 1) +
1

2
deg(R),

where g is the geometric genus of C and R is the ramification divisor
of C̃.

Moreover if a curve C on which 7-branes are wrapped is singular, there
could be some additional matter with a novel representation from the singu-
lar points [29, 30]. For example, when C supports an su(N) gauge algebra
and has an ordinary double point singularity, it may give rise to a symmetric
and antisymmetric hypermultiplet.

In a maximally Higgsed phase, there may be still some unbroken non-
abelian gauge symmetry. In other words, some singular fibers may remain
over a curve in B. Geometrically it is possible to resolve these singularities by
introducing exceptional divisors via a blowup. The elliptically fibered 3-fold
X becomes a smooth manifold X̃ after the resolution. In fact, the resolved
phase does not exist in F-theory on X. To see this, we consider the duality

3This methods may not fix uniquely the matter representation when there are several
embeddings of g into g

′. For example, there are two inequivalent embeddings of su(8)
into e8.
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between F-theory and M-theory: F-theory compactified on X×S1 is dual to
M-theory compactified on the same X [17]. It is indeed possible to consider

an M-theory compactification on the resolved 3-fold X̃. However, the 6d limit
is a decompactification limit of the S1 which corresponds to a limit where
the size of the elliptic fiber in X̃ of the M-theory compactification vanishes.
Hence, the effect of the resolution disappears in the 6d limit. Nevertheless,
the resolution is useful for determining matter representations and other
physical data.

So far we have seen how the singularity structure of X determines the
gauge algebra on 7-branes and also charged matter localized to intersections
between 7-branes. We can also see the relation between the number of mul-
tiplets in a 6d supergravity obtained by an F-theory compactification on
X and the number of moduli of the resolved 3-fold X̃. A 6d supergravity
theory with eight supercharges has a gravity multiplet, tensor multiplets,
vector multiplets, and hypermultiplets. Let the numbers of tensor multi-
plets, vector multiplets, and hypermultiplets be T , V , and H respectively.
On the other hand, an elliptically fibered 3-fold X̃ has Kähler and complex
structure moduli. Their numbers are related to the Hodge numbers of X̃: the
number of Kähler moduli is h1,1(X̃) and the number of complex structure

moduli is h2,1(X̃). The Hodge numbers of X̃ can be expressed in terms of
T , V , and H.

Strings in a 6d supergravity theory couple to anti-self-dual two-forms in
tensor multiplets and a self-dual two-form in a gravity multiplet. From the
F-theory viewpoint, strings are given by D3-branes wrapped on two-cycles
in B. The string charges satisfy a Dirac pairing and the signature (1, T )
string charge lattice is identified with H2(B,Z). It follows that the number
of tensor multiplets is given by4

(2.8) T = h1,1(B)− 1.

Geometrically, the subtracted contribution in the above expression corre-
sponds to the Kähler modulus which controls the overall size of the
base B.

In order to see other relations, we consider a T 2 compactification of the
6d theory. The dimensional reduction yields a 4d N = 2 theory. The dimen-
sional reduction splits the 6d gravity multiplet into a 4d gravity multiplet
and two 4d abelian vector multiplets. The 6d tensor multiplet reduces to
a 4d abelian vector multiplet. The 6d vector multiplet and hypermultiplet
become a 4d vector multiplet and hypermultiplet respectively. On the other
hand, F-theory compactified on X ×T 2 is dual to type IIA string theory on
X and is described at low energy by 4d N = 2 supergravity. At a generic
point of the Coulomb branch, there are only abelian gauge symmetries and

4When B is either an Enriques surface, a blow up of P2, or Hirzebruch surface Fn, we
have h2,0(B) = 0.
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Table 1. The normalization constants λI for simple algebras

g su(N) so(N) usp(2N) g2 f4 e6 e7 e8

λ 1 2 1 2 6 6 12 60

the low energy effective field theory is given by type IIA supergravity the-
ory on the resolved 3-fold X̃. In this case, dimensional reduction implies the
number of abelian vector multiplets is h1,1(X̃) and the number of massless

hypermultiplets neutral under the abelian gauge symmetries is h2,1(X̃) + 1.
Let r(V ) be the number of 6d vector multiplets in the Cartan subalgebra
and let H0 be the number of 6d hypermultiplets neutral under the Cartan.
The duality with type IIA string theory then yields relations

r(V ) + T + 2 = h1,1(X̃),(2.9)

H0 = h2,1(X̃) + 1.(2.10)

The additional contribution in (2.10) geometrically corresponds to the
Kähler modulus controlling the overall size of B which is subtracted in (2.8).
Combining (2.9) with (2.8) gives

r(V ) = h1,1(X̃)− h1,1(B)− 1.(2.11)

The numbers of 6d vector multiplets and hypermultiplets charged under
the Cartan subalgebra can be determined from the singularity structure as
explained before.

2.2. Anomaly cancellation. 6d supergravity theories may have
anomalies which are characterized by the anomaly polynomial 8-form
I8(R,F ) where R and F are the spacetime and the Yang-Mills curvatures
respectively. The 6d gravitational, non-abelian gauge, and mixed gauge-
gravitational anomalies can be cancelled by the Green-Schwarz mechanism
[31, 32, 33] provided the anomaly polynomial factorizes as [34, 29, 35]

(2.12) I8 =
1

2
ΩαβX4,αX4,β .

In the above expression Ωαβ is a symmetric bilinear form with a signature
(1, T ) and the 4-form X4,α is given by

(2.13) X4,α =
1

2
aα trR

2 +
∑
I

bI,α

(
2

λI
trF 2

I

)
,

where I labels simple algebras gI of the 6d gauge theory, a, bI are vectors
in R

1,T , and λI are the normalization constants for the gauge algebras gI
given in Table 1. Notice the number of bI does not necessarily agree with the
dimension of the vector space R1,T . Anomaly cancellation via (2.12) implies
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the following conditions:

H − V = 273− 29T(2.14)

0 = Badj,I −
∑
RI

nRI
BRI

,(2.15)

a · a = 9− T,(2.16)

a · bI =
1

6
λI

⎛
⎝Aadj,I −

∑
RI

nRI
ARI

⎞
⎠ ,(2.17)

bI · bI = −1

3
λ2
I

⎛
⎝Cadj,I −

∑
RI

nRI
CRI

⎞
⎠ ,(2.18)

bI · bJ = λIλJ

∑
RI ,R

′
J

nRIR
′
J
ARI

AR′
J
, I �= J,(2.19)

where Ωαβ is used for the inner products a · a, a · bI , bI · bI , bI · bJ . Here
AR, BR, CR are defined through

trR F 2 = AR trF 2,(2.20)

trR F 4 = BR trF 4 + CR

(
trF 2

)2
.(2.21)

nRI
is the number of hypermultiplets in the representation RI of gI and

nRIR
′
J
is the number of hypermultiplets in the representation (RI , R

′
J) of

gI ⊕ g′J . In fact the anomaly cancellation conditions (2.16)–(2.19) imply
that these inner products are all integers5 [35] and hence the vectors a and
bI form an integral lattice Λ.

In the context of F-theory, Ωαβ, aα, bα are given by geometric data [29,
37, 35]. First note that the self-intersection number of the canonical divisor
in B is always given by

(2.22) K2
B = 10− h1,1(B).

By using (2.8) we can write (2.22) as

(2.23) K2
B = 9− T.

Since the right hand side of (2.23) is exactly the same as the right hand side
of (2.16), we obtain the relation

(2.24) K2
B = a · a.

Therefore, we can naturally identify the vector a with the canonical divisor
KB, and the symmetric bilinear form Ωαβ with the intersection form in
H2(B,Z). From (2.19), the inner product bI · bJ is related to the number of
charged hypermultiplets which arise at the intersections between 7-branes.

5The integrality condition of (2.18) automatically implies the absence of global gauge
anomalies for su(2), su(3), g2 [36].
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When 7-branes wrapped on a curve CI supports the gauge algebra gI , it can
be shown that [29, 38, 28]

(2.25) bI · bJ = CI · CJ .

Then it is natural to identify the vector bI with the divisor class CI in
H2(B,Z) on which the 7-branes are wrapped. Since I labels simple gauge
factors, we associate CI to bI when there is some non-abelian gauge sym-
metry on 7-branes wrapping CI . These results are also consistent with the
fact that the string charge lattice is identified with H2(B,Z). The integral-
ity of the inner products of vectors a, bI is automatic from the F-theory
viewpoint since they are intersection numbers between divisors. The maps
a → KB, bI → CI now induce a lattice embedding Λ ↪→ H2(B,Z).

Let us give an expression for the canonical divisor in terms of a basis for
H2(B,Z). We denote a basis of H2(B,Z) by C̃α, (α = 1, · · · , 1 + T ). Then
the canonical divisor can be expressed as

(2.26) KB =
∑
α

aαC̃
α.

The adjunction formula relates the genus gβ of Cβ =
∑

α δ
β
αC̃α with inter-

section numbers by

2gβ − 2 = KB · Cβ +
(
Cβ
)2

=
∑
α

Ωβαaα +
(
Cβ
)2

,(2.27)

where C̃α · C̃β = Ωαβ. Therefore aα is given by

(2.28) aα =
∑
β

(Ω−1)αβ(2g
β − 2−

(
Cβ
)2

).

2.3. 6d SCFTs and LSTs as non-compact limits of compact 3-
folds. So far we have focused on compactifications of F-theory on compact
elliptically fibered CY 3-folds. It is possible to take a decompactification
limit of the base B with some curves in B kept compact. In this case, grav-
ity is decoupled from the resulting low energy effective field theory. After
the decompactification limit, there may be several disconnected collections
of curves, giving disconnected field theories. We will focus on one connected
configuration which gives a single theory. As discussed in [39] the decom-
pactification limit leads to two possible cases: one case is that the intersec-
tion matrix of curves in H2(B,Z) is negative definite and the other case is
that the intersection matrix is negative semidefinite with a one-dimensional
eigenspace with a zero eigenvalue. The former yields a 6d theory with a con-
formal fixed point and the latter gives a little string theory (LST). When
the intersection matrix is negative definite, it is possible to contract all the
curves. Physically, this corresponds to turning off all the vevs for scalars in
tensor multiplets and hence the 6d theory reaches a conformal fixed point
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Table 2. Non-Higgsable clusters with an isolated curve

self-intersection −3 −4 −5 −6 −7 −8 −12
gauge su(3) so(8) f4 e6 e7 e7 e8

hyper – – – – 1
256 – –

Table 3. Non-Higgsable clusters with two or three curves.
In the second example, no gauge algebra is supported on the
rightmost curve with self-intersection −2

self-intersection −3,−2 −3,−2,−2 −2,−3,−2
gauge g2 ⊕ su(2) g2 ⊕ sp(1) su(2)⊕ so(7)⊕ su(2)

hyper 1
2(7+ 1,2) 1

2(7+ 1,2) 1
2(2,8,1)⊕

1
2(1,8,2)

characterized by the appearance of tensionless strings (coming from D3-
branes wrapped on shrinking two-cycles.) On the other hand, when the
intersection matrix is negative semidefinite, a curve associated to the null
direction corresponds to a non-contractible curve. In this case, the volume
of the non-contractible curve is controlled by the vev of a scalar in a non-
dynamical tensor multiplet. The vev is related to a dimensionful parameter
of the LST, namely the tension of a little string.

Then, classifying 6d SCFTs or LSTs in a maximally Higgsed phase
amounts to classifying possible sets of curves which yield a negative defi-
nite or a negative semidefinite intersection matrix [1, 2, 39]. In fact, these
configurations of curves can be obtained by gluing “non-Higgsable clusters”
[40]. The list of the non-Higgsable clusters associated with an isolated curve
is given in Table 2. The local geometry of the non-Higgsable clusters is a line
bundle O(−n) over P

1 with n = 3, 4, 5, 6, 7, 8, 12. We refer to the theories
as O(−n) theories. Note that some gauge symmetries are still unbroken in
the maximally Higgsed phase. There are additional non-Higgsable clusters
with more than one curve, as displayed in Table 3. The intersection num-
bers between curves with non-Abelian gauge algebras for the non-Higgsable
clusters in Table 2 and Table 3 satisfy the gauge anomaly cancellation con-
ditions (2.18) and (2.19). For gluing the non-Higgsable clusters we use P

1’s
with self-intersection −1. Namely, we insert P

1’s with self-intersection −1
between sets of curves describing non-Higgsable clusters. The local geometry
used for the gluing, which is a line bundle O(−1) over P1, also leads to a 6d
SCFT called the E-string theory.

2.4. Decomposing orbifolds of T 6 into non-compact 3-folds. A
number of elliptically fibered CY 3-folds can be realized as toroidal orb-
ifolds, including non-compact 3-folds which realize some of the SCFTs and
LSTs described in the previous subsection, as well as compact 3-folds of the
form T 6/Γ which realize 6d (1, 0) supergravity theories. The geometric rela-
tionship between these various constructions is instrumental in developing
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Table 4. Generators of Γ = Zm × Zn

Γ = Zm × Zn (v1, v2, v3) for Zm (v1, v2, v3) for Zn

Z2 × Z2
1
2(−1, 1, 0) 1

2(−1, 0, 1)

Z2 × Z4
1
2(−1, 1, 0) 1

4(−1, 0, 1)

Z2 × Z6
1
2(−1, 1, 0) 1

6(−1, 0, 1)

Z3 × Z3
1
3(−1, 1, 0) 1

3(−1, 0, 1)

Z3 × Z6
1
3(−1, 1, 0) 1

6(−1, 0, 1)

Z4 × Z4
1
4(−1, 1, 0) 1

4(−1, 0, 1)

Z6 × Z6
1
6(−1, 1, 0) 1

6(−1, 0, 1)

the perspective that the non-gravitational sector of certain 6d (1, 0) super-
gravities is captured by configurations of 6d SCFTs. Since we study several
examples of toroidal orbifolds in depth in Section 3, we pause briefly here
to summarize their basic characteristics.

A six torus T 6 can be constructed from a lattice L with an identification

(2.29) x ∼ x+ v, v ∈ L,

where x ∈ R
6. Namely, T 6 is a quotient R6/L. We then consider a quotient

of T 6 by a point group Γ for obtaining an orbifold. The point group must be
an automorphism of the lattice L. We focus on only abelian point groups.
In order for the orbifold to be a CY 3-fold (with an SU(3) holonomy), the
point group Γ should be a subgroup of SU(3). Let the complex coordinates
of T 6 be (z1, z2, z3). Then the orbifold action of g ∈ Γ is given by

(2.30) g : (z1, z2, z3) → (e2πiv1z1, e
2πiv2z2, e

2πiv3z3),

where gN = 1 for some integer N . Since Γ ⊂ SU(3), we require that

(2.31) v1 + v2 + v3 = 0.

The condition (2.31) together with the requirement that the point group is a
symmetry of the lattice imposes stringent constraints on the possible choices
of Γ. In fact, Γ needs to be either Zn with n = 3, 4, 6, 7, 8, 12 or Zm × Zn

where n is a multiple of m with m = 2, 3, 4, 6 [41, 42]. The orbifolds are
not smooth 3-folds due to the presence of fixed points and fixed lines. In
this paper we consider only a subset of all possible examples point groups
Zm × Zn examples; their orbifold actions are summarized in Table 4.

Having summarized the basic properties of compact toroidal orbifolds
T 6/Γ, we now turn our attention to orbifold realizations of some examples
of non-compact 3-folds, and we will shortly see how these non-compact orb-
ifolds can naturally be “stitched” together to form local descriptions of the
compact orbifolds. First, note that some of the non-Higgsable cluster the-
ories have an orbifold realization. Consider the 3-fold X = (T 2 × C

2)/Zn
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Figure 1. Conformal matter theories from elliptic CY
3-folds of T 2 × C

2/Zm × Zn.

[26, 14]. The orbifold action is given by

(2.32) (z1, z2, z3) → (ω2z1, ω
−1z2, ω

−1z3),

where ωn = 1. Note that z1 is a complex coordinates of T 2 and z2, z3 are
complex coordinates of C2. Since the orbifold action is an isometry of the
torus T 2, n is restricted to the values n = 2, 3, 4, 6, 8, 12. The n = 2 case
yields 6d N = (2, 0) SCFT of A1 type. On the other hand, n = 3, 4, 6, 8, 12
corresponds to the O(−n) theories with the same n.

One may also consider 6d SCFTs realized by X = T 2×C
2/Γ with point

group Γ = Zm × Zn. The orbifold action of Γ is of the form

(2.33) g = (α, α−1, 1), h = (ω, 1, ω−1), αm = 1, ωn = 1.

The orbifold generators g and h act trivially on one of two C-planes in the
base B = C × C. It is known in [43, 44] that each action gives rise to a
line of singularities with gauge group G = SO(8), E6, E7, E8 in the base for
m,n = 2, 3, 4, 6 respectively. In F-theory, the gauge group G is the symmetry
on the 7-branes wrapped on the singular line. Moreover, since the trivial
entries of 1 in the actions of g and h are orthogonal to each other, the total
orbifold action Γ leads to two intersecting lines of singularities on the base
B. Each singular line hosts an independent symmetry group G. As studied
in [14], F-theory on this type of orbifold X/Γ engineers 6d SCFTs called
(G,G′) conformal matter theories [45]. The corresponding conformal matter
theories, which depend on a choice of Γ, are given in Figure 1. Other possible
Zm × Zn actions are not compatible with the complex structure of T 2, so
they cannot generate a consistent elliptic 3-fold. Note that when m and n
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are different, the symmetries on two singular lines become smaller from the
naive expectation of G = SO(8), E6 in certain cases. This is because there is
automorphism among the fixed points of an orbifold action, say g, induced
by the other orbifold action, say h. For the Z2 ×Z3 case, the SO(8) reduces
to G2 due to the Z3 outer automorphism by the h action with m = 3 and
the E6 reduces to F4 due to the Z2 outer automorphism by the g action
with n = 2. Similarly, the SO(8) symmetry of the Z2 ×Z4 orbifold becomes
SO(7) due to the Z2 outer automorphism induced by the Z4 orbifold action.
The SO(8) symmetry of the Z2 × Z6 orbifold and the E6 symmetry of the
Z3 × Z6 orbifold reduce to G2 and F4 (respectively) due to the Z3 and Z2

outer automorphisms induced by the Z6 action.
We next turn to 6d LSTs coming from X = T 4 × C/Zm × Zn. LSTs

can be realized by a simple generalization of the 6d SCFTs discussed above.
Under the orbifold actions g and h, the torus T 2 in the base B = T 2×C will
have a number of fixed points. The local geometry around each fixed point
can be approximated as an elliptic 3-fold that gives rise to one of the 6d
SCFTs in Figure 1. Therefore the full geometry of X contains several copies
of the 6d SCFTs in Figure 1 localized to the fixed points of T 2 and these
local SCFTs are glued together in an appropriate manner. Each fixed point
theory has G×G′ type global symmetry. One of G×G′ symmetries generated
by an orbifold acting trivially on the torus is localized to the compact T 2 in
the base; this symmetry is gauged. Gauging of this global symmetry in all
local 6d SCFTs gives rise to a 6d LST associated to the geometry X. For
example, as we will discuss in more detail in the next section, the geometry
X = T 4×C/Z2×Z2 leads to the LST in Figure 3. One of the Z2 actions has
four fixed points on the torus and each fixed point is described by an E-string
theory; these four E-string theories are glued by gauging the common SO(8)
symmetry carried by the −4 curve in the center. Many other examples of
LSTs will arise as certain components in the construction of 6d supergravity
models.

To summarize, in the above examples we explained how one can con-
struct the field theory of an elliptic 3-fold by first identifying local theories
around fixed points of the orbifold action on T 2 and then properly gluing
these local theories together by gauging certain global symmetries. We can
easily extend this to the construction of F-theory models on the compact
orbifold T 6/Γ, where Γ = Zm × Zn. In the next section, we will present ex-
plicit constructions of several 6d supergravity models arising from F-theory
on T 6/Γ.

Before moving on, we describe some additional geometric aspects of
T 6/Γ. Toroidal orbifolds T 6/Γ have Kähler moduli and complex structure
moduli as ordinary CY 3-folds. In each case, there are two types of geomet-
ric moduli: untwisted moduli and twisted moduli. The number of untwisted
Kähler moduli is equal to the number of (1, 1)-forms dzi ∧ dz̄j , i, j = 1, 2, 3
which areinvariant under the orbifold action. Since dzi ∧ dz̄i for i = 1, 2, 3
are always invariant under the orbifold actions, these orbifolds all have at
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Table 5. The numbers of the geometric moduli for the
Zm × Zn orbifolds

Γ = Zm × Zn h1,1untwisted h2,1untwisted h1,1twisted h2,1twisted
Z2 × Z2 3 3 48 0
Z2 × Z4 3 1 58 0
Z2 × Z6 3 1 48 2
Z3 × Z3 3 0 81 0
Z3 × Z6 3 0 70 1
Z4 × Z4 3 0 87 0
Z6 × Z6 3 0 81 0

least three untwisted Kähler moduli. On the other hand, the number of
untwisted complex structure moduli is equal to the number of (2, 1)-forms
dzi∧dzj ∧dz̄k, i, j, k = 1, 2, 3 which are invariant under the orbifold actions.
In order to see twisted moduli we need to resolve singularities of orbifolds.
The singularities may be resolved by introducing exceptional divisors. The
deformations of the Kähler forms associated to the exceptional divisors give
rise to twisted Kähler moduli. In other words, the twisted Kähler moduli are
set to be zero in the orbifold limit. Furthermore, there may be also twisted
complex structure moduli. Twisted complex structure moduli arise when
orbifolds contain fixed lines without any fixed points [46, 47]. For example,
when there is a ZN fixed line over a curve with T 2 topology then the reso-
lution yields N − 1 twisted complex structure moduli. The numbers of the
geometric moduli for the Zm × Zn orbifolds which we will consider in this
paper are summarized in Table 5.

3. 6d supergravity from F-theory on T 6/Zm × Zn

In this section, we consider 6d N = 1 supergravity theories realized by
elliptic CY 3-folds of orbifold type T 6/Zm × Zn in F-theory. We propose
6d field theories which fully capture the non-gravitational sector of the 6d
supergravity theory associated to these orbifolds. We also investigate a con-
nection between the elliptic genus of the self-dual strings in the 6d field
theories and the topological string partition function.

3.1. T 6/Zm × Zn. We first focus on the geometry of the orbifolds
T 6/Zm × Zn. We can interpret these compact 3-folds as being constructed
by gluing local non-compact 3-folds around the fixed points of the orbifold
action discussed in the previous section. One might then ask if the field the-
ory sector of the corresponding supergravity theory can be fully constructed
by gluing the SCFT models obtained from the local non-compact 3-folds in
F-theory and coupling the resulting system to gravity. Following this local
analysis, we now construct the glued field theory sectorsand provide evidence
that they fully capture the non-gravitational sector. As a byproduct of this
analysis we construct 6d LSTs in F-theory compactified on T 4×C/Zm×Zn.
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Two important consistency checks we perform are: 1) that the 6d field
content satisfies anomaly cancellation via the Green-Schwarz-West-Sagnotti
mechanism, and 2) that the lattice of self-dual string charges is unimodular,
self-dual, and of appropriate signature as is necessary [48] for the existence
of a consistent 6d supergravity theory with eight supercharges. Performing
these consistency checks requires that we read off the 6d field content using
the usual F-theory dictionary as well as identifying a basis for H2(B,Z).

The latter task is straightforward: we simply compute the endpoints of
the bases B = T 4/Zm × Zn by blowing down all −1 curves and then iden-
tifying the remaining independent complex 1-cycles. The set of exceptional
curves together with the independent curves of the endpoint form a basis
{Cα} of H2(B,Z) in terms of which all curves CI may be expressed. In all
of the cases we study, the endpoints are of the form F0 = P

1×P
1, and hence

apart from the −1 curves there are only two independent cycles h, v corre-
sponding to the “horizontal” and “vertical” P

1’s of the ruling. We outline
this procedure in the specific case of the model T 6/Z2 ×Z2 in the following
subsection, and note that the remaining models are treated in an analogous
fashion.

3.1.1. T 6/Z2×Z2. The simplest example is the T 6/Z2×Z2 model. The
orbifold action Γ = Z2 × Z2 on T 6 = T 2 × T 2 × T 2 is generated by

(3.1) g = (−1,−1, 1), h = (−1, 1,−1).

This action has four fixed points on each torus T 2. The local geometry
around each fixed point is C

3/Z2 × Z2. This implies that we have 64 such
local geometries on T 6. Hence, the total compact 3-fold is obtained by gluing
together these 64 local geometries in the manner depicted in Figure 2a.

In the previous section, we studied the non-compact 3-fold T 2×C
2/Z2×

Z2. In this case, we glue four copies of the local C3/Z2 × Z2 geometry at
the fixed points of the elliptic fiber T 2. In F-theory, this gives rise to the 6d
E-string theory or the (D4, D4) conformal matter theory. In this section we
replace C2 by T 4 = T 2 × T 2.

The orbifold action leads to 16 fixed points on the base B = T 4. The lo-
cal geometry near each fixed point is an elliptic CY 3-fold of T 2×C2/Z2×Z2

as depicted in Figure 2b. The horizontal and vertical lines in Figure 2b are
SO(8) seven-branes. Two SO(8) seven-branes intersect at each fixed point.
So the local theory at a fixed point has SO(8) × SO(8) global symmetry,
which enhances to E8 symmetry, coming from two SO(8) flavor branes. How-
ever, the seven-branes are wrapping on one of two compact T 2’s. Hence, all
the SO(8) symmetries on theseven-branes become gauge symmetries when
placed on the compact base B. Therefore, in the compact 3-fold, we have
eight SO(8) gauge symmetries gluing 16 (D4, D4) conformal matter theories
(or E-string theories) denoted by 1© in Figure 2b. Each seven-brane denoted
by a horizontal or a vertical line intersects with four E-string theories and
gauges a common SO(8) global symmetry of these four E-string theories.
The theory living on the SO(8) seven-brane in the compact model is also a
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Figure 2. T 6/Z2×Z2 model where T 6 = T 2
1 ×T 2

2 ×T 2
3 . This

geometry can be considered as a collection of local C3/Z2×Z2

geometries around 64 orbifold fixed points like (a). Or this
can also be considered to be gluing 16 local O(−1) minimal
CFTs (or E-string theories) on the base T 4 = T 2

2×T 2
3 like (b).

6d SCFT known as the O(−4) minimal SCFT. Therefore, the gravity theory
of this compact model can be understood as a theory interacting with 16
O(−1) minimal CFTs glued by 8 O(−4) minimal CFTs. Each O(−1) the-
ory intersects with two, a horizontal and a vertical, O(−4) theories, while
each O(−4) theory intersects with four O(−1) theories. The global symme-
try SO(8) × SO(8) in an O(−1) theory is gauged by two adjacent O(−4)
theories. We claim that this 6d field theory together with three neutral
hypermultiplets when coupled to gravity describes the massless degrees of
freedom of 6d supergravity theory of T 6/Z2 × Z2.

We can also consider a doubly elliptic 3-fold (T 4 × C)/Z2 × Z2. This
geometry in F-theory engineers a 6d LST. The orbifold action Γ = Z2 × Z2

leads to four fixed points in the base B = T 2×C. As we discussed above, each
fixed point is associated to a 6d O(−1) minimal SCFT. There is an SO(8)
seven-brane, which wraps the torus T 2 in the base, intersecting with all four
fixed points. Also four other SO(8) flavor seven-branes each intersect with
one of the four fixed points. The theory living on the seven-brane wrapping
the torus on the base is the O(−4) minimal CFT. Therefore, the final theory
is the 6d theory with four O(−1) theories and one O(−4) theory. One of the
SO(8) symmetries in each O(−1) theory is gauged by the SO(8) symmetry
of the O(−4) theory as drawn in Figure 3. This theory has SO(8)4 flavor
symmetry coming from the four flavor 7-branes.

There are five tensor nodes in this 6d theory as indicated in Figure 3.
The intersection matrix for them is

(3.2) ΩLST
Z2×Z2

=

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 1
0 −1 0 0 1
0 0 −1 0 1
0 0 0 −1 1
1 1 1 1 −4

⎞
⎟⎟⎟⎟⎠ ,



122 H. HAYASHI, P. JEFFERSON, H.-C. KIM, K. OHMORI, AND C. VAFA

Figure 3. 6d Little string theory of T 4×C/Z2×Z2. Each
box with ‘4’ denotes a SO(8) flavor 7-brane.

where the first four entries (row or column) correspond to the four O(−1)
theories and the last entry corresponds to the O(−4) theory. Among these
five tensors, one combination, say a null tensor T0 = (1, 1, 1, 1, 1), has zero
eigenvalue with respect to this intersection matrix. The presence of one null
tensor T0 is a distinguished property of a 6d LST. This null tensor multiplet
is non-dynamical as it has no kinetic term. The scalar field φ0 in this non-
dynamical tensor multiplet sets the little string scale, 1

2πα′ = φ0.
Note that each horizontal or vertical line intersecting with the four

O(−1) singularities in Figure 2b has the same local geometry as (T 4 ×
C)/Z2 × Z2. We find therefore that the compact 3-fold in Figure 2b can be
considered as four copies of the local horizontal (or vertical) (T 4×C)/Z2×Z2

geometry glued by four vertical (or horizontal) SO(8) 7-branes. This tells
us that the 6d supergravity theory realized by F-theory in Figure 2a can
also be constructed by (as displayed in Figure 2b) four LSTs (see Figure 3)
glued by four other O(−4) theories. The tensor quiver diagram in Figure 4
shows this construction. The five shaded nodes denote the 6d LST realized
by F-theory on T 4 × C/Z2 × Z2; in the compact case we have four copies
of these LSTs connected by four O(−4) nodes. Thus we conclude the field
theory sector of the 6d supergravity theory associated to T 6/Z2×Z2 is given
by the quiver like diagram in Figure 4.

Gravitational anomaly. Let us test our claim that the above model cap-
tures the non-gravitational field theory sector of the 6d supergravity theory
associated to T 6/Z2 × Z2. We consider a compactification of this 6d super-
gravity theory on a circle of radius R. This system in F-theory is equivalent
to M-theory on an elliptic CY 3-fold by the duality between F-theory and
M-theory. The volume of the elliptic fiber is identified with the inverse ra-
dius 1/R. The resulting theory is a 5d N = 1 supergravity theory coupled
to Kaluza-Klein states along the circle.

Let us first count dynamical Kähler parameters of this 5d supergravity
theory. Naively, we have 24 real scalar fields in the 6d tensor multiplets
from 16 + 8 tensor nodes and r(V ) = 32 real scalars coming from U(1)32

holonomies of SO(8)8 gauge group where r(V ) denotes the rank of the gauge
groups. However, some of the tensor fields and their associated scalars turn
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Figure 4. 6d gravity theory of T 6/Z2 × Z2. It consists of
16 O(−1) nodes denoted by 1© and 8 O(−4) nodes denoted
by 4©. A solid line glues a O(−1) node to a O(−4) node by
SO(8) gauging. The 5 connected gray nodes form a 6d little
string theory of (T 4 × C)/Z2 × Z2.

out to be non-dynamical. The intersection matrix Ω associated to our model
has null vectors with zero eigenvalue, so the corresponding tensor fields have
no interaction with other field theory degrees of freedom. Hence the actual
number of dynamical tensors is smaller than the naive count. The naive
intersection matrix Ω is a 24 × 24 symmetric matrix with diagonal entries{
(−1)16, (−4)8

}
for the 16 O(−1) nodes and 8 O(−4) nodes, and upper

triangle elements given by

Ωij =

{
1 if j = 16 +m, j = 20 + n
0 otherwise

, i = 4m+ n− 4, 1 ≤ m,n ≤ 4.

(3.3)

The off-diagonal elements in the intersection matrix reflect our geometric
configuration in which each −1 curve intersects with two −4 curves, one
horizontal and one vertical, and two adjacent curves always meet each other
only once. One can verify by direct computation that the signature of Ω is

(−,+, 0) = (17, 1, 6),(3.4)

including 6 null tensors with zero eigenvalue. This is in fact consistent with
(2.8), as the number of dynamical tensors T is

h1,1(B) = 24− 6 = 18, T = h1,1(B)− 1 = 17,(3.5)

where h1,1(B) corresponds to the Kähler classes in B. Here we subtract 1
from h1,1(B) for T since one of the Kähler classes controlling the overall size
of B becomes a hypermultiplet scalar in 6d supergravity.
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We note the Hodge numbers of the elliptic 3-fold X = T 6/Z2×Z2, given
in Table 5, are

h1,1(X) = 51, h2,1(X) = 3.(3.6)

This agrees with our field theory result by using the relation (2.11)

(3.7) h1,1(X) = h1,1(B) + r(V ) + 1 = 18 + 32 + 1 = 51.

The last contribution +1 in the this counting corresponds to the size of the
elliptic fiber class which is proportional to 1/R where R is radius of the M-
theory compactification circle. h2,1(X) corresponds to the number of neutral
hypermultiplets which are not captured by our field theory model.

We next check gravitational anomaly cancellation. The number of vector
multiplets obtained by summing all contributions from the 8 O(−4) theories
is

V = 8× dim SO(8) = 224.(3.8)

The tensor nodes of the −1 and −4 curves have no hypermultiplets except
those coming from the overall size of B. Thus, the number of hypermultiplets
given by (2.10) is simply H = h2,1(X) + 1 = 4. With these numbers, one
can easily check that the gravitational anomaly is cancelled:

H − V + 29T − 273 = 4− 8 · 28 + 29 · 17− 273 = 0.(3.9)

This is a strong check that our field theory model can consistently couple to
6d gravity. Our field theory model can be naturally embedded in the 6d (or
5d) supergravity theory realized by F-theory (or M-theory) on T 6/Z2 × Z2.
This field theory content was already proposed in [4].

Gauge/gravity mixed anomaly. Let us turn to the gauge/gravity mixed
anomalies. In this case, we can confine our attention to the case G = SO(8).
The discussion of anomaly cancellation in Section 2.2 implies that the fol-
lowing conditions have to be satisfied:

a · a = K2
B = 9− T = −8(3.10)

a · bI = KB · CI =
λI

6

(
AI

adj

)
(3.11)

bI · bI = C2
I = −λ2

I

3

(
CI
adj

)
,(3.12)

where I labels the eight −4 curves. For SO(N) with N ≥ 5, we have

Aadj = N − 2, Badj = N − 8, Cadj = 3,(3.13)

giving us (in the case N = 8)

a · bI = λI = 2, bI · bI = −λ2
I = −4.(3.14)

Let us see that the anomaly cancellation conditions (3.10), (3.14) are
satisfied by the 6d quiver model in Figure 2b. For this, we consider a reduced
intersection matrix Ω̃ obtained by choosing only the independent two-cycles
in B as a basis. We denote the −4 curves in the vertical and horizontal
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directions in Figure 2b by C
(−4)
i with i = 1, 2, 3, 4 from bottom to top and

C
′ (−4)
i with i = 1, 2, 3, 4 from left to right, respectively. We then denote

a −1 curve which intersects with both C
(−4)
i and C

′ (−4)
j by C

(SO(8),SO(8))
ij .

As mentioned above, not all curves are independent. Since the intersection
matrix (3.3) has six eigenvectors with their eigenvalues zero, the Kähler
parameters for curves corresponding to the null directions are not dynamical
parameters of the 6d model. We then identify two curves with each other
if the difference between them is a curve class corresponding to the null
direction with respect to the intersection matrix (3.3). Hence we impose
constraints

(3.15) C ≡ C
(−4)
i +

4∑
j=1

C
(SO(8),SO(8))
ij , i = 1, . . . , 4,

and

(3.16) C ′ ≡ C
′ (−4)
i +

4∑
j=1

C
(SO(8),SO(8))
ji , i = 1, . . . , 4.

The constraints (3.15) are identifying with each other the curves which are
null directions with respect to the intersection matrix of LSTs in the hori-
zontal directions in Figure 2b. On the other hand, the constraints (3.16) are
identifying the curves which are null directions with respect to the intersec-
tion matrix of LSTs in the vertical directions in Figure 2b.

Note that the curves appearing in the constraints (3.15) have a clear
geometric interpretation. This can be seen by blowing down all of the −1
curves in the base T 4/Z2 × Z2, resulting in a configuration consisting of
four horizontal and four vertical P1’s intersecting in 16 points, each with
self-intersection 0. Comparing this information to the fact that T 2/Z2

∼= P
1,

we see there are two homologically-distinct P1 classes of self-intersection 0,
which we denote C,C ′. Thus the configuration of curves should be viewed
as four copies of C ∼= P

1 and four copies of C ′ ∼= P
1 in the compact surface

F0 = P
1×P

1, mutually intersecting in 16 points. The constraints in (3.15) are
then due to the fact that the four copies of the curves C,C ′ are homologically
equivalent. Now that we have precisely identified the geometry of the base,
we can compute the vectors a, bi independently. For example, using the fact
that the canonical class of a Hirzebruch surface Fn is given by KFn = −2C+
(n−2)C ′, we find that the blowup of F0 at 16 points with exceptional divisors

C
(SO(8),SO(8))
ij where i, j = 1, . . . , 4 will have canonical class

KBl16F0 = KF0 +

4∑
i,j=1

C
(SO(8),SO(8))
ij = −2C − 2C ′ +

4∑
i,j=1

C
(SO(8),SO(8))
ij .

(3.17)
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Thus, due to the conditions (3.15) and (3.16), we can choose C,C ′ and

C
(SO(8),SO(8))
ij for i, j = 1, . . . , 4 for our 18 independent basis elements, so

that a general curve class v admits the following expansion:

(3.18) v = v1C + v2C
′ +

4∑
i=1,j=1

v4i+j−2C
(SO(8),SO(8))
ij .

For example, from the condition (3.15), the C
(−4)
1 curve is given by the

vector

(3.19) b
SO(8)
1 = (1, 0,−1,−1,−1,−1, 0, · · · , 0).

The other b
SO(8)
i for C

(−4)
i and b

′SO(8)
i for C

′ (−4)
i are determined similarly

from the constraints (3.15) and (3.16).
In terms of the above basis, the reduced intersection matrix obtained

from (3.3) is given by

Ω̃ =

(
0 1
1 0

)
⊕ diag (−1,−1, · · · ,−1) ,(3.20)

where the diagonal matrix has 16 components corresponding to the number
of −1 curves. Since we set the curves with the zero eigenvalue with respect
to the intersection matrix (3.3) to be zero, the reduced intersection matrix
(3.20) has no zero eigenvalue. Furthermore, either by computing the end-
point in the manner described above or by using (2.28) combined with the
adjunction formula, one can easily show the vector a corresponding to the
canonical class is

(3.21) a = (−2,−2, 1, · · · , 1) ,
where in the above expression there are 16 entries of 1.

By using the reduced intersection matrix (3.20), we can compute the

intersection numbers between a and b
SO(8)
i , b

′SO(8)
i and the result is given

by

a · a = −8, a · bSO(8)
i = a · b′SO(8)

i = 2,(3.22)

b
SO(8)
i · bSO(8)

i = −4, b
′SO(8)
i · b′SO(8)

i = −4, i = 1, · · · , 4,
which satisfies the anomaly cancellation conditions (3.10) and (3.14). Note
that this lattice is self-dual as it should be based on both geometric consid-
erations as well as consistency conditions for N = (1, 0) theories.

3.1.2. T 6/Z3×Z3. Our next example is the supergravity theory realized
by F-theory on X = T 6/Z3 × Z3. The elliptic 3-fold X is constructed by
means of the following orbifold action on T 6:

(3.23) g = (α, α−1, 1), h = (w, 1, w−1), α3 = w3 = 1.

This action generates 27 fixed points on T 6. The local geometry at each
fixed point is C

3/Z3 × Z3 and the total geometry is a compact CY 3-fold
formed by gluing 27 local patches of this non-compact geometry.
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Figure 5. 6d model of the supergravity theory realized by
F-theory on T 6/Z3 × Z3 with base B = T 4/Z3 × Z3, where
T 4 = T 2

2 × T 2
3 . In the above graph, the nine black dots are

(E6, E6) conformal matter theories, while the three horizon-
tal and three vertical lines denote O(−6) minimal SCFTs.

On the base B = T 4/Z3 × Z3, we have 9 fixed points and each local
geometry is an elliptic 3-fold with a non-compact base C

2/Z3 × Z3. The
corresponding local 6d theory is the (E6, E6) conformal matter theory. The
global symmetry E6 × E6 of this theory comes from two intersecting 7-
branes with E6 symmetry. In the compact base B, there are 6 such E6 7-
branes and each E6 7-brane meets three (E6, E6) conformal matter theories.
Since they wrap compact T 2 in the base B, the 7-branes gauge E6 global
symmetries of adjacent conformal matter theories. The theory on an E6

7-brane is a non-Higgsable tensor theory with E6 gauge group called the
O(−6) minimal SCFT. Therefore, the full theory of the F-theory geometry
X is given by nine (E6, E6) conformal matter theories glued together by six
O(−6) minimal CFT theories as depicted in Figure 5. We claim that this is
the non-gravitational field theory sector of the 6d supergravity realized by
F-theory on T 6/Z3 × Z3.

Gravitational anomaly. A naive tensor counting gives 33 − 1 = 32 ten-
sors. However we can again expect that some tensors are non-dynamical.
There are in fact four null tensors that can be computed from the inter-
section matrix Ω. In this geometry, Ω is a 33 × 33 symmetric matrix with
diagonal entries diag(Ω) = −

(
{1, 3, 1}9, 66

)
and off-diagonal entries

(3.24) Ωij =

{
+1 if i-th and j-th curves intersect
0 otherwise

.

The signature of this matrix Ω is

(3.25) (−,+, 0) = (28, 1, 4).

Thus we find four null tensor multiplets among 33 tensor multiplets. We
therefore compute

(3.26) h1,1(B) = 33− 4 = 29, T = h1,1(B)− 1 = 28.
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We can also compute the number of vector multiplets by summing over all
non-abelian gauge factors, namely nine SU(3)’s and six E6’s, to obtain

(3.27) r(V ) = 9× 2 + 6× 6 = 54, V = 9× 8 + 6× 78 = 540.

Finally, there is only one hypermultiplet, H = 1, associated to the overall
size of B. We can compare these numbers with the topological numbers of
the orbifold geometry X = T 6/Z3 × Z3 in Table 5, for which

h1,1(X) = 84, h2,1(X) = 0.(3.28)

Thus the geometric counting for h1,1(Y ) agrees with our field theory counting
h1,1(B) + r(V ) + 1 = 84. Also the gravitational anomaly is cancelled:

(3.29) H − V + 29T − 273 = 1− 540 + 29× 28− 273 = 0.

Gauge/gravity mixed anomaly. The anomaly cancellation conditions for
this model are given by

a · a = K2
B = 9− T = −19(3.30)

and also (3.11), (3.12) for gauge groups SU(3), E6. The constants λ can be
found in Table 1. For SU(m), m = 2, 3, we have

tradj F
2 = 2m trF 2, tradj F

4 = (m+ 6)(trF 2)2,(3.31)

and therefore

Aadj = 6, Badj = 0, Cadj = 9, λSU(3) = 1,(3.32)

which gives us

a · bSU(3)
I = 1, b

SU(3)
I · bSU(3)

I = −3,(3.33)

where I labels the nine −3 curves supporting SU(3) gauge symmetry. For
E6, we have

tradj F
2 = 4 trF 2, tradj F

4 =
1

2
(trF 2)2,(3.34)

and thus

Aadj = 4, Badj = 0, Cadj =
1

2
, λE6 = 6,(3.35)

which gives us

a · bE6
I = 4, bE6

I · bE6
I = −6,(3.36)

where I labels the six −6 curves supporting E6 gauge symmetry.
Let us see how the anomaly cancellation conditions (3.30), (3.33) and

(3.36) follow from the intersection numbers between curves in the quiver
model in Figure 5. As we have done for the T 6/Z2×Z2 model, we choose 29
independent curves in the base B from the 33 curves in Figure 5 by setting
the curves with zero eigenvalue with respect to the intersection matrix Ω to
be zero. We denote the −6 curves in the horizontal and vertical directions
in Figure 5 by C

(−6)
i with i = 1, 2, 3 from bottom to top and C

′ (−6)
i with

i = 1, 2, 3 from left to right, respectively. We also denote the three curves
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of each (E6, E6) conformal matter which are sandwiched between C
(−6)
i and

C
′ (−6)
j by C

(E6,E6)
ijk with k = 1, 2, 3. In each (E6, E6) conformal matter, k = 1

corresponds to the −1 curve which intersects with C
(−6)
i , k = 2 corresponds

to the −3 curve, and k = 3 corresponds to the −1 curve which intersects

with C
′ (−6)
j . The 29 independent curves are obtained by the constraints

C ≡ C
(−6)
i +

3∑
j=1

(
2C

(E6,E6)
ij1 +

3∑
k=2

C
(E6,E6)
ijk

)
,(3.37)

C ′ ≡ C
′ (−6)
i +

3∑
j=1

(
2∑

k=1

C
(E6,E6)
jik + 2C

(E6,E6)
ji3

)
,(3.38)

for all i = 1, 2, 3. With C,C ′ defined by (3.37) and (3.38), we can choose a

basis C,C ′, C(E6,E6)
ijk for i, j, k = 1, 2, 3, consisting of 29 independent classes.

A vector v then admits the following expansion in this basis:

(3.39) v = v1C + v2C
′ +

3∑
i,j,k=1

v9i+3j+k−10C
(E6,E6)
ijk .

For example, the −3 curve corresponding to C
(E6,E6)
112 is described by

(3.40) b
SU(3)
112 = (0, 0, 0, 1, 0, 0, · · · , 0)

and the −6 curve corresponding to C
(−6)
1 is given by

(3.41) bE6
1 = (1, 0,−2,−1,−1,−2,−1,−1,−2,−1,−1, 0, · · · , 0)

from (3.37). The reduced intersection matrix in this basis is then

Ω̃ =

(
0 1
1 0

)
⊕

⎛
⎝ −1 1 0

1 −3 1
0 1 −1

⎞
⎠⊕ · · · ⊕

⎛
⎝ −1 1 0

1 −3 1
0 1 −1

⎞
⎠ ,(3.42)

where the matrix ⎛
⎝ −1 1 0

1 −3 1
0 1 −1

⎞
⎠(3.43)

is the matrix for the (E6, E6) conformal matter and there are nine such
matrices in (3.42). The matrix (3.42) describes a self-dual lattice as expected.
The canonical class can be determined by using (2.28) and requiring that
the genera of the −1, −3, and −6 curves are all zero. Then the vector a is
given by

(3.44) a =
(
−2,−2, {2, 1, 2}9

)
.

In the above expression, the notation {2, 1, 2}9 indicates that there are nine
repeated sequences of entries 2, 1, 2 in the vector a.
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Figure 6. 6d gravity model of T 6/Z4 × Z4 geometry.

We are now ready to check the anomaly cancellation conditions (3.30),
(3.33), and (3.36). First, (3.44) yields

(3.45) a · a = −19,

which agrees with (3.30). Furthermore, (3.40) and (3.41) give

(3.46) a · bSU(3)
11 = 1, b

SU(3)
112 · bSU(3)

112 = −3,

and

(3.47) a · bE6
1 = 4, bE6

1 · bE6
1 = −6,

agreeing with (3.33) and (3.36). It is straightforward to extend these com-
putations to the remaining −3 and −6 curves. We find perfect agreement
with (3.33) and (3.36).

3.1.3. T 6/Z4×Z4. We now construct a 6d model for the gravity theory
realized by F-theory on T 6/Z4 × Z4. The orbifold action is generated by g
and h in (2.33) with α4 = 1 and w4 = 1. The action g has one Z2 fixed
point and two identical Z4 fixed points on the first T 2 in the base, while
the action h has one Z2 fixed point and two identical Z4 fixed points on the
second T 2. Thus there are nine fixed points on the base B = T 4/Z4 ×Z4 as
drawn in Figure 6. The four fixed points denoted by black solid circles with
subscript ‘4, 4’ have local geometry C

2/Z4 × Z4; the four fixed points with
subscript ‘2, 4’ have local geometry C

2/Z2×Z4; and the one fixed point with
subscript ‘2, 2’ has local geometry C

2/Z2×Z2 on the base. This tells us that
the local 6d theories at the fixed points are conformal matter theories of
type (E7, E7), (SO(7), E7), and (SO(8), SO(8)) respectively. The full field
theory is obtained by gluing these conformal matter theories by four E7 and
two SO(7) gaugings as drawn in Figure 6. We claim that this theory coupled
to gravity describes the 6d gravity theory associated to T 6/Z4 × Z4.

Gravitational anomaly. The intersection matrix of this geometry is a
35 × 35 matrix whose diagonal elements are diag Ω = −

(
{1, 2, 3, 2, 1}4,

{2, 1}4, 1, 84, 32
)
and off-diagonal elements are assigned by following the rule

in (3.24). The signature of Ω is

(−,+, 0) = (30, 1, 4).(3.48)
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There are four null tensors, so this geometry has the following number of
dynamical tensor multiplets:

(3.49) h1,1(B) = 31, T = h1,1(B)− 1 = 30.

We now count the number of vector multiplets. There are eight SU(2) and
four SO(7) gauge symmetries from the (E7, E7) conformal matter theories,
four SU(2) gauge symmetries from the (SO(7), E7) conformal matter the-
ories, and two SO(7) and four E7 gauge symmetries living on the gluing
curves with self-intersection numbers −3 and −8 respectively. Therefore, we
have

r(V ) = 12 + 6× 3 + 4× 7 = 58, V = 12× 3 + 6× 21 + 4× 133 = 694.
(3.50)

The number of the moduli for the geometry T 6/Z4 × Z4 in Table 5 is

(3.51) h1,1(X) = 90, h2,1(X) = 0,

which agrees with the field theory counting h1,1(X) = h1,1(B) + r(V ) + 1 =
90.

A single (E7, E7) conformal matter has 16 hypermultiplets between −3
and −2 curves and an (SO(7), E7) conformal matter contains eight hyper-
multiplets on the −2 curve. In total, this geometry has the number of hy-
permultiplets:

(3.52) H = 4× 16 + 4× 8 + 1 = 97,

where the last +1 corresponds to the overall size of B. Now one can easily
check that gravitational anomaly cancellation is satisfied:

(3.53) H − V + 29T − 273 = 97− 694 + 29× 30− 273 = 0.

Gauge/gravity mixed anomaly. The gauge/gravity mixed anomaly can-
cellation conditions are given by

0 = Badj −
∑
RI

nRI
BRI

(3.54)

a · a = K2
B = 9− T = −21,(3.55)

a · bI = KB · CI =
λI

6

(
AI

adj −
∑
RI

nRI
ARI

)
,(3.56)

bI · bI = C2
I = −λ2

I

3

(
CI
adj −

∑
RI

nRI
CRI

)
,(3.57)

bI · bJ = CI · CJ = λIλJ

∑
RI ,R

′
I

nRIR
′
J
ARI

AR′
J
,(3.58)

for gauge groups SU(2), SO(7), and E7. Note that we also have hypermul-
tiplets in the representation of 1

2(2,8) under SU(2)×SO(7). For SU(2), we
have

(3.59) Aadj = 4, Badj = 0, Cadj = 8, λSU(2) = 1,
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from (3.31) for the adjoint representation. Since we have hypermultiplets in
the fundamental representation of SU(2), we also need

(3.60) Afund = 1, Bfund = 0, Cfund =
1

2
.

Hence for curves on which we have SU(2), the anomaly cancellation condi-
tions become

a · bSU(2)
I = 0, b

SU(2)
I · bSU(2)

I = −2,(3.61)

For SO(7), we can use the result (3.13) with N = 7 which gives

(3.62) Aadj = 5, Badj = −1, Cadj = 3, λSO(7) = 2,

for the adjoint representation. We also have hypermultiplets in the spinor
representation

(3.63) Aspinor = 1, Bspinor = −1

2
, Cspinor =

3

8
.

Hence for curves on which we have SO(7), the anomaly cancellation condi-
tions are

a · bSO(7)
I = 1, b

SO(7)
I · bSO(7)

I = −3,(3.64)

and (3.54) is satisfied. The condition (3.58) becomes

b
SU(2)
I · bSO(7)

J = 1.(3.65)

Finally, for E7, we have only adjoint representations and the necessary in-
formation for anomaly cancellation is

tradj F
2 = 3 trF 2, tradj F

4 =
1

6
(trF 2)2,(3.66)

thus

Aadj = 3, Badj = 0, Cadj =
1

6
, λE7 = 12,(3.67)

which gives us

a · bE7
I = 6, bE7

I · bE7
I = −8,(3.68)

where bE7
I corresponds to a −8 curve carrying E7 gauge symmetry.

Let us then see the anomaly cancellation conditions (3.55), (3.61), (3.64),
(3.65) and (3.68) are reproduced from the quiver model in Figure 6. For this
purpose we use a reduced intersection matrix which only involves indepen-
dent curves. As in the cases of the T 6/Z2 × Z2, T

6/Z3 × Z3 models, we
first name the curves in Figure 6, in the following way. We denote the −n

curves corresponding to horizontal lines by C
(−n)
i , i = 1, · · · from bottom

to top. The −n curves corresponding to vertical lines are represented by

C
′ (−n)
i , i = 1, · · · from left to right. The curves between C

(−n)
i with a gauge

group G and C
′ (−n′)
j with a gauge group G′ are denoted by C

(G,G′)
ijk , k = 1, · · ·

where k is in order from the curve next to C
(−n)
i to the curve next to C

′ (−n′)
j .
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We will use this notation for the remainder of Section 3.1. Then, the con-
straints among the curve classes are

C ≡ C
(−8)
1 +

2∑
j=1

(
3C

(E7,E7)
1j1 + 2C

(E7,E7)
1j2 +

5∑
k=3

C
(E7,E7)
1jk

)
(3.69)

+
(
2C

(E7,SO(7))
131 + C

(E7,SO(7))
132

)

= C
(−8)
2 +

2∑
j=1

(
3C

(E7,E7)
2j1 + 2C

(E7,E7)
2j2 +

5∑
k=3

C
(E7,E7)
2jk

)

+
(
2C

(E7,SO(7))
231 + C

(E7,SO(7))
232

)

= C
(−3)
3 +

2∑
j=1,k=1

C
(SO(7),E7)
3jk + C

(SO(7),SO(7))
331

and

C ′ ≡ C
′ (−8)
1 +

2∑
i=1

(
3∑

k=1

C
(E7,E7)
i1k + 2C

(E7,E7)
i14 + 3C

(E7,E7)
i15

)
(3.70)

+
(
C

(SO(7),E7)
311 + 2C

(SO(7),E7)
312

)

= C
′ (−8)
2 +

2∑
i=1

(
3∑

k=1

C
(E7,E7)
i2k + 2C

(E7,E7)
i24 + 3C

(E7,E7)
i25

)

+
(
C

(SO(7),E7)
321 + 2C

(SO(7),E7)
322

)

= C
′ (−3)
3 +

2∑
i=1,k=1

C
(E7,SO(7))
i3k + C

(SO(7),SO(7))
331 .

We then choose the following basis:(
C,C ′, {C(E7,E7)

11k }, {C(E7,E7)
12k }, {C(E7,SO(7))

13k }, {C(E7,E7)
21k }, {C(E7,E7)

22k },(3.71)

{C(E7,SO(7))
23k }, {C(SO(7),E7)

31k }, {C(SO(7),E7)
32k }, C(SO(7),SO(7)

331

)
.

The reduced intersection matrix in this basis is

Ω̃ =

(
0 1
1 0

)
⊕

⎡
⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

−1 1 0 0 0
1 −2 1 0 0
0 1 −3 1 0
0 0 1 −2 1
0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2

⊕
(

−1 1
1 −2

)
⎤
⎥⎥⎥⎥⎦

2

(3.72)

⊕
{(

−2 1
1 −1

)}2

⊕ (−1) .
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Using (3.72), we check the intersection numbers (3.55), (3.61), (3.64),
(3.65) and (3.68). First, we determine the canonical class from (2.28), giving
us

a=(−2,−2, 3, 2, 1, 2, 3, 3, 2, 1, 2, 3, 2, 1, 3, 2, 1, 2, 3, 3, 2, 1, 2, 3, 2, 1, 1, 2, 1,2,1).
(3.73)

We can see that (3.73) with (3.72) satisfies (3.55).
−2 curves with an SU(2) gauge group appear either inside the (E7, E7)

conformal matter or (SO(7), E7) conformal matter. For example the −2

curve of C
(E7,E7)
112 is

b
SU(2)
112 = (0, 0, 0, 1, 027).(3.74)

The −2 curve corresponding to C
(E7,SO(7))
132 is

b
SU(2)
132 = (013, 1, 017).(3.75)

Direct computation shows (3.74) and (3.75) with (3.72) yield (3.61). Simi-
larly the other −2 curves also satisfy (3.61).

−3 curves with an SO(7) gauge group appears either in (E7, E7) con-

formal matter or correspond to the gluing curves C
(−3)
3 and C

′ (−3)
3 . For

example, the −3 curve of C
(E7,E7)
113 is

b
SO(7)
113 = (0, 0, 0, 0, 1, 026).(3.76)

The −3 curve corresponding to C
(−3)
3 is

b
SO(7)
3 = (1, 025,−1,−1,−1,−1,−1),(3.77)

and the −3 curve of C
′ (−3)
3 is

b
′SO(7)
3 = (0, 1, 010,−1,−1, 010,−1,−1, 0, 0, 0, 0,−1)(3.78)

Indeed (3.76), (3.77) and (3.78) with (3.72) reproduce (3.64). It is straight-
forward to check that the other −3 curves also satisfy (3.64).

There are also hypermultiplets in the representation 1
2(2,8) of SU(2)×

SO(7). For example the intersection between (3.74) and (3.76) gives

b
SU(2)
112 · bSO(7)

113 = 1,(3.79)

which is consistent with (3.65). Hypermultiplets also arise from the inter-
section between a −2 curve in the (SO(7), E7) conformal matter theory and
a −3 curve for the SO(7) gauging. For example the intersection between
(3.75) and (3.78) is

b
SU(2)
132 · b′SO(7)

3 = 1.(3.80)
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Figure 7. 6d gravity model of T 6/Z6 × Z6 geometry.

Finally we look at the intersection numbers involving the −8 curves for

the E7 gaugings. A −8 curve corresponding to C
(−8)
1 is

bE7
1 = (1, 0,−3,−2,−1,−1,−1,−3,−2,−1,−1,−1,−2,−1, 0, · · · , 0)

(3.81)

The intersection number with the canonical class (3.73) and also the self-
intersection number reproduces the condition (3.68). We can also check that
the intersection numbers involving the other −8 curves satisfy (3.68).

3.1.4. T 6/Z6 × Z6. The field theory sector of the 6d gravity theory re-
alized by F-theory compactified on T 6/Z6 × Z6 is drawn in Figure 7. The
base T 4/Z6 × Z6 has nine fixed points of the orbifold action in (2.33) with
α6 = w6 = 1. There are two Z2 × Z3 fixed points, two Z2 × Z6 fixed points,
two Z3×Z6 fixed points, one Z2×Z2 fixed point, one Z3×Z3 fixed point, and
one Z6×Z6 fixed point. The 6d field theory localized at each fixed point is the
(G,G′) conformal matter theory of the corresponding orbifold Zm×Zn given
in Figure 1. These local 6d conformal matter theories are glued by two G2

gauge symmetries on −3 curves and two F4 gauge symmetries on −5 curves
and two E8 gauge symmetries on −12 curves as illustrated in Figure 7. We
conjecture that this 6d field theory in Figure 7 is the non-gravitational sector
of the 6d supergravity associated to T 6/Z6 × Z6.

Gravitational anomaly. The intersection matrix Ω of the 6d field theory
is a 39× 39 symmetric matrix. Its diagonal elements are

diag Ω = −
(
1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 1, 1, 3, 1, 1, {1, 3, 2, 2, 1}2,

{2, 2, 1}2, 12, 32, 52, 122
)
,

and off-diagonal elements are given by the rule in (3.24). This matrix has
signature

(3.82) (−,+, 0) = (34, 1, 4).

This tells us that there are four null tensors and the number of dynamical
tensors is

(3.83) h1,1(B) = 35, T = 34.
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The rank of the gauge groups and number of vector multiplets are

(3.84) r(V ) = 48, V = 762.

So the field theory counting h1,1(X) = h1,1(B) + r(V ) + 1 = 94 agrees with
the topological numbers of the T 6/Z6 × Z6 geometry given in Table 5:

(3.85) h1,1(X) = 94, h2,1(X) = 0.

The number of hypermultiplets is

(3.86) H = 48 + 1 = 49.

Therefore, the field theory model for the gravity theory associated to T 6/Z6×
Z6 satisfies gravitational anomaly cancellation:

(3.87) H − V + 29T − 273 = 49− 762 + 29× 34− 273 = 0.

Gauge/gravity mixed anomaly. The anomaly cancellation conditions are
given by

a · a = K2
B = 9− T = −25,(3.88)

and (3.54), (3.56), (3.57) and (3.58) where I now labels the curves on which
we have gauge groups for the T 6/Z6 × Z6 model. We also have matter in
the representation of 1

2(2,7) +
1
2(2,1) under SU(2) × G2. The anomaly

cancellation condition associated to curves with SU(2) is given by (3.61) and
(3.54) is satisfied. As for the G2 gauge groups, the adjoint representation of
G2 gives

Aadj = 4, Badj = 0, Cadj =
5

2
, λG2 = 2,(3.89)

and the fundamental representation of G2 gives

Afund = 1, Bfund = 0, Cfund =
1

4
.(3.90)

Hence the anomaly cancellation condition for curves with G2 is

a · bG2
I = 1, bG2

I · bG2
I = −3,(3.91)

and (3.54) is trivially satisfied. The anomaly cancellation condition for the
bifundamental (3.58) becomes

b
SU(2)
I · bG2

J = 1,(3.92)

where the curves correspond to b
SU(2)
I and bG2

J are next to each other. We
also have F4 gauge groups and the adjoint representation of F4 yields

Aadj = 3, Badj = 0, Cadj =
5

12
, λF4 = 6.(3.93)

Hence the anomaly cancellation conditions become

a · bF4
I = 3, bF4

I · bF4
I = −5,(3.94)
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and (3.54) is satisfied. Finally, the adjoint representation of E8 gives

Aadj = 1, Badj = 0, Cadj =
1

100
, λF4 = 60.(3.95)

Hence (3.54) is satisfied and non-trivial anomaly cancellation conditions are

a · bE8
I = 10, bE8

I · bE8
I = −12.(3.96)

Let us then see the anomaly cancellation conditions (3.88). (3.61), (3.91),
(3.92) and (3.94) are indeed satisfied in the quiver model for the T 6/Z6×Z6.
Again not all the curves are independent as they are subject to the following
constraints:

C ≡ C
(−12)
1 +

(( 4∑
k=1

(6− k)C
(E8,E8)
11k

)
+ 3C

(E8,E8)
1115 + C

(E8,E8)
116 + 2C

(E8,E8)
117

(3.97)

+
11∑
k=8

C
(E8,E8)
11k

)
+
(( 4∑

k=1

(5−k)C
(E8,F4)
12k

)
+C

(E8,F4)
125

)
+

3∑
k=1

(4−k)C
(E8,G2)
13k

= C
(−5)
2 +

(
2C

(F4,E8)
211 +

5∑
k=2

C
(F4,E8)
21k

)
+
(
2C

(F4,F4)
221 + C

(F4,F4)
222 + C

(F4,F4)
223

)

+ C
(F4,G2)
331

= C
(−3)
3 +

( 3∑
k=1

C
(G2,E8)
31k

)
+ C

(G2,F4)
321 + C

(G2,G2)
331 ,

and

C ′ ≡ C
′ (−12)
1 +

(( 4∑
k=1

C
(E8,E8)
11k

)
+ 2C

(E8,E8)
115 + C

(E8,E8)
116 + 3C

(E8,E8)
117(3.98)

+

11∑
k=8

(k − 6)C
(E8,E8)
11k

)

+
(
C

(F4,E8)
211 +

( 5∑
k=2

(k − 1)C
(F4,E8)
21k

))
+

3∑
k=1

kC
(G2,E8)
31k

= C
′ (−5)
2 +

(( 4∑
k=1

C
(E8,F4)
12k

)
+ 2C

(E8,F4)
125

)

+
(
C

(F4,F4)
221 + C

(F4,F4)
222 + 2C

(F4,F4)
223

)
+ C

(G2,F4)
321

= C
′ (−3)
3 +

( 3∑
k=1

C
(E8,G2)
13k

)
+ C

(F4,G2)
231 + C

(G2,G2)
331 .
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We can then choose the basis

(
C,C ′, {C(E8,E8)

11k }, {C(E8,F4)
12k }, C(E8,G2)

131 , {C(F4,E8)
21k }, {C(F4,F4)

22k }, C(F4,G2)
231 ,

(3.99)

{C(G2,E8)
31k }, C(G2,F4)

321 , C
(G2,G2)
331

)
,

which leads to the following reduced intersection matrix:

Ω̃ =

(
0 1
1 0

)
⊕

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0 0 0 0
1 −2 1 0 0 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0 0 0
0 0 1 −3 1 0 0 0 0 0 0
0 0 0 1 −1 1 0 0 0 0 0
0 0 0 0 1 −5 1 0 0 0 0
0 0 0 0 0 1 −1 1 0 0 0
0 0 0 0 0 0 1 −3 1 0 0
0 0 0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 0 0 1 −2 1
0 0 0 0 0 0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.100)

⊕

⎛
⎜⎜⎜⎜⎝

−1 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −3 1
0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠⊕

⎛
⎝ −1 1 0

1 −2 1
0 1 −2

⎞
⎠

⊕

⎛
⎜⎜⎜⎜⎝

−1 1 0 0 0
1 −3 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠⊕

⎛
⎝ −1 1 0

1 −3 1
0 1 −1

⎞
⎠

⊕ (−1)⊕

⎛
⎝ −2 1 0

1 −2 1
0 1 −1

⎞
⎠⊕ (−1)⊕ (−1).

One can confirm the anomaly cancellation conditions (3.88), (3.61),
(3.91), (3.92) and (3.94) are satisfied by using (3.100). The canonical class
a can be computed from (2.28) and it is given by

a = (−2,−2, 5, 4, 3, 2, 4, 1, 4, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 2, 1, 2, 1,
(3.101)

1, 2, 3, 1, 1),

which satisfies (3.88). The−2 curve for C
(E8,E8)
113 and the−3 curve of C

(E8,E8)
114 ,

which are adjacent, are given by

b
SU(2)
113 = (0, 0, 0, 0, 1, 0, · · · , 0), bG2

114 = (0, 0, 0, 0, 0, 1, 0, · · · , 0).(3.102)
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These curves satisfy the relevant anomaly cancellation conditions (3.61),

(3.91), (3.92). The −5 curve corresponding to C
(E8,E8)
116 in the (E8, E8) con-

formal matter theory is

bF4
116 = (07, 1, 027),(3.103)

reproducing (3.94).

We also have gauging curves C
(−12)
1 , C

′ (−12)
1 , C

(−5)
2 , C

′ (−5)
2 , C

(−3)
3 , C

′ (−3)
3 ,

with classes given by

bE8
1 = (1, 0,−5,−4,−3,−2,−3,−1,−2,−14,−4,−3,(3.104)

− 2,−12,−3,−2,−1, 014),

b′E8
1 = (0, 1,−14,−2,−1,−3,−2,−3,−4,−5, 08,−12,−2,(3.105)

− 3,−4, 04,−1,−2,−3, 02),

bF4
2 = (1, 020,−2,−14,−2,−13, 05),(3.106)

b′F4
2 = (0, 1, 011,−14,−2, 08,−12,−2, 04,−1, 0),(3.107)

bG2
3 = (1, 029,−15),(3.108)

b′G2
3 = (0, 1, 016,−13, 08,−1, 04 − 1),(3.109)

respectively. With the reduced intersection matrix (3.100), it is possible to
check that the above classes satisfy (3.96), (3.94) and (3.91). The anom-
aly cancellation condition of (3.92) is also satisfied by the curve (3.108) or
(3.109) with the −2 curve connected to it.

3.1.5. T 6/Z2 × Z4. The field theory sector for the 6d gravity theory
realized by F-theory compactified on T 6/Z2×Z4 is given in Figure 8. On the
base T 4/Z2×Z4, there are 12 fixed points of the orbifold action generated by
g and h in (2.33) with α2 = 1 and w4 = 1. Among these, eight fixed points are
local geometries C2/Z2×Z4 described by the (SO(7), E7) conformal matter
theory and four fixed points are local geometries C

2/Z2 × Z2 described by
(SO(8), SO(8)) conformal matter theories. These conformal matter theories
are glued by four SO(7) gauge symmetries on −3 curves, two E7 gauge
symmetries on −8 curves, and one SO(8) gauge symmetry on a −4 curve
as drawn in Figure 8. We conjecture that the 6d field theory constructed in
this way realizes the non-gravitational field theory sector of the 6d gravity
theory coming from T 6/Z2 × Z4 in F-theory.

Gravitational anomaly. The intersection matrix Ω of the 6d field theory
is a 27× 27 symmetric matrix, with diagonal elements

diag Ω = −
(
{2, 1}8, 14, 34, 82, 4

)
,

and off-diagonal elements given by the rule in (3.24). The matrix Ω has
signature

(3.110) (−,+, 0) = (21, 1, 5).
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Figure 8. 6d gravity model of T 6/Z2 × Z4 geometry.

This means that we have five null tensors and the number of dynamical
tensor multiplets is

(3.111) h1,1(B) = 22, T = 21.

This theory has the following gauge symmetries: eight SU(2)’s, four SO(7)’s,
two E7’s, one SO(8). Thus the rank of the gauge groups and number of the
vector multiplets are, respectively,

(3.112) r(V ) = 38, V = 402.

The field theory counting h1,1(X) = h1,1(B) + r(V ) + 1 = 61 agrees with
the geometric data of T 6/Z2 × Z4 in Table 5, namely

(3.113) h1,1(X) = 61, h2,1(X) = 1.

There are 16 half hypermultiplets in each intersection between SO(7) and
SU(2) gauge groups. So the number of hypermultiplets is H = 8 × 8 +
h2,1(Y ) + 1 = 66. Therefore our field theory model satisfies gravitational
anomaly cancellation, as

(3.114) H − V + 29T − 273 = 66− 402 + 29× 21− 273 = 0.

Gauge/gravity mixed anomaly. As stated above, the gauge groups in this
model are E7, SO(7), SU(2), SO(8) and the corresponding anomaly cancel-
lation conditions are (3.68), (3.64), (3.61), and (3.14) with

a · a = K2
B = 9− T = −12.(3.115)

We also have hypermultiplets in the representation 1
2(2,8) of SU(2)×SO(7),

which leads to an additional condition (3.65). As usual, to show the anomaly
cancellation conditions are indeed satisfied in this model, we use a reduced
intersection matrix. The constraints among the curves in Figure 8 are

C ≡ C
(−3)
i +

2∑
j=1,k=1

C
(SO(7),E7)
ijk + C

(SO(8),SO(8))
i31 , i = 1, . . . , 4(3.116)
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and

C ′ ≡ C
′ (−8)
1 +

3∑
i=1

(
C

(SO(7),E7)
i11 + 2C

(SO(7),E7)
i12

)
(3.117)

= C
′ (−8)
2 +

3∑
i=1

(
C

(SO(7),E7)
i21 + 2C

(SO(7),E7)
i22

)

= C
′ (−4)
3 +

4∑
i=1

C
(SO(8),SO(8))
i31 .

Thus we choose the basis

(
C,C ′, {C(SO(7),E7)

11k }, {C(SO(7),E7)
12k }, C(SO(8),SO(8))

131 , {C(SO(7),E7)
21k },

(3.118)

{C(SO(7),E7)
22k }, C(SO(8),SO(8))

231 , {C(SO(7),E7)
31k }, {C(SO(7),E7)

32k }, C(SO(8),SO(8))
331 ,

{C(SO(7),E7)
41k }, {C(SO(7),E7)

42k }, C(SO(8),SO(8))
431

)
.

The reduced intersection matrix in this basis is

Ω̃ =

(
0 1
1 0

)
⊕
{(

−2 1
1 −1

)
⊕
(

−2 1
1 −1

)
⊕ (−1)

}4

.(3.119)

We then check the anomaly cancellation conditions (3.115), (3.68),
(3.64), (3.61), (3.14) and (3.65) by using the reduced intersection matrix
(3.119). From (2.28), the canonical class is given by

a = (−2,−2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1),(3.120)

and indeed satisfies (3.115). The −8 curve of C
(−8)
1 is

b′E7
1 = (0, 1,−1,−2, 0, 0, 0,−1,−2, 0, 0, 0,−1,−2, 0, 0, 0,−1,−2, 0, 0, 0).

(3.121)

Note that (3.121) and (3.119) leads to (3.68). The −3 curve of C
(−3)
1 is given

by

b
SO(7)
1 = (1, 0,−1,−1,−1,−1,−1, 015),(3.122)

and reproduces (3.64). The −2 curve of C
(SO(7),E7)
111 is

b
SU(2)
111 = (0, 0, 1, 019),(3.123)

and satisfies (3.61). Furthermore, the intersection between (3.122) and

(3.123) yields (3.65). Finally, the −4 curve C
′ (−4)
3 is

b
SO(8)
3 = (0, 1, 0, 0, 0, 0,−1, 0, 0, 0, 0,−1, 0, 0, 0, 0,−1, 0, 0, 0, 0,−1),(3.124)

reproducing (3.14). Although we have only demonstrated anomaly cancella-
tion using one curve of each type in the full set of −8, −3, and −2 curves, it
is straightforward to check that the other curves also satisfy (3.68), (3.64),
(3.61), (3.14), and (3.65).
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Figure 9. 6d gravity model of T 6/Z2 × Z6 geometry.

3.1.6. T 6/Z2×Z6. The field theory sector of the 6d gravity theory real-
ized by F-theory compactified on T 6/Z2 ×Z6 is given in Figure 9. The base
B = T 4/Z2×Z6 of the elliptic fibration has 12 fixed points under the orbifold
action Z2×Z6 of type in (2.33). Four of them are locally C

2/Z2×Z6 geome-
tries described by the (G2, E8) conformal matter theory, another four fixed
points are locally C

2/Z2×Z3 geometries described by the (G2, F4) conformal
matter theory, and the remaining four fixed points are C

2/Z2 × Z2 geome-
tries associated to the (SO(8), SO(8)) conformal matter system. These local
6d theories are glued by seven tensor nodes with 7-branes carrying five G2

gauge groups, one E8 gauge group, and one F4 gauge group as drawn in
Figure 9. We emphasize here that the 7-brane of the F4 gauge group is
wrapping a −4 curve, so this tensor node couples to Nf = 1 fundamental
hypermultiplet of the F4 gauge group [2]. This is consistent with the LST
formed by four (G2, F4) conformal matter theories glued by the F4 gauge
group in the second vertical line in Figure 9. Note that the LST involves
only one null tensor multiplet, which is only possible when the F4 gauge
7-brane wraps the −4 curve. We will also see that this is consistent with the
anomaly cancellation of the full compact geometry.

Gravitational anomaly. The intersection matrix Ω of the 6d field theory
is a 27× 27 symmetric matrix. Its diagonal elements are

diag Ω = −
(
{2, 2, 1}4, 14, 14, 34, 4, 4, 12

)
,

and off-diagonal elements are given by the rule in (3.24). The matrix Ω has
signature

(3.125) (−,+, 0) = (21, 1, 5).

This means that we have five null tensors and the number of dynamical
tensor multiplets is

(3.126) h1,1(B) = 22, T = 21.

This theory has the following gauge symmetries: four SU(2)’s, four G2’s,
one E8, one F4, and one SO(8). Thus the rank of the gauge groups and the
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number of the vector multiplets are, respectively,

(3.127) r(V ) = 28, V = 396.

The field theory counting h1,1(X) = h1,1(B) + r(V ) + 1 = 51 agrees with
the geometric data of T 6/Z2 × Z6 in Table 5, namely

(3.128) h1,1(X) = 51, h2,1untwisted(X) = 1.

There are 16 half hypermultiplets in each intersection between G2 and SU(2)
gauge groups, and also we have one fundamental, and so 26 hypermultiplets
of the F4 gauge group. This tells us that the number of hypermultiplets is
H = 4 × 8 + 26 + h2,1untwisted(X) + 1 = 60. Therefore our field theory model
has no gravitational anomaly

(3.129) H − V + 29T − 273 = 60− 396 + 29× 21− 273 = 0.

We remark that the F4 gauge group should be put on −4 curve with
one fundamental hypermultiplet, rather than a −5 curve, to be consistent
with the gravity theory. With this choice, the field theory has the correct
numbers of dynamical tensors and hypermultiplets. In addition, the two
twisted massless hypermultiplets corresponding to h2,1twisted(X) = 2 in the
geometry T 6/Z2 × Z6 are precisely the two singlets of U(1)4 ⊂ F4 in the
fundamental hypermultiplet of the F4 gauge group. This provides a novel
understanding of the geometric data h2,1twisted(X) as the modes arising from
6d local CFT degrees of freedom.

Gauge/gravity mixed anomaly. In addition to

a · a = K2
B = 9− T = −12,(3.130)

the anomaly cancellation conditions for SU(2), G2, , SO(8), E8, namely
(3.61), (3.91), (3.14), and (3.96) (respectively) along with (2.15) are satis-
fied. As for the F4 gauge group, we have a hypermultiplet in the fundamental
representation. Using

Afund = 1, Bfund = 0, Cfund =
1

12
,(3.131)

with (3.93) yields

a · bF4
I = 2, bF4

I · bF4
I = −4,(3.132)

and (2.15) is satisfied.
We will reproduce (3.130), (3.61), (3.91), (3.14), (3.96), and (3.132) from

the intersection numbers of the quiver model in Figure 9. The constraints
between the curves in Figure 9 are

C ≡ C
(−3)
i +

3∑
k=1

C
(G2,E8)
i1k + C

(G2,F4)
i21 + C

(G2,SO(8))
i31 , i = 1, . . . , 4(3.133)
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and

C ′ ≡ C
′ (−12)
1 +

4∑
i=1

(
C

(G2,E8)
i11 + 2C

(G2,E8)
i12 + 3C

(G2,E8)
i13 + 4C

(G2,E8)
i14

)
,

(3.134)

= C
′ (−4)
2 +

4∑
i=1

C
(G2,F4)
i21 ,

= C
′ (−4)
3 +

4∑
i=1

C
(G2,SO(8))
i31 .

Then we can choose the basis

(C,C ′, {C(G2,E8)
11k }, C(G2,F4)

121 , C
(G2,SO(8))
131 , {C(G2,E8)

21k }, C(G2,F4)
221 , C

(G2,SO(8))
231 ,

(3.135)

{C(G2,E8)
31k }, C(G2,F4)

321 , C
(G2,SO(8))
331 , {C(G2,E8)

41k }, C(G2,F4)
421 , C

(G2,SO(8))
431 , ),

and corresponding reduced intersection matrix

Ω̃ =

(
0 1
1 0

)
⊕

⎧⎨
⎩
⎛
⎝ −2 1 0

1 −2 1
0 1 −1

⎞
⎠⊕ (−1)⊕ (−1)

⎫⎬
⎭

4

.(3.136)

With the basis (3.135), the canonical class computed from (2.28) is

a = (−2,−2, 1, 2, 3, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 1),(3.137)

and satisfies (3.130). The −2 curve of C
(G2,E8)
111 with SU(2) is

b
SU(2)
111 = (0, 0, 1, 019),(3.138)

and gives (3.61). The class b associated to the curve C
(−3)
1 is

bG2
1 = (1, 0,−1,−1,−1,−1,−1, 015),(3.139)

and satisfies (3.91). Furthermore, (3.138) and (3.139) reproduce (3.92). One
can check that the other curves with SU(2) or G2 also satisfy (3.61), (3.91),

and (3.92). The curve C
′ (−4)
2 is given by

b′F4
2 = (0, 1, 0, 0, 0,−1, 0, 0, 0, 0,−1, 0, 0, 0, 0,−1, 0, 0, 0, 0,−1, 0),(3.140)

and yields (3.132). Finally, the curve C
′ (−4)
3 is

b
′SO(8)
3 = (0, 1, 0, 0, 0, 0,−1, 0, 0, 0, 0,−1, 0, 0, 0, 0,−1, 0, 0, 0, 0,−1),(3.141)

and satisfies (3.14).
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Figure 10. 6d gravity model of T 6/Z3 × Z6 geometry.

3.1.7. T 6/Z3 × Z6. Our last example is the 6d gravity theory obtained
from F-theory on T 6/Z3 × Z6. The field theory sector for this gravity the-
ory is drawn in Figure 10. The base B = T 4/Z3 × Z6 has nine fixed
points. Three of these fixed points are locally C

2/Z3 × Z6 described by
the (F4, E8) conformal matter theory, another three fixed points are lo-
cally C

2/Z3 × Z3 described by the (E6, E6) conformal matter theory, and
the remaining three fixed points are locally C

2/Z2 × Z6 described by the
(G2, F4) conformal matter theory. These theories are glued by three F4

gauge symmetry on −5 curves, one E8 gauge symmetry on a −12 curve,
one E6 gauge symmetry on a −6 curve, one G2 gauge symmetry on a −3
curve as drawn in Figure 10. Note here that the G2 gauge node gluing three
(G2, F4) theories contains one fundamental hypermultiplet. We claim this
theory realizes the non-gravitational field theory sector of 6d supergravity of
T 6/Z3 × Z6.

Gravitational anomaly. The intersection matrix Ω of the 6d field theory
is a 33× 33 symmetric matrix, with diagonal elements

diag Ω = −
(
{1, 3, 2, 2, 1}3, {1, 3, 1}3, 13, 53, 3, 6, 12

)
,

and off-diagonal elements given in (3.24). The matrix Ω has signature

(3.142) (−,+, 0) = (28, 1, 4).

This implies that there are four null tensor multiplets and the number of
dynamical tensor multiplets is

(3.143) h1,1(B) = 29, T = 28.

The full field theory has the following gauge symmetries: one G2, three
Sp(1)’s, three SU(3)’s, three F4’s, one E6, and one E8. Therefore we have

(3.144) r(V ) = 43, V = 571.

The Hodge numbers of the geometry in Table 5 are

(3.145) h1,1(X) = 73, h2,1untwisted(X) = 0, h2,1twisted(X) = 1.

The number of Kähler parameters in the field theory, h1,1(X) = h1,1(B) +
r(V ) + 1 = 73 therefore agrees with the above Hodge numbers.
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There are 16 half hypermultiplets localized at each intersection between
the G2 and Sp(1) gauge groups and in addition there is one fundamental hy-
permultiplet of the G2 gauge group gluing three (G2, F4) conformal matters.
The total number of hypermultiplets is thus H = 3× 8+ 7+ 1 = 32. Again,
our field theory model gives a natural interpretation for h2,1twisted(X) = 1 in
this geometry—this corresponds to the singlet field of U(1)2 ⊂ G2 in the
fundamental representation of the G2.

One can now show that the gravitational anomaly vanishes for our
model:

(3.146) H − V + 29T − 273 = 32− 571 + 29× 28− 273 = 0.

Gauge/gravity mixed anomaly. The anomaly cancellation of this model
requires

a · a = K2
B = 9− T = −19,(3.147)

and also (3.61), (3.91), (3.33), (3.36). (3.96) for the SU(2), G2, SU(3), E6, E8

gauge groups. The curves in Figure 10 are subject to the conditions

C≡C
(−5)
i +

(
2C

(F4,E8)
i11 +

5∑
k=2

C
(F4,E8)
i1k

)
+
(
2C

(F4,E6)
i21 +

3∑
k=2

C
(F4,E8)
i2k

)
+ C

(F4,G2)
i31 ,

(3.148)

for i = 1, 2, 3, and

C ′ ≡ C
′ (−12)
1 +

3∑
i=1

(
C

(F4,E8)
i11 +

5∑
K=2

(k − 1)C
(F4,E8)
i1k

)
(3.149)

= C
′ (−6)
2 +

3∑
i=1

(
C

(F4,E6)
i21 +

3∑
k=2

(k − 1)C
(F4,E6)
i2k

)

= C
′ (−3)
3 +

3∑
i=1

C
(F4,G2)
i31 .

Thus we can choose a basis

(
C,C ′.{C(F4,E8)

11k }, {C(F4,E6)
12k }, C(F4,G2)

131 , {C(F4,E8)
21k }, {C(F4,E6)

22k }, C(F4,G2)
231 ,

(3.150)

{C(F4,E8)
31k }, {C(F4,E6)

32k }, C(F4,G2)
331

)
,

and the corresponding reduced intersection matrix

(3.151)

Ω̃ =

(
0 1
1 0

)

⊕

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

−1 1 0 0 0
1 −3 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠⊕

⎛
⎝ −1 1 0

1 −3 1
0 1 −1

⎞
⎠⊕ (−1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

3

.
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It is now possible to confirm the anomaly cancellations conditions using
(3.150) and (3.152). The canonical class can be computed from (2.28):

a = (−2,−2, 2, 1, 2, 3, 4, 2, 1, 2, 1, 2, 1, 2, 3, 4, 2, 1, 2, 1, 2, 1, 2, 3, 4, 2, 1, 2, 1),
(3.152)

and the self-intersection number of this class yields (3.147). The curves

C
(F4,E8)
113 and C

(F4,E8)
112 are

b
SU(2)
113 = (0, 0, 0, 0, 1, 024), bG2

112 = (0, 0, 0, 1, 025),(3.153)

and they satisfy (3.61), (3.91), and (3.92). We can check that the other G2

curves and the SU(2) curves in the (F4, E8) conformal matter theories also
satisfy (3.61), (3.91), and (3.92). We have another G2 curve given by

b′G2
3 = (0, 1, 08,−1, 08,−1, 08,−1),(3.154)

reproducing (3.91). The curve C
(−5)
1 corresponds to

bF4
1 = (1, 0,−2,−1,−1,−1,−1,−2,−1,−1,−1, 018),(3.155)

and satisfies (3.94). It is possible to show that the other curves of C
(−5)
i , i =

2, 3 also reproduce (3.94). The E8 curve C
′ (−12)
1 and the E6 curve C

′ (−6)
2 are

b′E8
1 = (0, 1,−12,−2,−3,−4, 04,−12,−2,−3,−4, 04,−12,−2,−3,−4, 04),

(3.156)

b′E6
2 = (0, 1, 05,−12,−2, 06,−12,−2, 06,−12,−2, 0).

(3.157)

and they satisfy (3.96) and (3.36).

3.2. 6d strings and BPS black holes. The self-dual strings in the 6d
(1, 0) theories describe motions of D3-branes wrapping compact 2-cycles in
the elliptic CY 3-fold. The worldsheet theories on the strings are 2d SCFTs
preserving N = (0, 4) supersymmetry. We shall consider the self-dual string
worldsheet theories in 6d supergravity engineered by F-theory on a compact
elliptic CY 3-fold X = T 6/Zm × Zn. In particular, we are interested in 5d
supersymmetric black holes that descend from the self-dual string states in
the 6d supergravity theory realized by F-theory on X × S1.

In the context of F-theory, spinning black holes are generated by string
states arising from D3-branes wrapped on a genus g curve C in the elliptic
3-fold and carrying KK modes as studied in [12] (see also the older work
[49] and the more recent work [13]). Let us first focus on the string itself. As
discussed in [12] (see also [13]) in this case we expect a holographic duality
between the 2d worldsheet theory and AdS3×S3×B where B is the base of
the 3-fold; in our specific case B = T 4/Zm × Zn. The 2d worldsheet theory
on these strings has SO(4) = SU(2)L × SU(2)R symmetry which rotates
the transverse R

4 directions in the 6d theory. The SU(2)R symmetry be-
comes the R-symmetry of the N = (0, 4) superconformal algebra in the IR
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SCFT. The SU(2)L symmetry realizes a left-moving current algebra with
level kL = g(C) where g(C) is the genus of the curve C. The left-moving cen-
tral charge cL and right-moving central charge cR of the worldsheet theory
are determined by the genus g(C) as [12]

(3.158) cL = 6g(C) + 12c1(B) · C, cR = 6g(C) + 6c1(B) · C,

respectively. Here c1(B) is the first Chern class of the tangent bundle of the
base B.

Using the adjunction formula

(3.159) g(C) =
1

2
(C · C − c1(B) · C) + 1,

the central charges can then be rewritten purely in terms of intersection
numbers as

(3.160) cL = 3C · C + 9c1(B) · C + 6, cR = 3C · C + 3c1(B) · C + 6.

Even though one expects this holographic duality to be true for general
B and arbitrary class C defining the string charge, an explicit description
of the (0, 4) supersymmetric worldsheet theory is not known in general. As
we will discuss later for the case of B = T 4/Z2×Z2 we propose a candidate
worldsheet quiver gauge theory description.

We shall also consider 5d spinning BPS black hole states arising from
D3-branes wrapping S1 of X × S1 as well as the curve class C, and carry-
ing n units of KK momentum along S1. These states can now be viewed
as 5d black holes. From the perspective of M-theory compactified on the
elliptic 3-fold such black hole states can be viewed as M2-branes wrapping
the curve class n[T 2] + [C] carrying angular momentum JL for SU(2)L.
The microscopic entropy of these spinning black holes can be obtained
from the central charges of the 2d CFT on the spinning strings from D3-
branes. The Cardy formula tells us that the black hole entropy is given by
[50, 12]

(3.161) S = 2π

√
cL
6

(
n− J2

L

4kL

)
.

In the following subsections, we argue that the 2d worldsheet CFTs
on self-dual strings in our 6d field theory models for compact CY 3-folds
X = T 6/Zm × Zn are holographically dual to black strings (or black holes
when compactified on a circle) in type IIB string theory on the background
AdS3 × S3 ×B, constructed by F-theory on an elliptic 3-fold with the base
B = T 4/Zm×Zn, at least in certain limit of complex structure moduli of B.
More precisely, the IR CFT on the Higgs branch of the worldsheet theory
describes the black string states in the 6d supergravity (or the black hole
states with n units of charge in the 5d supergravity). We will confirm this
conjecture by comparing the central charges of the 2d worldsheet theories
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with the central charges (3.160) of spinning strings in the 6d supergravity
theory. We will also discuss some subtle issues about multi-string sectors
in the 2d field theory appearing when the curve C degenerates to multiple
curves [12].

3.2.1. T 6/Z2×Z2 model. For this model, we propose a concrete 2d quiver
gauge theory which has many of the needed ingredients to be the CFT living
on self-dual strings in the 6d gravity theory at low energy, though as we will
discuss the proposed theory will lack some necessary features. The 6d field
theory for this model consists of 16 O(−1) theories joined together by eight
O(−4) theories. The 2d N = (0, 4) gauge theory for self-dual strings in the
O(−1) theory is proposed in [7, 10] and also the 2d theory of the strings
in the O(−4) theory is proposed in another reference [9]. These gauge theo-
ries describe string worldsheet theories of the local 6d SCFTs embedded in
our compact model. This suggests that the 2d quiver gauge theory on the
self-dual strings in the full 6d compact model can be constructed by gluing
these local worldsheet theories in an appropriate manner. Gluing local 2d
gauge theories which live on self-dual strings in 6d SCFTs and LSTs being
comprised only of O(−1) and O(−4) theories are studied in [9] and [51]
respectively. Here, two adjacent O(−1) and O(−4) string theories are con-
nected by coupling to bifundamental matter fields charged under the gauge
groups of both theories. The resulting quiver theory will contain a collection
of bifundamental matter interacting with the matter fields which already
exist in both O(−1) and O(−4) string models through the superpotentials
described in [8].

We expect that this gluing procedure works in each local region of the
compact base B where the geometry can be approximated as the geometry
for a CFT or an LST. This suggests that this gluing procedure involving bi-
fundamental matter may be reliable at least in regions of the moduli space
of 6d self-dual strings where the vevs of the operators coming from bifun-
damental matters are suitably small compared to the size of the curve class
C. We later discuss some subtle issues that occur when the vevs of bifunda-
mental fields become large and therefore additional ingredients are needed
to realize the global structure of the compact X. Therefore, we propose
that combining these 16 + 8 worldsheet theories together with bifunda-
mental matters and their interactions, we can construct a 2d quiver gauge
theory capturing the dynamics of the 6d self-dual strings in our field the-
ory model of X = T 6/Z2 × Z2, at least in certain regions of the moduli
space.

Let us first briefly review the 2d gauge theory descriptions for self-dual
strings in 6d theories on −1 and −4 curves. The strings in the 6d O(−1) min-
imal SCFT admit two different gauge theory descriptions, given separately
in [7] and [10]. We find it more suitable for our purposes to use the O(k)
gauge theory description given in [7]. The theory on k self-dual strings is
described by an O(k) gauge theory preserving 2d N = (0, 4) supersymmetry
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and consists of the following multiplets [7]:

vector : O(k) antisymmetric (Aμ, λ
α̇A
+ )(3.162)

hyper : O(k) symmetric (ϕαβ̇ , λ
αA
− )

1/2 Fermi : O(k)× SO(16) bifundamental Ψ+l.

Note that the hypermultiplet is a real hypermultiplet (satisfying a reality
condition) and here, + (or −) in λ denotes left (or right) worldsheet chirality.

This theory has SU(2)R × SU(2)I R-symmetry whose doublet indices
are α̇ and A respectively. The global symmetry is SU(2)L × SO(16) and α
is the doublet index of SU(2)L. The SO(4) = SU(2)L × SU(2)R is the 6d
Lorentz symmetry transverse to the 2d strings and SU(2)I corresponds to
the R-symmetry of the 6d SCFT. The global symmetry SO(16) acting only
on the Fermi multiplet Ψl is the maximal subgroup of E8 global symmetry
of the 6d E-string theory. We expect that this symmetry enhances to E8 at
the low energy CFT limit by quantum effects.

The n self-dual strings in the 6d O(−4) minimal SCFT are described by
a 2d N = (0, 4) Sp(n) gauge theory with the following matter content [9]:

vector : Sp(n) symmetric (Ãμ, λ̃
α̇A
+ )(3.163)

hyper : Sp(n) antisymmetric (ϕ̃αβ̇ , λ̃
αA
− )

hyper : Sp(n)× SO(8) bifundamental (qα̇, ψ
A
−).

These two types of hypermultiplets are both half-hypermultiplets subject
to a reality condition. This theory has SO(8) global symmetry as well as
SU(2)L × SU(2)R × SU(2)I symmetry. This SO(8) symmetry is the gauge
symmetry of the 6d O(−4) theory.

Lastly, at each intersection between a −1 curve and a −4 curve, there
exists additional bifundamental matter given by [8]

1/2 twisted hyper : O(k)× Sp(n) bifundamental (ΦA, η
α̇
−)(3.164)

1/2 Fermi : O(k)× Sp(n) bifundamental (χ+α).

These bifundamental fields couple to the fields in the O(k) and Sp(n) gauge
nodes through N = (0, 4) superpotentials as described in [8] that identify
the SO(8) global symmetry of the Sp(n) gauge theory with one of SO(8)×
SO(8) ⊂ SO(16) global symmetry of the O(k) gauge theory.

As we have seen, the 6d theory we are interested in involves gluing of
O(−1) and O(−4) theories. Thus the 2d gauge theory for the strings in this
6d theory will be realized by a quiver gauge theory connected by bifunda-
mental matters given in (3.164). The emergence of bifundamental fields is
geometrically natural given that the D3 branes wrapping the corresponding
P
1 see the neighboring P

1 if and only if they intersect. We are interested
in the description of the strings wrapping the corresponding P

1’s given by
classes (ki, nj) with i = 1, · · · , 16 and j = 1, · · · , 8 for the full gravity model,
namely for D3 branes wrapping an arbitrary configuration of P1’s in X. The
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Figure 11. Quiver diagram near a −4 curve which inter-
sects four −1 curves. Note that the diagram represents a
subset of the full quiver diagram for 6d strings. Self-dual
strings over a −4 curve (denoted by a circle with 4) are de-
scribed by an Sp(n) gauge theory, while strings over a −1
curve (denoted by circles with 1) have an O(k) gauge theory
description. An Sp(n) gauge node includes a real antisym-
metric hypermultiplet and four fundamental hypermultiplets
denoted by a vertical solid line. An O(k) gauge node includes
a real symmetric hypermultiplet. A solid line between two
gauge node denotes a twisted half-hypermultiplet and Fermi
multiplet in the bifundamental representation. The dotted
lines stand for Fermi multiplets. When all other O(−4) ten-
sor multiplets are decoupled (i.e. when the external lines in
the diagram are removed), the diagram describes the LST
realized by F-theory on T 4 × C/Z2 × Z2.

matter content of the corresponding 2d field theory is easy to argue: Given
what we have discussed it is natural to consider the gauge theory to be the
product of gauge theories for each of the individual P1’s. In other words,
the 2d gauge theory with gauge group G =

∏16
i=1O(ki)×

∏8
i=1 Sp(ni) real-

izes the worldsheet theory on self-dual strings in the 6d field theory model
of X. The structure of the bifundamental matters should also follow from
the local description given above. Our 2d quiver gauge theory contains 32
copies of the bifundamental matter fields together with their superpoten-
tials. A neighborhood of a −4 curve is described by the quiver diagram in
Figure 11.

More precisely, the 2d CFT on the Higgs branch of this quiver gauge
theory implements the moduli space of self-dual strings coming from D3-
branes wrapped on a genus g curve class C labelled by (ki, nj) in the compact
3-fold with base B = T 4/Z2×Z2. For a given C = (ki, nj), we can construct
the corresponding 2d quiver gauge theory using the above construction.
Since this description covers all possible curve classes C, we propose that
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the 2d quiver gauge theory described above engineers the worldsheet theory
on self-dual strings in the 6d supergravity theory of an elliptic 3-fold with
base B. This leads us to ask if our 2d quiver theory is the holographic dual
of type IIB strings on AdS3 × S3 ×B.

We remark that we used 2d gauge theories for strings on individual P1’s
and glued them with bifundamental matters in a manner consistent with
the construction of CFTs and LSTs. This local gluing prescription may not
be enough to realize the full moduli space of strings in the compact 3-fold.
There is the possibility that additional interactions emerge when all of the
nodes are coupled together. In fact, we show below that we need additional
interactions in order to precisely realize the full moduli space of strings in the
compact 3-fold. However, we also show that even without these additional
ingredients, the central charges lead to the expected results for self-dual
strings in this choice of compact 3-fold [12].

We find that the 2d worldsheet quiver theory exhibits some surprising
structure in the IR. The 2d N = (0, 4) gauge theories in general flow to
different interacting fixed points in the IR. In this paper, we consider the
CFTs on the Higgs branch that we expect to describe the moduli space
of D3-branes bound to curve classes C in the base B. The Higgs branch of
vacua in our 2d quiver gauge theory is rather complicated. It is parametrized
by the vacuum expectation values of the scalar fields in the hypermultiplets.
We have two types of hypermultiplets in 2d N = (0, 4) theory: one is the
usual hypermultiplet whose scalar field qα̇ is charged under the SU(2)R
symmetry and another one is the twisted hypermultiplet whose scalar field
ΦA carries charges of SU(2)I symmetry. Roughly, these two different types
of hypermultiplets lead to two distinct Higgs branches at infinite distance
which only meet at the origin.

The reason for this structure is as follows. The UV N = (0, 4) quiver
gauge theory has two non-abelian right-moving R-symmetries, SU(2)R ×
SU(2)I . However, we expect that the IR CFTs have a smallN = (0, 4) super-
conformal algebra containing only one right-moving SU(2) R-symmetry cur-
rent. Therefore, only one combination of the right-moving SU(2)R×SU(2)I
symmetries participates in the IR superconformal algebra. As discussed in
[52], the right-moving R-symmetry in the IR CFT cannot act on the scalar
fields in the moduli space of vacua. This means that the 2d quiver theory
can flow to two quantum mechanically distinct IR CFTs on two different
Higgs branches. One Higgs branch is parametrized by the hypermultiplet
scalar fields. In this branch, the right-moving R-symmetry in the IR super-
conformal algebra is determined to be the SU(2)I symmetry since it acts
trivially on these scalars. There is also another Higgs branch parametrized by
the twisted hypermultiplet scalars. In this second branch, SU(2)R becomes
the right-moving R-symmetry of the superconformal algebra as the scalars
are neutral under this symmetry. Thus, two theories on these two branches
must be different CFTs as the two branches have different R-symmetries.
Indeed, as we will see soon, these two CFTs have different central charges
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meaning that they have different numbers of interacting degrees of free-
dom.

In the 2d quiver theory, one can easily see the decoupling of the two Higgs
branches: The hypermultiplets in this theory come from the instanton strings
in each tensor node, while the twisted hypermultiplets arise from the inter-
actions between two tensors. There are quartic superpotential couplings be-
tween the hypermultiplets and the twisted hypermultiplets [8]. When scalar
fields of either the hypermultiplets or twisted hypermultiplets take nonzero
vacuum expectation values, the other scalar fields acquire masses from their
quartic interactions. Therefore, giving vevs to scalars in both hypermulti-
plets and twisted hypermultiplets is prohibited due to the quartic couplings.
This tells us that two Higgs branches are decoupled.

Of course, we can consider mixed branches where disjoint components
of both hypermultiplet scalars and twisted hypermultiplet scalars get non-
trivial vevs. The 2d theory contains these mixed branches as well as the two
particular Higgs branches of interest discussed above. However, the resulting
IR theory cannot be a single CFT in these mixed branches. It is because
IR superconformal algebra must include a right-moving SU(2) R-current,
but both SU(2)R × SU(2)I symmetries cannot be the R-symmetry in the
conformal algebra as they both act on the scalar fields of the moduli space.
This implies that when scalar fields in both hypermultiplets and twisted
hypermultiplets acquire nonzero vevs, which is possible only when they are
disjoint components so that they do not meet through the quartic couplings,
the low energy theory should be a collection of disconnected CFTs having
two different (0, 4) algebras. Since we are interested in a single interacting
CFT in the IR, we will not consider these mixed branches.

The 2d CFT corresponding to the black strings in the 6d supergrav-
ity lives in the second Higgs branch parametrized by bifundamental scalar
fields in the twisted hypermultiplets. In string theory, we expect that these
strings are from D3-branes wrapping a genus g > 0 curve C in the base.
This curve C is an irreducible curve formed by a collection of intersecting
curve classes. As noted in [12], when C is non-degenerate, the worldsheet
degrees of freedom localized at the intersection of the curve with D7-branes
are all in the left-moving sector. This means that the SO(8) instanton mod-
uli space in each −4 curve, which represents string states smearing deep
in the SO(8) gauge orbit over D7-branes, cannot participate in the string
states of the non-degenerate curve C. Similarly, we expect that the instan-
ton string states localized in a O(−1) theory cannot contribute to the string
states in the gravity theory. We thus conclude that the Higgs branch of the
bifundamental scalar fields realizes the strings from D3-branes on a curve
C in the 6d supergravity. This is consistent with the fact that the vevs of
bifundamental scalars lift such instanton Higgs branches of local 6d CFTs.
This is also natural since D3-branes can wrap a non-degenerate curve C only
when two theories on two tensor nodes are tightly bound by interactions be-
tween degrees of freedom on two tensor nodes and these interactions are
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mainly realized by bifundamental fields and their interactions. In addition,
the superconformal R-symmetry in this branch is chosen to be the SU(2)R
symmetry that is a part of the 6d Lorentz symmetry. This agrees with the
right-moving R-symmetry of spinning strings in the 6d gravity theory. We
will now show that the central charges of the Higgs branch of the bifunda-
mentals indeed agree with the central charges (3.160) of the 2d CFTs living
on the strings of the 6d supergravity theory.

Let us compute the central charges of the 2d theory on (ki, nj) strings.
The left and right central charges of a 2d CFT are defined by

(3.165) cR = 3Tr(γ3R2
cft), cR − cL = Tr(γ3),

where Rcft is the right-moving R-charge in the IR superconformal algebra
and γ3 is the 2d chirality projection operator acting on chiral fermions ψ±
as γ3ψ± = ∓ψ±.

The SU(2)R × SU(2)I anomalies can be computed using our UV gauge
theory description. The worldsheet theory on ki strings in i-th O(−1) theory
has the anomalies

cI = 3Tr(γ3SU(2)2I) = 6ki, cR = 3Tr(γ3SU(2)2R) = −3ki(ki − 1),

(3.166)

cRcft
− cL = Trγ3 = −6ki.

Similarly, the worldsheet theory on nj strings in jth O(−4) theory has the
anomalies

cI = 36ni, cR = −6ni(2ni + 1), cRcft
− cL = 12ni.(3.167)

At each intersection between a −1 curve and a −4 curve, we have addi-
tional contributions to the anomalies coming from bifundamental fields. For
the bifundamental fields of O(ki)× Sp(nj) gauge groups, we find

cI = 0, cR = 6kinj , cRcft
− cL = 0.(3.168)

We remark here that our 2d theory includes an extra real hypermultiplet
(ϕαα̇, λ

αA
− )com corresponding to center-of-mass degrees. The center-of-mass

fields decouple from the IR CFT. Thus, in order to compute the correct
central charges of interacting CFT degrees of freedom, we need to eliminate
the center-of-mass contributions:

(3.169) ccomI = 6, ccomR = 0, ccomRcft
− ccomL = 2,

which come from the free hypermultiplet (ϕαα̇, λ
αA
− )com.

Therefore, by summing over all these anomaly contributions, the total
anomalies are

cI = 6

16∑
i=1

ki + 36

8∑
i=1

ni − 6, cR = 3

24∑
i,j=1

ΩijCiCj + 3

24∑
i=1

aiCi,(3.170)

cRcft
− cL = −6

24∑
i=1

aiCi − 2,
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where C = (�k, �n) is the vector of string numbers, Ωij is the intersection
matrix for 24 tensor nodes, and ai = 2 + Ωii. When an elliptic 3-fold is
compact, ai can be identified with i-th component of the first Chern class
c1(B) of the base B. So we can rewrite the SU(2)R anomaly in terms of
geometric quantities as

(3.171) cR = 3C · C + 3c1(B) · C = 6g + 6c1(B) · C − 6,

where C · C = ΩijCiCj and g is the genus of C, and C is the curve class
wrapped by D3-branes of the self-dual strings.

Now it is obvious that we have two distinct CFTs having different central
charges on the Higgs branches of the 2d gauge theory. In the first Higgs
branch leading to a 2d CFT of instanton strings in the local 6d CFTs, the
right-moving central charge of the IR CFT is given by cRcft

= cI . On the
other hand, the 2d IR CFT in the second branch, which we expect to be
dual to the 6d black strings, has the central charges

(3.172) cRcft
= cR = 3C · C + 3c1(B) · C, cL = 3C · C + 9c1(B) · C + 2.

This result shows the perfect agreement with the central charges of the
spinning strings in (3.160) obtained from the gravity computation up to
constant factors +6 in cR and +4 in cL. These extra constant factors come
from the center-of-mass degrees of freedom. The central charges in (3.160)
involves the center-of-mass contributions from 4 left-moving bosons and 4+4
right-moving boson and fermion pairs. These are exactly the extra factors +4
in cL and +6 in cR. When compactified on a circle (and after removing the
center-of-mass contributions), these central charges give rise to the expected
microscopic entropy (3.161) of the 5d spinning BPS black holes with charge
n along the KK circle. We find that the agreement of central charges shows
that our 2d worldsheet quiver theory captures an important part of the
physics of the dual CFT to type IIB on an AdS3 × S3 ×B background.

One can also compute the SU(2)L anomaly from the matter contents in
(3.162), (3.163), and (3.164). The result is

(3.173) kL =
1

2
(C · C − c1(B) · C) = g − 1.

This also agrees with the expected level kL = g of the SU(2)L current
algebra of 6d black hole strings when we take into account the center-of-
mass contribution kCM

L = −1 as noted in [12].
Let us discuss the second Higgs branch in some detail. We focus on the

worldsheet theory of the string wrapping a P
1 inside T 4/Z2 × Z2 with class

CLST = C
(−4)
i +

∑4
j=1C

(SO(8),SO(8))
ij . The corresponding quiver theory is

given by the O(1)4 × Sp(1) gauge theory with matter. The second Higgs
branch is parametrized by the bifundamental scalar fields ΦI ≡ ΦI

A=1 (with
I = 1, 2, 3, 4) between the O(1)I and Sp(1) gauge nodes satisfying the F-
term conditions

(3.174) ΦI
(αΦ

I
β) = 0,
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where α, β are the Sp(1) gauge indices and also the D-term conditions. In
this branch we have O(4) global symmetry exchanging these four scalar
fields. The O(1)I = Z2 invariance requires the I-th scalar field to satisfy

(3.175) ΦI
α = −ΦI

α.

One can thus expect that this moduli space is identical to the moduli space
of a single instanton in the SO(4) gauge theory with additional Z2 gauge
symmetries. In terms of the Sp(1) invariant operator Mab defined as

(3.176) Mab ≡ ΦαaȧΦβbḃε
αβεȧḃ,

where (a, ȧ) are doublet indices of SU(2) × SU(2) = SO(4) symmetry, the
moduli space is therefore given by the space of Mab subject to the con-
straint

(3.177) M11M22 = M2
12,

together with Z
1
2 × Z

2
2 orbifolds acting on Mab as

Z
1
2 : (M11,M22,M12) → (M11,M22,M12),(3.178)

Z
1
2 : (M11,M22,M12) → (M22,M11,−M12).

Combining (3.177) and (3.178), we find that the second Higgs branch of the
O(1)4 × Sp(1) quiver theory is given by

(3.179) C
2/ΓD4 ,

where D4 is the dihedral group of order 8.
The second (i.e. twisted) Higgs branch of the 2d theory describing strings

wrapping the class CLST, which is simply the normal geometry of CLST inside
the compact 3-fold, is obviously compact. However, the second Higgs branch
of the 2d quiver gauge theory, namely the surface singularity (3.179), is non-
compact—in other words, our quiver description fails to realize the correct
moduli space of the corresponding self-dual string. This tells us that our
quiver gauge theory description is incomplete and it cannot capture the
full moduli space of self-dual strings in the compact 3-fold X, even though
it contains the right quivers describing the physics of strings in any local
CFTs and LSTs embedded in X. This failure may be related to our gluing
prescription for each pair of two adjacent quiver nodes. As discussed, we may
need to introduce additional interactions when all of local P1’s contained in
the compact base B are glued together. Our 2d quiver gauge theory may
describe only particular corners of the moduli space of strings in the 6d
supergravity.

Regarding this, we propose the following two possibilities. The first pos-
sibility is that the 2d quiver gauge theory can capture only subregions of the
moduli space of strings in the gravity theory where the vevs of the bifunda-
mental scalar fields are much smaller than the size of the curve class C. In
these subregions we can trust our gluing prescription because small bifun-



SCFTS, HOLOGRAPHY, AND TOPOLOGICAL STRINGS 157

damental vevs cannot see the global structure of the compact base B and
thus the intersections between two P

1 cycles can be well-approximated as
those in the local CFTs or LSTs. This can explain the non-compactness of
the second Higgs branch of the quiver theory in (3.179) since, in this limit,
the local moduli space formed by the bifundamental scalars reduces to that
of the strings wrapped on the P

1 associated to the elliptic class T 2 in the
LST arising from the non-compact base T 2×C/Z2×Z2 at low energies. The
SU(2)I internal symmetry which is absent in the supergravity theory also
appears to be restored in this limit. So the 2d quiver gauge theory has this
SU(2)I symmetry.

Some protected quantities of self-dual strings in the supergravity theory
can be computed in these subregions. Indeed, we have already checked that
the central charges of our quiver gauge theory agrees with those of self-dual
strings in the supergravity. Moreover, we expect that the elliptic genus of
the string worldsheet CFT in the compact base T 4/Z2 × Z2 can be exactly
computed using our 2d quiver theory. The reason is as follows: Suppose
we compute the elliptic genus of the 2d CFT using localization. For the
localization, we will turn on equivariant parameters including the holonomies
for the corresponding D3-branes. These parameters lift all charged matter
and thus the bifundamental fields are localized around the origin of the
moduli space where all vevs of charged scalar fields vanish. The localization
result is determined by small fluctuations of the fields near the origin. Our
2d quiver theory covers this region of the moduli space. Therefore, we expect
that the elliptic genus of our quiver gauge theory agrees with the localization
result of the 2d string CFT in the supergravity. This can be supported
from the fact that the elliptic genus of the 2d quiver gauge theory, which
we will compute soon, has the correct modular anomaly of the self-dual
strings since the modular anomaly is fixed by the anomaly polynomial of
the string worldsheet theory [53, 54, 55] and the anomaly polynomial of
this 2d quiver theory is equal to that of the strings in the supergravity
theory.

The second possibility is that the above 2d quiver theory describes the 6d
strings only in a particular limit of the complex structure parameters of the
compact base B, which we expect to be τ → ∞. In this limit, the additional
interactions we need to complete the 2d quiver theory may become irrele-
vant. So the moduli space of 6d strings in this limit may be well-described
by our quiver gauge theory. In addition, since the BPS quantities are inde-
pendent of the complex structure deformation, we can again claim that the
elliptic genus of this quiver theory will give the correct elliptic genus of the
self-dual strings in the supergravity.

Before we move on, let us discuss other possible branches localized at
the origin of the Higgs branches. It is conjectured in [12] that the Higgs
branch of the 2d theory on 6d strings can meet other phases called ‘multi-
string branches’ at the origin. In this context, the CFT of the second Higgs
branch discussed above is ‘single string branch’. In F-theory, multi-string
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branches correspond to the situation where the curve C wrapped by D3-
branes degenerates to a sum of lower genus curves with multiple degenera-
cies. This branch exists only when the D3-branes carry non-zero KK mo-
menta after we wrap the 6d theory on a circle. So, this situation describes
an interesting phase structure for 5d black hole states—see [12] for more
details.

Elliptic genus. In this section we compute the elliptic genus of our 2d
quiver gauge theory. The elliptic genus of the N = (0, 4) worldsheet theory
for (ki, nj) strings is defined as

Zki,nj
(τ, ε+, ε−,m) = Tr

[
(−1)F qH+ q̄H−e2πiε+(JR+JI)e2πiε−JL

32∏
a=1

e2πimaFa

]
,

(3.180)

where q = e2πiτ and H± = H±P
2 with Hamiltonian H and momentum P ,

and JL, JR, JI are Cartan generators of the SU(2)L × SU(2)R × SU(2)I
symmetry. Note also that Fa, a = 1, . . . , 32, are the Cartan generators
of the SO(8)8 symmetries. The elliptic genus is the partition function of
BPS states saturating the BPS bound as H− = 0, and is thus independent
of q̄.

The elliptic genus for the quiver theory acquires contributions from each
O(−1) and O(−4) tensor node, as well as from bifundamental fields. Com-
bining these, we manage to write the full elliptic genus is given by the form
of a contour integral expression

Z�k,�nH ,�nV =

∮ 4∏
i,j=1

Z
O(−1)
kij

(ϕij ,m
H
i ,mV

j )×
4∏

i=1

Z
O(−4)

nH
i

(ϕ̃H
i ,mH

i )(3.181)

×
4∏

j=1

Z
O(−4)

nV
j

(ϕ̃V
i ,m

V
i )×

4∏
i,j=1

Z
O(−1)×O(−4)

kij ,nH
i

(ϕij , ϕ̃
H
i )

× Z
O(−1)×O(−4)

kij ,nV
j

(ϕij , ϕ̃
V
j ),

where ϕij denotes the O(k) gauge holonomies of (i, j)-th O(−1) string and
ϕH
i and ϕV

j denote the Sp(n) gauge holonomies of the i-th horizontal O(−4)

string and of the j-th vertical O(−4) string respectively. Note that mH
i and

mV
j are the i-th horizontal and j-th vertical SO(8) holonomies, respectively.

The elliptic genus of each O(−1) string theory is given by

Z
O(−1)
k (ϕ,m) =

1

|Wk|

r∏
I=1

(
dϕI

2πi
· θ1(2ε+)

iη

) ∏
e∈root

θ1(e(ϕ))θ1(2ε+ + e(ϕ))

i2η2

(3.182)

×
∏

ρ∈sym

i2η2

θ1(ε1,2 + ρ(ϕ))

∏
ρ∈fund

8∏
a=1

θ1(ma + ρ(ϕ))

iη
,
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where r is the rank and Wk is the Weyl group of the O(k) gauge group. The
elliptic genus of an O(−4) string theory is

ZO(−4)
n (ϕ̃,m) =

1

|Wn|

n∏
I=1

(
dϕ̃I

2πi
· θ1(2ε+)

iη

) ∏
e∈root

θ1(e(ϕ̃))θ1(2ε+ + e(ϕ̃))

i2η2

(3.183)

×
∏

ρ∈anti

i2η2

θ1(ε1,2 + ρ(ϕ̃))

∏
ρ∈fund

4∏
p=1

iη

θ1(ε+ + ρ(ϕ̃)±mp)
,

where Wn is the Weyl group of the Sp(n) gauge group. The contributions
from the bifundamental multiplets are given by

Z
O(−1)×O(−4)
k,n (φ, ϕ) =

∏
ρ∈O(k) fund,
w∈Sp(n) fund

θ1(−ε− + ρ(ϕ)− w(ϕ̃))

θ1(−ε+ + ρ(ϕ)− w(ϕ̃))
.(3.184)

The contour integral (3.181) can be evaluated by using the Jeffrey-Kirwan
residue prescription [56, 57].

This elliptic genus contains contributions from all different branches to
which the UV gauge theory can flow. The different branches correspond to
different residue contributions to the above contour integral. This includes
the single string branch forming a macroscopic 5d black hole with KK charge
H+ = n and also all the other mixed branches. The totality of BPS states
in 5d, including their spins, is captured by the topological string partition
function [58, 59, 60]. As discussed in [12] this implies that

Ztop(t, t
′,ma; gs = ε−) =

∑
ki,nj

exp(−kit
i − njt

′j)Zell
ki,nj

(τ,ma, ε+, ε−)
∣∣∣
ε+=0

.

(3.185)

Here gs denotes the topological string coupling constant. Also the refinement
parameter ε+ has been set to zero to obtain the unrefined topological string.
Note that there are 18 inequivalent k, n’s, 32 mass parameters mα and one
τ giving a total of 51 Kähler parameters of the CY 3-fold T 6/Z2 × Z2.

3.2.2. Other models. Unfortunately, we could not find 2d gauge theory
descriptions for self-dual strings in the other gravity models discussed in
this paper since they involve local 6d CFTs such as minimal O(−n) CFTs
with n > 4 whose self-dual strings currently have no known gauge theory
realization. However, we can extract some useful information of the self-
dual string states without knowing the explicit worldsheet gauge theory
realization, for example the central charges of self-dual strings in our gravity
models. In this subsection, we will compute the central charges of string
worldsheet theories from the local field theory data in the gravity models
and show that they agree with the central charges in (3.160) from the gravity
computation.
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The central charges of the string states are encoded in the anomaly
polynomial of the 2d worldsheet theory. In [11, 61], anomaly polynomials of
2d self-dual string theories in general 6d CFTs are obtained by the anomaly
inflow mechanism. In the presence of self-dual strings, the Green-Schwarz
term in the 6d CFT induces anomaly inflows toward the 2d string worldsheet
theory. The anomaly polynomial of the 2d worldsheet theory is fixed by
requiring it to cancel this anomaly inflow contribution from the 6d bulk
theory. The 4-form anomaly polynomial I4 of the 2d worldsheet theory in a
6d CFT is [11, 61]6

(3.186) I4 = −
∑
α

(
F 2

2
+

p1(T2)

24

)
= −kiI

i
6d +

1

2
Ωijkikj χ(T4),

where α runs over all chiral fermions in the 2d theory. F denotes the back-
ground curvature of the symmetry groups and p1(T2) is the first Pontryagin
class of the 2d worldsheet. Ii6d is the 4-form appearing in the 6d Green-
Schwarz coupling

∫
Bi ∧ Ii6d and χ(T4) = c2(L) − c2(R) is the Euler class

of the tangent bundle transverse to the strings in the 6d theory. Here c2(r)
denote the 2nd Chern class of a SU(2)r bundle.

This 2d anomaly polynomial was derived for 6d SCFTs based on the 6d
anomaly computation in [62], so it may be necessary to modify the poly-
nomial to apply to the field theory models of the 6d supergravity theories

discussed in this paper. In particular, the inverse 4-form I6d,j = (Ω−1)ijI
j
6d,

which appears in the original 2d anomaly formula in [11], is not well-defined
in the gravity models since Ω is not invertible. However, we conjecture that
this formula (3.186) works for any 6d field theory models embedded in grav-
ity constructed by local 6d SCFTs, such as our field theory models. Instead,
we will use only the 4-form Ii6d with upper index, not the inverse 4-form
I6d,i as in the case of the original formula in [11]. Here, Ii6d is defined as
the 4-form for i-th tensor node when all other tensors are taken to be non-
dynamical. More precisely, we conjecture that the anomaly polynomial of
self-dual string theories in our gravity models can be obtained by summing
over anomaly contributions from all local 2d string theories (in local 6d
SCFTs), given by −kiI

i
6d, and from the degrees of freedom localized at the

intersection between two adjacent 2d theories, given by 1
2Ω

ijkikjχ(T4).
7

This conjecture is sensible because any local 6d SCFT contained in a
gravity model must have strings with the anomaly polynomial (3.186) in
the field theory limit in which we zoom in near the CFT locus and decouple
other tensors from the 6d SCFT. Also, this is consistent with the locality

6The intersection matrix Ωij in this paper differs from that in [11] by overall minus
sign.

7It may be possible to compute anomaly polynomial of 2d strings by studying anom-
aly inflows computed with respect to the reduced tensor bases and corresponding Dirac
pairings which we defined above to verify gauge/gravity mixed anomaly cancellation. But
this would require an independent anomaly inflow analysis for each gravity model, and
hence we do not pursue this approach.
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of 2d worldsheet theories, which we expect to be constructed by gluing 2d
string theories in local 6d CFTs embedded in the gravity theory. We will
provide more evidence for this conjecture below by comparing the anomaly
polynomial (3.186) with the expected central charges of the strings in the
gravity theories.

The central charges cI , cR, cL of a 2d theory are encoded in the coeffi-
cients of the following terms in the anomaly polynomial:

(3.187) I4 = cI

(
−c2(I)

6

)
+ cR

(
−c2(R)

6

)
+ (cR − cL)

(
−p1(T2)

24

)
+ · · · .

Using this formula, we can compute the central charges of self-dual strings
in the 6d gravity models.

For T 6/Zn × Zm with T tensor fields, we compute

cI = 6

T∑
i=1

H iCi − 6, cR = 3C · C + 3c1(B) · C,(3.188)

cRcft
− cL = −6c1(B) · C − 2,

where H = h∨G is the dual Coxeter number of group G for the tensor nodes
with non-trivial gauge groups G, and H = 1 otherwise. In these formulae,
we have already subtracted the center-of-mass contributions. One can eas-
ily check that the above result applied to the specific case of T 6/Z2 × Z2

matches the central charges in (3.170) obtained from the UV 2d gauge theory
realization of this model.

As discussed, the worldsheet theories are expected to contain various
CFT branches and accordingly these CFTs have different central charges.
The single string branch, which corresponds to black strings coming from
D3-branes wrapping a non-degenerate curve C, gives rise to a (0, 4) CFT in
IR and the right-moving R-symmetry in its superconformal algebra is the
SU(2)R symmetry. In this branch, the central charges cR, cL in (3.188) of our
gravity models perfectly agree with those of single string states computed
in [12], up to constant factors +6 in cR and +4 in cL coming from center-
of-mass modes as discussed above. This provides more strong evidence in
support of our field theory models of 6d supergravity theories realized by
F-theory on T 6/Zn × Zm.

4. 5d perspective on compact Calabi-Yau 3-folds

In the previous section we argued that topological string amplitudes
may be captured by the elliptic genus of certain 2d quiver theories. The
basic idea was to decompose the theory into local contributions associated
to 6d strings, and then to glue these contributions. However this only works
for elliptic CY 3-folds, which have a 6d F-theory realization. It is natural to
ask if similar ideas could work for other compact CY 3-folds which are not
elliptic, such as the quintic 3-fold. In this section we address this question
and argue that a similar decomposition into 5d SCFTs exists. We first review
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some known examples of circle compactifications of 6d SCFTs which can be
viewed as gauging multiple copies of 5d SCFTs and then proceed to study
several non-elliptic CY 3-folds using this 5d perspective.

4.1. Review: Circle compactification of 6d minimal SCFTs.
The possibility of a 6d system decomposition into 5d SCFTs is strongly
motivated by the results of [15]. There it is quantitatively shown that 6d
(1, 0) O(−n) theories compactified on a circle lead to 5d systems which
can be constructed by gluing (gauging) local 5d SCFTs associated to toric
CY 3-folds (for more geometric perspective, see also [14, 63]). The geome-
tries associated to these theories are of the form T 2 × C

2/Γ. This is very
much in the spirit of what we have already done in this paper using 6d
SCFTs.

From the point of view of the topological vertex, the conceptually sim-
plest example is the O(−3) theory, for which the orbifold action of Γ = Z3

is generated by g = (ω2;ω−1, ω−1) with ω3 = 1. The group Γ has three
fixed points on T 2, and the local geometry in the vicinity of each fixed
point is C3/Z3. The full geometry can therefore be viewed as three local
P
2’s joined by a three-punctured sphere, namely the P1 containing the three

fixed points of the Z3 action. A web picture is depicted in Figure 12. An
alternative method to obtain this geometry is to resolve the elliptic 3-fold
engineering the circle compactification of the O(−3) theory, which consists
of three Hirzebruch surfaces F1 glued along a common P

1 with normal bun-
dle O(−1) ⊕ O(−1). One then performs a flop transition by blowing down
the P1 and subsequently blowing up a curve inside each of the three resulting
P
2’s—see for example [63]. Notice that each local P2 geometry engineers a

5d E0 theory with a single Coulomb branch modulus, and hence the result-
ing 5d field theory consists of three E0 theories “coupled” to one another
by a common state in the massive BPS spectrum with mass depending on
all three moduli. This is an example of the “SU(1)” gauging described in
[15].

The remaining circle compactifiedO(−n) theories with n = 4, 6, 8, 12 can
also be assembled from toric 3-folds, in an analogous manner to O(−3), by
using the non-abelian generalization of the SU(1) gauging to SU(2) gaug-
ing. As described in [14] these theories can be realized geometrically as
T 2 × C

2/Γorb where the orbifold group Γorb = 〈Z2p,ΓADE〉 is generated by
(α2, α−1ΓADE), with α2p = 1 and ΓADE a finite subgroup of SU(2). Note
that p must be restricted to the values p = 2, 3, 4, 6 to ensure that the action
of Γorb is compatible with the isometries of T 2, given a choice of complex
structure. As before, the local geometry in the vicinity of each T 2/G fixed

point is of the form C
3/Γorb, and engineers the 5d theory D̂p(G).8 Since

8The theories D̂p(G) are the 5d lifts of generalized 4d N = 2 D-type Argyres-Douglas
theories Dp(G).
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Figure 12. 5d perspective on the 6d minimal O(−3) theory
compactified on S1. From a 5d field theoretic perspective,
this theory can be viewed as three local P2 theories glued
together by a three-punctured sphere which we view as SU(1)
gauging. From the standpoint of the topological vertex, this
three-punctured sphere is an example of the 1− vertex, which
is the mirror of the typical 1+ vertex. In the left diagram
above, two examples of the mirror 1± vertices are labeled for
contrast. The diagram on the right is a schematic graph of
the 5d decomposition, where the nodes are 5d SCFTs and
the trivalent vertex is the SU(1) gauging.

there is a non-compact locus of singularities arising as the fixed point set of
ΓADE, the global symmetry group of the 5d theory is the simply laced group
G corresponding to the ADE subgroup ΓADE.

In the full geometry T 2×C
2/Γorb, the locus of ADE singularities is now

compact and the global symmetry G associated to each local toric 3-fold is
consequently gauged. Furthermore, each T 2 may contain several fixed points
with local geometry C

3/Γorb engineering the 5d theory D̂mi(G), where mi

is the order of the stabilizer group of the i-th fixed point. The compact
locus T 2/Z2p containing the fixed points is a geometric realization of a “G”
gauging, where G is the diagonal subgroup of product of global symmetry
groups associated to each T 2 fixed point.

When G = SU(2) the construction described above realizes O(−2p) the-
ories compactified on a circle. The situation is similar to the case of O(−3)
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with the important difference being that the 5d theories acting as the build-
ing blocks of these theories are now coupled by trivalent9 SU(2) gauging,
which is in a sense the non-abelian generalization of the SU(1) gauging
necessary to describe the O(−3) case. As an example, consider the specific
case of O(−6) compactified on a circle. In the geometry associated to this
theory, the T 2 factor has three Z3 fixed points, and hence the global descrip-
tion consists of three copies of the non-compact 3-fold C

3/Γorb coupled by
trivalent SU(2) gauging, where the orbifold action of Γorb = Z6 is generated
by (α2;α−1, α−1) with α6 = 1 (note that the group ΓADE = Z2 generated
by (1;−1,−1) is a subgroup of Z6.) The local 3-fold C

3/Z6 with this orb-
ifold action can be viewed as a neighborhood of the singular Kähler surface
F4∪F2∪F0 and the full geometry is three copies of F4∪F2 glued along three
distinct fibers in a common F0. To bring this geometry into a form similar
to the geometric description of the O(−3), we can blow down the F0 along
its ruling to obtain a P

1 meeting three weighted projective planes P2
(1,1,2) at

their respective A1 singularities; see [63]. The vertex decomposition of this
geometry is depicted in Figure 13.

In the cases of O(−3) and O(−4), a number of consistency checks of the
above decomposition into 5d SCFTs coupled by SU(2) gauging were per-
formed in [15], most notably comparisons of the Nekrasov partition func-
tion with the elliptic genus. Moreover, expressions for the Nekrasov partition
functions of the O(−6), O(−8), and O(−12) theories compactified on a cir-
cle were also proposed in [15]. The existence of trivalent gaugings compat-
ible with the Nekrasov partition function offers the tantalizing possibility
that the usual topological vertex can be extended to non-toric 3-folds by
including an additional vertex which accounts for trivalent gluing of mul-
tiple numbers of external legs in the dual (p, q) 5-brane web diagrams. In
the case of SU(N) gauging we refer to a trivalent vertex consisting of N
external legs as an “N− vertex”. We explore this point in more detail in
Section 4.3, after we describe several examples of compact 3-folds that also
admit a decomposition into toric 3-folds glued by various types of SU(N)
gaugings.

4.2. Mirror Fermat Calabi-Yau 3-folds. Here we attempt to ad-
dress cases for CY 3-folds without an elliptic fibration such as the mirror
quintic and ask whether or not they admit a complete 5d gluing prescrip-
tion. We find that there is evidence that the 5d local theories glued together
capture the key ingredients of the compact model, and we conjecture that
they contain many (but not all) of the needed ingredients to capture the
all-genus topological string amplitudes for certain compact CY 3-folds, in-
cluding the mirror quintic. We illustrate this point by considering orbifolds
of Fermat hypersurfaces in weighted projective spaces.

Consider a Calabi-Yau 3-fold M defined as a degree d Fermat hypersur-
face of the weighted projective space P

4
�w. We denote such hypersurfaces by

9Or tetravalent, in the case of O(−4).
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Figure 13. 5d perspective on the 6d minimal O(−6) theory
compactified on S1. This theory can be viewed as three lo-
cal D̂3(SU(2)) theories glued together by a three-punctured
sphere (i.e. a P1 with three marked points) which is a geomet-
ric realization of SU(2) gauging. In contrast to O(−3) case,
the punctures on the central P1 correspond to three distinct
A1 singularities. In the left figure above, the central trivalent
vertex is an example of the 2− vertex. We have also labeled
an example of the usual 1+ vertex for contrast. The figure
on the right is a schematic diagram of the 5d decomposition
where the central SU(2) represents the three-punctured
sphere.

M = P
4
�w[d], where �w has components wi satisfying

∑
wi = d:

M = P
4
�w[d] =

{
5∑

i=1

zpii = 0

}
⊂ P

4, pi =
d

wi
.(4.1)

Let us count the number of Kähler parameters associated to the mirror W
defined by

W = M/G, G =
∏
k

Zqk .(4.2)

The group G is the maximal group of abelian symmetries whose matrix
representatives have unit determinant:

G : �z → g�z, det(g) = 1.(4.3)
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The CY 3-fold W is the mirror dual to M , which from the above equations
we see is defined as the hypersurface in the non-orbifolded version of the
same weighted projective space [64]. The reason we have modded out by the
maximal allowed abelian symmetry is that this creates the most singular 3-
fold possible and thus has the best chance of being described as a collection
of local singularities.

Similar to what we discussed in the 6d case, in order to capture the
local physics, we need to concentrate on the local singularities which lead
to 5d SCFTs and gauge symmetries. We shall see exactly these two ingre-
dients appear for us in this case as well. Thus, we consider M-theory on
the above CY 3-fold and consider its singular loci. The point singularities
give rise to 5d SCFTs, while curve singularities correspond to gauge sym-
metries.

The 3-folds we consider have singular loci arising as the fixed point sets
of G. The fixed points due to the abelian symmetries of G which do not
involve the intrinsic symmetry of the underlying weighted projective space
are generally curves or points. Moreover, weighted projective spaces have
intrinsic singularities of the form:

SingS = {zi = 0, ∀i ∈ {1, . . . , n+ 1}\S}(4.4)

provided the subset of weights {wi}i∈S has nontrivial gcd nS . The examples
we consider below are well-formed hypersurfaces. A complete intersection
M given by the zero locus of m homogeneous polynomials is well formed
if M does not contain any codimension m+ 1 singular loci of the weighted
projective space and if furthermore the weights of any set of n projective
coordinates are coprime. In our case, n = 4 and m = 1, and thus it fol-
lows that all singularities of our 3-fold hypersurfaces are curves or points,
for which the normal geometry is (respectively) C

2/Zn0 or C
3/Zn1 × Zn2 ,

with some n0, n1, n2. The former produces a gauge symmetry SU(n0), while
the latter produces a 5d CFT labeled by T (n1, n2). Curve singularities ap-
pear over loci zi = zj = 0 and are denoted Cij . The normal geometry
of Cij is C

2/Znij (with nij ≡ gcd(pi, pj)) and is responsible for SU(nij)

gauge symmetry localized over Cij with gauge parameter 1/g2 proportional
to the area of Cij . We can understand this in more precise terms as fol-
lows: the orbifold action of G on the tangent directions

∑
k �=i,j z

pk
k = 0

produces a genus 0 curve Cij while the action of G on the normal di-
rections zi, zj is given by Znij and hence generates nij images leading to
SU(nij) gauging, associated to the following number of Kähler parame-
ters:

N(Cij) = nij − 1.(4.5)

On the other hand, singularities of the type C
3/Zn1 × Zn2 arise at points

given by zi = zj = zk = 0; we sometimes label the corresponding 5d
SCFT by Tijk. Since each of these points is the intersection of three curves
Cij ∩ Cjk ∩ Cki described above, we should think of each point as a local
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Figure 14. Schematic example of a collection of 5d Tijk

theories with trivalent SU(nij) gaugings of the curves Cij .
Depicted above are three SU(5) gaugings of four local T5

theories, as described in the 5d model of the mirror quintic.
Each T5 theory has (not accounting for possible symmetry en-
hancements) SU(5)×SU(5)×SU(5) global symmetry, which
can be viewed as arising from three separate stacks of par-
allel non-compact branes. The dotted lines connect to either
additional SU(5) gaugings or local SCFTs Ti′j′k′ . The global
structure of the system is described in Figure 15.

T (n1, n2) theory defined by a toric diagram with nij branes crossing one
edge, njk branes crossing the second edge, and nki branes crossing the third
edge; see Figure 14. The Tijk theory exhibits SU(nij)× SU(njk)× SU(nik)
global symmetries which are gauged by the curves Cij , Cjk, Cik respectively;
one can then select the two largest numbers n1, n2 from the set nij , njk, nki

to determine the orbifold singularity C
3/Zn1 × Zn2 engineering the local

SCFT T (n1, n2). One can use Pick’s theorem count the number of inter-
nal points in the above toric diagram to determine the number of Kähler
parameters (i.e. internal points of the toric diagram) associated to each
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Figure 15. A graphical representation of the putative 5d
system describing the geometry W defined by (4.2). Each
triangle (ijk) in the pentagon corresponds to a conformal
system Tijk and each edge (ij) correspond to SU(nij) gauging
all the Tijk which share that edge. In the right graph each
triangle corresponds to a conformal system Tijk and each
circle corresponds to SU(nij) gauging.

Tijk:
10

N(Tijk) = N(T (n1, n2)) = 1 +
1

2
(n1n2 − nij − njk − nkl)

= 1 +
1

2

(
nijnjknkl

min(nij , njk, nkl)
− nij − njk − nkl

)
.

(4.7)

The resulting 5d system can be depicted by a pentagon with diagonals drawn
as in Figure 15.

To check if this model captures all, we have to see if we can recover the
counting of the massless degrees of freedom of M-theory on such manifolds
correctly. For all these examples the moduli space of complex structures is
one dimensional (given by the deformation of the defining polynomial by
the term

∏
i zi). Just as in the 6d case we expect this to deform the gluing

of the 5d theories. However the BPS degeneracies of the 5d theories (which
are captured by topological string amplitudes) do not depend on this.

10Notice that Pick’s formula reduces to the usual degree-genus formula for a curve of
genus g and degree d in P

2 when nij = njk = nki = n. Specifically, we obtain

N(Tijk) =
1

2
(n− 1)(n− 2),(4.6)

where in the above formula N = g and n = d.
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The other things to count would involve the Kähler moduli of the 3-
fold and to see if we can recover this counting from the 5d model. This
would involve counting the N(Tijk) Coulomb branch parameters of the 5d
SCFTs Tijk, the nij − 1 gauge parameters of the curves Cij , and the overall
Kähler moduli of the weighted projective space which fixes the gauge cou-
pling associated to the curves Cij of gauge symmetries (this Kähler modulus
corresponds to the hyperplane class of the weighted projective space). Note
that although naively we have ten couplings corresponding to each S(nij),
but geometrically it seems natural to impose relations between them. More
detailed analysis is performed in Appendix C for the mirror quintic. If we
admit the existence of the relation among the couplings, the total count is

NKähler =
∑
ijk

N(Tijk) +
∑
ij

N(Cij) + 1.

Below we shall check that this indeed agrees with the count of the Kähler
parameters of several examples of one parameter compact CY 3-folds [65].
For example as we shall discuss, for the mirror quintic we have 10 theories
all of T5 = T (5, 5) type (with C

3/Z5×Z5 local geometry) and they are glued
via 10 SU(5) gauge symmetries. Since N(Cij) = 4 and N(T5) = 6, we obtain

NKähler = 101

which agrees with the number of Kähler parameters of the mirror quintic.
A curious property of the 5d model is its Higgs branch. Consider a special

point of the Kähler moduli where all exceptional divisors have been shrunk
to points and the geometry is literally described by (4.2). At that special
point of the Kähler moduli space, we expect an enlarged set of complex
structure moduli, and hence a geometric transition, because we can perform
complex deformations of singular locus Cij whose normal geometry is the
ALE space C/Znij .

After the geometric transition, the number of Kähler moduli should be
ÑKähler = 1, because all the Kähler parameters other than the total volume
of the weighted projective space are frozen after the transition. Let us count
the number of complex structure moduli Ñcomplex after the transition using
the 5d model we have described. This mode should correspond to the Higgs
branch of the corresponding 5d theory, which opens when all the parameters
associated to each conformal system Tijk are turned off. The quartanionic
dimension of the Higgs branch of this system, which should be equal to
the number of complex structure deformations of the geometry after the
geometric transition, is calculated by

Ñcomplex =
∑
ijk

dimHHiggs(Tijk)−
∑
ij

dimSU(nij) +Ncomplex,

where Ncomplex = 1 is the number of the complex structure deformations
which already existed before the geometric transition. In the case of mirror
quintic, the 5d SCFT Tijk is the T5 system, for which the dimension of Higgs
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branch is shown in [66, 67] to be

dimHHiggs(T5) = 34.

Therefore, for the mirror quintic model, the dimension of complex structure
moduli after the geometric transition is

(4.8) Ñcomplex = 10× 34− 10× 24 + 1 = 101,

which suggests that the geometry after the geometric transition is the orig-
inal quintic.

In [68], it was shown that the 7555 CY 3-folds realizable as hypersur-
faces in projective space are related by geometric transitions. This result
essentially relies on the fact that hypersurfaces in projective space are a
special case of complete intersections in toric varieties. Given a pair of 3-
folds admitting toric descriptions, one can use appropriate representations
of the toric data to construct a third toric 3-fold interpolating between the
two, thus demonstrating the existence of a geometric transition. Since both
the quintic and the mirror quintic can be realized as such hypersurfaces, it
follows immediately from this result that there exists a transition relating
the two. What is described above is a field theoretic perspective on this type
of transition which leans heavily on the fact that much of the local physics
of our 5d model is encoded in the singularities of the mirror quintic.

It is also possible to explicitly see the above geometric transition from
the mirror quintic to the quintic in terms of algebraic equations. Let yi = z5i
where zi, i = 1, · · · , 4 are homogeneous coordinates of P4. Then the yi’s are
invariant under the Z5 × Z5 orbifold action of the mirror quintic. We also
introduce a complex coordinate ρ =

∏
i zi. Then the defining equation of

the mirror quintic can then be described as∑
i

yi = 5ψρ,(4.9)

where ψ is the complex structure modulus of the mirror quintic. Note that
yi, i = 1, · · · , 5 and ρ are not independent of each other but are constrained
by ∏

i

yi = ρ5.(4.10)

Since zi, i = 1, · · · , 4 are homogeneous coordinates of P
4, (yi, ρ) may be

thought of homogeneous coordinates of P5 and hence the mirror quintic can
be also realized by the complete intersection given by (4.9) and (4.10) in-
side P

5. From this viewpoint, the Cij correspond to yi = yj = ρ = 0 and
Cijk correspond to yi = yj = yk = ρ = 0. The geometry corresponds to
a special region of the Kähler moduli space where all the exceptional divi-
sors are collapsed to points. We can desingularize the geometry by adding
degree five monomials of the coordinates (yi, ρ) to the equation (4.10). Fur-
thermore, since (4.9) is a linear equation we may erase one coordinate, for
example y1, and then the equation (4.10) after turning on deformations of
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degree five monomials becomes the defining equation for the quintic. Hence
adding general degree five monomials to (4.10) corresponds to the Higgsing
transition.

In each of the following examples, which are the mirrors of all hypersur-
face 3-folds with a single Kähler modulus, there is a single gauge coupling
which fixes the (equal) volumes of the curves Cij . Consequently, when count-
ing h1,1 we must in each case add to the Kähler moduli associated to the
singularities of the corresponding 3-fold an additional Kähler modulus con-
trolling the volume of Cij .

4.2.1. P
4
(1,1,1,1,1)[5]/G. We have already described the quintic above but

we repeat the results here for completeness. The mirror W = P
4
(1,1,1,1,1)[5]/G

of the quintic has the following Hodge numbers:

h1,1(W ) = 101, h2,1(W ) = 1.(4.11)

The fixed curves Cij all have nij = 5 and thus carry SU(5) symmetries.
Hence ∑

ij

N(Cij) = 10 · 4 = 40.(4.12)

The fixed points Tijk are all T (5, 5) theories, with N(T (5, 5)) = 6, and
therefore ∑

ijk

N(Tijk) = 10 · 6 = 60.(4.13)

The total number of Kähler parameters is therefore

NKähler = 101.(4.14)

4.2.2. P
4
(2,1,1,1,1)[6]/G. The 3-fold M = P

4
(2,1,1,1,1)[6] is defined by

x31 + x62 + x63 + x64 + x65 = 0(4.15)

in P
4
(2,1,1,1,1). The mirror W has the following Hodge numbers:

h1,1(W ) = 102, h2,1(W ) = 1.(4.16)

In this case, there are two types of gauge symmetries: four SU(3) symmetries
and six SU(6) symmetries. For example, the curve C12 has n12 = 3 and hence
carries SU(3) gauge symmetry, while C23 carries SU(6) gauge symmetry.
Accounting for all singular curves, we have∑

ij

N(Cij) = 4 · 2 + 6 · 5 = 38.(4.17)

There are also two types of fixed points Tijk, namely six fixed points with
associated conformal system T (3, 6), with N(T (3, 6)) = 4 and four fixed
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points associated to T (6, 6) with N(T (6, 6)) = 10. The total contribution of
these fixed points is ∑

ijk

N(Tijk) = 6 · 4 + 4 · 10 = 64,(4.18)

and thus the total number of Kähler parameters is

NKähler = 102.(4.19)

4.2.3. P
4
(4,1,1,1,1)[8]/G. The 3-fold W = P

4
(4,1,1,1,1)[8]/G has the following

Hodge numbers:

h1,1(W ) = 149, h2,1(W ) = 1.(4.20)

The fixed curves contribute∑
ij

N(Cij) = 4 · 1 + 6 · 7 = 46.(4.21)

There are two types of fixed points: six fixed points T (2, 8) and four fixed
points T (8, 8). These fixed points contribute the following numbers of Kähler
moduli: ∑

ijk

N(Tijk) = 6 · 3 + 4 · 21 = 102.(4.22)

The total number of Kähler parameters is thus

NKähler = 149.(4.23)

4.2.4. P
4
(5,2,1,1,1)[10]/G. The 3-fold W = P

4
(5,2,1,1,1)[10] has Hodge num-

bers

h1,1(W ) = 145, h2,1(W ) = 1.(4.24)

The fixed curves contribute∑
ij

N(Cij) = 3 · 1 + 3 · 4 + 3 · 9 = 42.(4.25)

There are four types of fixed points, namely T (2, 5), T (2, 10), T (5, 10),
T (10, 10). These fixed points contribute the following numbers of Kähler
moduli: ∑

ijk

N(Tijk) = 3 · 2 + 3 · 4 + 3 · 16 + 1 · 36 = 102.(4.26)

The total number of Kähler parameters is thus

NKähler = 145.(4.27)
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Figure 16. An assignment of Young diagrams and arrows
for a vertex.

4.3. A generalization of the topological vertex. We have seen in
this section that to discuss the compact CY 3-folds from the perspective of
local singularities, we need in addition to the usual topological vertex a way
to describe gauging global symmetries of local models. In particular, we need
to gauge a diagonal subgroup H = (H×H×H)diag of the global symmetries
H ⊂ Gi=1,2,3 of three local 5d SCFTs. So in this section we present a general-
ization of the topological vertex [69] which will be able to describe a trivalent
SU(N) gauging for three toric geometries, based on [15]. This method also
gives more geometric insights into the 5d models described above.

First note that since the local geometry of Tijk is toric it is possible to
compute its all-genus topological string partition function using the stan-
dard topological vertex, which we call “+” vertices. We decompose the toric
diagram into vertices with three legs where Young diagrams are assigned
with arrows to each leg. The (standard) topological vertex is given by

Cλμν(y) = y−
||μt||2

2
+

||μ||2
2

+
||ν||2

2 Z̃ν(y)
∑

sλt/η(y
−ρ−ν)sμ/η(y

−ρ−νt),(4.28)

for a vertex with Young diagrams λ, μ, ν assigned in a clockwise manner and
arrows oriented outward as in Figure 16. Here, we define y = e−s where s
is the topological string coupling and ||μ||2 =

∑
i μ

2
i for a Young diagram μ.

Z̃ν(y) is given by

Z̃ν(y) =
∏

(i,j)∈ν

(
1− yνi−j+νtj−i+1

)−1
.(4.29)

sμ/ν(x) is the skew Schur function and −ρ = i − 1
2 , i = 1, 2, · · · . When we

glue vertices along a leg with a Young diagram λ, we include a factor

(−Q)|λ|fλ(y)
n,(4.30)

where Q is a Kähler parameter for the gluing leg and fλ(q) is framing factor

fλ(y) = (−1)|λ|y
||λt||2−||λ||2

2 .(4.31)

We also define |λ| =
∑

i λi and n = det(v1, v2) where v1, v2 are vectors as
in Figure 17. Note that we need to assign non-trivial Young diagrams for
external legs of the Tijk diagrams since we further need to glue the external
legs of Tijk with the external legs of other Ti′j′k′ diagrams.



174 H. HAYASHI, P. JEFFERSON, H.-C. KIM, K. OHMORI, AND C. VAFA

Figure 17. An example of gluing along a leg with a Young
diagram λ.

Although the partition function for each Tijk can be computed using the
standard topological vertex, we also need a different type of vertex which
glues three toric diagrams by connecting their external legs. Gluing together
three collections of N parallel external legs such that the external legs are
compactified physically corresponds to an SU(N) gauging, and it is because
of this SU(N) gauging that the geometry differs from the geometry of toric
3-folds. The procedure of a single SU(N) gauging of three or four toric
geometries is developed in [15] and we summarize the rule below.

We consider a rule for a local CY 3-fold which is constructed by a single
trivalent SU(N) gauging. In order to formulate the prescription, it may be
useful to think of a trivalent SU(N) gauging with a Chern-Simons level k as
a new type of vertex, which we call an “N−

k ” vertex.11 The N−
k vertex has

three sets of N tuples of legs as depicted in Figure 18. We assign a Young
diagram for each leg and also arrows where two of them are in an inward
direction and one is in an outward direction. The contribution to the N−

k
vertex is

(4.32) C
(N−

k )

�λ,�μ,�ρ
( �Q; y) =

∏N
a=1 fλa(y)

−l(N,k,a)δλa,μa,ρa

Zhalf vector
SU(N),�λ

( �Q; y)
,

where �λ, �μ, �ρ mean the sets of Young diagrams {λa}, {μa}, {νa} where a =
1, · · · , N . δλ,μ,ρ is 1 when all the three Young diagrams are the same and 0
otherwise. The power l(N, k, a) ∈ Z of the framing factor fλa is the effective
level of the corresponding effective U(1) gauge field coming from the SU(N)k
gauging. This number depends on the chamber of the enlarged Kähler mod-
uli space, and therefore it jumps when a flop transition occurs. Although
the explicit form of l(N, k, a) will not be important in this paper, it can be
determined by writing down a diagram describing the geometry around the
N−

k vertex. In Appendix B, the numbers l(N, k, a) are determined for the

case of the mirror quintic in a chamber. The denominator factor Zhalf vector
SU(N),�λ

is roughly a “half” of the contribution of the SU(N) vector multiplet to the
Nekrasov partition function, which can be computed using the toric diagram
in Figure 19. The explicit expression is given by

11This gauging is more like a U(N) gauging with the Coulomb branch parameter for
the overall U(1) turned off. In this sense, we can also consider a “1−k ” vertex, i.e. an N−

k

vertex with N = 1 and k = 0, 1.
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Figure 18. The N− vertex. The vertex have 3N legs, with a
Young diagram, λa, μa, or ρa in the picture, assigned to each
leg. The Young diagrams λa and μa are assigned inwards,
but ρa are assigned outwards. This is just to reproduce q-
YM result when N = 1 as in (4.39). The contribution from
the vertex is (4.32) and it is proportional to a product of delta
functions which imposes λa, μa, ρa to be the same for each a.
The angles of the legs have no meaning other than that there
are three sets of legs. The Kähler parameters parametrizing
the distances between the parallel legs in one direction should
be identified the distances between the parallel legs in other
directions as indicated in the figure.

Figure 19. The diagram that defines Zhalf vector
SU(N),�λ

( �Q; y). Each

vertex represents the usual unrefined topological vertex,
which is also called the “+” vertex here.

Zhalf vector
SU(N),�λ

( �Q; y) = y
1
2

∑N
a=1 ||λa||2

N∏
a=1

Z̃λa(y)

(4.33)

∏
1≤a<b≤N−1

∞∏
i,j=1

(
1−QaQa+1 · · ·Qby

i+j−λa,i−λt
b+1,j−1

)−1
.
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When the arrows for the all the three Young diagrams are in an inward
direction, the N−

k vertex becomes

(4.34) C(N−
k )

�λ,�μ,�ρ
( �Q; y) =

∏N
a=1(−1)|λa|fλa(y)

−l(N,k,a)+1δλa,μa,ρa

Zhalf vector
SU(N),�λ

( �Q; y)
,

due to the identity

Cλμν(y) = (−1)|λ|+|μ|+|ν|f−1
λ (y)f−1

μ (y)f−1
ν (y)Cμtλtνt(y).(4.35)

For the N−
k vertex, we also assign the following weight of Kähler param-

eters
N∏
a=1

(−QBa)
|λa|,(4.36)

where QBa are the effective couplings of U(1) gauge fields which arise on
the Coulomb branch of SU(N). Note that these effective couplings are not
independent—only one among QBa , a = 1, · · · , N − 1 is an independent
parameter and it is related to the gluing parameter (i.e. the gauge coupling)
of the SU(N). The precise relation among the QBa can also be read off
from the geometry around the N−

k vertex and the explicit relation can be
found in Appendix B for the SU(5) gauging used in the computation for
the mirror quintic. Note that the Nekrasov partition function for the pure
SU(N) gauge theory with the k Chern-Simons level is

ZSU(N)k(uinstanton,
�Q; y)

(4.37)

=
∑
�λ

[
N∏
a=1

(−QBa)
|λa|(−1)|λa|fλa(y)

N−k+2−2a

]
Zhalf vector
SU(N),�λ

( �Q; y)2,

when we identify s = ε1 = −ε2. In the above expression, the instanton
fugacity is given by

uinstanton = QB1

N−1∏
a=1

Q
−2N+2k+2aN−k

N
a .(4.38)

Therefore, if we glue three copies of the diagram of Figure 19 by the N−
k

vertex, we obtain the Nekrasov partition function ZSU(N)k(u,
�Q; y) of the

pure SU(N) gauge theory with Chern-Simons level k. This is the motivation
for the definition (4.32).

In the simplest case, N = 1, the vertex (4.32) reduces to12

(4.39) C
(1−k )

λ,μ,ρ(y) =
fλ(y)

−kδλ,μ,ρ

y
1
2
||λ||2Z̃λ(y)

.

12Since the meaning of l(N, k, a) in (4.32) is the effective level of an effective U(1)
coming from SU(N) gauging, when N = 1, l(1, k, 1) should be set to be k.
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Figure 20. Diagrams of 1± topological vertices. The 1+ ver-
tex is the usual (unrefined) topological vertex, while the 1−

vertex, which is responsible for SU(1) gauging, is a three-
punctured sphere. These two vertices are exchanged by mir-
ror symmetry.

The above expression is the 1−k vertex, and has already been discussed in [16]
as a building block for computing the topological string partition function
for a local 3-fold which can be described as the total space of the rank two
bundle

L1 ⊕ L2 → Σg,(4.40)

where L1,2 are line bundles with degrees 2g−2+p and−p respectively and Σg

is a genus g Riemann surface (see also [70]). The topological string partition
function for the 3-fold given by (4.40) can be computed by decomposing the
genus g Riemann surface Σg into caps, annuli and pants. We can define

two pants contributions denoted by P (0,1) and P (1,0) where the superscript
denotes the degrees (d1, d2) of the two line bundles. Then the contribution
for the two types of pants gives rise to the factor (4.39) for k = 0 or 1
corresponding to the 1−k vertex. As was noted in [16] this vertex may be
thought of as a mirror to the standard topological vertex, because a pair of
pants in Σg is the mirror of a vertex in a toric diagram for a toric 3-fold. In
other words, the 1− vertex may be thought of as the mirror of 1+ vertex—see
Figure 20.

At this stage, we can make a connection with the Strominger-Yau-Zaslow
(SYZ) picture of a CY 3-fold as a T 3-fibration [71, 72, 73, 74, 75, 76, 77,
78]. In the references, it is conjectured that there is a topological T 3-fibration
structure of a 3-fold, and the discriminant locus of the T 3 fibration of the
3-fold forms a trivalent graph Γ, equipped with two types of vertices: one
is called the “positive vertex” and the other is called the “negative vertex”.
Under the mirror symmetry, those two types of vertices are exchanged. For
example, the graph Γ for the quintic is as follows: Γ contains 10 copies of
T5 graphs but with only negative vertices. These 10 copies T5 are glued
by positive vertices in the manner depicted in Figure 15. Applying mirror
symmetry, we conclude that we can regard Figure 15 as the discriminant
locus graph Γ of the mirror quintic, interpreting each triangle as a T5 graph
with positive vertices, and each circle as a set of five negative vertices.

Therefore, the vertex structure of the SYZ picture is compatible with
what we have found here. Namely, we would like to relate the “positive”
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vertex to the usual topological vertex, or “1+” vertex, and the “negative”
vertex to the 1− vertex. The graph Γ only knows topological information,
but as we have seen the 1± vertices do not seem to give the full answer for the
topological string partition function for a local 3-fold constructed involving
trivalent gaugings, and thus the structure must be enlarged by including
the additional N−

k vertex. However, we will see in the next subsection that

the N−
k is not still enough to capture the full topological string partition

function for the compact 3-folds constructed in Section 4.2.
As an additional remark, note that it is natural to expect that there

should also exist an “N+
k ” vertex which is exchanged with the N−

k vertex
by mirror symmetry:

(4.41) N+
k

mirror⇐⇒ N−
k .

The N+
k vertices should in principle be related to the TN models in the most

singular limit of Kähler moduli, which would be interesting to develop.

4.4. Towards the topological string partition function for the
mirror quintic. In the previous subsection, we defined the N−

k vertex
(4.32) or (4.34) in addition to the standard 1+ vertex (4.28) for the compu-
tation of the topological string partition function for a local CY 3-fold given
by a trivalent gauging of SCFTs. In Section 4.2, on the other hand, we saw
that the mirror quintic can be thought as a collection of a trivalent SU(5)0
gaugings, each involving three T5 theories. Therefore, one would expect that
a straightforward application of the 5−0 vertex to each SU(5)0 gauging would
be able to reproduce the full topological string partition function for the mir-
ror quintic. However, it turns out that naive application of the 5−0 vertices is
not enough to describe the mirror quintic and that an additional modifica-
tion is required. Although we could not compute the full partition function
for the mirror quintic, we nevertheless propose a concrete formalism which
can compute a large part of the full partition function but which is miss-
ing some information localized to the five corners of the pentagon in Figure
15. We carry out this proposal by modifying the computation illustrated
in the previous subsection using insights from our geometric picture of the
resolved mirror quintic. We propose some higher genus GV invariants using
this formalism below.

To see the problem we need to understand the geometric structure of
the mirror quintic in more detail. We first explain more clearly the geometry
around a trivalent SU(5) gauging in Figure 14, which corresponds to each
edge of the pentagon in Figure 15; more details about the local geometry
of the SU(5) gauging can be found in Appendix A. While we cannot write
a single toric diagram (i.e. a planar diagram consisting only of 1+ vertices)
including a trivalent SU(5) gauging and three T5’s, a complex structure
deformation of the local geometry of the SU(5) gauging can be represented
by the diagram in Figure 21. We explain below how to apply a modification
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Figure 21. The diagram that describes the geometry
around a trivalent SU(5) gauging of three T5 theories. Each
of the four surfaces S1, S2, S3 and S4 are glued together along
a P

1. The Kähler parameter for the surfaces corresponds to
a Coulomb branch parameter of the SU(5). Furthermore, S1

and S4 are glued to additional surfaces S0 and S5 respec-
tively. Note that the external edges of this diagram cannot
be extended to be infinitely long, which indicates that the
geometry makes sense only as a part of a larger geometry.

of the topological vertex formalism to this geometry, which is a proxy for
the actual local geometry of the SU(5) gauging.

Let us describe the proxy diagram in Figure 21 in more detail, and
in particular why it makes sense to regard this diagram as a (modified)
SU(5) gauging. Since the T5 theory may be described in an appropriate
limit as a linear quiver gauge theory [SU(5)]−SU(4)−SU(3)−SU(2)− [2]
[79, 80], the local theory around one trivalent gauging of three T5 theories
is an SU(5) gauge theory with 4 × 3 = 12 flavors, for which the twelve
external horizontal lines in Figure 21 imply the twelve flavors and the five
internal horizontal lines yield the SU(5) vector multiplets. The five internal
horizontal lines are identified with the five external legs of a pair of T5’s
glued together, and the twelve external horizontal lines are identified with
the 4×3 internal lines of each T5, parallel and next to the glued external lines.
Geometrically, the compact four faces bounded by the internal lines in Figure
21 correspond to compact complex surfaces. More concretely, S1, S2, S3, S4

yield four pseudo-del Pezzo surfaces PdP4 which are related to four pseudo-
del Pezzo surfaces PdP4’ of other types, which we expect to be in the mirror
quintic, by certain complex structure deformations. Note that the diagram
in Figure 21 is incomplete in the sense that the two lines in the upper part
or similarly in the lower part will meet each other. Therefore, the diagram
should be thought of as a local piece of the full mirror quintic.

There is another local geometry yet to be identified which affects this
analysis. First note that the external lines going in the upper directions or in
the lower directions should also be identified with a part of external lines of
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Figure 22. A graphical expression of the local structure
around the corner 1 in Figure 15. The triangles are 1+ vertices
and the circles represent the 1−−2 vertices. While we believe

that this Figure describes the geometry of the T 3 fibration
around the corner, it will turn out that naively applying the
1± vertices does not give a correct answer.

the T5 theories. It follows that those lines are a part of other SU(5) gauging
lines. Let us then concentrate on local structure around S0 in Figure 21,
which corresponds to focusing on one corner of the pentagon diagram in
Figure 15. Suppose we focus on the corner 1 in Figure 15. From the SU(5)
gauging procedure, the geometry around the corner would be described by
the combinations of 1+ and 1−−2 vertices given in Figure 22. The effective
level k = −2 can be read off from the framing factor for the top horizontal
internal line in Figure 21. Since we are looking at one gauging line out of
five gauge lines of an SU(5) gauging, the local picture in Figure 22 is given
by U(1) gaugings where the gauging lines are represented by the circles. In
fact, a combination of the U(1) gauging lines makes the region S0 bounded
and hence yields another surface. For example, starting from the gauging
line denoted by the circle with 12, one can go back to the original gauging
line by a combination of other gauging lines. Therefore, the region S0 in
Figure 21 should be a compact face, implying the existence of a compact
complex surface which is schematically depicted in Figure 22. This explains
a compactification at the corner of the pentagon by the four gauging lines
originated from the four trivalent SU(5) gaugings at one corner.

In order to understand the geometry of the mirror quintic, we need to
identify the local geometry S0 represented in Figure 22. We argue that the
S0 (and similarly S5) in Figure 21 is given by a P

2 which essentially comes
from the P2 given by y1 = ρ = 0 along with (4.9), namely y2+y3+y4+y5 = 0,
inside P

5. The four U(1) gauging lines originate from the four lines in P
2 on
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which there are A4 singularities before the resolution. Furthermore, the fact
that the four gauging lines are inside a P

2 may constrain the length of the
gauging lines. A careful identification of the complex surfaces comprising the
geometry of the compact “faces” of a trivalent SU(5) gauging is presented
in Appendix A. The identification of the geometry around each corner of the
pentagon with a P2 completes a geometric picture of the mirror quintic. That
is to say, the mirror quintic may be decomposed into a gluing of a collection
of local 3-folds, which includes ten T5 geometries, ten SU(5) gaugings each
of which is given by the diagram in Figure 21 and five local P2’s which
correspond to each corner of the pentagon in Figure 15.

A complication affecting this relatively simple picture is that straight-
forward application of 1+ vertices and the 1−−2 vertices to the diagram in
Figure 22 does not yield the topological string partition function for a local
P
2. Since the power of the framing factor associated to each U(1) gauging

is −2, a loop with three U(1) gaugings and three 1+ vertices in Figure 22
indeed gives a local P2. This also means that the compact curve coming from
the U(1) gauging is a rational curve with self-intersection −3 in P

2. So the
class of this curve can naturally be identified with the hyperplane (curve)
class in the P2 of S0. However, the diagram in Figure 22 is not given by a
single loop but by several loops. In particular the number of the gauging
lines is four and hence the genus zero Gopakumar-Vafa (GV) invariant of
the lowest order becomes 4, instead of 3 which is the correct GV invariant
for a local P2. Therefore the method in Section 4.3 applied to the gluing
picture in Figure 22 does not give the topological string partition function
for a local P2. The naive GV invariants computed by applying the methods
in Section 4.3 to five copies13 of the picture in Figure 22 are summarized
in Table 6. Although one-fifth of the numbers in Table 6 do not agree with
the GV invariants of local P2, the vanishing structure is the same as that of
local P2.

Note that a similar problem had also occurred in the trivalent SU(N)
gauging in Figure 18 when we simply summed over the Young diagrams
without using the N−

k vertex. For example, if we had not been careful to
include the denominator in (4.32), we would have obtained −3 for the genus
zero contribution associated to the degree one curve with Kähler class Q1,
and not the correct GV invariant −2. The denominator in (4.32) modifies the
naive answer to give the correct answer. In the case of the diagram in Figure
22, we still need a mechanism which can reduce the GV invariants computed
using the 1+ and 1−−2 vertices to the GV invariants for local P2. Namely, since
a combination of the four trivalent SU(5) gaugings automatically yields a
gluing along P

2 and the gluing is not merely a collection of independent
SU(5) gaugings but rather 10 SU(5) gaugings connected by five P

2 gluings,

13Five copies are necessary because there are five copies of the geometry in Figure
22, each associated to a different corner of the pentagon in Figure 15.
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Table 6. Naive GV invariants obtained by applying the
method in Section 4.3 to five copies of the diagram in Figure
22. g is a genus and d is a degree of a curve class of the gaug-
ing line. Since the Kähler parameters of the gauging lines are
all the same due the geometric constraint explained in Ap-
pendix C, the GV invariants are labeled by the single degree
d. Although 1

5 of the numbers do not agree with the GV in-

variants of a local P2, the vanishing structure agree with that
of a local P2

d
g 0 1 2 3 4 5 6 7

1 20 0 0 0 0 0 0 0
2 −50 0 0 0 0 0 0 0
3 280 −100 0 0 0 0 0 0
4 −2410 2785 −1200 175 0 0 0 0
5 25540 −63780 75160 −49740 18560 −3600 280 0

Figure 23. a) The vertex diagram for a local P2. b) The
vertex diagram for a SU(5) gauging. c) The vertex diagram
for a T5 geometry.

we need to supplement the 5−0 vertex in a manner which accounts for the
presence of the P2 gluings.

Thus far we have not been able to find a modification which extends the
four 5−0 vertices by including the P

2 gluings. Nevertheless, we constructed
another vertex formalism which can capture the GV invariants of the mirror
quintic modulo some missing curve classes. This formalism, which uses the
details of the resolution of the mirror quintic described in this paper, is
presented below.

First, we use the fact that the mirror quintic is comprised of five P
2’s

and ten T5’s glued by ten SU(5) gaugings. Each component can be described
as one of the vertex diagrams in Figure 23. So the vertex formalism for the
mirror quintic should involve all these ingredients properly glued to each
other. Let us explain how to glue them together by using local properties of
the mirror quintic.
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Figure 24. A plane SU(5) vertex connected to two T5 di-
agrams. The edges with γi are also connected to a 3rd T5

diagram.

In the vertex formalism, the 5−0 vertices for SU(5) gaugings are replaced
by the planar SU(5) vertex diagrams given in diagram b) of Figure 23. This
diagram is related to the SU(5) diagram in Figure 21 by Hanany-Witten
transitions (or equivalently complex structure deformations) which move
two external legs on the left side to the right side of the diagram. Diagram
b) of Figure 23 is useful for simultaneously incorporating the geometries in
diagrams a) and c). Then, the remaining external legs in the diagram are
connected to other parts of the mirror quintic geometry. A vertex diagram
for a single SU(5) gauging should be glued to two P

2’s and three T5 vertex
diagrams. For example, a planar SU(5) vertex diagram glued to two T5

vertex diagrams is illustrated in Figure 24. Note here that the dotted lines in
the T5 diagrams are also a part of the planar SU(5) vertex diagram after the
gluing. The legs labelled by γi will also be connected to the third T5 vertex
diagram in the same manner as the edges labeled by αi. The remaining
external edges on the top and the bottom of the diagram are then glued to
two local P2’s, respectively.

We remark however that the planar SU(5) diagram is not equivalent to
the 5−0 vertex. As noted above, it describes a complex structure deformation
of the geometry for an SU(5) gauging. This deformation introduces some
additional −2 curves to the planar SU(5) diagram which are not a part of the
SU(5) gaugings in the mirror quintic. They provide extra contributions to
the GV invariants in our computation. To compute the actual mirror quintic
GV invariants, one must therefore subtract the spurious contributions of the
extra −2 curves.

We can identify the extra −2 curve contributions in the planar SU(5)
diagram as follows. In Figure 24, the external edges with Young diagrams
αi are connected to a T5 diagram and the edges with Young diagrams βi are
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connected to another T5 diagram. In this gluing the −2 curve classes between
αi and αj are identified with the self-intersection 0, genus zero curve classes
of the dP3’s in the first T5 geometry, and similarly the −2 curves between
βi, βj are identified with the self-intersection 0, genus zero curve classes in
the second T5 geometry. Note that the framing factors for the sums over
Young diagrams αi, βj are all trivial because the corresponding curves are
all −1 curves. On the other hand, the −2 curve classes between αi and βj
are in fact absent in the mirror quintic. These −2 curves are the extra curves
introduced by complex structure deformations. We thus need to remove their
contributions from the GV invariants.

An extra −2 curve with Kähler parameter Q yields roughly a “half” of
the contribution of the SU(2) vector multiplet to the result. More concretely,
we define the extra factor as

(4.42) Z
(−2)
(μ,ν)(Q) ≡

∞∏
i,j=1

(
1−Qyi+j−μi−νtj−1

)−1
,

where μ, ν are Young diagrams of the external edges connecting this −2
curve to the other part. The directions of the arrows for the Young diagrams
μ and ν are chosen in the same directions. Compared to (4.33), the factor

y
1
2(||μ||

2+||ν||2)Z̃μ(y)Z̃ν(y) is removed since this factor is necessary as the
Cartan parts of the two SU(4) gaugings for the edges with αi and also for
the edges with βj in Figure 24. Therefore the extra contribution we need to
remove from a single SU(5) diagram depicted in Figure 24 is

Zextra
SU(5)(�α,

�β) =

( ∏
1≤i≤j≤4

Z
(−2)
(αi,βj)

(Qαiβj
)

)( ∏
1≤i<j≤4

Z
(−2)
(βi,αj)

(Qαjβi
)

)
,

(4.43)

where Qαiβj
denotes the Kähler parameter for the curve class between αi

and βj . In the full mirror quintic geometry, there exist in total 10 SU(5)
gaugings. Each SU(5) gauging will be implemented by the planar SU(5)
vertex diagram we are discussing here, namely diagram b) of Figure 23. We
need to subtract the extra contribution given in equation (4.43) for each
SU(5) diagram. This means we need to divide the full vertex formula for
the mirror quintic by this extra factor before we perform Young diagram
summations in the vertex computation.

One may wonder if this prescription can subtract all the extra contri-
butions from the SU(5) gaugings in the vertex formalism discussed in this
section. We do not have a concrete proof for this. However, we can provide
some non-trivial evidence that this prescription correctly subtracts all extra
contributions.

First, when a planar SU(5) vertex diagram is not connected to a local
P
2 while all other external edges are non-trivial (and hence connected to T5

diagrams), the vertex formula factorizes into the contribution to the mirror
quintic and the extra contributions given in equation (4.43). Specifically,
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when we assign Young diagrams νi (i = 1, · · · , 5) and the Kähler parameter
QBi (i = 1, · · · , 5) to the horizontal internal lines from the top to the bottom
of diagram a) in Figure 23, applying the topological vertex to the diagram
gives ∑

νi,αj ,βk,γl

q
1
2(
∑4

i=1(||αi||2+||βi||2+||γt
i ||2)+

∑5
i=1(||νi||2+||νti ||2))(4.44)

×
5∏

i=1

(
fνi(y)

−3+i (−QBi)
|νi|
)

×
( ∏

1≤a≤b≤4

∞∏
i,j=1

(
1−Qνaαb

qi+j−νa,i−αt
b,j+1

))

×
( ∏

1≤a<b≤5

∞∏
i,j=1

(
1−Qνbαaq

i+j−αa,i−νtb,j+1
))

×
( ∏

1≤a≤b≤4

∞∏
i,j=1

(
1−Qνaβb

qi+j−νa,i−βt
b,j+1

))

×
( ∏

1≤a<b≤5

∞∏
i,j=1

(
1−Qνbβaq

i+j−βa,i−νtb,j+1
))

×
( ∏

1≤a≤b≤4

∞∏
i,j=1

(
1−Qνaγbq

i+j−νa,i−γt
b,j+1

))

×
( ∏

1≤a<b≤5

∞∏
i,j=1

(
1−Qνbγaq

i+j−γa,i−νtb,j+1
))

×
( ∏

1≤a<b≤5

∞∏
i,j=1

(
1−Qνaνbq

i+j−νa,i−νtb,j+1
)−2

)

×
( ∏

1≤a<b≤4

∞∏
i,j=1

(
1−Qαaαb

qi+j−αa,i−αt
b,j+1

)−1
)

×
( ∏

1≤a<b≤4

∞∏
i,j=1

(
1−Qβaβb

qi+j−βa,i−βt
b,j+1

)−1
)

×
( ∏

1≤a<b≤4

∞∏
i,j=1

(
1−Qγaγbq

i+j−γa,i−γt
b,j+1

)−1
)

×
( ∏

1≤a≤b≤4

∞∏
i,j=1

(
1−Qαaβb

qi+j−αa,i−βt
b,j+1

)−1
)

×
( ∏

1≤a<b≤4

∞∏
i,j=1

(
1−Qαbβaq

i+j−βa,i−αt
b,j+1

)−1
)
,
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Figure 25. a) Local geometry near a P
2 intersecting the

first surface S1 in the SU(5) vertex diagram in Figure 21. b)
A vertex diagram where a P2 intersects with three SU(5) ver-
tex diagrams. c) A T3 diagram which is a complex structure
deformation of dP6.

whereQλμ denotes the Kähler parameter for the curve class between λ and μ.
Note that not all the Kähler parameters appearing in (4.44) are independent
from one another. A more detailed explanation of a parameterization for an
SU(5) gauging diagram is given in Appendix B. The direction of the arrows
for the Young diagrams are chosen in the right direction in the diagram in
Figure 23 b). The last line in (4.44) is precisely the factor given in (4.43) and
dividing the partition function computed from the vertex formalism by the
factor (4.43) simply removes the last line in (4.44). Furthermore, when we
remove the factors in the last line of (4.44) the result in fact agrees with the
topological string partition function of a part of gluing three T5 diagrams
using the 5−0 vertex.

Second, we compute below GV invariants using our vertex prescription
and compare the result against those from a geometric counting up to finite
order in a two-parameter expansion. The comparison shows a perfect agree-
ment between the two results. With this supporting evidence, we conjecture
that our prescription removes all extra contributions to the SU(5) gaugings
and leaves only the correct GV invariants for the mirror quintic. From now
on we shall assume that the contributions (4.43) from the extra −2 curves
in the planar SU(5) vertex diagrams have been subtracted using the above
prescription.

We now consider a local P2 which meets four copies of the SU(5) dia-
gram in Figure 24. The local P2 is glued to the first surface S1 in each planar
SU(5) vertex diagram. This gluing is performed by identifying the hyper-
plane (curve) class � (with �2 = 1) in P

2 with the class e (with e2 = −3) in
S1. The surface S1 is a complex structure deformation of dP4, and contains
three additional exceptional curves X(1i) with i = 2, 3, 4, each of which in-
tersects P2 at a point. The local geometry for this gluing is given by the web
diagram a) in Figure 25. In diagram a), the gluing curve, which is � in P

2

and e in S1, is indicated by the red line between the P
2 and S1. This web

diagram shows how P
2 intersects a planar SU(5) vertex diagram.
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Attaching two more planar SU(5) vertex diagrams to this web diagram
is straightforward. Using the description of P2 ∪ S1 in diagram a) of Figure
25, we find that the vertex diagram for the local geometry of three planar
SU(5) vertices attached to local P2 can be represented by diagram b) in

Figure 25. Here, three −3 curves e in the surfaces S
(i=1,2,3)
1 of the SU(5)

gaugings are glued to the curve � in P
2.

There are six −1 curves, which we denote by X(ij), each of which inter-
sects the P2 at a point. Moreover, the curve X(ij) glues together two surfaces

S
(i)
1 and S

(j)
1 in the four SU(5) gaugings. All six of these −1 curves are in-

volved in diagram b) of Figure 25. However, the surface S
(4)
1 in the fourth

SU(5) gauging is not visible here. Note that the geometry of a P
2 intersect-

ing with 6 exceptional curves is the del Pezzo surface dP6. Indeed a dP6

is embedded in diagram b), which is the sub-diagram indicated by the red
lines. More precisely, this sub-diagram is a complex structure deformation
of dP6, namely the so-called T3 geometry depicted in diagram c) of Figure
25. In the diagram c), we assign non-trivial Young diagrams on the seven
external legs, as they are connected to the other parts of the mirror quintic.
The remaining two external legs have empty Young diagrams. The complex
structure deformation adds 9 extra −2 curves corresponding to the curve
classes between the external edges in diagram c); they are

�+X(12) +X(13) +X(14), �+X(12) +X(23) +X(24),(4.45)

�+X(13) +X(23) +X(34), �+X(12) +X(14) +X(34),

�+X(23) +X(24) +X(14), �+X(13) +X(34) +X(24),

X(14) −X(12), X(24) −X(23), X(34) −X(13).

These curve classes are not holomorphic classes in dP6, but rather are holo-
morphic in a complex structure deformation of dP6.

Among these −2 curves, the first three curves in (4.45) are necessary in

the mirror quintic geometry to form the three surfaces S
(i=1,2,3)
1 depicted in

diagram b) of Figure 25. The other six curves are not components in the
full geometry and thus their contributions to the GV invariants should be
subtracted. The extra contributions from the last three curves are involved
in the extra factors in equation (4.43) that we already subtracted from the
result. The −2 curves in the second line in (4.45) also produce extra con-
tributions in diagram c) in Figure 25 that we need to subtract. These extra
contributions are the same type as those in the SU(5) gaugings given in
equation (4.43). So we find that the extra −2 curve contribution in diagram
c) of Figure 25 is

Zextra
T3

(�ρ, �σ, �η, μ1)

(4.46)

= Z
(−2)
(φ,ρ2)

(uQ12Q14Q34) · Z(−2)
(μ1,σ2)

(uQ23Q24Q14) · Z(−2)
(φ,η2)

(uQ13Q34Q24),
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Figure 26. A local P2 intersecting with three plane SU(5)
diagrams and three T5 diagrams. The surface dP3 formed by
the red lines in the left diagram is mapped to the first dP3 in

the T
(12)
5 vertex diagram between the 1st and the 2nd SU(5)

gaugings.

where Qij are Kähler parameters for the X(ij) curve and φ stands for an
empty Young diagram. The extra factors of this type in the local T3 diagrams
around the P2’s as well as the extra factors in (4.43) should be removed from
the final vertex result. We will again assume they have all been subtracted
in the discussion below.

In the vertex diagram b) in Figure 25, the three solid dots correspond to
7-branes when we regard the diagram as a (p, q) 5-brane web. This means
that, when we pull these three dots out to infinity with the branch cuts of
the 7-branes taken into account, we can use this diagram to compute the
topological string partition function for the geometry of a local P2 meeting
three PdP4’s, though we will keep the dots at finite distance for later use.

Note that we assign a Young diagram μ1 to one of the 7-branes in dia-
gram c) of Figure 25, while the other two come with empty Young diagrams.
This 7-brane leg with μ1 will be used to connect some part of the fourth
SU(5) gauging which will be discussed in detail soon. We notice that for
the fourth SU(5) gauging we need to introduce one more −2 curve class,

which is �+X(14)+X(24)+X(34), to diagram b) or diagram c) by means of
a complex structure deformation. This class is necessary to form the surface

S
(4)
1 , but it is absent in the T3 diagram. We claim that this curve class can

be introduced by multiplying the vertex formula for the geometry around
each P

2 depicted in diagram b) by the factor

(4.47) Z
(−2)
μ1,φ

(uQ14Q24Q34).

Other external edges in diagram b) of Figure 25 are connected to other
parts of the planar SU(5) vertex diagrams and also three T5 diagrams like
those in Figure 26. In this figure, the diagrams denoted by red edges are
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Figure 27. The vertex diagram for the 4-th SU(5) gauging.
The curve class denoted by a red circle is the missing curve
class.

mapped to the first dP3 diagram in the T
(12)
5 between the first and the

second SU(5) gaugings. We denote the T5 vertex diagram between the i-

th and j-th SU(5) gaugings by T
(ij)
5 . The gluing rule between an SU(5)

gauging and the adjacent T5 vertex diagrams is already given in Figure
24. We can use this rule to extend the vertex diagram in Figure 26 to the
remaining surfaces in the planar SU(5) diagrams, as well as the T5 diagrams.
This explains the vertex configuration describing the local geometry of a
P
2 intersecting with three SU(5) gaugings and three T5’s embedded in the

mirror quintic.
We still need to incorporate the fourth SU(5) gauging and its three

associated T5 vertex diagrams (i.e. T
(14)
5 , T

(24)
5 , T

(34)
5 ) into our vertex con-

struction. Unfortunately, we could not find a consistent vertex configuration
simultaneously incorporating all these ingredients. Instead, we propose the
following vertex configuration which misses two curve classes in the vicinity
of each local P2 in the full mirror quintic.

We first glue one of the 7-brane legs, labeled by μ1, to the first surface

S
(4)
1 in the fourth SU(5) gauging as drawn in Figure 27. After the gluing, the

edge of the Young diagram μ1 becomes the proper transform f
(4)
1 − X(14)

of the self–intersection 0, genus zero curve class in the S
(4)
1 intersecting
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with X(14) at a point, denoted f
(4)
1 . Here one notices that the dotted lines

in the S
(4)
1 are already included in the left vertex diagram of a P

2 and

S
(1,2,3)
i . The left vertex diagram is an extension of diagram b) in Figure 25

and, as discussed above, the three exceptional curves X(14), X(24), X(34) in

the S
(4)
1 are all contained in this diagram. Other external legs with Young

diagrams μ̃i, ν̃i, λ̃i in the fourth SU(5) diagram are then connected to the

T
(14)
5 , T

(24)
5 , T

(34)
5 diagrams, respectively, as illustrated in Figure 27.

Note however that the line denoted by a red circle in the S
(4)
1 is discon-

nected. The Young diagram on this leg is empty. The geometry implies that
this leg must be connected to some part of the left diagram, but we could
not determine how to implement this in our formalism. This means that
the curve classes associated to this line are missing in our vertex formalism.
We note that there are precisely two missing curves around each local P2,
which we denote C1 and C2. They are primitive14 curve classes at the inter-

sections of the surface S
(4)
1 with T

(24)
5 and T

(34)
5 , i.e. C1 ⊂ S

(4)
1 ∩ T

(24)
5 and

C2 ⊂ S
(4)
1 ∩ T

(34)
5 . Their restrictions to S

(4)
1 are C1|S(4)

1

= f
(4)
1 − X(24) and

C2|S(4)
1

= f
(4)
1 −X(34) respectively, where C|S denotes the class of the curve

C inside the surface S. In the T
(24)
5 , the missing curve C1 is the exceptional

curve inside the red circle. Similarly, C2 is the missing exceptional curve in
the T (34) at the same location.

This means that the GV invariants associated to curves whose classes can
be expressed as non-negative linear combinations of primitive curve classes
such that the coefficient of the primitive class C1 (and likewise C2) is positive
cannot be computed using our formalism. For example, the GV invariants

associated to a curve C ⊂ S
(4)
1 which can be expressed as

C = a C1 + · · · , a > 0(4.48)

cannot be computed. A notable example of a curve in the surface S
(4)
1 whose

associated GV invariants are not computable in this formalism is the class

f = (f
(4)
1 −X(14)) + (X(14)).

So now, apart from these two missing classes, all the components near
a P

2 are properly glued together following the intersection structure of the
local geometry. Extending this procedure to the rest of the 3-fold, we can
complete the vertex construction for the mirror quintic that unites all P2’s
and T5’s, and SU(5) gaugings. As discussed above however this construction
cannot realize two curve classes C1, C2 in each local geometry around a P

2.
The following is a summary of our vertex construction:

14A primitive curve class is a class which cannot be expressed a positive linear com-
bination of any other curve classes.
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1. The resolution of the mirror quintic given in Figure 15 consists of
5 P

2’s and 10 T5’s and 10 SU(5) gaugings that are described by
the vertex diagrams in Figure 23.

2. An SU(5) vertex diagram is connected to three T5 diagrams as
described in Figure 24.

3. A P
2 vertex diagram is glued to four SU(5) vertex diagrams as

described in Figure 25 and Figure 27.
4. This vertex construction cannot realize two curve classes C1|S(4)

1

=

f
(4)
1 −X(24) and C2|S(4)

1

= f
(4)
1 −X(34) around each P

2.

We conjecture that the vertex formalism from this construction captures
the GV invariants of the mirror quintic which are not positive combinations
of the ten missing curve classes in total around five local P2’s. Note that the
moduli of these curve classes may be related to the moduli of other curve
classes in the mirror quintic by constraints which are implicit in the geome-
try. Because of this, we do not know the full set of curve classes which can be
safely computed by our formalism. Roughly speaking, the full set of curves
whose GV invariants can be computed are all curves whose classes cannot
be expressed as positive linear combinations of primitive classes involving
the ten excluded classes described above.

We present some leading orders of the topological string partition func-
tion computed using the vertex formalism described above. Since the mirror
quintic has many Kähler parameters, we constrain these parameters in such
a way that only two parameters remain, for simplicity of the computation.
First we set all the blow up parameters to be equal to each other. Namely
we restrict the length of each line of the T5 diagram in the symmetric phase
in Figure 14 to be the same and denote it by QT5 = e−γ where γ is the
length of each line. We choose the other parameter as u = e−� where � is
the length of the top or bottom U(1) gauging line of the SU(5) gaugings.
The results up to � = 3 and γ = 4 are summarized in Table 7 for the genus
zero GV invariants and also in Table 8 for the genus one GV invariants. For
computing the GV invariants in Table 7 and Table 8 we used a symmetry
under exchanging the four PdP4’s around each corner.

It is instructive to look at the genus zero GV invariants of the class
a� + bγ where 0 ≤ a ≤ 1, 0 ≤ b ≤ 2 in the vertex formalism in more detail.
In this case the computation of the GV invariants reduces to counting lines
in the diagrams. Since the Kähler parameter for the second line from the top
or the bottom of an SU(5) gauging is given by uQ3 as shown in Appendix
B, we focus on the top or the bottom gauging line for the class �+ bγ where
0 ≤ b ≤ 2.

�. The genus zero GV invariant for the class � is the genus zero GV
invariant of the minimum degree in a local P2, which is 3. Since each corner
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Table 7. Genus zero GV invariants of the mirror quin-
tic obtained using our vertex formalism. The invariants in
black, which had already been computed by Katz and Morri-
son, were confirmed by our vertex formalism. The invariants
in blue were predicted by our vertex formalism and subse-
quently checked by Katz and Morrison. The invariants in red
are predictions of our formalism which have yet to be repro-
duced by other means

�
γ 0 1 2 3 4

0 ∗ 300 −440 850 −2040
1 15 −60 155 −460 1350
2 −30 150 −500 1710 −4730
3 135 −960 4115 −15780 45685

Table 8. Genus one GV invariants of the mirror quintic
obtained using our vertex formalism. These invariants are
predictions of our formalism which have yet to be reproduced
by other means

�
γ 0 1 2 3 4

3 −50 270 −960 3430 −9750

is described by a P
2 and hence the genus zero GV invariant for the class �

of the mirror quintic is 3× 5 = 15.
γ. The genus zero GV invariant for the class γ can be computed by

focusing on the T5 diagrams. From one T5 geometry, the genus zero GV
invariant of the class γ is 30, which may be also obtained by counting lines in
the T5 diagram. Since we have ten T5 diagrams, the genus zero GV invariant
for the class γ of the mirror quintic is 30× 10 = 300.

� + γ. We then consider the genus zero GV invariant for the class � +
γ, which is a combination of a curve inside a P

2 and a curve inside a T5

geometry. The class � + γ is included in a dP6 around each corner of the
pentagon. A complex structure deformation of a dP6 leads to a T3 diagram
depicted in Figure 28. u,Q1, Q2, Q3, Q4, Q5, Q6 are the Kähler parameters
for the T3 and the restriction we are considering corresponds to Q1 = Q3 =
Q5 = Q and Q2 = Q4 = Q6 = 1. Instead of using the diagram in Figure
28, we make use of a diagram in Figure 29 which is obtained by performing
three flop transitions with respect to the curves with the Kähler parameters
denoted by Q1, Q3, Q5 in Figure 28. From the diagram in Figure 29, the
genus zero GV invariant for the class �+γ can be computed by counting the
lines with the Kähler parameter uQ and it becomes −12 for one del Pezzo
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Figure 28. A T3 diagram in a phase where a P
2 can be

explicitly seen. u,Q1, Q2, Q3, Q4, Q5, Q6 are the Kähler pa-
rameters and the restriction we are considering corresponds
to Q1 = Q3 = Q5 = Q and Q2 = Q4 = Q6 = 1.

Figure 29. Another T3 diagram in a phase where the count-
ing of the genus zero GV invariant for the class �+ γ, �+ 2γ
can be carried out more explicitly.

six surface. Hence the genus zero GV invariant for the class � + γ for the
mirror quintic becomes −12× 5 = −60.

2γ. The genus zero curve of the class 2γ is included in the T5 geometry.
However, we need to be careful of the 2γ curve which is also included in the
SU(5) gauging. First the genus zero contribution for the curve class 2γ which
is included only in one T5 geometry gives −36. Hence, ten T5 diagrams yield
−36×10 = −360 in total. On the other hand, the genus zero GV invariant for
the class 2γ which is included in one SU(5) gauging gives −8. Since we have
ten SU(5) gaugings, the contribution becomes −8 × 10 = −80. Note that
this number is different from a naive counting from the viewpoint of the T5



194 H. HAYASHI, P. JEFFERSON, H.-C. KIM, K. OHMORI, AND C. VAFA

Figure 30. A toric diagram for a local 3-fold which is ob-
tained by gluing a P

2 with a PdP4 along a P
1.

diagram. From each T5 diagram the contribution for the class 2γ which is also
included in the SU(5) gauging is −4×3 = −12. Therefore, the total number
might look like −12× 10 = −120. However, this is overcounting since from
the 5−0 vertex language, we need to remove the factor in the denominator
in (4.32), which amounts to reducing −120 to −80. This removal can be
automatically taken into account when one uses the planar SU(5) vertex
diagram b) in Figure 23, which was an advantage of making use of the
SU(5) vertex diagram in our vertex formalism. Therefore, the final result
for the genus zero GV invariant for the class 2γ is (−360) + (−80) = −440.

� + 2γ. The last example is the genus zero GV invariant for the class
� + 2γ. The curve in this class is included in a T3 in Figure 29 or a P

2

glued with a PdP4 which is one of the four faces in the diagram of an SU(5)
gauging in Figure 21 or the diagram b) in Figure 23. A diagram for the latter
geometry is depicted in Figure 30. The genus zero GV invariant of the class
�+2γ can be computed from the diagram in Figure 29 and the one in Figure
30. The two types of the curves are independent from each other and we can
compute the GV invariant separately. By counting the lines with the Kähler
class �+2γ in Figure 29, we obtain the genus zero GV invariant 15 from one
T3. On the other hand, the number of the lines in the class �+2γ in Figure
30 is four. Since four PdP4 are glued with a P

2 at one corner, the genus
zero GV invariant in the class �+ 2γ of this type from one corner becomes
4× 4 = 16. Hence, the GV invariant from one corner is 15 + 16 = 31. Since
the contribution from each corner of the pentagon is the same, the genus
zero GV invariant for the class �+2γ for the mirror quintic is 31× 5 = 155.

The results above explain the terms at some lowest orders in Table 7. The
genus zero GV invariants for the mirror quintic for some low degrees were
first obtained by S. Katz and D. Morrison in [81] which are summarized in
Table 9. Indeed, the disagreement between their result and the naive version
of the topological vertex leading to results in Table 6 was our motivation for
extending the topological vertex formalism. The comparison of our results in
Table 7 based on the vertex formalism against the geometric results in Table
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Table 9. Genus zero GV invariants of the mirror quintic
computed by Katz and Morrison in [81]. The invariants in
black, which had already been computed by Katz and Morri-
son, were confirmed by our vertex formalism. The invariants
in blue were predicted by our vertex formalism and subse-
quently checked by Katz and Morrison

�
γ 0 1 2

0 ∗ 300 −440
1 15 −60 155
2 −30 150 −500

9 demonstrates that our formalism leads to the correct results at least up
to the order 2�+ 2γ. The results beyond this order are our prediction using
the vertex formalism. We do not have strong evidences for the numbers and
hence it would be interesting to check them.

It would be especially interesting to see if we can modify the topological
vertex rules along the lines above to obtain the full result including all the
curve classes in the mirror quintic.

5. Conclusions

In this paper we propose a systematic construction of (non-gravitational)
field theory sectors in 6d (1,0) supergravity theories from F-theory on com-
pact elliptic 3-folds of type T 6/Γ with Γ = Zm×Zn. The orbifold action of Γ
leads to several fixed points on the base B = T 4/Γ and each fixed point hosts
a particular class of local 6d (1,0) SCFTs, called (G,G′) conformal matter
theories in [45, 1, 2]. These local SCFTs are glued together by introducing
an additional local SCFT which gauges the global symmetries H ⊂ G or
H ′ ⊂ G′. We have shown that these 6d field theories have no gravitational
and also gauge/gravity mixed anomalies, and therefore the 6d supergravity
systems in which field theories are embedded are consistent.

Two dimensional N = (0, 4) SCFTs describing self-dual strings in 6d
supergravity theories have proven to be of particular interest. We claim that
these 2d self-dual string worldsheet theories flow to such 2d (0,4) SCFTs
in the IR. When the corresponding D3-branes wrap higher genus 2-cycles
in the base B of the elliptic fibration, we conjecture the Higgs branch of
the self-dual string theory to be holographically dual to type IIB theory on
AdS3 × S3 × B. We have partially checked this conjecture by showing that
the central charges of 2d theories in all our field theory models perfectly
match those of the supergravity computations in [12]. Moreover we argue
the elliptic genera of these strings provide a means to compute the all-
genus topological strings partition function for certain compact Calabi-Yau
3-folds.
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In this work, we have focused on a particular class of 3-folds described
by orbifolds T 6/Zm × Zn at a special point in the moduli space. However,
one can also consider 6d gravity theories associated to other types of com-
pact orbifolds. It may be possible to construct their field theory sectors by
suitably gluing local 6d SCFTs in a similar manner to that described in
this paper. For instance, the field theory sector in 6d supergravity from an
elliptic 3-fold with base P

2/Z3 was described in [82] in similar terms. The
UV 2d quiver gauge theory we constructed for the base B = T 4/Z2 × Z2

allows us to have more control over this compact Calabi-Yau geometry or
the corresponding 5d black hole states even though, as we argued, there are
some features which seem to be missing from this quiver description of the
corresponding strings. For example, we managed to write down a contour
integral formula of the topological string partition function (equivalently,
the elliptic genus) for this model and we expect that this partition function
computes the degeneracies of 5d BPS spinning black hole states. However,
we have not evaluated the contour integral and carried out any solid test for
it apart from central charge matching. This is mainly because we are not
aware of any known computation for this model with which to compare; it
would be interesting to compare our elliptic genus formula to an independent
computation of the corresponding geometry’s topological strings partition
function.

The considerations above rely on the 3-fold being elliptically fibered,
and a direct generalization of the methods used in the above cases would
not permit a computation of the topological string partition function for
non-elliptic 3-folds. Instead we find another way to study the topological
string amplitudes for some certain non-elliptic 3-folds, including the mirror
quintic. The idea is to use 5d physics, where an analogous role was played
by a coupled collection of 5d SCFTs in describing the non-gravitational field
theory sector of a 5d supergravity theory. Furthermore, we describe a gen-
eralized topological vertex formalism which in principle has a potential of
extending the conventional topological vertex to cover all of the compact
3-folds we described in this paper by gluing the local geometries using com-
pact surfaces associated to trivalent gaugings. This new gauging vertex is
similar in spirit to what was done in [15] as a non-abelian generalization
of the abelian gauging in [16] and is closely related to the “negative ver-
tex” introduced in the reference [78] in the context of the SYZ program.
However, we found that a precise definition of this ‘gauging vertex’ requires
some additional ingredients.

In particular, for the mirror quintic, we found that the proposed gen-
eralization was still not enough to compute the all-genus topological string
amplitudes of the mirror quintic—even with the appropriate combination
of trivalent gaugings, the vertex method needs further modification. Never-
theless we presented a modified vertex formalism and computed some low
degree GV invariants for the mirror quintic inspired by the local geometry
of the gaugings, which agrees with independent mathematical computations
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of the same GV invariants. Moreover, we conjecture that this modified topo-
logical vertex formalism correctly computes all GV invariants except for a
limited number of curve classes in the mirror quintic. Further investigation
in this direction and trying to complete our gauging vertex would be very
interesting. It would also be quite interesting to explore the possibility of us-
ing the results of this work to obtain topological string amplitudes for other
CY 3-folds not considered in this paper, for example the ordinary quintic.
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Appendix A. Geometry of the mirror quintic in the symmetric
chamber

We begin by describing some features of the geometry of a particular
resolution of the mirror quintic which is characterized by a large degree of
symmetry. Recall that the mirror quintic can be described as the complete
intersection

4∑
i=0

yi − 5ψρ =

4∏
i=0

yi − ρ5 = 0,(A.1)

where (yi, ρ) are homogeneous coordinates parametrizing P
5. The singular

locus of the mirror quintic consists of 10 rational curves Cij defined by yi =
yj = 0 with normal geometry C

2/Z5, intersecting in 10 singular points Tijk =
Cij ∩Cjk ∩Cki with normal geometry C

3/Z5×Z5. The Cij act as the “glue”
binding the 10 Tijk to one another (or, from a 5d field theory perspective, the
Cij play the role of the SU(5) gauging depicted in Figure 14.) In the following
discussion we will abuse notation and use the same symbols Tijk, Cij , etc.,
to denote both the singularities and their total transforms in this particular
resolution.

The defining feature of this particular resolution of the mirror quintic is
that each resolved orbifold singularity Tijk is described by the toric diagram
in Figure 31. Taking note of the fact that this highly symmetric phase of



198 H. HAYASHI, P. JEFFERSON, H.-C. KIM, K. OHMORI, AND C. VAFA

Figure 31. Diagram which describes each resolved orbifold
singularity Tijk in the mirror quintic.

Tijk can be viewed as six del Pezzo surfaces dP3 glued together, one can
use the diagram in Figure 31 in combination with the geometry of del Pezzo
surfaces to determine the intersection structure between each dP3 and the
semi-compact exceptional divisors at the border of the diagram—for exam-
ple, the surfaces Sa arranged along the upper border, which belong to the
total transform of the singular curve Cij . Then, keeping in mind that these
surfaces Sa are in fact compact Kähler surfaces in the full mirror quintic,
one can use the intersection structure with the Tijk to fully determine the
geometry of these surfaces.

We now go about the task of determining the Sa belonging to Cij . Once
we have determined these surfaces, by symmetry we will have automatically
determined the surfaces belonging to the remaining Ci′j′ . Since the normal
geometry of the singularity Cij is C

2/Z5, we can expect that the total trans-
form will consist of a collection of ruled surfaces ∪aSa (possibly blown up at
a finite number of points) joined together in a chain, which can be contracted
along the base P

1 of the ruling to obtain an A4 singularity.
Focusing on the interface between a single dPa,a+1

3 and two of the com-
ponent surfaces Sa, Sa+1, we can see that the curves along which these two
surfaces are joined together must each have self-intersection −1 inside dP3

and hence must also have self-intersection −1 inside Sa and Sa+1 in order
to satisfy the Calabi-Yau condition. Since each Cij meets three Tijk′ in a
symmetric fashion, each Sa must therefore contain three pairs of irreducible
−1 curves which can be permuted freely without modifying the remaining
intersection structure. If we blow down these three −1 curves in a given



SCFTS, HOLOGRAPHY, AND TOPOLOGICAL STRINGS 199

Figure 32. Geometry of the surfaces Sa = Bl∗3Fna for
a = 1, . . . , 4. Each surface is the blowup of a Hirzebruch sur-
face (i.e. a geometrically ruled surface over a rational curve)
of degree na at three points lying on a common line with
numerical equivalence class b = s+ naf . The curve class b is
the base rational curve of the ruling, while the class f is the
fiber.

surface Sa, we can expect to recover one of the ruled surfaces belonging to
the total transform of the singularity Cij .

We can say more about these −1 curves: In the above discussion, we
considered a single dPa,a+1

3 meeting two irreducible surfaces Sa, Sa+1. Sup-
pose instead we consider a single Sa meeting two del Pezzo surfaces dP3.
The situation in this case is completely analogous: there are two irreducible
−1 curves inside Sa, each of which is identified with a distinct −1 curve on
the two dP3’s. Since these two −1 curves (call their numerical equivalence
classes e, e′) intersect in a point inside Sa, the class associated to their sum
must have self intersection 0:

(e+ e′)2 = e2 + e′ 2 + 2e · e′ = −1− 1 + 2 = 0.(A.2)

This implies that there exists an irreducible rational curve f = e+ e′ in the
blowdown of the surface Sa with self-intersection f2 = 0. According to the
cone theorem for surfaces (a well-known result of Mori theory), the curve f
is the fiber of the ruling of Sa.

We therefore assume Sa = Bl∗3Fna for a = 1, . . . , 4, namely the blowup of
the Hirzebruch surface Fna at three points, where the superscript ∗ is there
to remind us that these three points lie along a common line15 and are hence
in a special configuration—see Figure 32.

Using (s, f, e1, e2, e3) as a basis of classes of curves, the surfaces Sa are
characterized by the following intersection products:

s2 = −na, s · f = 1, f2 = 0, ei · ej = −δij(A.3)

15This special configuration is necessary to ensure that the three exceptional divisors
e1, e2, e3 can be permuted without affecting the intersection structure of the surface Sa.
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with all other intersection products vanishing. We now specify the classes of
the curves along which these surfaces Sa are glued to each other in terms of
the above basis. Clearly, we have two possible gluing configurations between
a given pair of surfaces Sa, Sa+1 glued along a curve ca,a+1 ≡ Sa∩Sa+1. One
possibility is:

Sa ∩ Sa+1|Sa
≡ ca,a+1|Sa

= s+ naf −
∑

ei,(A.4)

Sa ∩ Sa+1|Sa+1
≡ ca,a+1|Sa+1

= s

where s + naf is the class of the line containing the three points to which
the exceptional divisors ei contract. The other possibility is

Sa ∩ Sa+1|Sa
≡ ca,a+1|Sa

= s, Sa ∩ Sa+1|Sa+1
≡ ca,a+1|Sa+1

= s.(A.5)

To satisfy the Calabi-Yau condition, the curve representing the interface of
Sa and Sa+1 must satisfy

(c2a,a+1)Sa + (c2a,a+1)Sa+1 = 2g(ca,a+1)− 2 = −2,(A.6)

where in the above expression we have used the fact that ca,a+1 is a ra-
tional curve. Hence, the non-negative integers na, na+1 characterizing the
Hirzebruch surfaces Fna ,Fna+1 must be chosen such that

na − na+1 = 1 or na + na+1 = 2.(A.7)

To fully fix the geometry of the chain of surfaces ∪Sa comprising Cij , we
still need to specify the geometry at the “bottom” and the “top” of these
chains. Said differently, if we denote the chain of surfaces by S1∪S2∪S3∪S4,
in the local picture of Tijk one can see there is an additional pair of identical
Kähler surfaces S0

∼= S5 which are glued to S1 and S4 respectively; see
Figure 31. For concreteness, let us focus on the surface S0. From Figure
31, we can see that the two curves Cij and Cik both meet S0. Comparing
Figure 31 with Figure 14, it becomes clear that if we analyze the geometry
of another singularity Tij′k, the same conclusion must be true of Cik and
Cij′ , namely that both Cik and Cij′ intersect the compact surface S0.

For example, suppose we select T123 as our starting point and focus
on the surface S0 which meets both C12 and C13. We would conclude that
in fact C12, C13, C14, C15 must all meet in the compact surface S0. Clearly,
these four singular curves all lie in the intersection of the hyperplane y1 =
0 with the mirror quintic (A.1), which is a P

2. The four singular curves
C12, C13, C14, C15 intersect pairwise in the six points T123, T124, T125, T134,
T135, T145. The incidence geometry of these four curves can be represented
as a tetrahedron where the curves Cij are the faces of the tetrahedron and
the edges Cij ∩Cik are the points Tijk as in the left part of Figure 33. This
geometric configuration is known as a complete quadrangle. An equivalent
and perhaps more useful representation would be the configuration of four
lines meeting in six points in a plane, known as a complete quadrilateral
which is depicted in the right figure in Figure 33. Note that the structure in
Figure 33 is essentially the same as that in Figure 22, which we obtained from
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Figure 33. Left: A complete quadrangle, which repre-
sents incidence structure of configuration of singular curves
C1j=2,...,4 in the surface S0

∼= P
2 defined by y1 = 0 in

(A.1). Right: A complete quadrilateral, which is an equiva-
lent depiction of the incidence structure of the singular curves
C1j ⊂ S0. Note that the complete quadrangle and complete
quadrilateral are projectively dual.

the corner of the pentagon picture in Figure 15. The circles and triangles in
Figure 22 are vertices and faces in Figure 33 respectively.

The upshot of this discussion is that the surface S0 in the resolved ge-
ometry is a projective plane P

2 blown up at the six points of intersection
of the complete quadrilateral, and glued to the top component S1 of each
chain of surfaces Cij along an irreducible rational curve. Since the excep-
tional curves of this blowup are not involved in the gluing, the only curve
class available for the gluing inside P

2 is the class � satisfying �2 = 1. The
Calabi-Yau condition then requires

(c20,1)S0 + (c20,1)S1 = 1 + (c20,1)S1 = −2(A.8)

from which we learn

(c20,1)S1 = −3 =

{
−n1

n1 − 3.
(A.9)

Either of the above choices for n1, both of which are equivalent, fixes the re-
maining integers na for the entire configuration. For convenience, we choose
n1 = 3 so that the chain of surfaces is the configuration

Cij : ∪5
a=0Sa = Bl∗6P

2 c01∪ Bl∗3F3

c12∪ Bl∗3F1

c23∪ Bl∗3F1

c34∪ Bl∗3F3

c45∪ Bl∗6P
2

c01|Bl∗6P
2 = �, c01|Bl∗3F3

= s

c12|Bl∗3F3
= s+ 3f −

∑
ei, c12|Bl∗3F1

= s+ f −
∑

ei

c23|Bl∗3F1
= s

(A.10)
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Figure 34. The Kähler parameters around the geometry of
Figure 21. These parameters are constrained by the relations
(B.1) and (B.2). Here, Q(4,a), a = 1, 2, 3, 4 are the parameters
specified in Figure 35 of one of the T5 diagrams participating
this SU(5) gauging. Q′

(4,a) and Q′′
(4,a) come from the other

T5’s.

where in the above equation we omit the gluing curve classes in S3, S4, S5

because they are identical to those of S0, S1, S2.
We now have a complete understanding of the geometry of this choice of

resolution of the mirror quintic. To summarize, each of the 10 surfaces Tijk

can be viewed as six dP3’s glued to each other, while each of the 10 surfaces
Cij can be viewed as a chain of surfaces (A.10). In this setup, a given Tijk

is glued to each of the three surfaces Cij , Cjk, Cki along three pairs of −1
curves, where each pair of curves intersects in a single point.

Note that in practice rather than working directly with the complex
surfaces Bl∗3F1,3, it is more convenient to compute the topological vertex
using the pseudo del Pezzo surfaces PdP4 depicted in Figure 34, which are
related to Bl∗3F1,3 by complex structure deformations.

Appendix B. 5−0 vertex in the symmetric chamber

In this Appendix we explain how to determine the Kähler parameter
weights and framing factors associated to the 5−0 vertex in the mirror quintic
geometry, which will differ depending on which chamber of the enlarged
Kähler cone is considered for the glued T5’s. Here we assume all of the T5’s
are in the chamber in Figure 31, which we call the symmetric chamber.
As explained in Subsection 4.4, the geometry around a 5−0 vertex can be
described by the diagram depicted in Figure 34 after a complex structure
deformation. In the figure various Kähler parameters are named. The Kähler
parameters Q(4,a) with a = 1, 2, 3, 4 should be identified with the Kähler
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Figure 35. The T5 diagram with an assignment of Young
diagrams λk, (1 ≤ k ≤ 4), and Kähler parameters
P(k,a), Q(k,a), R(k,a)(1 ≤ k ≤ 4, 1 ≤ a ≤ k). The Kähler pa-
rameters are subject to the conditions P(k+1,a)Q(k+1,a+1) =
Q(k,a)P(k,a) and Q(k,a)R(k+1,a) = R(k+1,a+1)Q(k+1,a+1) for
1 ≤ k ≤ 3.

parameters of one of T5’s connected to the 5−0 vertex in Figure 35. Q′
(4,a)

and Q′′
(4,a) refer to the parameters of other T5’s. Here we assume that the

5−0 vertex is connected to the external legs extending toward the left in
Figure 35, and when another set of legs are glued, these parameters should
be interchanged with parameters in other T5’s accordingly.

The parameters Ai with i = 1, 2, 3, 4 are the Coulomb branch parameters
of the SU(5) gauging, satisfying

(B.1) Ai = Q(4,i)P(4,i) = Q′
(4,i)P

′
(4,i) = Q′′

(4,i)P
′′
(4,i),

where P(4,a), P
′
(4,a) and P ′′

(4,a) are again the parameters in each T5’s specified

by Figure 35. The parameters QBi are the effective couplings of effective
U(1) gauge fields coming from the SU(5). Figure 34 indicates that there is
a relation among them which is

(B.2) QBi+1 = A1−i
i Q(4,i)Q

′
(4,i)Q

′′
(4,i)QB,i.

Therefore, among the four effective couplings, only one is independent as is
the usual case in gauge theory.

The effective levels of effective U(1) fields can also be read off from
Figure 34. For example, from the formula (4.30), the top horizontal internal
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edge in Figure 34 gives a factor f−2
μ where μ is the Young diagram assigned

to the leg, which means the effective level is −2. By repeating the same
procedure for other horizontal internal edges, we get the numbers l(5, 0, a)
in (4.32) in this case to be

(B.3) l(5, 0, a) = −3 + a.

In summary, the contribution from the 5−0 vertex in the symmetric cham-
ber is

(B.4)

(
5∏

a=1

QBa

)
C

(5−0 )

�λ�λ′�λ′′(
�A; y)

where the Kähler parameters QBi are subject to the constraint (B.2), and

C
(5−0 )

�λ�λ′�λ′′ is given by (4.32) and (B.3):

(B.5) C
(5−0 )

�λ,�λ′,�λ′′(
�A; y) =

∏5
a=1 fλa(y)

−3+aδλa,λ′
a,λ

′′
a

Zhalf vector
SU(N),�λ

( �A; y)
.

Here λa and λ′
a are inward Young diagrams and λ′′

a are outwards. If we flip
the directions of λ′′

a, then (B.5) should be replaced by

(B.6) C(5−0 )

�λ,�λ′,�λ′′(
�A; y) =

∏5
a=1(−1)|λa|fλa(y)

−2+aδλa,λ′
a,λ

′′
a

Zhalf vector
SU(N),�λ

( �A; y)
.

Finally, let us investigate the Kähler weight QBi in the parameter spe-
cialization taken in Subsection 4.4. There, all the parameters in T5 are taken
to be the same, called e−γ =: QT5 , and QB1 is called u = e−�. In the spe-
cialization, Ai = Q2

T5
and thus QBi are

(B.7) QB1 = QB5 = u, QB2 = QB4 = Q3
T5
u, QB3 = Q4

T5
u.

Hence, we can safely take the QT5 → 0 limit fixing u without causing any
flop transition from the symmetric chamber, obtaining 5 copies of P2 from
the corner of the pentagon as assumed in Subsection 4.4. Furthermore, up
to the order Q2

T5
, only the top and bottom lines among the horizontal lines

in Figure 34 contribute.

Appendix C. Triple intersections of mirror quintic

In this Appendix we enumerate the divisors in the mirror quintic using
the gauged T5 perspective, and compute the triple intersections between
them. For each T5 system Tijk (1 ≤ i < j < k ≤ 5) in Figure 15, we label its

divisors as in Figure 36. For notational convenience, we also introduce Ua,b
ijk

for distinct i, j, k not satisfying i < j < k and impose the condition

(C.1) Ua,b
jik = Ua,5−a−b

ijk , Ua,b
kji = U5−a−b,b

ijk .
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Figure 36. Dot diagram for T5. We label the dots and cor-
responding divisors in Tijk as indicated in the above figure.
Although in case of local T5 geometry the divisors on the
edge of the diagrams are non-compact, all of the dots are
compact in the full mirror quintic geometry.

Here, the first relation represents flip of the vertical axis and the latter
represents flip of the horizontal axis. From these it follows that

(C.2) Ua,b
ikj = U b,a

ijk .

Further, because those 10 T5 are glued together, we have identifications

(C.3) Sb
ij ≡ U0,b

ijk = U0,b
ijl = S5−b

ji .

for all distinct i, j, k, l = 1, 2, 3, 4, 5, and b = 0, 1, 2, 3, 4, 5. Those Sb
ij , b ≥

1 can be interpreted as Coulomb branch parameters of SU(5)ij , and be
identified to Sb in Figure 21 and Figure 31.

Note that we automatically have the relations among S0’s:

(C.4) Gi ≡ S0
ij = S0

ik.
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Thus, we have in total 105 divisors which are

Ua,b
ijk (1 ≤ i < j < k ≤ 5, 1 ≤ a, b ≤ 3, 2 ≤ a+ b ≤ 4),

Sb
ij (1 ≤ i < j ≤ 5, 1 ≤ b ≤ 4), and

Gi (i = 1, 2, 3, 4, 5).

(C.5)

The Kähler parameters dual to the divisors Gi can be thought as couplings
of SU(5)’s. At this stage it seems that 5 among 10 couplings might be
independent, but we expect only 101 independent divisors, and therefore
there should be 4 linear equivalences among the above divisors which relate
Gi’s.

To find the linear equivalence, we need to investigate triple intersections
among the divisors we have. From the toric diagram Figure 36, we can read
off the triple-intersection numbers

Ua,b
ijk · U

c,d
ijk · U

e,f
ijk = 1(C.6)

when (a, b), (c, d), (e, f) forms a triangle in the dot diagram, and

Ua,b
ijk · (U

c,d
ijk)

2 = −1(C.7)

when (a, b) and (c, d) are connected by a edge and at least one of them is not
on the edge of the diagram. Furthermore, we can read triple-intersections
involving only Sb

ij can be determined by the web diagram Figure 21, or its
dual dot diagram, which are

(Sb
ij)

2 · Sb+1
ij = b− 3 (b = 0, 1, 2, 3, 4),(C.8)

(Sb
ij)

2 · Sb−1
ij = 2− b (b = 1, 2, 3, 4, 5).(C.9)

Therefore, the non-vanishing curves have the form of:

(C.10) Ca,b
ijk ≡ Ua,b

i,j,k · U
a+1,b
i,j,k (0 ≤ a ≤ 4, 0 ≤ b ≤ 5− a).

The curves Ua,b
i,j,k ·U

a,b+1
i,j,k and Ua+1,b

i,j,k ·Ua,b+1
i,j,k can also be written in the form

of (C.10) using (C.1). Taking the relations among Ua,b
i,j,k into account, there

are 350 of those curves. Denote M a 105 × 350 matrix whose components
are intersection numbers between divisors (C.5) and (C.10). Then we find

(C.11) Rank(M) = 101,

which implies there are 4 linear equivalences among the divisors (C.5) as
expected.

The explicit linear equivalences among the divisors are

(C.12) Xi ∼ Xj (i, j = 1, 2, 3, 4, 5),

where Xi is defined by

(C.13) Xi =
∑
j<k

j �=i,k �=i

∑
0≤a≤5

0≤b≤5−a

(5− a− b)Ua,b
ijk .
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One can compute the intersection of this divisor Xi and Ca,b
klm and can obtain

Xi · Ca,b
klm = 0, (a �= 0),(C.14)

Xi · C0,b
klm = 1,(C.15)

which is independent of i. Note that Xi is 5Gi added by additional terms.
In this sense, the Kähler parameter dual to Xi can be thought as a dressed
couplings of SU(5)ij , and (C.12) is the relation among them.

Although we cannot directly read off the self-triple-intersections of the
divisors from Figure 21 and Figure 36, we can obtain them by substitut-
ing the linear equivalence (C.12) into (C.6), (C.7), (C.8), and (C.9). The
computation gives

(Ua,b
ijk)

3 = 6 (1 ≤ i < j < k ≤ 5, 1 ≤ a, b ≤ 3, 2 ≤ a+ b ≤ 4),

(Sb
ij)

3 = 5 (1 ≤ i < j ≤ 5, 1 ≤ b ≤ 4), and

(Gi)
3 = 9 (i = 1, 2, 3, 4, 5).

(C.16)

Those intersections are consistent with the local geometries around each
divisor, found in Appendix A. In particular, we reproduced the intersection
number (Gi)

3 = 9 which is the same as the self-triple-intersection of local
P
2.

Finally, we can easily compute the prepotential given the triple-inter-
sections. We choose the independent set of divisors as the ones in (C.5)

other than G2, G3, G4, G5. Introduce the Kähler parameters ua,bijk dual to

divisors Ua,b
ijk . Then, the prepotential is

(C.17) F =
1

6
J3

where J is the Kähler form

(C.18) J =
∑

i,j,k,a,b

ua,bijkU
a,b
ijk .

Here, the sum does not contain the divisors G2, G3, G4, G5. In other parts of
this paper, we use volumes of curves as Kähler parameters. To relate them

to the variables ua,bijk introduced here, one can compute the volume of the

curve Ca,b
ijk in the variables ua,bijk as

(C.19) vol(Ca,b
ijk) = −∂

ua,b
ijk

∂
ua+1,b
ijk

F .

References

[1] J. J. Heckman, D. R. Morrison, and C. Vafa, On the classification of 6D SCFTs
and generalized ADE orbifolds, JHEP 05 (2014) 028, [arXiv:1312.5746]. [Erratum:
JHEP06,017(2015)].

[2] J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa, Atomic classification of
6D SCFTs, Fortsch. Phys. 63 (2015) 468–530, [arXiv:1502.05405].

[3] L. Bhardwaj, Classification of 6d N = (1, 0) gauge theories, JHEP 11 (2015) 002,
[arXiv:1502.06594]. MR 3455575

http://arxiv.org/abs/1312.5746
http://arxiv.org/abs/1502.05405
http://arxiv.org/abs/1502.06594


208 H. HAYASHI, P. JEFFERSON, H.-C. KIM, K. OHMORI, AND C. VAFA

[4] R. Gopakumar and S. Mukhi, Orbifold and orientifold compactifications of F-theory
and M-theory to six-dimensions and four-dimensions, Nucl. Phys. B 479 (1996) 260–
284, [hep-th/9607057]. MR 1429832
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