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The space of cycles, a Weyl law for minimal
hypersurfaces and Morse index estimates

Fernando C. Marques and André Neves

ABSTRACT. In this note, prepared for the occasion of the Journal of
Differential Geometry (JDG) 50th birthday Conference, we will discuss
a Weyl law conjectured by Gromov and proved by the authors with
Liokumovich in [13], and work of the authors ([19], [20]) on the char-
acterization of the Morse index of minimal hypersurfaces produced by
min-max methods.

The last section is an update on dramatic developments obtained
since the time of the conference. This includes the proof of Yau’s Conjec-
ture (about the existence of infinitely many minimal surfaces) for generic
metrics, by establishing density of minimal hypersurfaces, obtained by
the authors with Irie [11], the proof of equidistribution of minimal hy-
persurfaces for generic metrics by the authors with Song [21], the proof
of the authors’ Multiplicity One Conjecture and Morse Index Conjec-
ture in dimension three by Chodosh and Mantoulidis ([3]), and the full
resolution of Yau’s Conjecture by Song [26].
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1. Introduction

In 1911, Hermann Weyl [27] proved a beautiful formula that determines
the asymptotic behavior of the eigenvalues of the Laplacian purely in terms
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of the volume of the manifold. One formulation in the closed case is:

lim \(M)p~ 77 = c(n)vol (M) "1,
pP—00

where (M1 g) is a closed (n + 1)-dimensional Riemannian manifold and
M) < Xo(M) < < Xp(M) <0+ )

is the spectrum of the Laplace-Beltrami operator A,.

The story goes that Lorentz proposed this problem during some dis-
tinguished lectures he gave at Gottingen. Hilbert was in the audience and
predicted he would not see a solution in his lifetime. Weyl, who was also
in the audience, was a graduate student at the time and came up with a
solution just one year later. To be precise, Weyl proved the formula for the
eigenvalues of the Laplacian of a bounded domain in Euclidean space subject
to the Dirichlet boundary condition.

Remarkably there is a Weyl law [13] in which the eigenvalues of the
Laplacian are replaced by the areas of minimal hypersurfaces that are con-
structed by minimax methods. In order to explain the analogy, recall that
Ap can be given a min-max characterization:

(M) = inf E
p(M) i S0P (),

o @ € W(0) i (1)~ S
JM

Note that E(c- f) = E(c) for any constant ¢ € R\ {0} and so the Rayleigh
functional descends to the projectivization of W12(M):

E:PWY(M) - R.

is the Rayleigh functional.

A p+ 1-plane in W2(M) becomes a p-projective space in PW12(M) and
one should think of PW2(M) as an RP>. Hence we have the analogous
characterization:

2D = porcibhaqan o

The area functional and the Rayleigh functional seem dramatically dif-
ferent but it follows from the work of Almgren [1] that the space of unori-
ented closed hypersurfaces Z,,(M,Zs) in M can also be thought of as an
RP> (as we shall see later). The fact that Z,(M,Zy) and PW12(M) share
some basic topological principles helps explaining why there is a Weyl law
for both functionals.

In the late 1980s, Gromov [7]| wrote a paper in which he first mentions the
analogies explained above and explores applications of the classical Borsuk-
Ulam Theorem. This theorem states that for any continuous map f : S¥ —
R”, there is always a point 2 € S* such that f(z) = f(—x). Here is one such
application. Take a bounded domain €2 C R™*!, an integer k € N, a disjoint
collection €y, ...,y of subdomains of © and a vector subspace E C C*°(2)
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of dim E = k + 1. Then for every u € Sg,, where Sg C F is the unit sphere
with respect to some norm, consider

F(u) = (vol {u < 0} N Qy,---,vol {u < 0} N Q) € R".

The Borsuk-Ulam Theorem implies the existence of a function ug € E such
F(up) = F(—up), which means that the zero set Z(ug) = {x € Q : u(z) = 0}
bisects each €); into two regions of equal volume.

From this we can derive an estimate for the area of Z(up). Choose a

cube C' C Q and let [ = UW%HJ Denote by a the length of the sides of C.
Divide C into ["*! subcubes of size a/l. Since k > I"*1, there exists ug € E
such that the zero set Z(ug) = {z € Q : u(x) = 0} bisects each subcube C;
into two regions of equal volume. The relative isoperimetric inequality then
implies area Z(ug) N C; > d(n)a™l~"™ for every i. Hence

area Z(ug) > d(n)a™ > C(n,a)kw,

This is another instance of some kind of similarity with the eigenvalue prob-
lem.

In Section 2, we will explain this RIP* structure and discuss a Weyl law
conjectured by Gromov (and proved in [13]) in which the Rayleigh energy is
replaced by the area functional. In Section 3, we will discuss Yau’s conjecture
on the existence of infinitely many minimal hypersurfaces. In Section 4, we
will describe recent developments in the field obtained since the time of
the 50th birthday JDG Conference. This includes the proof of density of
minimal hypersurfaces for generic metrics obtained by the authors with Irie
[11], proof of equidistribution of minimal hypersurfaces by the authors with
Song [21], proof of the authors’ Multiplicity One Conjecture and Morse
Index Conjecture in dimension three by Chodosh and Mantoulidis ([3]), and
the full resolution of Yau’s Conjecture by Song [26].

2. The space of cycles and a Weyl law for the volume spectrum

We denote by Z,(M,Zs) the space of n-dimensional modulo two flat
chains with no boundary endowed with the flat topology. This space can
have more than one connected component when H,(M,Zs) # 0, but the
components are homeomorphic to each other and each is weakly homotopi-
cally equivalent to RP*°. Note that if T € Z,,(M,Zs) is in the connected
component of the zero cycle then 7' = 9U for some (n + 1)-chain U.

Almgren [1] proved there is a canonical isomorphism between the homo-
topy group (2 (M, Z9)) and Hyy;(M, Z9) (he did it for integer coefficients
but the same proof applies to coefficients in Zs). In the codimension one
case this implies

m1(Z20(M, Z2)) = Za,
and
Tk (Zn(M,Z2)) =0

for all £ > 2. This is precisely the list of homotopy groups of RP*.
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There is another way of interpreting this RP*® structure (see Section 5
of [20] for more details). Consider the boundary map

O Inyp1 (M"Y, Zo) — Z,(M™, Zy),

where I, 1(M™ 1, Zy) is the space of (n+ 1)-dimensional flat chains modulo
two. If ' = QU, then also T' = 9(M — U). The chains U and M — U are,
by the Constancy Theorem of Geometric Measure Theory ([25]), the only
two chains with boundary equal to T" and so the boundary map is a two
cover. Furthermore, the space of top-dimensional chains I, 1(M" "1 Zs) is
contractible, like the infinite dimensional sphere S°°. To see this, choose a
Morse function f : M — [0,1] and define the deformation H;(U) = U N
£71([0,]). The involution

a: In+1(M”+1,Z2) — L1 (M™, 7o)

defined by a(U) = M — U plays the role of the antipodal map and the
boundary map is a two-cover just like the standard projection S — RIP.
Choosing coefficients in Zs is crucial here. If we take integer coefficients, we
will be talking about integral currents but it turns out that the corresponding
space of cycles Z,,(M™*1, Z) is weakly homotopic to the circle S! (in the case
M is orientable) which is a bit disappointing.

The RIP*° structure suggests there are nontrivial multiparameter families
of hypersurfaces. In fact, for each k£ € N we can define explicitly a homo-
topically non-trivial map A : RPF — Z, (M"*+! Zy) in the following way.
Choose an arbitrary Morse function f : M — R and define

Aag:ar:---:ap]) =0{x € M :ao+ a1 f(z) + - + arf(z)* < 0}.

Hence there are nontrivial k-parameter sweepouts for every k£ € N.

We would like to replace PW12(M) by the space of cycles Z,(M"™1, Zy)
and the Rayleigh functional E(f) of a function by the n-area or the mass
(in the language of geometric measure theory) M (T) of a cycle T. In the
case of the eigenvalues of the Laplacian there is an underlying Hilbert space
structure that allows us to consider the min-max characterization over vector
subspaces. We lose this linear structure when we go to the setting of the
space of cycles so we have to find a nonlinear generalization. We do that by
looking at the cohomology.

The cohomology ring H*(RP>, Zs) is the polynomial ring Zs[\] where X
is the generator of H'(RP™, Zy) = Z,. In particular, H*(RP®, Z,) = {0, X"}
where =2 U--- U\ is the cup product power. We use the same notation
A to denote the generator of H(Z,(M", Zs), Zy) = Zs.

We make the following definitions.

DEFINITION. A family of cycles S C Z,,(M™"1,Zsy) is called a k-sweepout
if it detects the cohomology class 2 in the sense that

Xis # 0 € HYS, Zy).
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DEFINITION. The k-width of M is the number

wp(M)= inf sup M ().
{S: X570} B€S

DEFINITION. The volume spectrum of M is the sequence of numbers:
{wi(M) Sws(M) < -+ <wp(M) < -}

Similarly as before, given any k-sweepout S and any family of & disjoint
open sets in M there is a cycle X € § that bisects each open set into two
pieces of equal volume. This gives a lower bound for wy but in fact one also
has an upper bound:

THEOREM 2.1 (Gromov [8], Guth [10]). There exist constants cy,co > 0
depending on M such that

Clk”%rl S wk(M) S Cgk‘%ﬂ.
for every k € N.

The upper bound can be proven by the bend-and-cancel technique ([10])
and is precisely the rate obtained from families of zero sets of polynomials
of degree less than or equal to d on the unit sphere.

In [8], Gromov made the following conjecture:

CONJECTURE (Gromov, 2003). {wg(M)} obeys a Weyl law.
In [13], with Liokumovich, we proved this conjecture:

THEOREM 2.2. There exists a dimensional constant a(n) > 0 such that

lim wk(M)kfn%l = a(n)vol(M)nLH.
k—o0

The constant a(n) can be estimated but it is not known explicitly, even
for n = 1. This is in stark contrast with standard Weyl Law where the fact
that the universal constant is known is used in the proof. It is also worth-
while to point out that the proof of the Weyl Law for closed manifolds, due
to Minakshisundaram and Pleijel, only appeared more than 30 years after
Weyl’s proof (which applies only to regions of space) and uses techniques
for which no analogue in the space of mod 2 cycles has yet been found.

The definition of the volume spectrum also makes sense for manifolds
with boundary, by considering multiparameter sweepouts of mod 2 relative
(to the boundary) cycles.

The proof of our Weyl law is based on a result inspired by Lusternik-
Schnirelmann theory that we proved in [13]:

THEOREM 2.3. Let {Q1,...,Qp,} be a disjoint collection of subregions of
Q. Then

(@) > wr, ()
i=1

as long as Y 0 _ ki <k
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The proof uses the cup product structure and goes as follows. Let S C
Z,(Q,00,Zs) be a k-sweepout of mod 2 relative cycles of €. This means
Xs # 0.

Define §; = {£ € §: M(EN Q) < wg,(2)}. The map T'— TN
from relative cycles of €2 to relative cycles of 2; preserves the fundamental
cohomology class. Hence Xfiéi = 0. A basic property of the cup product

implies X%Ltlg’p = 0. Because Y ? | k; < k, we get stlumusp = 0. This
implies there must exist ¥ € S\ (S1U---US,). Since
p
M(Z) > MENQ) +-+ MENQ) > > w, (),
i=1
we are done.

3. Existence theory of minimal hypersurfaces

Our motivation to study the volume spectrum comes from the following
conjecture in minimal surface theory:

CONJECTURE (Yau, 1982 [30]). Every compact three-dimensional Rie-
mannian manifold should contain infinitely many smooth, closed, immersed,
minimal surfaces.

Until recently, the best result on this conjecture was the existence of one
minimal surface:

THEOREM 3.1 (Almgren [2], Pitts [23], Schoen-Simon [24]). Every com-
pact Riemannian manifold M™ ' contains at least one closed minimal hy-
persurface X3 that is smooth embedded outside a set of Hausdorff dimension
less than or equal to n — 7. In particular, ¥ is smooth if (n +1) < 7.

Although Yau’s conjecture was stated for dimension three only, we ex-
pect the existence of infinitely many minimal hypersurfaces with possible
singular sets of codimension 7 to be true in any dimension.

Almgren ([2], 1965) devised a general min-max theory that succeeded in
proving the existence of stationary integral varifolds of any dimension, and
Pitts ([23], 1981) proved smoothness of the varifold in the codimension one
case for (n+1) < 6. Regularity for higher dimensions was proven by Schoen
and Simon ([24], 1981).

A few years ago, we proved ([17]):

THEOREM 3.2. (a) For any compact Riemannian manifold M™1,
there exist at least (n + 1) closed minimal hypersurfaces.
(b) If M has positive Ricci curvature, then there exists infinitely many
closed minimal hypersurfaces.

In order to prove this, we used mod 2 coefficients and applied Almgren-
Pitts min-max theory to k-sweepouts. The theory gives (together with the
index estimates of [19], see Theorem 3.3 below) that, for every k € N, there
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exists a disjoint collection of closed minimal hypersurfaces {Egk), . ,E,(]]Z)}
and positive integers {mgk), . ,méi)} such that
wrp(M) = mgk) . area(zgk)) +- 4 mc(li) . area(E((]lZ)).

The possibility of integer multiplicities is one of the basic difficulties of
the theory. The simple knowledge that wy grows to infinity as k — oo does
not suffice to prove Yau’s conjecture because one could be producing the
same minimal hypersurface with higher and higher multiplicity.

If the Ricci curvature is positive, Frankel’s theorem ([4]) implies the min-
max minimal hypersurface is connected. In this case counting arguments can
be applied, which exploit the sublinear growth of {wy}, together with ideas
from Lusternik-Schnirelmann theory to prove part (b) of last theorem.

Although Almgren-Pitts theory was successful in producing an existence
result, it did not provide any information on the Morse index of the min-max
minimal hypersurface. Heuristically, as in finite-dimensional Morse theory,
one should expect that generically the Morse index should be equal to the
dimension of the cohomology class detected by the sweepouts.

We were able to prove in [19] an upper bound for the Morse index:

THEOREM 3.3. If ¥ = mgk) . Egk) + o+ m((llz) : E((]]Z) s the minimal
hypersurface produced by min-mazx over k-sweepouts, then

index(2F) + - - + index(5)) < k.
For the multiplicities, we conjecture:

MurripLiciTY ONE CONJECTURE. For a generic (bumpy) metric, ev-
ery component of a min-max minimal hypersurface is two-sided and has
multiplicity one.

The Multiplicity One Conjecture has appeared in slightly different for-
mulations in some of our previous papers (for instance, [19]). The above
strong version was proposed in the talk on the occasion of the JDG 50th
birthday conference in April 2017.

A metric is bumpy if no closed minimal hypersurface admits nontrivial
Jacobi fields, i.e. if every closed minimal hypersurface is a nondegenerate
critical point of the area functional. White ([28], [29]) showed that being
bumpy is a generic property in the Baire sense.

We proved the Multiplicity One Conjecture for two-sided components
in the one-parameter case and we were also able to rule out one-sided com-
ponents with multiplicity in some settings ([19], [12], see also [16], [31],
32]).

Under the multiplicity one assumption, we gave in [20] a complete char-
acterization of the Morse index:

THEOREM 3.4. For a generic metric, if mgk) == mgz) =1 then

indeX(Egk)) +-- 4+ index(Egi)) > k.
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This Theorem implies together with the Multiplicity One Conjecture the
following Morse-theoretic description of the space of minimal hypersurfaces:

MORSE INDEX CONJECTURE. For a generic metric on M, there should
be a sequence {X} of minimal hypersurfaces such that

(a) index(Xg) = k,
1 n
(b) limg_,o area(Xg)k™ »+1 = a(n)vol(M)»+1.

4. Recent developments

Since the time of the 50th birthday JDG Conference, there have been
dramatic developments in the field. First we were able to settle Yau’s con-
jecture for generic metrics with Irie [11] by proving that a much stronger
property holds true:

THEOREM 4.1. Suppose 3 < (n+1) < 7. For a generic metric on M™+!,
the union of all closed, smooth, embedded, minimal hypersurfaces of M is
dense in M.

This is an application of our Weyl law. Given a Riemannian metric on
M and an open set U C M such that no minimal hypersurface intersects U,
the basic idea consists in perturbing the metric inside U so that the total
volume goes up and using the Weyl law to conclude some k-width also goes
up. From that we infer that there must be a new minimal hypersurface for
the perturbed metric that intersects U.

Then, with Song [21], we were able to make the argument more quanti-
tative and proved an equidistribution property:

THEOREM 4.2. Suppose 3 < (n+1) < 7. For a generic metric on M1,
there is a sequence {¥;} of closed, connected, smooth, embedded, minimal
hypersurfaces of M such that

p—oo y P area(¥;)  vol(M)

for any continuous function f: M — R.

Our Multiplicity One Conjecture (for the Allen-Cahn variant of min-
max theory) was proven in remarkable work by Chodosh and Mantoulidis
[3] in dimension three:

THEOREM 4.3. For any compact (M3, g), any Allen-Cahn min-maz min-
imal hypersurface that occurs with multiplicity or is one-sided has a positive
Jacobi field (on the two-sided double cover in the second case).

Their work implies the Morse Index Conjecture in dimension three with
(b) replaced by

(b1) O~ < area(Xy) < Ck+ for some C > 0.
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The Allen-Cahn variant can be seen as an e-regularization of the Alm-
gren-Pitts min-max theory and was first studied by Guaraco [9] to give
an alternative proof of the existence of one closed minimal hypersurface.
Multiparameter sweepouts in the Allen-Cahn setting were introduced by
Gaspar and Guaraco [5]. In [6], Gaspar and Guaraco proved a Weyl law
for the Allen-Cahn volume spectrum and were able to reproduce the proofs
of density and equidistribution of minimal hypersurfaces for generic met-
rics. Combined with Chodosh-Mantoulidis [3], this establishes item (b) of
the Morse Index Conjecture in dimension three perhaps with a different di-
mensional constant. This carries out completely in dimension three (for the
Allen-Cahn variant) a program (see [20]) proposed by the authors in a series
of papers ([15], [18], [19], [22]).

Finally, Yau’s conjecture was proven in its general formulation in out-
standing new work of Song [26]:

THEOREM 4.4. Suppose 3 < (n+ 1) < 7. For any Riemannian metric
on a compact manifold M+, there exist infinitely many closed, smooth,
embedded, minimal hypersurfaces.

Song’s proof builds on the methods initially developed by the authors
n [17]. Song considers the situation when there are stable minimal hyper-
surfaces, which can be assumed to exist by Theorem 3.2, and succeeds in
proving the existence of infinitely many minimal hypersurfaces confined (or
trapped) inside a region with stable boundary. He does so by introducing the
volume spectrum of a noncompact (and non-smooth) cylindrical extension,
which grows linearly in contrast with the sublinear growth of the volume
spectrum of a compact manifold. In order to deal with the noncompact set-
ting, Song takes an exhaustion and uses the theory of Li and Zhou [14] for
relative cycles in manifolds with boundary.

It is an interesting question to determine whether density (see Theorem
4.1) and equidistribution (see Theorem 4.2) hold for all Riemannian metrics.
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