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Unification of the Kähler-Ricci and Anomaly flows

Teng Fei and Duong H. Phong

Dedicated to Professor Shing-Tung Yau on the occasion of his 70th birthday

Abstract. A new formulation of the Anomaly flow in the case of van-
ishing slope parameter is given, where the dependence on the global
section of the canonical bundle appears only in the initial data. This
allows a natural unification of the Anomaly flow with the Kähler-Ricci
flow.

1. Introduction

The idea of using a geometric flow to implement a cohomological con-
straint on a metric in the absence of an analogue of the ∂∂̄ lemma was
introduced in [14, 15]. The specific case of the conformally balanced con-
dition arising from supersymmetric compactifications of the heterotic string
was considered there and generalized further in [18]. Many other conditions
and flows have been introduced since, including dual Anomaly flows [6] and
flows motivated by Type II A and Type II B string compactifications in
[13, 4]. Anomaly flows appear to be a flexible and powerful method, as they
have led to new proofs of major results in geometry such as Yau’s theorem
[23] on the existence of Kähler Ricci-flat metric and the Fu-Yau solution
[8, 9] of the Hull-Strominger system [16, 17, 5].

A flow is usually given by a vector field on the configuration space and
the prescription of an initial data. In the Anomaly flows considered in [14,
15, 17], the underlying manifold X is complex and equipped with a non-
vanishing top holomorphic form Ω. The form Ω appears explicitly in the
vector field on the space of Hermitian metrics defining the flow (see [15],
eq. (1.9)). This explicit appearance of Ω seems to set Anomaly flows apart
from more familiar flows such as the Kähler-Ricci flow, and prevent the
direct use of many powerful techniques which had been developed for these
flows.
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The main purpose of the present note is to show that, in the simpler case
with parameter α′ = 0, the dependence of the vector field of the Anomaly
flow on Ω can be eliminated by a suitable rescaling of the evolving metric:

Theorem 1. Let X be a complex manifold of dimension m ≥ 2 equipped
with a nowhere holomorphic (m, 0)-form Ω. Assume that t → ω(t) is a flow
of Hermitian metrics satisfying

∂t(‖Ω‖ωωm−1) = i∂∂̄ωm−2(1.1)

and d(‖Ω‖ω(t)ω(t)m−1) = 0 for each t. Set for each t

η(t) = ‖Ω‖ω(t)ω(t).(1.2)

Then the Hermitian metrics η(t) satisfy the conformally balanced condition
d(‖Ω‖2ηηm−1) = 0, and they evolve according to

∂tη(t) = − 1

m− 1
(R̃k̄j(η) +

1

2
(T ◦ T̄ )k̄j).(1.3)

Here Rq̄p
k
j = −∂q̄(g

km̄∂pgk̄j is the curvature of the metric η := igk̄jdz
j ∧

dz̄k, R̃k̄j := Rp
pk̄j = −gpq̄gk̄m∂q̄(g

m�̄∂pg�̄j) is its Chern-Ricci tensor, and

(T ◦ T̄ )k̄j := Tk̄pqT̄j
pq, where T = i∂η = 1

2Tk̄pqdz
q ∧ dzp ∧ dz̄k is its torsion

tensor. In our convention, the Ricci tensor Rk̄j is defined by Rq̄p = Rq̄p
k
k.

The form Ω has cancelled out from the vector field ∂tη, as desired. From
the point of view of η(t), the only dependence on Ω of the Anomaly flow
resides now in the conformally balanced condition for the initial data η(0).
Thus the flow defined by the right hand side of (1.3) with an arbitrary
initial Hermitian metric can be viewed as a generalization of the Anomaly
flow with α′ = 0 to arbitrary complex manifolds X. When X is compact,
it is not difficult to see, as we shall show in detail later, that the flow (1.3)
preserves the Kähler property and reduces to the Kähler-Ricci flow if the
initial data is Kähler. We can then formulate the following theorem, which is
essentially Theorem 1 combined with the uniqueness of solutions of parabolic
flows on compact manifolds, and which unifies the Kähler-Ricci flow with
the Anomaly flow:

Theorem 2. Let X be a compact complex manifold of dimension m ≥ 1.
Consider the flow t → η(t) of Hermitian metrics defined by

∂tη(t) = −(R̃k̄j(η) +
1

2
(T ◦ T̄ )k̄j),(1.4)

with initial data a Hermitian metric η(0)
(i) The flow is parabolic, and for any initial data η(0), it admits a unique

smooth solution in some maximal time interval [0, T ) with T > 0.
(ii) If η(0) is Kähler (this includes the general case in dimension m = 1),

then η(t) remains Kähler for all time t ∈ [0, T ), and the flow reduces to the
Kähler-Ricci flow,

∂tηk̄j = −Rk̄j(η).(1.5)
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(iii) Assume that m ≥ 2, and X admits a nowhere vanishing holo-
morphic (m, 0)-form Ω. If η(0) is conformally balanced in the sense that
d(‖Ω‖2η(0)ηm−1(0)) = 0, then η(t) remains conformally balanced for all time

t ∈ [0, T ), and the flow reduces to the Anomaly flow (1.1), after rescaling
t → (m− 1)t.

Parts (i) and (ii) of Theorem 2 are elementary, and have been noted by
Streets and Tian [20] who proposed the family of flows of the form

∂tηk̄j = −(R̃k̄j +Qk̄j(T, T̄ ))(1.6)

as generalizations of the Kähler-Ricci flow to arbitrary complex manifolds,
where Q(T, T̄ ) is a (1, 1)-form which is linear in each factor T and T̄ . Among
these, Ustinovskiy [22] has identified the same combination Q = 1

2T ◦ T̄ as
in (1.3) as a flow that preserves the Griffiths positivity and the dual Nakano-
positivity of the tangent bundle. In the case of the Kähler-Ricci flow, the
preservation of the positivity of the bisectional curvature was proven by
Bando [1] and Mok [12] and is a particularly important property of the
flow with many applications, see e.g. [19]. Ustinovskiy’s result [22] suggests
that some generalizations in (1.6) may be better behaved than others. With
Theorem 1, we see that the Anomaly flow with α′ = 0 also singles out the
particular combination Q = 1

2T ◦ T̄ .
We note that many other generalizations of the Kähler-Ricci flow to the

non-Kähler setting have been proposed in the literature, including in [10],
[2], and [21].

2. Proof of Theorem 1

First, we note that the rescaled metric η = ‖Ω‖ωω satisfies

‖Ω‖2−m
ω = ‖Ω‖2η, ‖Ω‖ωωm−1 = ‖Ω‖2ηηm−1,(2.1)

and hence the Anomaly flow (1.1) can be expressed in terms of η as

∂t(‖Ω‖2ηηm−1) = i∂∂̄ (‖Ω‖2ηηm−2).(2.2)

2.1. Elimination of ∂t‖Ω‖2η. Carrying out the differentiation in time
gives

‖Ω‖2η(∂t log ‖Ω‖2ηηm−1 + (m− 1)∂tη ∧ ηm−2) = i∂∂̄(‖Ω‖2ηηm−2)(2.3)

Let Λ be the usual Hodge operator, which is the adjoint of the operator
φ → ω ∧ φ. Its precise expression in components and normalization can be
found in Appendix C. Since

∂t log ‖Ω‖2η = ∂t log η
−m = −gjk̄∂tgk̄j = −(Λ∂tη)(2.4)

we obtain

‖Ω‖2η(−(Λ∂tη)η
m−1 + (m− 1)∂tη ∧ ηm−2) = i∂∂̄(‖Ω‖2ηηm−2).(2.5)
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We take now the Hodge � operator of both sides, using the formulas in
Appendix B. We find

‖Ω‖2η
{
− (m− 1)!(Λ∂tη)η + (m− 1)(m− 2)!(−∂tη + (Λ∂tη)η)

}
(2.6)

= �i∂∂̄(‖Ω‖2ηηm−2)

The term (Λ∂tη) cancels out from the left hand side, and we obtain the
following equation

(m− 1)!‖Ω‖2η∂tη = − � i∂∂̄(‖Ω‖2ηηm−2).(2.7)

2.2. Elimination of ‖Ω‖2η. It is now easy to see that the explicit ap-

pearance of the term ‖Ω‖2η can be eliminated from the flow, using the torsion
constraints. Indeed, before taking the Hodge � operator, the right hand side
of the flow can be expressed as

i∂∂̄(‖Ω‖2ηηm−2)(2.8)

= i∂(‖Ω‖2η∂̄ log ‖Ω‖2ηηm−2 + ‖Ω‖2η∂̄ηm−2)

= ‖Ω‖2η
{
i∂ log ‖Ω‖2η ∧ ∂̄ log ‖Ω‖2η ∧ ηm−2 + i∂∂̄ log ‖Ω‖2η ∧ ηm−2

− i∂̄ log ‖Ω‖2η∂ηm−2 + i∂ log ‖Ω‖2η∂̄ηm−2 + i∂∂̄ηm−2

}
However, from Lemma 4 in [15], with a = 2, we have

τ� = gjk̄Tk̄j� = ∂� log ‖Ω‖2η(2.9)

and in general, Ric(η) = ∂∂̄ log ‖Ω‖2η. Thus the above equation can be rewrit-
ten as

i∂∂̄(‖Ω‖2ηηm−2) = ‖Ω‖2η
{
iτ ∧ τ̄ ∧ ηm−2 + iRic(η) ∧ ηm−2 + i∂∂̄ηm−2

(2.10)

− iτ̄ ∧ ∂ηm−2 + iτ ∧ ∂̄ηm−2

}
.

Returning to the Anomaly flow, it reduces now to the following simpler
expression

(m− 1)!∂tη = − �

{
iτ ∧ τ̄ ∧ ηm−2 + iRic(η) ∧ ηm−2 + i∂∂̄ηm−2(2.11)

− iτ̄ ∧ ∂ηm−2 + iτ ∧ ∂̄ηm−2

}
.

Next, we note that

∂ηm−2 = (m− 2)∂η ∧ ηm−3 = −i(m− 2)T ∧ ηm−3

∂̄ηm−2 = i(m− 2)T̄ ∧ ηm−3
(2.12)
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and

i∂∂̄ηm−2 = (m− 2)i∂(∂̄η ∧ ηm−3)(2.13)

= (m− 2)(i∂∂̄η ∧ ηm−3 − i(m− 3)∂̄η ∧ ∂η ∧ ηm−4)

= (m− 2)(i∂∂̄η ∧ ηm−3 − i(m− 3)T̄ ∧ T ∧ ηm−4).

Collecting all the terms, we obtain

(m− 1)!∂tη = − �

{
(iτ ∧ τ̄ + iRic(η)) ∧ ηm−2(2.14)

+ (m− 2)(i∂∂̄η − τ̄ ∧ T − τ ∧ T̄ ) ∧ ηm−3

− (m− 2)(m− 3)iT̄ ∧ T ∧ ηm−4

}

2.3. The Hodge � of the individual terms. Applying the formulas
for the Hodge � operator given in the appendices, we obtain immediately

� [(iτ ∧ τ̄ + iRic(η)) ∧ ηm−2]

= (m− 2)![−(iτ ∧ τ̄ + iRic(η)) + (Λ(iτ ∧ τ̄ + iRic(η)))η]

and

� [(m− 2)(i∂∂̄η − τ̄ ∧ T − τ ∧ T̄ ) ∧ ηm−3](2.15)

= (m− 2)![−Λ(i∂∂̄η − τ̄ ∧ T − τ ∧ T̄ )

+
1

2
Λ2(i∂∂̄η − τ̄ ∧ T − τ ∧ T̄ ) η]

and

�[(m−2)(m−3)iT ∧ T̄ ∧ ηm−4] = (m− 2)![−1

2
Λ2(iT ∧ T̄ ) +

1

6
Λ3(iT ∧ T̄ )η]

(2.16)

The appearance of a common factor (m − 2)! in all the terms of the right
hand side allows us to cancel this factor, and obtain a generalization of the
Anomaly flow including to dimension m = 2, defined by

−(m− 1)∂tη = −(iτ ∧ τ̄ + iRic(η)) + (Λ(iτ ∧ τ̄ + iRic(η)))η

(2.17)

− Λ(i∂∂̄η − τ̄ ∧ T − τ ∧ T̄ ) +
1

2
Λ2(i∂∂̄η − τ̄ ∧ T − τ ∧ T̄ ) η

− 1

2
Λ2(iT ∧ T̄ ) +

1

6
Λ3(iT ∧ T̄ )η

= A+Bη
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where we have defined the (1, 1)-form A and the scalar function B by

A = −(iτ ∧ τ̄ + iRic(η))− Λ(i∂∂̄η − τ̄ ∧ T − τ ∧ T̄ )− 1

2
Λ2(iT ∧ T̄ )

(2.18)

B = Λ(iτ ∧ τ̄ + iRic(η)) +
1

2
Λ2(i∂∂̄η − τ̄ ∧ T − τ ∧ T̄ ) +

1

6
Λ3(iT ∧ T̄ ).

2.4. Evaluation of i∂∂̄η. We quote from [15], eq. (2.52)

(i∂∂̄η)k̄j�̄m = Rk̄j�̄m −Rk̄m�̄j +R�̄mk̄j −R�̄jk̄m − gsr̄Tr̄jmT̄sk̄�̄(2.19)

It follows that

(Λi∂∂̄η)�̄m = i−1gjk̄(i∂∂̄η)k̄j�̄m = i−1(R̃�̄m +R�̄m − gsr̄gjk̄Tr̄jmT̄sk̄�̄)(2.20)

or, in terms of forms,

Λi∂∂̄η = −iR̃ic(η)− iRic(η) + i(T T̄ )(2.21)

where the (1, 1)-form T T̄ ) is defined by

T T̄ = (T T̄ )�̄mdzm ∧ dz̄�, (T T̄ )�̄m = gsr̄gjk̄Tr̄jmT̄sk̄�̄.(2.22)

As a consequence, the Ricci-Chern terms cancel and we obtain

iRic(η) + Λi∂∂̄η = −iR̃ic(η) + i(T T̄ ).(2.23)

Similarly,

Λ2i∂∂̄η = −2R+ |T |2(2.24)

and the scalar curvature cancels between the terms ΛiRic(η) and Λ2i∂∂̄η,

ΛiRic(η) +
1

2
Λ2i∂∂̄η =

1

2
|T |2.(2.25)

It is then convenient to isolate torsion and non-torsion terms in the
coefficients A and B as follows

A = iR̃ic(η)− i(T T̄ )− iτ ∧ τ̄ + Λ(τ ∧ T̄ + τ̄ ∧ T )− 1

2
Λ2(iT ∧ T̄ )(2.26)

B =
1

2
|T |2 + |τ |2 − 1

2
Λ2(τ̄ ∧ T + τ ∧ T̄ ) +

1

6
Λ3(iT ∧ T̄ ).

2.5. Evaluation of iT ∧ T̄ , Λ(iT ∧ T̄ ), Λ2(iT ∧ T̄ ). The components
of iT ∧ T̄ can be expressed as, upon antisymmetrization,

(iT ∧ T̄ )k̄jβ̄αγ̄� = −i(Tk̄j�T̄αβ̄γ̄ − Tk̄α�T̄jβ̄γ̄(2.27)

− Tk̄jαT̄�β̄γ̄ − Tβ̄j�T̄αk̄γ̄ + Tβ̄α�T̄jk̄γ̄ + Tβ̄jαT̄�k̄γ̄

− Tγ̄j�T̄αβ̄k̄ + Tγ̄α�T̄jβ̄k̄ + Tγ̄jαT̄�β̄k̄)

It follows that

(ΛiT ∧ T̄ )k̄jβ̄α = −g�γ̄(Tk̄j�T̄αβ̄γ̄ − Tk̄α�T̄jβ̄γ̄) + g�γ̄(−Tβ̄j�T̄αk̄γ̄ + Tβ̄α�T̄jk̄γ̄)

(2.28)

+ g�γ̄Tγ̄jαT̄�β̄k̄ − Tk̄jατ̄β̄ + Tβ̄jατ̄k̄ − τj T̄αβ̄k̄ + ταT̄jβ̄k̄



UNIFICATION OF THE KÄHLER-RICCI AND ANOMALY FLOWS 95

Note that

τ ∧ T̄ = ταdz
α ∧ 1

2
T̄jβ̄k̄dz̄

k ∧ dz̄β ∧ dzj(2.29)

=
1

22
(ταT̄jβ̄k̄ − τj T̄αβ̄k̄)dz

α ∧ dz̄β ∧ dzj ∧ dz̄k

and hence

(τ ∧ T̄ )k̄jβ̄α = ταT̄jβ̄k̄ − τjT̄αβ̄k̄.(2.30)

It follows that

(Λτ ∧ T̄ )β̄α = i−1gjk̄(ταT̄jβ̄k̄ − τj T̄αβ̄k̄) = iτατ̄β̄ + igjk̄τj T̄αβ̄k̄,(2.31)

and

Λ2τ ∧ T̄ = 2|τ |2.(2.32)

Returning to the earlier identity, we can now compute Λ2iT ∧ T̄ ,

(Λ2iT ∧ T̄ )β̄α = igjk̄
{
g�γ̄(Tk̄j�T̄αβ̄γ̄ − Tk̄α�T̄jβ̄γ̄)(2.33)

+ g�γ̄(−Tβ̄j�T̄αk̄γ̄ + Tβ̄α�T̄jk̄γ̄) + g�γ̄Tγ̄jαT̄�β̄k̄

}
+ (Λ(τ ∧ T̄ + τ̄ ∧ T ))β̄α

= ig�γ̄(τ�T̄αβ̄γ̄ + τ̄γ̄Tβ̄α�)− i(T ◦ T̄ )β̄α − 2i(T T̄ )β̄α

+ (Λ(τ ∧ T̄ + τ̄ ∧ T ))β̄α

where we have defined the (1, 1)-form T ◦ T̄ by

(T ◦ T̄ )β̄α = g�γ̄gjk̄Tβ̄j�T̄αk̄γ̄ .(2.34)

In intrinsic notation, this can be expressed as

(Λ2iT ∧ T̄ ) = 2Λ(τ ∧ T̄ + τ̄ ∧ T )− 2iτ ∧ τ̄ − iT ◦ T̄ − 2iT T̄ .(2.35)

We shall also need

Λ3iT ∧ T̄ = 6|τ |2 − 3|T |2.(2.36)

2.6. Evaluation of the coefficients A and B. It is now easy to
assemble all the terms and arrive at the final formula B = 0 and A is given
by

(2.37) A = iR̃ic(η) +
i

2
T ◦ T̄ .

We note that a simpler version of some of these identities when m = 3
appeared in [6] and was instrumental in the proof of an upper bound for
‖Ω‖ω. Altogether the evolution equation for η is

(2.38) ∂tηk̄j = − 1

m− 1

(
R̃k̄j +

1

2
(T ◦ T̄ )k̄j

)
.

This is the flow (1.3) stated in Theorem 1. Q.E.D.
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3. Proof of Theorem 2

Part (i) follows immediately from the fact that the Chern-Ricci tensor

R̃k̄j can be expressed in local coordinates as

R̃k̄j = −gpq̄∂p∂q̄gk̄j + · · ·(3.1)

where · · · denote terms with fewer derivatives. Part (ii) follows from the fact
that, if η̃(0) is Kähler, then the Kähler-Ricci flow ∂tη̃ = −Rk̄j(η̃) admits a

solution η̃(t) which is Kähler for any t in a small time interval near t = 0.

Since T (η̃) = 0 and R̃k̄j(η̃) = Rk̄j(η), the same η̃(t) satisfies the flow (1.3) if

we take the same initial data η(0) = η̃(0). By uniqueness of the solution of
the flow (1.3), it follows that η(t) = η̃(t) for all time, and η(t) is a solution
of the Kähler-Ricci flow, as claimed. Part (iii) follows in the same way,
using now Theorem 1. Indeed, if η(0) is conformally balanced in the sense of
Theorem 2, then the corresponding ω(0) is conformally balanced in the sense
of [15]. By Theorem 1 of [17], the Anomaly flow (1.1) for ω admits a unique
smooth solution ω(t) for some small time interval near 0. By Theorem 1,
the corresponding η(t) is a smooth, conformally balanced solution to the
flow (1.3). By uniqueness, this solution coincides with the solution known
to exist by parabolicity. In particular, the conformally balanced condition is
preserved for all η(t). Q.E.D.

4. Remarks

It may be interesting to find another, more direct, proof of Part (iii) of
Theorem 2, namely that the flow (1.3) preserves the conformally balanced
condition, instead of appealing to Theorem 1 and the uniqueness of solu-
tions. This does not appear evident, although it can for example be done for
Part (ii). By deriving the flow for |T |2 and applying the maximum princi-
ple, we can indeed show directly that the Kähler property is preserved. We
reproduce the key calculations below, as the flow of the torsion is crucial
in non-Kähler geometry, and the resulting formulas may be useful in other
contexts. They are also comparatively simpler than the formulas for the flow
of the torsion derived in [15] under the conformally balanced condition.

4.1. The flow of the torsion. Consider then the flow (1.3), for general
metrics η, not necessarily Kähler or conformally balanced. Introduce the
notation η = igk̄jdz

j ∧ dz̄k, and write the flow (1.3) as

∂tη = − 1

m− 1
i(R̃ic(η) +

1

2
(T ◦ T̄ ))(4.1)

Since T = i∂η, this implies immediately

∂tT =
1

m− 1
(∂R̃ic+

1

2
∂(T ◦ T̄ ))(4.2)

For general Hermitian metrics, we have the following Bianchi identity

R�̄mk̄j = R�̄jk̄m +∇�̄Tk̄jm = Rk̄j�̄m +∇j T̄mk̄�̄ +∇�̄Tk̄jm(4.3)
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and hence

R̃k̄j = Rk̄j −∇j τ̄k̄ +∇mTk̄jm(4.4)

By Bochner-Kodaira formulas (see Appendix D), we have

∂†Tk̄j = −∇mTk̄jm + τ̄mTk̄jm − 1

2
(T ◦ T̄ )k̄j(4.5)

Since the form Ric(η) is closed and the form ∇j τ̄k is ∂-exact, the right

hand side of the equation (4.2) can be expressed in terms of ∂†T and the
differentials of τ̄mTk̄jm and (T ◦ T̄ )k̄j alone. We find that (4.2) becomes

∂tT =
1

m− 1
(−∂∂†T + ∂(τ̄ · T ))(4.6)

where we have introduced the notation τ̄ · T for the (1, 1)-form defined by

(τ̄ · T )ᾱβ = τ̄γTᾱβγ .(4.7)

Since T is ∂-closed, the operator ∂∂† on T can be equated with the Hodge
Laplacian � = ∂∂† + ∂†∂ on (2, 1)-forms, so we have obtained a parabolic
diffusion equation for T .

To show that the Kähler condition is preserved by the flow (1.3), we need
the evolution of |T |2. For this, we again use a Bochner-Kodaira formula to
convert the Hodge-Laplacian � into the Laplacian Δc = gpq̄∇q̄∇p, modulo
lower order terms,

(∂∂†T )k̄jm = ∇m(∂†T )k̄j −∇j(∂
†T )k̄m + T s

mj(∂
†T )k̄s

= −ΔcTk̄jm + Tk̄jlR̃
l
m − Tk̄mlR̃

l
j + gst̄(Rt̄lk̄mT l

sj −Rt̄lk̄jT
l
sm)

+ ∂(τ̄ · T )k̄jm

+
1

2

(
T l

jm(T ◦ T̄ )k̄l + gst̄gpq̄(T̄mt̄q̄∇jTk̄sp − T̄jt̄q̄∇mTk̄sp)
)

+ gst̄gpq̄Tk̄sp(Rq̄jt̄m −Rq̄mt̄j).

Using the flow (4.6), we find

((m− 1)∂t −Δc)|T |2(4.8)

= −|∇T |2 − |∇̄T |2 − 1

2
|T ◦ T̄ |2 + 〈T ◦ T̄ , T T̄ 〉

− 2Re(T̄ k̄jm(gst̄gpq̄T̄mt̄q̄∇jTk̄sp + 2T s
pjR

p

sk̄m
+ 2Tk̄spR

p s
j m)).

In particular,

((m− 1)∂t −Δc)|T |2 ≤ C|T |2(|T |2 + |Rm|),(4.9)

for some constant C. The maximum principle implies that T ≡ 0 if initially
T0 = 0, i.e., the Kähler condition is preserved.
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We observe that it is easy to derive from the flow of T the flows of τ as
well as of the primitive component of T . For example, we have

(m− 1)∂tτj = −�τj +∇j

(
|τ |2 + 1

2
|T |2

)
+ T s

pjR
′ p
s(4.10)

+ gpk̄ τ̄k̄(∇pτj −∇jτp + T s
pjτs).

In the conformally balanced case, we have ∂τ = 0 and R′ p
s = 0, and this

flow reduces to

(m− 1)∂tτj = −�τj +∇j

(
|τ |2 + 1

2
|T |2

)
.(4.11)

This results in the following flow for |τ |2,
((m− 1)∂t −Δc)|τ |2

= −|∇τ |2 − |Ric|2 + 〈R̃ic−Ric+
1

2
T ◦ T̄ , iτ ∧ τ̄〉

+
1

2
〈τ,∇|T |2〉+ 1

2
〈τ,∇|T |2〉+ gjk̄(τ̄k̄T

s
ljR

l
s + τjT̄

t̄
p̄k̄R

p̄
t̄
)

The right hand side can only be bounded above by O(|τ |), which indicates
that, unlike the vanishing of the full torsion T , the vanishing of τ is not
preserved. Indeed one can verify that the balanced condition τ = 0 is not
preserved by running the Anomaly flow on generalized Calabi-Gray mani-
folds [5] with balanced initial data.

4.2. Shi-type estimates and long-time existence of the flow.
Shi-type estimates for the original Anomaly flow were derived in [15]. For
the present version (1.3) in terms of the rescaled metric η, they become
simpler to establish, and the same arguments as in [15], or the general
results in [20], imply the following statement: the flow in η will continue to
exist, unless there is a time T > 0 and a sequence (zj , tj) with tj → T , with

|Rm(zj)|2η(tj) + |T (zj)|2η(tj) + |∇T (zj)|2η(tj) → ∞.(4.12)

Now under a conformal change of metrics ωf = efω, the torsion and curva-
ture transform as follows

T �
jk(ωf ) = T �

jk(ω) + fjδ
�
k − fkδ

�
j ,

Rk̄jp̄q(ωf ) = ef (Rk̄jp̄q(ω) + fk̄jωp̄q).
(4.13)

In the case at hand, η = ‖Ω‖ωω, so it is easy to work out the previous
conditions, and find that the flow will continue to exist unless there is a
time T and a sequence (zj , tj) with tj → T satisfying

|Rm(zj)|2ω(tj)
‖Ω(zj)‖2ω(tj)

+
|T (zj)|2ω(tj)
‖Ω(zj)‖ω(tj)

+
|∇T (zj)|2ω(tj)
‖Ω(zj)‖2ω(tj)

→ ∞.(4.14)

This is a more succinct, and perhaps more natural formulation of the cri-
terion for the appearance of singularities found in [15], which involved the
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four quantities |Rm(zj)|ω(tj), |T (zj)|ω(tj), |∇T (zj)|ω(tj), and ‖Ω(zj)‖ω(tj) sep-
arately.

4.3. Two questions by Ustinovskiy. In Ustinovskiy’s thesis [22],
he raised two questions (Question 6.15 and Problem 6.16) about periodic
solutions and stationary points of Hermitian curvature flow. As a result of
our Theorems 1 and 2, we can answer these questions.

Proposition 1. All periodic solutions are stationary, which are Ricci-
flat Kähler metrics.

The proof goes as follows: Suppose that we have a periodic solution. It
follows from the results of Ustinovskiy and Theorems 1 and 2 that the flow
is exactly the Anomaly flow with α′ = 0 and with conformally balanced
initial data. Therefore we have monotonicity formulae as introduced in [6].
More precisely, a direct calculation in [6] gives

∂t‖Ω‖ω =
1

2(n− 1)
[R− 1

n− 2
|T |2 − 2(n− 3)

n− 2
|τ |2](4.15)

This implies for any α > 2,

∂t

∫
X
‖Ω‖αω

ωn

n!
=

∫
X
‖Ω‖α−1

ω

α− 2

2(n− 1)
[R− 1

n− 2
|T |2 − 2(n− 3)

n− 2
|τ |2]ω

n

n!

(4.16)

and hence, in view of the definition of the scalar curvature,

R
ωn

n!
= i∂∂̄ log ‖Ω‖2ω ∧ ωn−1

(n− 1)!
(4.17)

we find

∂t

∫
X
‖Ω‖αω

ωn

n!

(4.18)

= −(α− 1)(α− 2)

2(n− 1)

∫
X
‖Ω‖α−1

ω i∂ log ‖Ω‖2ω ∧ ∂̄ log ‖Ω‖2 ∧ ωn−1

(n− 1)!

− α− 2

2(n− 1)(n− 2)

∫
X
‖Ω‖α−1

ω (|T |2 + 2(n− 3)|τ |2)ω
n

n!
.

Each term on the right hand side is negative. This implies that
∫
X ‖Ω‖αω ωn

n! is
monotone decreasing. Periodic solutions imply that all the monotone quan-
tities are actually constants in time, which in turn gives us an equation from
the monotonicity formula. This equation can only be satisfied by Ricci-flat
Kähler metrics, which are the only stationary points of the Anomaly flow.
Note that the second part of this proposition has been established in several
different ways in the literature, including by an integration by parts, and by
many authors including [3], [7], [11], and [17].
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Appendix A. Conventions and preliminaries

If η is a Hermitian metric on X, its curvature is defined by Rk̄j
p
q =

−∂k̄(g
pm̄∂jgm̄q). Its Ricci curvature Rk̄j(η) is defined by

Rk̄j(η) = −∂j∂k̄ log ηm = ∂j∂k̄ log ‖Ω‖2η(A.1)

and the Ricci form Ric(η) is defined by

Ric(η) = Rk̄j(η)dz
j ∧ dz̄k = ∂j∂k̄ log ‖Ω‖2ηdzj ∧ dz̄k = ∂∂̄ log ‖Ω‖2η.(A.2)

As in [15], the other notions of Ricci curvature are defined by R̃k̄j = Rp
pk̄j ,

R′
k̄j

= Rk̄
p
pj , R

′′
k̄j

= Rp
jk̄p. Our conventions for the torsion of η are

T = i∂η ≡ 1

2
Tk̄jmdzm ∧ dzj ∧ dz̄m(A.3)

In particular Tm
jp = Γm

jp − Γm
pj , with Γm

jp = gmq̄∂jgq̄p. We set

τl = gjk̄Tk̄jl.(A.4)

The norm ‖Ω‖2ω with respect to a given Hermitian metric is defined as usual
as

im
2
Ω ∧ Ω̄ = ‖Ω‖2ω

ωm

m!
.(A.5)

Appendix B. The Hodge operator Λ

We define the operator Λq from (p, p)-forms to (p− q, p− q)-forms by

(ΛqΦ)j̄1k1···j̄p−qkp−q
= i−q

p∏
α=p−q+1

gkαj̄αΦj̄1k1···j̄pkp(B.1)

for

Φ =
1

(p!)2
Φj̄1k1···j̄pkpdz

kp ∧ dzj̄p ∧ · · · dzk1 ∧ dz̄j1(B.2)

Note that Λ maps real forms to real forms, and that ΛpΦ = 〈Φ, ηp〉 = TrΦ.
In terms of Λ, the previous torsion component τ can be written as τ = iΛT .

Appendix C. The Hodge � operator

Let α, Φ, and Ψ be (1, 1)-forms, (2, 2)-forms, and (3, 3)-forms respec-
tively. Then we have the following identities (the detailed derivations can be
found in [17])

�(α ∧ ηm−2) = (m− 2)!(−α+ (Λα)η)

�(Φ ∧ ηm−3) = (m− 3)!(−ΛΦ +
1

2
(Λ2Φ)η)

�(Ψ ∧ ηm−4) = (m− 4)!(−1

2
Λ2Ψ+

1

6
(Λ3Ψ)η)

(C.1)
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Let τ and T be (1, 0)-forms and (2,1)-forms respectively. Then we also
have

�(τ ∧ ηm−2) = −i(m− 2)!τ ∧ η

�(T ∧ ηm−3) = i(m− 3)!(−ΛT ∧ η + T )
(C.2)

Appendix D. The operator ∂† and Bochner-Kodaira formulas

First we work out the operator ∂† on various spaces of forms. The basic
formula is the following integration by parts formula for general Hermitian
metrics ∫

X
∇jV

jωn =

∫
X
τjV

jωn(D.1)

where V j is a vector field.
To get e.g. the ∂† on (1, 0)-forms, we take V j = fψkg

jk̄ where f and
ψk are respectively an arbitrary scalar function and an arbitrary (1, 0)-form.
Then ∫

X
∇j(fψkg

jk̄)ωn =

∫
X
τjfτjψkg

jk̄ωn(D.2)

which can be rewritten as∫
X
(∇jf)ψk̄g

jk̄ωn +

∫
X
fgkj̄∇j̄ψkω

n =

∫
X
fgkj̄ τ̄j̄ψkω

n(D.3)

This means that

∂†ψ = −gkj̄∇j̄ψk + gkj̄ τ̄j̄ψk(D.4)

for any (1, 0)-form ψ. More generally, we have

Lemma 1. Suppose α is a (p, q)-form, then

(∂α)t̄q...t̄1sp+1...s1 =

p+1∑
k=1

(−1)k−1∂skαt̄q ...t̄1sp+1...ŝk...s1

=

p+1∑
k=1

(−1)k−1∇skαt̄q...t̄1sp+1...ŝk...s1

+
∑
l<k

(−1)kT s
slsk

αt̄q ...t̄1sp+1...ŝk...sl+1ssl−1...s1 ,

and

(∂†α)t̄q ...t̄1sp−1...s1 = −gsk̄∇k̄αt̄q...t̄1sp−1...s1s + gsk̄τ̄k̄αt̄q...t̄1sp−1...s1s

+
1

2

p−1∑
l=1

(−1)lT̄ cd
sl

αt̄q ...t̄1cdsp−1...ŝl...s1 .



102 TENG FEI AND DUONG H. PHONG

For example, we have:
• If α is a (1,0)-form, then

(∂α)pq = ∇qαp −∇pαq + T s
qpαs,

∂†α = −gpk̄∇k̄αp + gpk̄τ̄k̄αp.

• If β is a (2,0)-form, then

(∂†β)l = −gpk̄∇k̄βlp + gpk̄τ̄k̄βlp −
1

2
T̄lāb̄βcdg

cāgdb̄.

• If ψ is a (2, 1)-form, then

(∂†ψ)ᾱβ = −gγj̄∇j̄ψᾱβγ + gγj̄ τ̄j̄ψᾱβγ −
1

2
T̄βj̄m̄ψᾱγδg

γj̄gδm̄(D.5)
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