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Intersections of three quadrics in P
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Abstract. We study rationality properties of smooth complete inter-
sections of three quadrics in P

7. We exhibit a smooth family of such
intersections with both rational and non-rational fibers.
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1. Introduction

The specialization method, introduced by Voisin [Voi15], and developed
by Colliot-Thélène–Pirutka, Totaro, and others, has led to major advances
in higher-dimensional complex birational geometry. It makes it possible, for
the first time, to prove failure of stable rationality of some smooth quartic
threefolds [CTP16b], cyclic covers [Voi15], [Bea16], [CTP16a], [Oka16],
and large degree smooth Fano hypersurfaces in projective space [Tot16].

The specialization method yields failure of stable rationality of a very
general member of a family of complex algebraic varieties from the existence
of a single, mildly singular, fiber with an explicit obstruction, that can be
formulated in terms of integral decomposition of the diagonal or universal
CH0-triviality (see Section 2.1 for more details and references). A surprising
aspect of applications of the method was that a priori different families of
varieties admit specializations to the same ‘reference varieties’. This allows
us to propagate the failure of stable rationality, by finding suitable chains
of specializations. Examples of such ‘reference varieties’ are conic or quadric
surface bundles over rational surfaces, with carefully chosen discriminant
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loci (see [Pir17]). A similar approach – via specialization to quartic del
Pezzo fibrations over P

1 – may be used to essentially settle the stable ra-
tionality problem for very general smooth rationally connected threefolds
[HKT16], [HT16], [KO17], with the exception of cubic threefolds, whose
stable rationality remains elusive [Voi17].

New effects arise in dimension four: rationality properties can change in
smooth families [HPT16a]. The relevant reference variety is Y ⊂ P

2
λ × P

3
y,

given by the vanishing of the (2, 2) form

(1.1) λ1λ2y
2
0 + λ0λ2y

2
1 + λ0λ1y

2
2 + F (λ0, λ1, λ2)y

2
3,

with

(1.2) F (λ0, λ1, λ2) := λ2
0 + λ2

1 + λ2
2 − 2(λ0λ1 + λ0λ2 + λ1λ2)

defining a conic tangent to each coordinate line. The family is the universal
(2, 2) hypersurface, a Fano fourfold of Picard rank two.

The variety Y gives rise to other interesting families of fourfolds fail-
ing stable rationality: double covers [HPT16b], and conic bundles over P3

[APBvB16]. In this note, we exhibit another natural family of smooth com-
plex projective fourfolds X with rational and irrational fibers: Fano fourfolds
of Picard rank one, obtained as intersections of three quadrics in P

7.

Theorem 1. Let B ⊂ Gr(3,Γ(OP7(2))) be the open subset of the Hilbert
scheme parametrizing smooth complete intersections of three quadrics in P

7

and

(1.3) φ : X → B

the corresponding universal family.

(1) For very general b ∈ B the fiber Xb is not stably rational.
(2) The set of b ∈ B such that Xb is rational is dense in B for the

Euclidean topology.

2. Strategy

We follow the approach in [HPT16a]. In this section, we recall the main
steps in the proof; details are provided in Section 3.

2.1. Fibers that are not stably rational. Recall that a projective
variety X over a field k is universally CH0-trivial if for all field extensions
k′/k the natural degree homomorphism from the Chow group of zero-cycles

CH0(Xk′) → Z

is an isomorphism. A projective morphism

β : X̃ → X

of k-varieties is universally CH0-trivial if for all extensions k′/k the push-
forward homomorphism

β∗ : CH0(X̃k′) → CH0(Xk′)
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is an isomorphism.
In this paper, we apply the specialization method of Voisin in the fol-

lowing form.

Theorem 2 ([Voi15, Theorem 2.1], [CTP16b, Theorem 2.3]). Let

φ : X → B

be a flat projective morphism of complex varieties with smooth generic fiber.
Assume that there exists a point b ∈ B such that the fiber

X := φ−1(b)

satisfies the following conditions:

(R) X admits a desingularization

β : X̃ → X

such that the morphism β is universally CH0-trivial;
(O) the variety X̃ is not universally CH0-trivial.

Then a very general fiber of φ is not universally CH0-trivial; in particular,
it is not stably rational.

Condition (O) holds, for instance, if the unramified cohomology group
H2

nr(C(X)/C,Z/2) is nontrivial. By [CTP16b, Proposition 1.8] and
[CTP16a, Lemma 2.4] condition (R) is satisfied if for every scheme point
x of X, the fiber β−1(x), considered as a variety over the residue field κ(x),
could be written as β−1(x) = ∪iXi, where each component Xi is smooth,
geometrically irreducible and κ(x)-rational and each intersection Xi ∩Xj is
either empty or has a zero-cycle of degree 1.

In [HPT16a, Propositions 11, 12], we constructed a hypersurface Y ⊂
P
2 × P

3 of bidegree (2, 2), satisfying the obstruction condition (O) and the
resolution condition (R) as above (see (1.1)). The first projection Y → P

2 en-
dows Y with a structure of a quadric surface bundle with discriminant curve
of degree 8. As explained in [Bea77, Exemple 1.4.4], smooth intersections
of three quadrics in P

7 are also birational to quadric surface bundles over
P
2, with discriminant curve of degree 8 (see Proposition 6 below). These

two families, hypersurfaces of bidegree (2, 2) in P
2 × P

3 and intersections
of three quadrics in P

7, are genuinely different; see Section 4 for a precise
statement. Both specialize (birationally) to the same reference fourfold: in
Proposition 7 we provide an explicit example of a (singular) intersection of
three quadrics X ⊂ P

7 such that X is birational to the variety Y above. We
deduce Theorem 1, Part (1), from Theorem 2 at the end of Section 3.1.

2.2. One rational fiber. Let φ : X → B be the family (1.3). By
Proposition 6, for any b ∈ B, the fiber Xb is birational to a quadric bundle
over P2. In Section 3.2 (Proposition 9), we provide an explicit example of a
fiber Xb, birational to a quadric bundle with a rational section. In particular,
the fourfold Xb is rational.
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2.3. Density of rational fibers. Let X ⊂ P
7 be a smooth intersection

of three quadrics. As in the previous step, in order to establish that X is
rational, it suffices to exhibit a quadric surface bundle π : Q → P

2 such that
Q is birational to X and such that π admits a rational section. By Springer’s
theorem, it suffices to show that π has a rational multisection of odd degree.
For quadric bundles this can be formulated as a Hodge-theoretic condition:

Proposition 3 ([CTV12, Corollaire 8.2]). Let Q be a smooth projec-
tive complex algebraic variety, admitting a dominant morphism π : Q → P

2,
with generic fiber a quadric of dimension at least 1. Then the integral Hodge
conjecture holds for classes of degree (2, 2) on Q.

Thus, in order to show that X is rational, it suffices to provide a (2, 2)-
Hodge class intersecting the class of a fiber of π in odd degree. We achieve
this by studying the infinitesimal period map. This technique is explained
in [Voi07, 5.3.4].

The Hodge diamond of X is of the following form:

1

0 0

0 1 0

0 0 0 0

0 3 38 3 0

0 0 0 0

0 1 0

0 0

1

In particular, the degree 4 cohomology is essentially of weight 2. We can
then apply the following criterion to the family X → B of Theorem 1 (cf.
[Voi07, 5.3.4]):

Proposition 4. Suppose there exists a b0 ∈ B and γ ∈ H2,2(Xb0) such
that the infinitesimal period map

(2.1) ∇̄ : TB,b0 → Hom(H2,2(Xb0), H
1,3(Xb0)),

evaluated at γ, gives a surjective map

(2.2) ∇̄(γ) : TB,b0 → H1,3(Xb0).

Then for any b ∈ B and any Euclidean neighborhood b ∈ B′ ⊂ B, the image
of the natural map (composition of inclusion with local trivialization):

(2.3) H2,2
R

→ H4(Xb,R)

contains an open subset Vb ⊂ H4(Xb,R). Here H2,2
R

is a vector bundle over
B′ with fiber over u equal to the real classes of type (2, 2) in H4(Xu).

In order to check the infinitesimal criterion we use an explicit description
of the period map:
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Proposition 5 ([Ter90, Corollary 2.5, Proposition 2.6]). Let X ⊂ P
7

be a smooth complete intersection of three quadrics, defined by equations

Qi(x0, . . . , x7) = 0, i = 0, 1, 2

and let
F = μ0Q0 + μ1Q1 + μ2Q2 ∈ C[μ0, μ1, μ2, x0, . . . , x7].

Let I ⊂ C[μ0, μ1, μ2, x0, . . . , x7] be the ideal generated by

∂F/∂μi, i = 0, 1, 2 and ∂F/∂xi, i = 0, . . . , 7.

Put
R = C[μ0, μ1, μ2, x0, . . . , x7]/I

and let R(a,b) be the space of homogeneous elements of degree (a, b) in R,
with respect to the grading (μ, x). Then there is an isomorphism

H4−q,q
prim (X) � R(q,2q−2)

and the period map (2.1) is identified with the multiplication homomorphism

(2.4) R(1,2) ⊗R(2,2) → R(3,4).

Recall that the primitive cohomology Hp,q
prim is the cokernel of the natural

map Hp,q(P7) → Hp,q(X).
In Section 3.3, we provide an explicit example X = Xb0 such that the

period map 2.4 is surjective (Proposition 10). Theorem 1, Part (2), then
follows. In fact, by Proposition 3.2, there exists a smooth intersection of three
quadrics birational to a quadric bundle with a rational section. Similarly to
[HPT16a, Proposition 14] the density of rational fibers follows from the
infinitesimal criterion that we verify in Proposition 10.

3. Computations

We work over the complex numbers. We first recall the construction of
Beauville [Bea77, Exemple 1.4.4]:

Proposition 6. Let X ⊂ P
7 be a smooth complete intersection of three

quadrics. Then X is birational to a quadric bundle over P
2, with discrimi-

nant curve of degree 8.
Concretely, let 	 ⊂ X be a line and G� � P

5 the space of 2-planes Π ⊂ P
7

containing 	. Then X is birational to a quadric surface bundle

π : Q → P
2,

where Q ⊂ P
2 ×G� is given by

(3.1) Q = {([λ0 : λ1 : λ2],Π)| {λ0Q0 + λ1Q1 + λ2Q2 = 0} ⊃ Π} .
More explicitly, assume that the line is given by equations

	 : x2 = x3 = · · · = x7 = 0

and write, for i = 0, 1, 2,

Qi = x0Li(x2, x3, . . . , x7) + x1Mi(x2, x3, . . . , x7) + qi(x2, x3, . . . , x7),
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where Li and Mi are linear forms and qi is quadratic. Any 2-plane Π ⊂ P
7

containing 	 intersects the 5-plane x0 = x1 = 0 in a unique point [0 : 0 : x2 :
· · · : x7]. This allows us to identify the space of 2-planes Π ⊂ P

7 containing 	

with P
5. Then the quadric bundle (3.1) is defined in P

2×P
5 by the equations

(3.2)
2∑

i=0

λiLi(x2, x3, . . . , x7) =
2∑

i=0

λiMi(x2, x3, . . . , x7) =

=

2∑

i=0

λiqi(x2, x3, . . . , x7) = 0.

3.1. Fibers that are not stably rational. Let X ⊂ P
7 be the inter-

section of three quadrics

(3.3) Q0 : −x0x5 + x23 + x4x6 − 2x25 = 0;

Q1 : x0x5 + x1x4 + x22 − 2x25 = 0;

Q2 : x0x7 − x1x6 + x25 + x27 = 0.

Note that X contains a line 	 : x2 = · · · = x7 = 0. Using equations
(3.2), we obtain that X is birational to a quadric bundle Q → P

2, defined
in P

2 × P
5 as an intersection of two forms of bidegree (1, 1) and one form of

bidegree (1, 2):

(3.4) (λ0 − λ1)x5 = λ2x7, λ1x4 = λ2x6

λ1x
2
2 + λ0x

2
3 + λ0x4x6 + (λ2 − 2λ0 − 2λ1)x

2
5 + λ2x

2
7 = 0.

In the open set λ2 �= 0 we can define X by a single equation

λ1x
2
2 + λ0x

2
3 +

λ0λ1

λ2
x24 + (

(λ0 − λ1)
2

λ2
+ λ2 − 2λ0 − 2λ1)x

2
5 = 0,

hence, X is birational to a hypersurface Y ⊂ P
2 × P

3 of bidegree (2, 2)
defined by

(3.5) λ1λ2x
2
2 + λ0λ2x

2
3 + λ0λ1x

2
4 + F (λ0, λ1, λ2)x

2
5 = 0,

where F (λ0, λ1, λ2) = λ2
0 + λ2

1 + λ2
2 − 2λ0λ1 − 2λ0λ2 − 2λ1λ2.

This is precisely the hypersurface we considered in [HPT16a, Propositions
11, 12].

Proposition 7. Let Q ⊂ P
2 × P

5 be defined by the equations (3.4) and
let Y ⊂ P

2 × P
3 be the hypersurface given by the equation (3.5). Then the

birational map

(3.6) ϕ : Y ��� Q,

(λ0 : λ1 : λ2, x2 : . . . : x5) �→
(λ0 : λ1 : λ2, λ2x2 : λ2x3 : λ2x4 : λ2x5 : λ1x4 : (λ0 − λ1)x5)
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extends to the following diagram

Ỹ
ψ ϕ̃

Y Q

where the morphisms ψ : Ỹ → Y and ϕ̃ : Ỹ → Q are birational and univer-
sally CH0-trivial.

Proof. First note that ϕ is indeed a birational map between Y and Q.
The locus Y nd ⊂ Y where the map ϕ is not defined is a union of three
components
Y1 : λ2 = 0, x4 = x5 = 0;
Y2 : λ1 = λ2 = 0, x5 = 0;
Y3 : λ0 − λ1 = 0, λ2 = 0, x4 = 0.
Note that Y1 is isomorphic to a product P

1
λ0:λ1

× P
1
x2:x3

, and similarly Y2
is isomorphic to a projective plane P

2
x2:x3:x4

with homogeneous coordinates

[x2 : x3 : x4] and Y3 � P
2
x2:x3:x5

.

We construct Ỹ by successive blowups of Y1, the proper transform of Y2
and the proper transform of Y3. After each blowup we verify:

• the indeterminacy locus of ϕ on the blowup;
• the universal CH0-triviality of fibers of the extension of ϕ to the
blowup and of the blowup map. In each case we obtain that the
corresponding fiber is either reduced to a point or projective (or
affine, if we compute on open charts) spaces. We provide details for
the first computations and the expressions in the coordinates for
the remaining charts.

Blowup of Y1. We have three charts:

(1) U1 : x4 = λ2u4, x5 = λ2u5, the exceptional divisor is given by
λ2 = 0. Since we blow up the locus λ2 = 0, x4 = x5 = 0, we
consider one of the charts λ0 �= 0 or λ1 �= 0 of P2 and one of the
charts x2 �= 0 or x3 �= 0 of P3.

We extend ϕ to a birational map ϕ1 : U1 ��� Q,

(λ0, λ1, λ2, x2, x3, u4, u5) �→ (λ0, λ1, λ2, x2, x3, λ2u4, λ2u5, λ1u4, (λ0 − λ1)u5).

Since one of coordinates λ0, λ1 is nonzero, and one of coordinates
x2, x3 is nonzero, we have that ϕ1 is well-defined. The image of ϕ1

is contained in the closure of the image of ϕ, hence it is contained
in Q, so that we obtain a map ϕ1 : U1 → Q.

The image of the exceptional divisor is the set of points

E1 = (λ0, λ1, 0, x2, x3, 0, 0, λ1u4, (λ0 − λ1)u5).

Then for any field k′/C and for any point P ∈ E1(k
′) the fiber

ϕ−1
1 (P ) is either a point or a line (if λ1 = 0 or λ0 − λ1 = 0), which

ensures the universal CH0-triviality of the map ϕ1 on this chart.
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The equation defining U1 is

λ1x
2
2 + λ0x

2
3 + λ0λ1λ2u

2
4 + F (λ0, λ1, λ2)λ2u

2
5 = 0.

Let ψ1 : U1 → Y be the blowup map. Then, the image I1 of the
exceptional divisor is given by the conditions

λ2 = 0, λ1x
2
2 + λ0x

2
3 = 0.

The latter condition defines a point since the coordinates λ0 : λ1

and x2 : x3 are homogeneous. Then for any field k′/C and for any
point P ∈ I1(k

′) the fiber ψ−1
1 (P ) is a plane with coordinates u4

and u5, which ensures the universal CH0-triviality of the map ψ1

on this chart.
(2) U2:

• change of variables:

λ2 = x4λ
′
2, x5 = x4u5;

• equation defining the blowup:

λ1λ
′
2x

2
2 + λ0λ

2
2x

2
3 + λ0λ1x4 + F (λ0, λ1, λ

′
2x4)x4u

2
5 = 0.

• exceptional divisor:

x4 = 0, λ1λ
′
2x

2
2 + λ0λ

2
2x

2
3 = 0.

• extension of ϕ is given by:

(λ0, λ1, λ
′
2x4, λ

′
2x2, λ

′
2x3, λ

′
2x4, λ

′
2x4u5, λ1, (λ0 − λ1)u5).

• domain, where the extension is not defined is the proper trans-
form Y ′

2 of Y2:

λ1 = λ′
2 = 0, u5 = 0.

• the image of the exceptional divisor:

(λ0, λ1, 0, λ
′
2x2, λ

′
2x3, 0, 0, λ1, (λ0 − λ1)u5).

(3) U3:
• change of variables:

λ2 = x5λ
′
2, x4 = x5u4;

• equation defining the blowup:

λ1λ
′
2x

2
2 + λ0λ

′
2x

2
3 + λ0λ1x5u

2
4 + F (λ0, λ1, λ

′
2x5)x5 = 0;

• exceptional divisor:

x5 = 0, λ1λ
′
2x

2
2 + λ0λ

2
2x

2
3 = 0;

• extension of ϕ is given by:

(λ0, λ1, λ
′
2x5, λ

′
2x2, λ

′
2x3, λ

′
2x5u4, λ

′
2x5, λ1u4, λ0 − λ1)

• domain, where the extension is not defined is the proper trans-
form Y ′

3 of Y3:

λ0 − λ1 = λ′
2 = 0, u4 = 0.
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• the image of the exceptional divisor:

(λ0, λ1, 0, λ
′
2x2, λ

′
2x3, 0, 0, λ1u4, λ0 − λ1).

Blowup of the proper transforms Y ′
2 and Y ′

3

Note that Y2 and Y3, and hence their proper transforms, do not intersect.
Hence we can use charts U2 and U3 independently for their blowups.

(1) On the chart U2:
(a) • change of variables:

λ1 = λ′
2λ

′
1, u5 = λ′

2v5

• exceptional divisor:

λ′
2 = 0, λ0x

2
3 + λ0λ

′
1x4;

• extension of ϕ is everywhere defined:

(λ0, λ
′
1λ

′
2, x4λ

′
2, x2, x3, x4, λ

′
2x4v5, λ

′
1, (λ0 − λ′

1λ
′
2)v5);

• the image of the exceptional divisor:

(1, 0, 0, x2, x3, x4, x4v5, λ
′
1, v5).

(b) • change of variables:

λ′
2 = λ1λ

′′
2, u5 = λ1v5;

• exceptional divisor:

λ1 = 0, λ0λ
′′
2x

2
3 + λ0x4 = 0;

• extension of ϕ is everywhere defined:

(λ0 : λ1 : λ1λ
′′
2, λ

′′
2x2, λ

′′
2x3, λ

′′
2x4, λ1λ

′′
2x4v5, 1, v5(λ0 − λ1));

• the image of the exceptional divisor:

(1, 0, 0, λ′′
2x2, λ

′′
2x3, λ

′′
2x4, 0, 1, v5).

(c) • change of variables:

λ′
2 = u5λ

′′
2, λ1 = u5λ

′′
1;

• exceptional divisor:

u5 = 0, λ0λ
′′
2x

2
3 + λ0λ

′′
1x4 = 0;

• extension of ϕ is everywhere defined:

(λ0, λ
′′
1u5, λ

′′
2u5, λ

′′
2x2, λ

′′
2x3, λ

′′
2x4, λ

′′
2x4u5, λ

′′
1, λ0 − λ′′

1u5);

• the image of the exceptional divisor:

(1, 0, 0, λ′′
2x2, λ

′′
2x3, λ

′′
2x4, 0, λ

′′
1, 1).

(2) On the chart U3:
(a) • change of variables:

λ0 − λ1 = λ′
2λ

′
0, u4 = λ′

2v4;
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• exceptional divisor:

λ′
2 = 0, λ1x

2
2 + λ1x

2
3 − 4λ1x5 = 0;

• extension of ϕ is everywhere defined:

(λ1 + λ′
2λ

′
0, λ1, λ

′
2x5, x2, x3, λ

′
2x5v4, x5, λ1v4, λ

′
0);

• the image of the exceptional divisor:

(λ1, λ1, 0, x2, x3, 0, x5, λ1v4, λ
′
0).

(b) • change of variables:

λ′
2 = (λ0 − λ1)λ

′′
2, u4 = (λ0 − λ1)v4;

• exceptional divisor:

(λ0 − λ1) = 0, λ1λ
′′
2x

2
2 + λ1λ

′′
2x

2
3 − 4λ1λ

′′
2x5 = 0;

• extension of ϕ is everywhere defined:

(λ0, λ1, λ
′′
2(λ0 − λ1)x5, λ

′′
2x2, λ

′′
2x3, (λ0 − λ1)λ

′′
2x5v4, λ

′′
2x5, λ1v4, 1);

• the image of the exceptional divisor:

(λ1, λ1, 0, λ
′′
2x2, λ

′′
2x3, 0, λ

′′
2x5, λ1v4, 1).

(c) • change of variables:

λ′
2 = u4λ

′′
2, λ0 − λ1 = u4λ

′
0;

• exceptional divisor:

u4 = 0, λ1λ
′′
2x

2
2 + λ1λ

′′
2x

2
3 − 4λ1λ

′′
2x5 = 0;

• extension of ϕ is everywhere defined:

(λ1 + u4λ
′
0, λ1, λ

′′
2u4x5, λ

′′
2x2, λ

′′
2x3, λ

′′
2x5u4, λ

′′
2x5, λ1, λ

′
0);

• the image of the exceptional divisor:

(λ1, λ1, 0, λ
′′
2x2, λ

′′
2x3, 0, λ

′′
2x5, λ1, λ

′
0). �

Corollary 8. Let Q ⊂ P
2×P

5 be defined by the equations (3.4). Then

Q admits a resolution of singularities β : Q̃ → Q such that

(i) the variety Q̃ is not universally CH0-trivial;
(ii) the map β is a universally CH0-trivial morphism.

Proof. We use Proposition 7: Q is birational to a variety Y with
H2

nr(C(Y )/C,Z/2) �= 0 by [HPT16a, Proposition 11]. In particular, prop-

erty (i) holds for any resolution Q̃ of Q.
In [HPT16a, Proposition 12] we constructed a resolution of singularities

f : Z → Y such that f is a universally CH0-trivial morphism. Then there
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is birational map f̃ : Z̃ → Z with Z̃ smooth, such that the rational map
Z ��� Ỹ extends to a map Z̃ → Ỹ :

Z̃

f̃

Z

f

Ỹ
ψ ϕ̃

Y Q

Note that the map f̃ is universally CH0-trivial: by weak factorization, f̃
factors through blow-ups and blow-downs at smooth centers, each of these
maps is universally CH0-trivial. Hence, in the diagram above, the maps
f̃ , f, ψ, ϕ̃ are universally CH0-trivial. We deduce from the diagram that the
composite map Z̃ → Q is also universally CH0-trivial, which shows (ii). �

Proof of Theorem 1, Part (1). From Theorem 2 and Corollary 8
we deduce that a very general quadric bundle defined by equations (3.2) is
not universally CH0-trivial. In particular, there exists a smooth intersection
of three quadrics X birational to a smooth quadric bundle Q defined by an
equation of type (3.2), such that Q is not universally CH0-trivial. Since uni-
versal CH0-triviality is a birational invariant of smooth projective varieties,
we deduce that X is not universally CH0-trivial. Then Theorem 1, Part (1),
follows directly from Theorem 2, applied to the universal family φ : X → B
of smooth complete intersections of three quadrics in P

7. �

3.2. One rational fiber. Consider the quadrics

Q0 : x0(x3 + x5 + 2x6 + 3x7) + x1(−x5 + 5x6 + 2x7)−
− x2x3 − x2x4 + x2x5 + x23 − x4x6 + x25 + x26 + x27 = 0;

Q1 : x0(−x2 + 3x5 + 7x6 + 11x7) + x1(x4 + 9x5 + 4x6 + x7)+

+ x22 − x2x3 + 2x3x6 + x24 + 3x4x7 + 2x25 + 3x26 + 5x27 = 0;

Q2 : x0(11x5 + 13x6 + 8x7) + x1(−x3 + 6x5 + 7x6 + 3x7)+

+ x22 + 5x2x7 − x3x4 + 9x3x5 + 13x25 + 4x26 + 11x27 = 0.

Proposition 9. Let X ⊂ P
7 be the intersection

Q0 = Q1 = Q2 = 0

Then X is smooth and rational.

Proof. A Magma [BCP97] computation shows that X is smooth. Fur-
thermore, X contains a line

	 : x2 = · · · = x7 = 0.
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As in Proposition 6, considering the space G� � P
5 of 2-planes Π ⊂ P

7

containing 	, we find that X is birational to a fibration in quadrics Q → P
2,

where Q ⊂ P
2 ×G�,

Q = {([λ0 : λ1 : λ2],Π)| {λ0Q0 + λ1Q1 + λ2Q2 = 0} ⊃ Π}.
The first projection Q → P

2 admits a rational section: the plane containing
	 and the point [0 : 0 : λ0 : λ1 : λ2 : 0 : 0 : 0] is contained in {λ0Q0 + λ1Q1 +
λ2Q2 = 0}. Indeed, by (3.2), we have that Q ⊂ P

2 × P
5 is defined by the

equations:

λ0(x3 + x5 + 2x6 + 3x7) + λ1(−x2 + 3x5 + 7x6 + 11x7)

+ λ2(11x5 + 13x6 + 8x7) = 0

λ0(−x5 + 5x6 + 2x7) + λ1(x4 + 9x5 + 4x6 + x7)

+ λ2(−x3 + 6x5 + 7x6 + 3x7) = 0

λ0(−x2x3 − x2x4 + x2x5 + x23 − x4x6 + x25 + x26 + x27)

+ λ1(x
2
2 − x2x3 + 2x3x6 + x24 + 3x4x7 + 2x25 + 3x26 + 5x27)

+ λ2(x
2
2 + 5x2x7 − x3x4 + 9x3x5 + 13x25 + 4x26 + 11x27) = 0

and, substituting

[x2 : x3 : . . . : x7] = [0 : 0 : λ0 : λ1 : λ2 : 0 : 0 : 0],

we obtain

λ0λ1 − λ0λ1 = 0, λ1λ2 − λ1λ2 = 0,

λ0(−λ0λ1 − λ0λ2 + λ2
1) + λ1(λ

2
0 + λ2

2 − λ0λ1) + λ2(λ
2
0 − λ1λ2) = 0. �

3.3. Density of rational fibers. Using the notation of Section 3.2,
consider quadrics

Q′
0 := Q0 + x20 + x25

Q′
1 := Q1

Q′
2 := Q2 + x21 + x23

Proposition 10. Let X ′ ⊂ P
7 be the intersection

Q′
0 = Q′

1 = Q′
2 = 0.

Then X ′ is smooth and there exists a γ ∈ H2,2(X ′) such that the period map
(2.2) is surjective.

Proof. A Magma computation shows that X ′ is smooth. In order to
compute the period map we use expression (2.4). We used Macaulay2 [GS]
to verify that the following monomials

{μ0μ
2
2x

4
7, μ1μ

2
2x

4
7, μ

3
2x

4
7}

form a basis of the graded part R(3,4) � H1,3(X ′). In particular γ = μ2
2x

2
7

works. �
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4. Differentiating quadric bundles

The goal of this section is to show that the quadric bundles arising from
complete intersection of three quadrics in P

7 do in fact differ from the (2, 2)
hypersurfaces in P

2 × P
3 considered in [HPT16a]. Note however that both

families specialize to the same reference variety (1.1).
Let π : Q → P

2 be a quadric surface bundle with smooth degeneracy
curve D ⊂ P

2, i.e., Q is a smooth complex projective fourfold, π is a flat mor-
phism with smooth (� F0) fibers over P

2\D, and quadric cones (� P(1, 1, 2))
as fibers over D. Let τ : S → P

2 denote the associated double cover, sim-
ply branched along D. We may interpret S as the Stein factorization of the
relative variety of lines

F1(Q/P2) → S → P
2;

as such, S is equipped with a natural conic bundle structure and thus a
class αQ ∈ H2(S, μ2). We refer the reader to [APS15] for a close analysis
of the equivalence between quadric surface bundles and Azumaya algebras
over double covers.

We present a cohomological interpretation of this correspondence due to
Laszlo [Las89]. Let H2

0 (S,Z) denote the primitive cohomology of S, i.e., the
kernel of τ∗. It carries the structure of a lattice with respect to the intersec-
tion form, as well as a weight two Hodge structure. Choose an embedding

Q ↪→ P(E)
π
↘ ↓

P
2

where E → P
2 is a rank four vector bundle. Let H4

0 (Q,Z) denote kernel of
the push forward homomorphism

H4(Q,Z) → H6(P(E),Z).

This carries the structure of a lattice and a weight four Hodge structure.
Let H4

0 (Q,Z)(1) denote its Tate twist, a weight two Hodge structure; this
reverses the sign of the integral quadratic form.

Theorem 11 ([Las89, Th. II.3.1]). There exists an embedding of abelian
groups

Φ : H4
0 (Q,Z)(1) ↪→ H2

0 (S,Z)

compatible with the lattice and Hodge structures. The image has index two
and is characterized as follows:

image(Φ) = ΛQ := {γ ∈ H2
0 (S,Z) : (γmod 2, αQ) ≡ 0mod 2}.

Now suppose we have a birational equivalence

Q1
∼��� Q2

↘ ↙
P
2
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of quadric bundles over P2. It is clear that Q1 and Q2 must have the same
degeneracy curve D ⊂ P

2 and induced double cover τ : S → P
2. Con-

sider the classes αQ1 , αQ2 ∈ Br(S)[2], obtained via the canonical surjection
H2(S, μ2) → Br(S)[2]. Since αQi generates the kernel of

H2(C(S), μ2) → H2(C(Qi), μ2)

by [Ara75, p.469], we have αQ1 = αQ2 .

Proposition 12. Let D ⊂ P
2 be a very general octic plane curve,

Q1, Q2 → P
2 quadric surface bundles with degeneracy curve D, where Q1 ⊂

P
2 ×P

3 is a (2, 2) hypersurface and Q2 ⊂ P
2 ×P

5 is a complete intersection
of hypersurfaces of bidegrees (1, 1), (1, 1), (1, 2). Then Q1 and Q2 are not
birational over P

2.

The precise condition we require is that Pic(S) � Z.

Proof. For the first example, let h1 and h2 denote the pull-backs of the
hyperplane classes from each factor. Then we have [Q1] = 2h1 + 2h2 and

h21 h1h2 h22
h21 0 0 2

h1h2 0 2 2
h22 2 2 0

For the second example, let g1 and g2 denote the hyperplace classes as above
so that

[Q2] = 4g21g2 + 5g1g
2
2 + 2g32.

Then we have
g21 g1g2 g22

g21 0 0 2
g1g2 0 2 5
g22 2 5 4

These two lattices are inequivalent over the 2-adics. Indeed, their ranks
modulo two differ. It follows that the lattices H4

0 (Q1,Z) and H4
0 (Q2,Z) are

also inequivalent, as a nondegenerate lattice and its orthogonal complement
in a unimodular lattice have the same discriminant groups up to sign. (The
discriminant groups are a way of packaging the p-adic invariants of a lattice.)

Under our assumption, Br(S)[2] = H2(S, μ2)/ 〈h〉 where h is the hy-
perplane class pulled back from P

2. If Q1 and Q2 were birational over P
2

then

αQ1 = αQ2 ∈ H2(S, μ2)/ 〈h〉 ,
whence ΛQ1 � ΛQ2 . This would contradict Theorem 11. �

Remark 13. Observe that the common reference variety (1.1) admits
nontrivial 2-torsion in its unramified cohomology. It is intriguing that we
differentiate the smooth members through a 2-adic computation of lattices.
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