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Construction of Kuranishi structures on the
moduli spaces of pseudo holomorphic disks: I

Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono

Abstract. This is the first of two articles in which we provide detailed
and self-contained account of the construction of a system of Kuranishi
structures on the moduli spaces of pseudo holomorphic disks, using the
exponential decay estimate given in [FOOO7]. This article completes
the construction of a Kuranishi structure of a single moduli space. This
article is an improved version of [FOOO4, Part 4] and its mathematical
content is taken from our earlier writing [FOn, FOOO2, FOOO4,
FOOO7].
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1. Statement of the results

This is the first of two articles which provide detail of the construction of
a system of Kuranishi structures on the moduli spaces of pseudo holomorphic
disks.

The construction of Kuranishi structure on the moduli spaces of pseudo
holomorphic curves is a part of the virtual fundamental chain/cycle tech-
nique which was discovered in the year 1996 ([FOn, LiTi, LiuTi, Ru,
Sie]). The case of pseudo holomorphic disks was established and used in
[FOOO1, FOOO2].

Let (X,ω) be a symplectic manifold that is tame at infinity and L a
compact Lagrangian submanifold without boundary. Take an almost com-
plex structure J on X which is tamed by ω and let β ∈ H2(X,L;Z).

We denote by Mk+1,�(X,L, J ;β) the compactified moduli space of sta-
ble maps with boundary condition given by L and of homology class β,
from marked disks with k + 1 boundary and � interior marked points. We
require that the enumeration of the boundary marked points respects the
cyclic order of the boundary. (See Definition 1.2 for the detail of this defi-
nition.) We can define a topology on Mk+1,�(X,L, J ;β) which is Hausdorff
and compact. (See [FOn, Definition 10.3], [FOOO2, Definition 7.1.42], and
Definition 4.12.) The main result we prove in this article is as follows.

Theorem 1.1. Mk+1,�(X,L, J ;β) carries a Kuranishi structure with
corners.

See Sect. 6 for the definition of Kuranishi structure.
This article is not an original research paper but is a revised version

of [FOOO4, Part 4]. Most of the material of this article is taken from our
previous writing such as [FOn, FOOO2, FOOO4, FOOO5, FOOO6,
FOOO7, FOOO3, Fu1]. The novel points of this article are on its pre-
sentation and simplifications of the proofs especially in the following two
points.

Firstly we clarify a sufficient condition of the way to take a family of
‘obstruction spaces’ so that it produces Kuranishi structure. In other word,
we define the notion of obstruction bundle data (Definition 5.1) and show
that we can associate a Kuranishi structure to given obstruction bundle
data in a canonical way (Theorem 7.1). We also prove the existence of such
obstruction bundle data (Theorem 11.1).1

Secondly we use an ‘ambient set’ to simplify the construction of coordi-
nate change and the proof of its compatibility. (See Remark 7.9 (2).)

1Certain minor adjustment of the proof becomes necessary for this purpose. For ex-
ample, compared to [FOOO4], we changed the order of the following two process: Solving
modified Cauchy-Riemann equation to obtain a finite dimensional reduction: Cutting the
space of maps by using local transversal. In [FOOO4] these two process are performed in
this order. In this article we do it in the opposite order. Both proofs are correct.
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This article studies a single moduli space and constructs its Kuranishi
structure. We provide the detail of the proof using the exponential decay
estimate in [FOOO7].

In the second of this series of articles, we will provide detail of the con-
struction of a system of Kuranishi structures of the moduli spaces of holo-
morphic disks so that they are compatible. More precisely we will construct
a tree like K-system as defined in [FOOO6, Definition 21.9].

We conclude the introduction by reviewing the definition of the moduli
space Mk+1,�(X,L, J ;β).

Definition 1.2. Let k, � ∈ Z≥0. We denote by Mk+1,�(X,L, J ;β) the
set of all ∼ equivalence classes of ((Σ, �z,�z), u) with the following properties.

(1) Σ is a genus 0 bordered curve with one boundary component which
has only (boundary or interior) nodal singularities.

(2) �z = (z0, z1, . . . , zk) is a (k+1)-tuple of boundary marked points. We
assume that they are distinct and are not nodal points. Moreover we
assume that the enumeration respects the counter clockwise cyclic
ordering of the boundary.

(3) �z = (z1, . . . , z�) is an �-tuple of interior marked points. We assume
that they are distinct and are not nodal.

(4) u : (Σ, ∂Σ) → (X,L) is a continuous map which is pseudo holomor-
phic on each irreducible component. The homology class u∗([Σ, ∂Σ])
is β.

(5) ((Σ, �z,�z), u) is stable in the sense of Definition 1.3 below.

We define an equivalence relation ∼ in Definition 1.3 below.

Definition 1.3. Suppose ((Σ, �z,�z), u) and ((Σ′, �z ′,�z ′), u′) satisfy Defi-
nition 1.2 (1)(2)(3)(4). We call a homeomorphism v : Σ → Σ′ an extended
isomorphism if the following holds.

(i) v is biholomorphic on each irreducible component.
(ii) u′ ◦ v = u.
(iii) v(zj) = z′j and there exists a permutation σ : {1, . . . , �} → {1,

. . . , �} such that (v(z1), . . . , v(z�)) coincides with (zσ(1), . . . , zσ(�)).

We call v an isomorphism if σ = id in addition and ((Σ, �z,�z), u) ∼ ((Σ′, �z ′,
�z ′), u′) if there exists an isomorphism between them.

The group Aut+((Σ, �z),�z), u) of extended automorphisms (resp. Aut((Σ,
�z,�z), u) of automorphisms) consists of extended isomorphisms (resp. isomor-
phisms) from ((Σ, �z),�z), u) to itself.

The object ((Σ, �z,�z), u) is said to be stable if Aut+((Σ, �z,�z), u) is a finite
group.

The whole construction of this article is invariant under the group of
extended automorphisms. Therefore the Kuranishi structure in Theorem 1.1
is invariant under the permutation of the interior marked points.
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2. Universal family of marked disks and spheres

In this section we review well-known facts about the moduli spaces of
marked spheres and disks. See [DM, ACG, Ke] for the detail of the sphere
case and [FOOO2, Sect. 7.1.5] for the detail of the disk case.

Proposition 2.1. Let � ≥ 3. There exist complex manifolds Ms,reg
� ,

Cs,reg
�

2 and holomorphic maps

π : Cs,reg
� → Ms,reg

� , si : Ms,reg
� → Cs,reg

�

i = 1, . . . , �, with the following properties.

(1) π is a proper submersion and its fiber π−1(p) is biholomorphic to
Riemann sphere S2.

(2) π ◦ si is the identity.
(3) si(p) �= sj(p) for i �= j.
(4) Let z1, . . . , z� ∈ S2 be mutually distinct points. Then there exists

uniquely a point p ∈ Ms,reg
� and a biholomorphic map S2 → π−1(p)

which sends zi to si(p).
(5) There exist holomorphic actions of symmetric group Perm(�) of

order �! on Ms,reg
� , Cs,reg

� , which commute with π and

sσ(i)(σ(p)) = σ(si(p)).

(6) There exist anti-holomorphic involutions τ on Ms,reg
� , Cs,reg

� such
that π and si commute with τ . The involution τ commutes with the
action of Perm(�).

This is well-known and is easy to show. We can compactify the universal
family given in Proposition 2.1 as follows.

Theorem 2.2. There exist compact complex manifolds Ms
�, Cs

� contain-
ing Ms,reg

� , Cs,reg
� as dense subspaces, respectively. The maps π and si extend

to
π : Cs

� → Ms
�, si : Ms

� → Cs
�

and the following holds.

(1)’ π is proper and holomorphic. For each point x ∈ Cs
� at which π

is not a submersion, we may choose local coordinates so that π
is given locally by (u1, . . . , um, w1, w2) → (u1, . . . , um, w1w2) where
m = dimCMs

� = �− 3.
(2) π ◦ si is the identity. π is a submersion on the image of si.
(3) si(p) �= sj(p) for i �= j.
(4) There exist holomorphic actions of symmetric group Perm(�) of

order �! on Ms
�, Cs

� , which commute with π and

sσ(i)(σ(p)) = σ(si(p)).

(5) There exist anti-holomorphic involutions τ on Ms
�, Cs

� such that π
and si commute with τ . τ also commutes with the action of Perm(�).

2Here s stands for ‘spheres’.
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This is a special case of the marked version of Deligne-Mumford’s com-
pactification of the moduli space of stable curves ([DM]). We can make a
similar statement as Proposition 2.1 (4), where we replace (S2, (z1, . . . , z�))
by a stable marked curve (Σ,�z) of genus 0 with � marked points.

We next define the moduli space of marked disks. Let k, � ∈ Z≥0. We
define

ρ0 : {0, 1, . . . , k + 2�} → {0, 1, . . . , k + 2�}
as follows:

ρ0(i) = i, i = 0, . . . , k,

ρ0(k + 2j − 1) = k + 2j, j = 1, . . . , �,

ρ0(k + 2j) = k + 2j − 1, j = 1, . . . , �.

ρ0 defines a holomorphic involution on Ms
k+2�+1. We compose it with τ and

obtain an anti-holomorphic involution on Ms
k+2�+1, which we denote by τ̃ .

We denote an element p ∈ Ms
k+2�+1 by (π−1(p),�z,�z+(p),�z−(p)). Here

�z(p) = (s0(p), . . . , sk(p)),

�z+(p) = (sk+1(p), . . . , sk+2j−1(p), . . . , sk+2�−1(p))

�z−(p) = (sk+2(p), . . . , sk+2j(p), . . . , sk+2�(p))

(Here we enumerate si : Ms
k+2�+1 → Cs

k+2�+1 by i = 0, . . . , k+2� in place of
i = 1, . . . , k + 2�+ 1.)

We lift τ̃ to Cs
k+2�+1 as follows. Note Cs

k+2�+1 is identified with Ms
k+2�+2,

where the projection Cs
k+2�+1 → Ms

k+2�+1 is identified with the map
Ms

k+2�+2 → Ms
k+2�+1 which forgets the last marked point. We extend ρ0 to

ρ1 : {0, 1, . . . , k+2�+1} → {0, 1, . . . , k+2�+1} by ρ1(k+2�+1) = k+2�+1.
The composition of τ : Ms

k+2�+2 → Ms
k+2�+2 and ρ1 is an anti-holomorphic

involution τ̃ on Cs
k+2�+1 which is a lift of the involution τ̃ on Ms

k+2�+1

Suppose τ̃p = p, p ∈ Ms,reg
k+2�+1. Put S

2
p = π−1(p). The restriction of τ̃ ,

still denoted by τ̃ , becomes an anti-holomorphic involution τ̃ on S2
p.

Note τ̃(z0) = z0 by definition. Therefore the fixed point set of the anti-
holomorphic involution τ̃ : S2

p → S2
p is nonempty. We put Cp = {z ∈ S2

p |
τ̃(p) = p}. Using the fact Cp is nonempty we can show that Cp is a circle.

Definition 2.3. We denote by Md,reg
k+1,� the set of all p ∈ Ms,reg

k+2�+1 with

the following properties.3

(1) τ̃p = p.
(2) Let Cp be as above. We can decompose S2 \Cp = IntD+∪ IntD−,

4

where D± = IntD± ∪ Cx are disks.
(3) We require that elements of �z+ are all in IntD+. (It implies that

elements of �z− are all in IntD−.)

3Here d stands for ‘disks’.
4IntD+ = {z ∈ IntD2 | Im(z) ≥ 0}.
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(4) We orient Cp by using the (complex) orientation of IntD+. Note
z0, . . . , zk ∈ Cp. We require the enumeration z0, . . . , zk respects the
orientation of Cp.

We denote by Md
k+1,� the closure of Md,reg

k+1,� in Ms
k+1+2�.

We remark that by definition Md,reg
k+1,� is a connected component of the

fixed point set of the τ̃ action of Ms,reg
k+2�+1. We also remark that Md,reg

k+1,� is

identified with the set of isomorphism classes of (D2, �z,�z) where:

(1) �z = (z0, . . . , zk+1), zj ∈ ∂D2 are mutually distinct and the enumer-
ation respects the orientation.

(2) �z = (z1, . . . , z�), zi ∈ IntD2 are mutually distinct.

We say (D2, �z,�z) is isomorphic to (D2, �z ′,�z ′) if there exists a biholomorphic
map v : D2 → D2 such that v(zi) = z′i and v(zi) = z′i.

We can use this remark to show the identification:

Md
k+1,�

∼= Mk+1,�(pt, pt, J ; 0).

Here the right hand side is the case of the moduli space Mk+1,�(X,L, J ;β)
when X is a point. (L then is necessarily a point and the homology class β
is 0.) Therefore an element of Md

k+1,� is an equivalence class of an object

(Σ, �z,�z) as in Definition 1.2. (We do not include u here in the notation since
it is the constant map to the point = X.)

Definition 2.4. We define ∂Cd
k+1,� as the subspace of Cs

k+1+2� which
consists of the element x such that

(1) π(x) ∈ Md
k+1,�.

(2) τ̃(x) = x.

By construction it is easy to see that there exists an open subset
◦

Cd
k+1,� of

π−1(Md
k+1,�) such that, for p ∈ Md

k+1,�, π
−1(Md

k+1,�) is the disjoint union
◦

Cd
k+1,� ∪ τ̃(

◦
Cd
k+1,�) ∪ ∂Cd

k+1,�, �z
+(p) ⊂

◦
Cd
k+1,�, and that the enumeration of

�z respects the boundary orientation of ∂
◦

Cd
k+1,� ∩ π−1(p). Such a choice of

◦
Cd
k+1,� is unique. We define

(2.1) Cd
k+1,� =

◦
Cd
k+1,� ∪ ∂Cd

k+1,�.

The restrictions of the maps π, sdj , s
s
i above define maps

π : Cd
k+1,� → Md

k+1,�, sdj : Md
k+1,� → ∂Cd

k+1,�, ssi : Md
k+1,� →

◦
Cd
k+1,�

for j = 0, . . . , k, i = 1, . . . , �.
If p ∈ Md

k+1,� is represented by (Σp, �zp,�zp) then the fiber π−1(p) is

canonically identified with Σp. Moreover sdj (p) = zp,j , s
s
i(p) = zp,i, via this

identification.
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We denote by Sd
k+1,� the set of all points x ∈ Cd

k+1,� such that it cor-
responds to a boundary or interior node of Σp by the identification of
Σp

∼= π−1(π(x)).

Proposition 2.5. (1) Cd
k+1,� \ Sd

k+1,� is a smooth manifold with
corner.

(2) π is proper. The restriction of π to Cd
k+1,� \Sd

k+1,� is a submersion.

(3) π ◦ sdj , π ◦ ssi are the identity maps. The images of sdj , s
s
i do not

intersect with Sd
k+1,�.

(4) sdi (p) �= sdj (p), s
s
i(p) �= ssj(p) for i �= j.

(5) There exist smooth actions of the symmetric group Perm(�) of order

�! on Md,reg
k+1,�, C

d,reg
k+1,�, which commute with π and satisfy

ssσ(i)(σ(p)) = σ(ssi(p)).

Construction of a smooth structure on Md
k+1,� is explained in Sect. 3.2.

The other part of the proof is easy and is omitted.

3. Analytic family of coordinates at the marked points and local
trivialization of the universal family

3.1. Analytic family of coordinates at the marked points. We
first recall the notion of an analytic family of coordinates introduced in
[FOOO7, Sect. 8]. Let a stable marked curve (Σq,�zq) of genus 0 with �
marked points represent an element q of Ms

� and (Σp, �zp,�zp) represent an

element p of Md
k+1,�. We put

D2
◦ = {z ∈ C | |z| < 1}, D2

◦,+ = {z ∈ C | |z| < 1, Imz ≥ 0}.

Definition 3.1 ([FOOO7, Definition 8.1]). An analytic family of co-
ordinates of q (resp. p) at the i-th interior marked point is by definition a
holomorphic map

ϕ : V ×D2
◦ → Cs

� (resp. ϕ : V ×D2
◦ → Cd

k+1,�).

Here V is a neighborhood of q in Ms
� (resp. a neighborhood V of p in

Md
k+1,�). We require that it has the following properties.

(1) π ◦ ϕ coincides with the projection V ×D2
◦ → V.

(2) ϕ(x, 0) = si(x) (resp. ϕ(x, 0) = ssi(x)) for x ∈ V.
(3) For x ∈ V the restriction of ϕ to {x}×D2

◦ defines a biholomorphic
map to a neighborhood of si(x) in π−1(x). (resp. ssi(x) in π−1(x)).

We next define an analytic family of coordinates at a boundary marked
point. Let (Σp, �zp,�zp) represent an element p of Md

k+1,�. By Definition 2.3,

Md
k+1,� is a subset of Ms

k+1+2�. Let p
s = (Σs, �z∪�zp∪�z ′p) be a representative

of the corresponding element ofMs
k+1+2�. In other words, Σs

p admits an anti-
holomorphic involution τ̃ : Σs

p → Σs
p and Σp is identified with a subset of

Σs
p, such that Σs

p = Σp∪τ̃(Σp). Moreover ∂Σp = Σp∩τ̃(Σp) and�z
′
p = τ̃(�zp).
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Definition 3.2 ([FOOO7, Definition 8.5]). An analytic family of co-
ordinates of p at the j-th (boundary) marked point is by definition a holo-
morphic map

ϕs : Vs ×D2
◦ → Cs

k+1+2�

with the following properties.

(1) Vs is a neighborhood of ps in Ms
k+1+2� and is τ̃ invariant.

(2) ϕs is an analytic family of coordinates at ps of the j-th marked
point in the sense of Definition 3.1.

(3) ϕs(τ̃(x), z) = τ̃(ϕs(x, z)).

We put V = Vs∩Md
k+1,�. In the situation of Definition 3.2 we may replace

ϕs(v, z) by ϕs(v,−z) if necessary and may assume ϕs(V × D2
◦,+) ⊂ Cd

k+1,�.
We put

(3.1) ϕ = ϕs|V×D2
◦,+

.

Then for each x ∈ V, the restriction of ϕ to {x}×D2
◦,+ defines a coordinate

of π−1(x) at j-th boundary coordinate. The existence of an analytic family
of coordinates is proved in [FOOO7, Lemma 8.3].

3.2. Analytic families of coordinates and complex/smooth
structure of the moduli space. In this subsection we use analytic fami-
lies of coordinates to describe the complex and/or smooth structures of the
moduli space of stable marked curves of genus 0.

Let a stable marked curve (Σq,�zq) of genus 0 with � marked points
represent an element q of Ms

� and (Σp, �zp,�zp) represent an element p of

Md
k+1,�. We decompose Σq, Σp into irreducible components as

(3.2) Σq =
⋃

a∈Aq

Σq(a), Σp =
⋃

a∈As
p

Σp(a) ∪
⋃

a∈Ad
p

Σp(a).

Here Σq(a) and Σp(a) for a ∈ As
p are S2 and Σp(a) for a ∈ Ad

p is D2.5

We regard the nodal points and marked points on each irreducible com-
ponent as the marked points on the component. Together with the marked
points of p, q, they determine elements

qa = (Σq(a), �zq(a)) ∈ Ms,reg
�(a)

pa = (Σp(a), �zp(a)) ∈ Ms,reg
�(a) (a ∈ As

p)(3.3)

pa = (Σp(a), �zp(a),�zp(a)) ∈ Md,reg
k(a)+1,�(a) (a ∈ Ad

p).(3.4)

Let Va be a neighborhood of qa in Ms,reg
�(a) or pa in Md,reg

k(a)+1,�(a).

Definition 3.3. Analytic families of coordinates at the nodes of q are
data which assign an analytic family of coordinates at each marked point
of qa corresponding to a nodal point of q for each a. We require them to

5Aq etc. are certain index sets.
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be invariant under the extended automorphisms of q in the obvious sense.6

Analytic families of coordinates at the nodes of p are defined in the same
way.

Lemma 3.4 (See [FOOO7, Definition-Lemma 8.7]). Analytic families
of coordinates at the nodes of p determine a smooth open embedding

(3.5) Φ :
∏

a∈As
p∪Ad

p

Va × [0, c)md × (D2
◦(c))

ms → Md
k+1,�, c < 1/10

where md (resp. ms) is the number of boundary (resp. interior) nodes of Σp.
Analytic families of coordinates at the nodes of q determine a smooth

open embedding

(3.6) Φ :
∏
a∈Aq

Va × (D2
◦(c))

m → Ms
�, c < 1/10

where m is the number of nodes of Σq.
(3.5) is a diffeomorphism onto a neighborhood of p. (3.6) is a biholo-

morphic map onto a neighborhood of q. (3.5), (3.6) are invariant under the
extended automorphisms of p, q, in the obvious sense.

Remark 3.5. In other words, we specify the smooth and complex struc-
tures of Ms

� by requiring (3.6) to be biholomorphic to the image, and specify

the smooth structure of Md
k+1,� by requiring (3.5) to be a diffeomorphism

onto the image.

Proof. Below we define the map (3.5). See [FOOO7, Sect. 8] for the
definition of (3.6) and the proof of its holomorphicity. (We do not use (3.6)
in this article.) Let nsi (i = 1, . . . ,ms) be the interior nodes of Σp and ndj

(j = 1, . . . ,md) the boundary nodes of Σp. We take asi,1, a
s
i,2 ∈ As

p ∪Ad
p and

adj,1, a
d
j,2 ∈ Ad

p such that

{nsi} = Σp(a
s
i,1) ∩ Σp(a

s
i,2), {ndj } = Σp(a

d
j,1) ∩ Σp(a

d
j,2).

Let ϕs
i,1, ϕ

s
i,2, ϕ

d
j,1, ϕ

d
j,2 be analytic families of coordinates at those nodal

points which we take by assumption. Suppose

((xa)a∈Aq , (rj)
md
j=1, (σi)

ms
i=1) ∈

∏
a∈As

p∪Ad
p

Va × [0, c)md × (D2
◦(c))

ms .

We denote xa = (Σx(a), �zx(a),�zx(a)) or xa = (Σx(a), �zx(a)).
We consider the disjoint union

(3.7)
⋃

a∈As
p∪Ad

p

Σx(a).

6In our genus 0 situation the automorphism group of q is trivial. However there may
be a nontrivial extended automorphism, which is a biholomorphic map exchanging the
marked points.
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We remove the (disjoint) union

(3.8)

⎛
⎝ ⋃

i=1,...,ms

(ϕasi,1
(D2

◦(|σi|)) ∪ ϕasi,2
(D2

◦(|σi|)))

⎞
⎠

∪

⎛
⎝ ⋃

j=1,...,md

(ϕadj,1
(D2

◦,+(rj)) ∪ ϕadj,2
(D2

◦,+(rj)))

⎞
⎠

from (3.7). Here

D2
◦(c) = {z ∈ C | |z| < c}, D2

◦,+(c) = {z ∈ C | |z| < c, Imz ≥ 0}.
In case rj = 0 or σi = 0, certain summand of (3.8) may be an empty set.
Let

Σ′ = (3.7) \ (3.8).
When z1, z2 ∈ D2 \D2(|σi|)), we identify

ϕasi,1
(z1) ∈ Σx(a

s
i,1) and ϕasi,2

(z2) ∈ Σx(a
s
i,2)

if and only if

z1z2 = σi.

When z1, z2 ∈ D2
+ \D2

+(|σj |)), we identify

ϕadj,1
(z1) ∈ Σx(a

d
j,1) and ϕadj,2

(z2) ∈ Σx(a
d
j,2)

if and only if

z1z2 = rj .

In case rj = 0 or σi = 0, we identify the corresponding marked points and
obtain a nodal point. Under these identifications, we obtain Σ from Σ′.

The marked points of xa = (Σx(a), �zx(a),�zx(a)) or xa = (Σx(a), �zx(a))
determine the corresponding marked points on Σ in the obvious way. We
thus obtain an element (Σ, �z,�z) which is by definition a representative of the
stable marked curve Φ((xa)a∈Aq , (rj)

md
j=1, (σi)

ms
i=1). �

We use the next notation in the later (sub)sections. Let x = ((xa)a∈Aq ,

(rj)
md
j=1, (σi)

ms
i=1) and εsi ∈ [|σi|, 1], εdj ∈ [rj , 1]. We put �ε = ((εsi), (ε

d
j )). Con-

sider

(3.9)

⎛
⎝ ⋃

i=1,...,ms

(ϕasi,1
(D2(εsi)) ∪ ϕasi,2

(D2(εsi)))

⎞
⎠

∪

⎛
⎝ ⋃

j=1,...,md

(ϕadj,1
(D2

+(ε
d
j )) ∪ ϕadj,2

(D2
+(ε

d
j )))

⎞
⎠ .

We now define

(3.10) Σ(x;�ε) = (3.7) \ (3.9).
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We write Σx(�ε) = Σ(x;�ε) if x = Φ(x). In case Φ((xa)a∈Aq , (rj)
md
j=1, (σi)

ms
i=1) =

p we denote Σp(�ε). (Note σi, rj are all 0 in this case in particular.)

Figure 1. The map Φ.

3.3. Local trivialization of the universal family. An important
point of the construction of the Kuranishi structure is specifying the coor-
dinate of the source curve we use.7 The construction of the last subsection
specifies the coordinate of the moduli space (especially its gluing parameter.)
We use one extra datum to specify the coordinate of the source curve.

We use the notation p, q etc. as in the last subsection.

Definition 3.6. Let p be as in (3.3), (3.4) and Va a neighborhood of
its irreducible component pa in the moduli space of marked curves. A C∞

trivialization φa of our universal family over Va is a diffeomorphism

φa : Va × Σp(a) → π−1(Va)

with the following properties. Here π−1(Va) ⊂ Cs,reg
�(a) or π−1(Va) ⊂ Cd,reg

k(a)+1,�(a).

(1) The next diagram commutes.

Va × Σp(a)
φa−−−−→ π−1(Va)⏐⏐	 ⏐⏐	π

Va
id−−−−→ Va

where the left vertical arrow is the projection to the first factor.
(2) If zj (resp zi) is the j-th boundary (resp. the i-th interior) marked

point of Σp(a) then

φa(x, zj) = sdj (x), φa(x, zi) = ssi(x).

(3) φa(o, z) = z. Here z ∈ Σp(a) and Σp(a) is regarded as a subset of

Cs,reg
�(a) or of Cd,reg

k(a)+1,�(a). o ∈ Va is the point corresponding to pa.

7In other words, we need to kill the freedom of the action of the group of diffeomor-
phisms of the source curves.
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Definition 3.7. Suppose we are given analytic families of coordinates
at the nodes of p. Then we say that the C∞ trivialization {φa} is compatible
with the families if the following holds.

(1) Suppose that the i-th interior marked point of pa corresponds to a
nodal point of Σp(a). Let ϕa,i : Va × D2

◦ → π−1(Va) be the given
analytic family of coordinates at this marked point. Then

φa(x, ϕa,i(o, z)) = ϕa,i(x, z).

Here o ∈ Va is the point corresponding to pa.
(2) Suppose that the j-th boundary marked point of pa corresponds

to a nodal point of Σp(a). Let ϕa,j : Va ×D2
◦,+ → π−1(Va) be the

given analytic family of coordinates at this marked point. (Namely
ϕa,j is the map defined as in (3.1).) Then

φa(x, ϕa,i(o, z)) = ϕa,i(x, z).

Here o ∈ Va is the point corresponding to pa.

Now we define:

Definition 3.8. Local trivialization data at p consist of the following:

(1) Analytic families of coordinates at the nodes of p.
(2) A C∞ trivialization φa of our universal family over Va for each a. We

assume it is compatible with the analytic families of coordinates.
(3) We require that the data (1)(2) are compatible with the action

of extended automorphisms of p in the obvious sense. (See [Fu1,
Definition 7.4].)

Let x = ((xa)a∈Aq , (rj)
md
j=1, (σi)

ms
i=1) and εsi ∈ [|σi|, 1], εdj ∈ [rj , 1]. We put

�ε = ((εsi), (ε
d
j )).

Lemma 3.9. 8 Suppose we are given local trivialization data at p and
put Φ(x) = (Σx, �zx,�zx). Then the local trivialization data canonically induce
a smooth embedding

Φ̂x;�ε : Σp(�ε) → Σx

which preserves marked points. The map Φ̂�ε : V ×Σp(�ε) → Cd
k+1,� defined by

(3.11) Φ̂�ε(x, z) = Φ̂x;�ε(z)

is smooth, where V =
∏

a∈As
p∪Ad

p
Va × [0, c)md × (D2

◦(c))
ms is as in (3.5).

Proof. By definition we can define a canonical (holomorphic) embed-
ding Σ(x;�ε) ⊂ Σx. The C∞ trivialization φa induces a diffeomorphism
Σ(x;�ε) ∼= Σ(�ε). �

8See [FOn, the paragraph right below (10.1)].
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Remark 3.10. The construction of this section is similar to [FOOO4,
Sect. 16]. The only difference is that we use analytic families of coordinates
here but smooth families of coordinates in [FOOO4, Sect. 16]. The map
Φ in Lemma 3.4 is holomorphic but the corresponding map in [FOOO4,
Sect. 16] is only smooth. In that sense the construction here is the same as
[FOOO7, Sect. 8].

4. Stable map topology and ε-closeness

4.1. Partial topology.

Definition 4.1. Let X be a set and M its subset. Suppose we are given
a topology on M, which is metrizable. A partial topology of (X ,M) assigns
Bε(X ,p) ⊂ X for each p ∈ M and ε > 0 with the following properties.

(1) p is an element of Bε(X ,p) and {Bε(X ,p)∩M | p, ε} is a basis of
the topology of M.

(2) For each ε,p and q ∈ Bε(X ,p) ∩M, there exists δ > 0 such that
Bδ(X ,q) ⊂ Bε(X ,p).

(3) If ε1 < ε2 then Bε1(X ,p) ⊂ Bε2(X ,p). Moreover⋂
ε

Bε(X ,p) = {p}.

We say U ⊂ X is a neighborhood of p if U ⊃ Bε(X ,p) for some ε > 0.
We say two partial topologies are equivalent if the notion of neighborhood

coincides.

Definition 4.2. We define Xk+1,�(X,L, J ;β) to be the set of all isomor-
phism classes of ((Σ, �z,�z), u) which satisfy the same condition as in Defini-
tion 1.2 except we do not require u to be pseudo holomorphic. We require
u to be continuous and of C2 class on each irreducible component.

We define the notions of isomorphisms and of extended isomorphisms
between elements of Xk+1,�(X,L, J ;β) in the same way as Definition 1.3,
requiring (i)(ii)(iii). The groups of automorphisms Aut(x) and of extended
automorphisms Aut+(x) of an element x ∈ Xk+1,�(X,L, J ;β) are defined in
the same way as Definition 1.3.

Proposition 4.3. The pair (Xk+1,�(X,L, J ;β)),Mk+1,�(X,L, J ;β)) has
a partial topology in the sense of Definition 4.1. Here the topology of
Mk+1,�(X,L, J ;β) is the stable map topology introduced in [FOn, Defini-
tion 10.3].

The proof of this proposition will be given in the rest of this section.

4.2. Weak stabilization data.

Definition 4.4. An element ((Σ, �z,�z), u) of Mk+1,�(X,L, J ;β) is called
source stable if the set of v : Σ → Σ satisfying Definition 1.3 (i)(iii) (but not
necessarily (ii)) is finite. We can define the source stability of an element of
Xk+1,�(X,L, J ;β) in the same way.
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Definition 4.5. Let I ⊂ {1, . . . , �+ �′} with #I = �. The forgetful map

forget�+�′,I : Mk+1,�+�′(X,L, J ;β) → Mk+1,�(X,L, J ;β),

is defined as follows. Let ((Σ, �z,�z), u) ∈ Mk+1,�+�′(X,L, J ;β) and I =
{i1, . . . , i�}. (ij < ij+1.) We put�zI = (zi1 , . . . , zi�) and consider ((Σ, �z,�zI), u).
If this object is stable then it is forget�+�′,I((Σ, �z,�z), u) by definition.

If not there exists an irreducible component Σa of Σ on which u is
constant and Σa is unstable in the following sense. If Σa = S2 the number of
singular or marked points on it is less than 3. If Σa = D2 then 2ms+md < 3.
Here md is the sum of the number of boundary nodes on Σa and the order
of �z∩Σa. ms is the sum of the number of interior nodes on Σa and the order
of �zI ∩ Σa.

We shrink all the unstable components Σa to points. We thus obtain
((Σ′, �z,�zI), u) which is an element of Mk+1,�(X,L, J ;β). This is by definition
forget�+�′,I((Σ, �z,�z), u). See [FOOO2, Lemma 7.1.45] for more detail.

In case I = {1, . . . , �} we write forget�+�′,� in place of forget�+�′,I .

We define forget�+�′,I : Xk+1,�+�′(X,L, J ;β) → Xk+1,�(X,L, J ;β), and
also forget�+�′,� among those sets in the same way.

Definition 4.6. Let p = ((Σp, �zp,�zp), up) ∈ Mk+1,�(X,L, J ;β). Its
weak stabilization data are �wp = (wp,1, . . . ,wp,�′) with the following prop-
erties.

(1) wp,i ∈ Σp.
(2) We put�zp∪�wp = (zp,1, . . . , zp,�,wp,1, . . . ,wp,�′). Then ((Σp, �zp,�zp∪

�wp), up) represents an element of Mk+1,�+�′(X,L, J ;β). We write
this element p ∪ �wp.

(3) p ∪ �wp is source stable.
(4) An arbitrary extended automorphism v : Σp → Σp of p becomes

an extended automorphism of p ∪ �wp.

Remark 4.7. (1) By definition forget�+�′,�(p ∪ �wp) = p.
(2) Condition (4) means that any extended automorphism v : Σp → Σp

preserve �wp up to enumeration.
(3) It is easy to prove the existence of weak stabilization data.

Remark 4.8. (1) Until Sect. 3 the symbols p, q were used for
the elements of the moduli space of stable marked curves. From
now on the symbols p, q stand for elements of the moduli space
Mk+1,�(X,L, J ;β).

(2) The symbol x (and r) stand for the elements of Xk+1,�(X,L, J ;β).
(3) For p, x etc. we denote its representative by ((Σp, �zp,�zp), up),

((Σx, �zx,�zx), ux) and etc..
(4) For an element p = ((Σp, �zp,�zp), up) etc. we call (Σp, �zp,�zp) its

source curve.
(5) Sometimes we denote by p the source curve of p, by an abuse of

notation.
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4.3. The ε-closeness.

Definition 4.9. Let p = ((Σp, �zp,�zp), up) ∈ Mk+1,�(X,L, J ;β).

(1) We fix its weak stabilization data �wp (consisting of �′ marked
points).

(2) We fix analytic families of coordinates {ϕs
a,i}, {ϕd

a,j} at the nodes

of p ∪ �wp in the sense of Definition 3.3.
(3) We fix a family of C∞ trivializations {φa} which is compatible with

the analytic family of coordinates given in item (2).
(4) We fix a Riemannian metric given on each irreducible component

of Σp.

We denote the totality of such data by the symbolWp and call it stabilization
and trivialization data.

Wp induce the data Wp∪�wp
= (∅, {ϕs

a,i}, {ϕd
a,j}, {φa}), which are sta-

bilization and trivialization data of p ∪ �wp. Note p ∪ �wp is already source
stable. So we do not need to add additional marked points.

Remark 4.10. Throughout this paper we fix a Riemannian metric of X
and metrics on the moduli spaces Md

k+1,�, Ms
� and the total spaces Cd

k+1,�, Cs
�

of the universal families. Since they are all compact the whole construction
is independent of such a choice.

Definition 4.11. Let F : X → Y be a map from a topological space
to a metric space. We say that F has diameter < ε, if the images of all the
connected components of X have diameter < ε in Y .

Definition 4.12. Let p = ((Σp, �zp,�zp), up) ∈ Mk+1,�(X,L, J ;β) and
Wp its stabilization and trivialization data (Definition 4.9). Let ε be a suf-
ficiently small positive constant.9

Let x = ((Σx, �zx,�zx), ux) ∈ Xk+1,�(X,L, J ;β). We say x is ε-close to
p with respect to Wp and write x ∈ Bε(Xk+1,�(X,L, J ;β);p,Wp) if there
exists �wx = (wx,1, . . . ,wx,�′) with the following six properties.

(1) wx,i ∈ Σx.
(2) We put�zx∪�wx = (zx,1, . . . , zx,�,wx,1, . . . ,wx,�′). Then ((Σx, �zx,�zx∪

�wx), ux) represents an element of Xk+1,�+�′(X,L, J ;β). We write
this element as x ∪ �wx.

(3) x ∪ �wx is source stable.
(4) (Σx, �zx,�zx ∪ �wx) is in the ε-neighborhood of (Σp, �zp,�zp ∪ �wp) in

Md
k+1,�+�′ .

We may take ε so small that (4) above implies that there exists x such
that Φ(x) = (Σx, �zx,�zx) ∪ �wx. Now the main part of the conditions is as

follows. We require that there exists �ε = ((εsi), (ε
d
j )) such that the map Φ̂x;�ε

in Lemma 3.9 has the following properties.

9We will specify how small it should be below.
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(5) The C2 difference between the two maps

ux ◦ Φ̂x;�ε : Σp(�ε) → X and up|Σp(�ε) : Σp(�ε) → X

is smaller than ε.
(6) The restriction of ux to Σx \ Σx(�ε) has diameter < ε.

Hereafter we call Σx \ Σx(�ε) the neck region.

Remark 4.13. In case ux is pseudo holomorphic, Condition (5) corre-
sponds to [FOn, Definition 10.2 (10.2.1)] and Condition (6) corresponds to
[FOn, Definition 10.2 (10.2.2)]. So Definition 4.12 is an adaptation of the
definition of the stable map topology (which was introduced in [FOn, Defi-
nition 10.3]) to the situation when ux is not necessarily pseudo holomorphic.

We remark that in various other references, in place of Condition (6), the
condition that the energy of ux is close to that of up is required10 to define a
topology of the moduli space of pseudo holomorphic curves. In the case when
ux is pseudo holomorphic this condition on the energy is equivalent to (6)
(when (5) is satisfied). To include the case when ux is not necessarily pseudo
holomorphic, Condition (6) seems to be more suitable than the condition on
the energy.

Lemma 4.14. Let p and Wp be as in Definition 4.12. Then for any
sufficiently small ε > 0 the following holds.

Let q ∈ Mk+1,�(X,L, J ;β) ∩ Bε(Xk+1,�(X,L, J ;β);p,Wp) and Wq its
stabilization and trivialization data (Definition 4.9). Then there exists δ > 0
such that:

(4.1) Bδ(Xk+1,�(X,L, J ;β);q,Wq) ⊂ Bε(Xk+1,�(X,L, J ;β);p,Wp).

This is mostly the same as [Fu1, Lemma 7.26] and can be proved in
the same way. See also (the proof of) [Fu2, Lemma 12.13]. We prove it in
Sect. 13 for completeness’ sake.

Proof of Proposition 4.3. We take Wp for each p ∈ Mk+1,�(X,L,
J ;β) and fix them. We then put

Bε(Xk+1,�(X,L, J ;β),p) = Bε(Xk+1,�(X,L, J ;β);p,Wp).

Lemma 4.14 implies that this choice satisfies Definition 4.1 (2). Definition 4.1
(3) is obvious from construction.

From the definition of the stable map topology on Mk+1,�(X,L, J ;β)
([FOn, Definition 10.3] and [FOOO2, Definition 7.1.42]) we find that the
totality of all the subsets Mk+1,�(X,L, J ;β)∩Bε(Xk+1,�(X,L, J ;β);p,Wp)
moving ε, p, Wp is a basis of the stable map topology. Then Lemma 4.14 im-
plies that when we fix p 
→ Wp, the set {Mk+1,�(X,L, J ;β)∩Bε(Xk+1,�(X,L,
J ;β);p,Wp) | p, ε} is still a basis of the stable map topology. This implies
Definition 4.1 (1). �

10Such a topology (using energy condition in place of (6)) is sometimes called ‘Gromov
topology’. We use the name ‘stable map topology’ in order to distinguish it from ‘Gromov
topology’.
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Remark 4.15. Lemma 4.14 also implies that the partial topology we
defined above is independent of the choice of p 
→ Wp, up to equivalence.

5. Obstruction bundle data

Definition 5.1. Obstruction bundle data of the moduli spaceMk+1,�(X,
L, J ;β) assign to each p ∈ Mk+1,�(X,L, J ;β) a neighborhood Up of p in
Xk+1,�(X,L, J ;β) and an object Ep(x) to each x ∈ Up. We require that
they have the following properties.

(1) We put x = ((Σx, �zx,�zx), ux). Then Ep(x) is a finite dimensional
linear subspace of the set of C2 sections

Ep(x) ⊂ C2(Σx;u
∗
xTX ⊗ Λ01),

whose support is away from nodal points. (See Remark 5.7.)
(2) (Smoothness) Ep(x) depends smoothly on x as defined in Defini-

tion 8.7.
(3) (Transversality) {Ep(x)} satisfies the transversality condition as in

Definition 5.5.
(4) (Semi-continuity) Ep(x) is semi-continuous on p as defined in Def-

inition 5.2.
(5) (Invariance under extended automorphisms) Ep(x) is invariant un-

der the extended automorphism group of x as in Condition 5.6.

For a fixed p we call x 
→ Ep(x) obstruction bundle data at p if (1)(2)(3)(5)
above are satisfied.

We now define Conditions (3)(4)(5). (2) will be defined in Sect. 8.

Definition 5.2. We say Ep(x) is semi-continuous on p if the following
holds.

If q ∈ Up ∩Mk+1,�(X,L, J ;β) and x ∈ Up ∩ Uq, then

Eq(x) ⊆ Ep(x).

We require the transversality condition for x = p only. We put p =
((Σp, �zp,�zp), up). We decompose Σp into irreducible components as

Σp =
⋃

a∈As
p

Σp(a) ∪
⋃

a∈Ad
p

Σp(a).

See (3.2). Let up,a be the restriction of up to Σp(a). The linearization of the
non-linear Cauchy-Riemann equation defines a linear elliptic operator

(5.1)
Dup,a∂ :L2

m+1(Σp(a), ∂Σp(a);u
∗
p,aTX, u∗p,aTL)

→ L2
m(Σp(a);u

∗
p,aTX ⊗ Λ01)

for a ∈ Ad
p and

(5.2) Dup,a∂ : L2
m+1(Σp(a);u

∗
p,aTX) → L2

m(Σp(a);u
∗
p,aTX ⊗ Λ01)
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for a ∈ As
p. Here L2

m+1(Σp(a), ∂Σp,a(a);u
∗
p,aTX, u∗p,aTL) is the space of all

sections of the bundle u∗p,aTX of L2
m+1-class whose boundary values lie in

u∗p,aTL. Other spaces are appropriate Sobolev spaces of the sections. Take
m sufficiently large. We take a direct sum

(5.3)

⊕
a∈As

p

L2
m+1(Σp(a);u

∗
p,aTX ⊗ Λ01)

⊕
⊕
a∈Ad

p

L2
m+1(Σp(a), ∂Σp(a);u

∗
p,aTX, u∗p,aTL).

We also consider

(5.4)
⊕

a∈As
p∪Ad

p

L2
m(Σp(a);u

∗
p,aTX ⊗ Λ01).

Definition 5.3. We define L2
m(Σp;u

∗
pTX⊗Λ01) to be the Hilbert space

(5.4).
We define a Hilbert space W 2

m+1(Σp, ∂Σp;u
∗
pTX, u∗pTL) as the subspace

of the Hilbert space (5.3) consisting of elements
∑

a∈As
p∪Ad

p
Va (where Va is a

section on Σp(a)) with the following properties. Let p ∈ Σp be a nodal point.
We take a1(p), a2(p) such that {p} = Σp(a1(p)) ∩ Σp(a2(p)). We require

Va1(p)(p) = Va2(p)(p).

We require this condition at all the nodal points p.

The operators (5.1), (5.2) induce a Fredholm operator

(5.5) Dup∂ : W 2
m+1(Σp, ∂Σp;u

∗
pTX, u∗pTL) → L2

m(Σp;u
∗
pTX ⊗ Λ01).

Remark 5.4. We define L2
m(Σx;u

∗
xTX ⊗ Λ01), W 2

m+1(Σx, ∂Σx;u
∗
xTX,

u∗xTL) and the operator Dux∂ between them for x ∈ Xk+1,�(X,L, J ;β) in
the same way. (Here ux may not be pseudo holomorphic but is of L2

m+1

class.)

Now we describe the transversality condition. When x = p we require
Ep(p) consists of smooth sections as a part of Definition 5.1 (2). (See Defi-
nition 8.5 (1).)

Definition 5.5. We say that {Ep(x)} satisfies the transversality condi-
tion if

Im(5.5) + Ep(p) = L2
m(Σp;u

∗
pTX ⊗ Λ01).

By ellipticity this condition is independent of m.
We next describe Definition 5.1 (5). Let v : Σx → Σx be an extended

automorphism. It induces an isomorphism

v∗ : C
2(Σx;u

∗
xTX ⊗ Λ01) → C2(Σx;u

∗
xTX ⊗ Λ01)

since v is biholomorphic and ux ◦ v = ux. In case x = p the group Aut+(p)
acts also on the domain and target of (5.5) and the operatorDup∂ is invariant
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under this action. Let aut(Σp, �zp,�zp) be the Lie algebra of the group of
automorphisms of the source curve (Σp, �zp,�zp) of p. We can embed it into

the kernel ofDup∂ by differentiating up, so that it becomes Aut(p) invariant.

Condition 5.6. We require v∗(Ep(x)) = Ep(x) for any v ∈ Aut+(x).
We also assume that the action of the group of automorphisms Aut(p)

of p on (Dup∂)
−1(Ep(p))/aut(Σp, �zp,�zp) is effective, where Dup∂ is as in

(5.5).

Remark 5.7. Note an element of Xk+1,�(X,L, J ;β) is an equivalence
class of objects x = ((Σx, �zx,�zx), ux). Therefore for the data Ep(x) to be
well-defined we need to assume the following.

(*) If v : Σx → Σx′ is an isomorphism from x to x′ = ((Σx′ , �zx′ ,�zx′), ux′)
then v∗(Ep(x)) = Ep(x

′).

We include this condition as a part of Definition 5.1 (1). In particular
(*) implies that Ep(x) is invariant under the action of Aut(x). The first
half of Condition 5.6 is slightly stronger than (*). We add the second half of
Condition 5.6 so that orbifolds appearing in our Kuranishi structure become
effective.

(*) and Condition 5.6 imply the next lemma. Let v : Σp → Σp be an
extended automorphism. Let x ∈ Up. We may write x = Φ(x). Here Φ is
the map in Lemma 3.4. The map v induces a map

v∗ :
∏

a∈As
p∪Ad

p

Va × [0, c)md × (D2
◦(c))

ms →
∏

a∈As
p∪Ad

p

Va × [0, c)md × (D2
◦(c))

ms .

We put v∗(x) = Φ(v∗(x)). v 
→ v∗ determines an action of the group Aut+(p)
of extended automorphisms on Up.

By Definition 3.8 (3), Definition 4.6 (4) etc. v induces a biholomorphic
map v̂ : Σx → Σv∗(x) such that uv∗(x) ◦ v̂ = ux, v̂(zx,j) = zv∗(x),j and
v̂(zx,i) = zv∗(x),σ(i). Here σ is the permutation such that v(zp,i) = zp,σ(i).

Therefore the map v̂ induces an isomorphism

(5.6) v̂∗ : L
2
m(Σx;u

∗
xTX ⊗ Λ01) → L2

m(Σv∗(x);u
∗
v∗(x)TX ⊗ Λ01).

Lemma 5.8. v̂∗(Ep(x)) = Ep(v∗(x)).

6. Kuranishi structure: review

The main result, Theorem 7.1, we prove in this article assigns a Kuranishi
structure to each obstruction bundle data in the sense of Definition 5.1. We
refer readers to [FOOO5, Sect. 15] for the version of the terminology of
orbifold we use.11 (We always assume orbifolds to be effective, in particular.)
In this article we consider the case of orbifolds with boundary and corner.

To state Theorem 7.1 later we review the definition of Kuranishi struc-
ture in this section. Let M be a compact metrizable space.

11See also [ALR] for an exposition on orbifold.
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Definition 6.1. A Kuranishi chart of M is U = (U, E , ψ, s) with the
following properties.

(1) U is an (effective) orbifold.
(2) E is an orbi-bundle on U .
(3) s is a smooth section of E .
(4) ψ : s−1(0) → M is a homeomorphism onto an open set.

We call U a Kuranishi neighborhood, E an obstruction bundle, s a Kuranishi
map and ψ a parametrization.

If U ′ is an open subset of U , then by restricting E , ψ and s to U ′, we
obtain a Kuranishi chart, which we write U|U ′ and call an open subchart.

The dimension U = (U, E , ψ, s) is by definition dimU = dimU − rank E .
Here rank E is the dimension of the fiber E → U .

Definition 6.2. Let U = (U, E , ψ, s), U ′ = (U ′, E ′, ψ′, s′) be Kuranishi
charts of M. An embedding of Kuranishi charts : U → U ′ is a pair (ϕ, ϕ̂)
with the following properties.

(1) ϕ : U → U ′ is an embedding of orbifolds.
(2) ϕ̂ : E → E ′ is an embedding of orbi-bundles over ϕ.
(3) ϕ̂ ◦ s = s′ ◦ ϕ.
(4) ψ′ ◦ ϕ = ψ holds on s−1(0).
(5) For each x ∈ U with s(x) = 0, the derivative Dϕ(x)s

′ induces an
isomorphism

(6.1)
Tϕ(x)U

′

(Dxϕ)(TxU)
∼=

E ′
ϕ(x)

ϕ̂(Ex)
.

If dimU = dimU ′ in addition, we call (ϕ, ϕ̂) an open embedding.

Definition 6.3. Let U1 = (U1, E1, ψ1, s1), U2 = (U2, E2, ψ2, s2) be Ku-
ranishi charts of M. A coordinate change in weak sense from U1 to U2 is
(U21, ϕ21, ϕ̂21) with the following properties (1) and (2):

(1) U21 is an open subset of U1.
(2) (ϕ21, ϕ̂21) is an embedding of Kuranishi charts : U1|U21 → U2.

Definition 6.4. AKuranishi structure Û ofM assigns a Kuranishi chart
Up = (Up, Ep, ψp, sp) with p ∈ Im(ψp) to each p ∈ M and a coordinate change
in weak sense (Upq, ϕpq, ϕ̂pq) : Uq → Up to each p and q ∈ Im(ψp) such that
q ∈ ψq(Upq ∩ s−1

q (0)) and the following holds for each r ∈ ψq(s
−1
q (0) ∩ Upq).

We put Upqr = ϕ−1
qr (Upq) ∩ Upr. Then we have

(6.2) ϕpr|Upqr = ϕpq ◦ ϕqr|Upqr , ϕ̂pr|π−1(Upqr) = ϕ̂pq ◦ ϕ̂qr|π−1(Upqr).

We also require that the dimension of Up is independent of p and call it

the dimension of Û . When Up has corner, we call Û a Kuranishi structure
with corner.

So far in this section, we consider orbifolds, orbibundles, embeddings
between them, sections of C∞ class. The notion of Kuranishi structure we
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defined then is one of C∞ class. By considering those objects of Cn class
(1 ≤ n < ∞) instead, we define the notion of Kuranishi structure of Cn

class.

Remark 6.5. The definition of Kuranishi structure here is equivalent
to the definition of Kuranishi structure with tangent bundle in [FOOO2,
Section A1],12 where certain errors in [FOn] were corrected.13

Definition 6.6. Let Û be a Kuranishi structure of M. We replace Up

by its open subchart containing ψ−1
p (p) and restrict coordinate changes in

the obvious way. We then obtain a Kuranishi structure of M. We call such
a Kuranishi structure an open substructure.

We say two Kuranishi structures Û , Û ′ determine the same germ of Ku-
ranishi structures, if they have open substructures which are isomorphic.14

Definition 6.7. Let Û be a Kuranishi structure of M.

(1) A strongly continuous map f̂ from (M; Û) to a topological space Y
assigns a continuous map fp from Up to Y to each p ∈ X such that
fp ◦ ϕpq = fq holds on Upq.

(2) In the situation of (1), the map f : M → Y defined by f(p) =
fp(p) is a continuous map from M to Y . We call f : M → Y the

underlying continuous map of f̂ .

(3) When Y is a smooth manifold, we say f̂ is strongly smooth if each
fp is smooth.

(4) A strongly smooth map is said to be weakly submersive if each fp
is a submersion.

7. Construction of Kuranishi structure

7.1. Statement. We say two obstruction bundle data ({Up}, {Ep(x)})
and ({U ′

p}, {E′
p(x)}) determine the same germ if Ep(x) = E′

p(x) for every

x ∈ Up ∩ U ′
p.

Theorem 7.1. (1) To arbitrary obstruction bundle data of the mod-
uli space Mk+1,�(X,L, J ;β) we can associate a germ of a Kuranishi
structure on Mk+1,�(X,L, J ;β) in a canonical way.

(2) If two obstruction bundle data determine the same germ then the
induced Kuranishi structures determine the same germ.

(3) The evaluation maps evj (j = 0, 1, . . . , k), evinti (i = 1, . . . , �) are
the underlying continuous maps of strongly smooth maps.

12There is no mathematical change of the definition of Kuranishi structure since then.
13None of those errors affect any of the applications of Kuranishi structure and virtual

fundamental chain.
14Here two Kuranishi structures Û = ({Up}, {(Upq, ϕpq, ϕ̂pq, )}, Û ′ = ({U ′

p}, {(U ′
pq,

ϕ′
pq, ϕ̂

′
pq, )} are isomorphic if there exist diffeomorphisms of orbifolds φp : Up → U ′

p

between the Kuranishi neighborhoods, covered by isomorphisms of obstruction bundles

φ̂p : Ep → E ′
p, such that, Kuranishi maps, parametrizations and coordinate changes com-

mute with them. (We also require φq(Upq) = U ′
pq.)
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In this section we prove Theorem 7.1 except the part where smooth-
ness of obstruction bundle data (Definition 5.1 (2)) concerns, which will be
discussed in Sects. 8, 9, 10.

7.2. Construction of Kuranishi charts. Let ({Up}, {Ep(x)}) be ob-
struction bundle data at p. We will define a Kuranishi chart of Mk+1,�(X,L,
J ;β) at p using this data.

Definition 7.2. We define Up to be the set of all x ∈ Up such that

(7.1) ∂ux ∈ Ep(x).

(7.1) is independent of the choice of representative x because of Remark 5.7
(*). We also put

Ep =
⋃

x∈Up

Ep(x)/Aut(x)× {x}.

Here the group Aut+(x) acts on Ep(x) by Definition 5.1 (5). We have a
natural projection π : Ep → Up.

15 We define a map sp : Up → Ep by

sp(x) = [∂ux,x] ∈ Ep.
(The right hand side is independent of the choice of representative of x.)

Lemma 7.3. After replacing Up by a smaller neighborhood if necessary,
Up has a structure of (effective) smooth orbifold. Ep becomes the underlying
topological space of a smooth orbi-bundle on Up and π : Ep → Up is its
projection. sp becomes a smooth section of Ep.

We use smoothness of Ep(x) (Definition 5.1 (2)) and [FOOO7, Theorem
6.4] to prove Lemma 7.3. See Sect. 9.

We define ψp : s−1
p (0) → Mk+1,�(X,L, J ;β) as follows. If x ∈ s−1

p (0)

then ∂ux = 0 by definition. Therefore x represents an element of Mk+1,�(X,
L, J ;β). We define ψp(x) to be the element ofMk+1,�(X,L, J ;β) represented
by x.

Lemma 7.4. (Up, Ep, sp, ψp) is a Kuranishi chart of Mk+1,�(X,L, J ;β)
at p.

This is immediate from Lemma 7.3 and the definition.

7.3. Construction of coordinate change.

Situation 7.5. Let ({Up}, {Ep(x)}) be obstruction bundle data. Sup-
pose q ∈ Up∩Mk+1,�(X,L, J ;β). Let (Up, Ep, sp, ψp) (resp. (Uq, Eq, sq, ψq))
be the Kuranishi chart at p (resp. q) obtained by Lemma 7.4. �

We put Upq = Uq ∩ Up. Let x ∈ Upq. Then by Definition 5.1 (4) and
Definition 7.2 we have

∂ux ∈ Eq(x) ⊆ Ep(x).

15To get an obstruction bundle we divide Ep(x) by Aut(x) not by Aut+(x).
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Thus Upq ⊆ Up. (Note both are subsets of Xk+1,�(X,L, J ;β).) Let ϕpq :
Upq → Up be the inclusion map.

To define the bundle map part of the coordinate change we introduce:

Definition 7.6. We consider a pair (((Σ, �z,�z), u), V ) where ((Σ, �z,�z), u)
is a representative of an element of Xk+1,�(X,L, J ;β) and V ∈ L2

0(Σ;u
∗TX⊗

Λ01).
We say (((Σ, �z,�z), u), V ) is equivalent to (((Σ′, �z ′,�z ′), u′), V ′) if there

exists a map v : Σ → Σ′ which becomes an isomorphism ((Σ, �z,�z), u) →
((Σ′, �z ′,�z ′), u′) in the sense of Definition 4.2 and

v∗(V ) = V ′.

Note v induces a map v∗ : L2
0(Σ;u

∗TX ⊗ Λ01) → L2
0(Σ

′; (u′)∗TX ⊗ Λ01).
We denote by EX k+1,�(X,L, J ;β) the set of all such equivalence classes

of (((Σ, �z,�z), u), V ).
There exists an obvious projection π : EX k+1,�(X,L, J ;β) → Xk+1,�(X,

L, J ;β). If x is represented by ((Σx, �zx,�zx), ux) then the fiber π−1(x) is
canonically identified with L2

0(Σx;u
∗
xTX ⊗ Λ01)/Aut(x). Here the action of

Aut(x) is defined in the same way as (5.6).

Let (Up, Ep, sp, ψp) be a Kuranishi chart as in Lemma 7.4. By definition
the total space of Ep, which we denote also by Ep by an abuse of notation, is
canonically embedded into EX k+1,�(X,L, J ;β) such that the next diagram
commutes.

(7.2)

Ep −−−−→ EX k+1,�(X,L, J ;β)⏐⏐	πp

⏐⏐	π

Up −−−−→ Xk+1,�(X,L, J ;β)

Let q ∈ ψp(s
−1
p (0)). Then by definition Eq|Upq (= π−1

q (Upq) ⊂ Eq) is a
subset of Ep, when we regard them as subsets of EX k+1,�(X,L, J ;β).

We define ϕ̂pq to be the inclusion map Eq|Upq → Ep.
Lemma 7.7. The pair (ϕpq, ϕ̂pq) is a coordinate change from (Uq, Eq, sq,

ψq) to (Up, Ep, sp, ψp).

This is nothing but [FOOO7, Theorem 8.32], once the notion of smooth-
ness of Ep(x) will be clarified. See Sect. 10.3.

7.4. Wrapping up the construction of Kuranishi structure.

Lemma 7.8. Let p, q ∈ Im(ψp), r ∈ ψq(s
−1
q (0) ∩ Upq). We put Upqr =

ϕ−1
qr (Upq) ∩ Upr. Then we have

(7.3) ϕpr|Upqr = ϕpq ◦ ϕqr|Upqr , ϕ̂pr|π−1(Upqr) = ϕ̂pq ◦ ϕ̂qr|π−1(Upqr).

Proof. If we regard the domain and the target of both sides of (7.3)
as subsets of Xk+1,�(X,L, J ;β) or of EX k+1,�(X,L, J ;β) then the both sides
are the identity map. Therefore the equalities are obvious. �
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Remark 7.9. (1) The orbifold we use are always effective and maps
between them are embeddings. Therefore to check the equality of
the two maps it suffices to show that they coincide set-theoretically.
This fact simplifies the proof.

(2) The proof of Lemma 7.8 given above is simpler than the proof in
[FOOO4, Sect. 24] etc. This is because we use the ambient set
Xk+1,�(X,L, J ;β).

Note however we do not use any structure of Xk+1,�(X,L, J ;β).
The ambient set is used only to show the set-theoretical equality
(7.3). It seems to the authors that putting various structures such
as topology on Xk+1,�(X,L, J ;β) is rather cumbersome since this
infinite dimensional ‘space’ can be pathological. Using it only as a
set and proving set-theoretical equality seems easier to carry out.
Since it makes the proof of Lemma 7.8 simpler, it is worth using
this ambient set.

The proof of Theorem 7.1 (1) is complete. The proof of Theorem 7.1 (2)
is immediate from construction and is omitted.

7.5. Evaluation maps. We study the evaluation maps in this subsec-
tion.

Lemma 7.10. The evaluation maps evj : Mk+1,�(X,L, J ;β) → L and
evinti : Mk+1,�(X,L, J ;β) → X are strongly continuous.

Proof. An element of Up as defined in Definition 7.2 consists of x =
((Σx, �zx,�zx), ux). We define evp,j(x) = ux(zx,j), ev

int
p,i(x) = ux(zx,i). It is

obvious that they are compatible with the coordinate change. �

It follows from the construction of smooth structure of Up (in Sects. 9
and 12) that evx,j(x) and evintx,i(x) are smooth. So evj and evinti are strongly
smooth.

Condition 7.11. We say that Ep(p) satisfies the mapping transversality
condition for ev0 if the map

Ev0 : (Dup∂)
−1(Ep(p)) → Tev0(p)L

is surjective. Here Ev0 is defined as follows. Let
∑

Va be an element of
(Dup∂)

−1(Ep(p)). Suppose z0 is in the component Σa0 . Then Ev0(
∑

Va) =
Va0(z0).

Lemma 7.12. If Condition 7.11 is satisfied then ev0 : Mk+1,�(X,L,
J ;β) → L is weakly submersive.

Proof. It is easy to see that Ev0 induces the differential of the map
evp,0 at p. The lemma is an immediate consequence of this fact. �

We can define the mapping transversality condition for other marked
points and generalize Lemma 7.12 in the obvious way.



MODULI SPACES OF PSEUDOHOLOMORPHIC DISKS 157

8. Smoothness of obstruction bundle data

In this section we define Condition (2) in Definition 5.1.

8.1. Trivialization of families of function spaces.

Remark 8.1. We choose a unitary connection on TX and fix it.

Situation 8.2. Let p ∈ Mk+1,�(X,L;β). We take stabilization and
trivialization data Wp, part of which are the weak stabilization data �wp at p
consisting of �′ extra marked points. We assume Ep(x) satisfies Definition 5.1
(1)(3)(5). �

Note p ∪ �wp ∈ Mk+1,�+�′(X,L;β). Let y = ((Σy, �zy,�zy), uy) be an
element of Xk+1,�+�′(X,L;β) which is ε0-close to p∪�wp. We apply Lemma 3.4
to p ∪ �wp and obtain y, an element of the domain of Φ in (3.5), such that
Φ(y) = (Σy, �zy,�zy).

By Lemma 3.9 we obtain a smooth embedding Φ̂y,�ε : Σp∪�wp
(�ε) →

Σy which sends �zp, �zp ∪ �wp to �zy, �zy, respectively. We remark Σy(�ε) =

Φ̂y,�ε(Σp(�ε)). We put x = forget�+�′,�(y) and obtain Ep(x) ⊂ C2(Σx;u
∗
xTX⊗

Λ01). Note Σx = Σy and ux = uy. We also remark Σp∪�wp
= Σp, up∪�wp

= up.
We define a linear map

(8.1) Py : C2(Σy(�ε);u
∗
yTX ⊗ Λ01) → C2(Σp;u

∗
pTX ⊗ Λ01)

below. We first define a bundle map

(8.2) u∗yTX → u∗pTX

over the diffeomorphism Φ̂−1
y,�ε . Let z ∈ Σp∪�wp

(�ε). By our choice, the distance

between uy(Φ̂y,�ε(z)) and up(z) is smaller than ε0. We may choose ε0 smaller
than the injectivity radius of the Riemannian metric in Remark 4.10. There-
fore there exists a unique minimal geodesic joining uy(Φ̂y,�ε(z)) and up(z).
We take a parallel transport by the connection in Remark 8.1 along this
geodesic. We thus obtain (8.2). This bundle map is complex linear, since the
connection in Remark 8.1 is unitary.

We next take the differential of Φ̂y,�ε to obtain a bundle map Λ1(Σy(�ε)) →
Λ1(Σp∪�wp

(�ε)). We take its complex linear part to obtain

(8.3) Λ01(Σy(�ε)) → Λ01(Σp∪�wp
(�ε)).

This is a complex linear bundle map over Φ̂−1
y,�ε . In case y = p ∪ �wp this is

the identity map. So if we take ε0 sufficiently small, (8.3) is an isomorphism.
Taking a tensor product of (8.2) and (8.3) over C we obtain a bundle

isomorphism

(8.4) u∗yTX ⊗ Λ01 → u∗pTX ⊗ Λ01

over Φ̂−1
y,�ε . Roughly speaking the smoothness of Ep(x) means that Py(Ep(x))

depends smoothly on y. We will formulate it precisely in the next subsection.
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8.2. The smoothness condition of obstruction bundle data.

Definition 8.3. Suppose we are in Situation 8.2. We say Ep(x) is in-
dependent of ux|neck if the following holds for some ε0, �ε.

Let y,y′ be elements of Xk+1,�+�′(X,L;β) which are ε0-close to p ∪ �wp.
We put x = forget�+�′,�(y) and x′ = forget�+�′,�(y

′). (Note Σx = Σy, Σx′ =
Σy′ .) We assume that there exists v : Σx → Σx′ such that

(1) v is biholomorphic and sends �zy, �zy to �zy′ , �zy′ , respectively.
(2) v(Σy(�ε)) = Σy′(�ε) and the equality uy′ ◦ v = uy holds on Σy(�ε).

Then we require that all the elements of Ep(x) (resp. Ep(x
′)) are supported

on Σy(�ε) (resp. Σy′(�ε)) and Py(Ep(x)) = Py′(Ep(x
′)).

This is a part of the definition of the smoothness of obstruction bundle
data, that is, Definition 5.1 (2). To formulate the main part of this condition
we use the next:

Definition 8.4. Let H be a Hilbert space and {E(ξ)} a family of fi-
nite dimensional linear subspaces of H parametrized by ξ ∈ Y , where Y is
a Hilbert manifold. We say {E(ξ)} is a Cn family if there exists a finite
number of Cn maps: ei : Y → H (i = 1, . . . , N) such that for each ξ ∈ Y ,
(e1(ξ), . . . , eN (ξ)) is a basis of E(ξ).

Suppose we are in Situation 8.2. In particular we have chosenWp. We as-
sume Ep(x) is independent of ux|neck. We take �ε which is sufficiently smaller
than the one appearing in Definition 8.3. We put p+ = p ∪ �wp where �wp is
a part of Wp. We consider the map (3.5)

(8.5) Φ :
∏

a∈As
p∪Ad

p

V+
a × [0, c)md × (D2

◦(c))
ms → Md

k+1,�,

for p+. Here we decompose (Σp+ , �zp,�zp ∪ �wp) into irreducible components

and let V+
a be the deformation parameter space of each irreducible compo-

nent (Σp(a), �zp(a),�zp(a) ∪ �wp(a)). Here

�zp(a) = (�zp ∩ Σp(a)) ∪ {boundary nodes in Σp(a)}
�zp(a) = (�zp ∩ Σp(a)) ∪ {interior nodes in Σp(a)}
�wp(a) = �wp ∩ Σp(a).

Now we take the direct product

(8.6) V(p+;�ε) =
∏

a∈As
p∪Ad

p

V+
a ×

md∏
j=1

[0, εdj )×
ms∏
i=1

D2
◦(ε

s
i).

Note we have already taken ϕs
a,i, ϕ

d
a,j , φa as a part of Wp.

To each y ∈ V(p+;�ε) we associate a marked nodal disk (Σy, �zy,�zy) by

Lemma 3.4. We also obtain a diffeomorphism Φ̂y,�ε : Σp+(�ε) → Σy(�ε) by
Lemma 3.9.
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Let Lm be a small neighborhood of up+ |Σp+ (�ε) in L2
m((Σp+(�ε), ∂Σp+(�ε));

X,L). We will associate a finite dimensional subspace Ep;Wp(y, u
′) of

L2
m(Σp+(�ε);u∗pTX ⊗ Λ01) to (y, u′) ∈ V(p+;�ε)× Lm below.
We assume Ep(x) is independent of ux|neck and consider

u′′ = u′ ◦ Φ̂−1
y,�ε : Σy(�ε) → X.

We can extend u′′ to Σy (by modifying it near the small neighborhood of
the boundary of Σy(�ε)), still denoted by u′′, so that u′′|Σy\Σy(�ε) has diameter

< ε0.
16

We now take y = ((Σy, �zy,�zy ∪ �wy), u
′′) and x = forget�+�′,�(y). Then

using Ep(x) we define

(8.7) Ep;Wp(y, u
′) = Py(Ep(x)).

Since Ep(x) is independent of ux|neck this is independent of the choice of
the extension of u′′. As a part of our condition, we require

Ep;Wp(y, u
′) ⊂ L2

m(Σp;u
∗
pTX ⊗ Λ01).

See Definition 8.5 (1). This is a finite dimensional subspace of L2
m(Σp;

u∗pTX ⊗ Λ01) depending on p,Wp and y, u′.

Definition 8.5. We say Ep(x) depends smoothly on x with respect to
(p,Wp) if the following holds. For each n there existsm0 such that ifm ≥ m0

and �ε is small then:

(1) Elements of Ep(x) are of L2
m class if ux is of L2

m class.
(2) If x = forget�+�′,�(y), (Σy, �zy,�zy) = Φ(y) (where y and y are as

above) then the supports of elements of Ep(x) are contained in
Σy(�ε).

(3) Ep;Wp(y, u
′) is a Cn family parametrized by (y, u′) in the sense of

Definition 8.4.

Remark 8.6. Let r = ((Σr, �zr,�zr), ur) ∈ Xk+1,�(X,L, J ;β) be an ele-
ment of Up such that ur is smooth but not necessarily pseudo holomorphic.
We can still define the notion of stabilization and trivialization data Wr in
the same way as Definition 4.9.

Definition 8.7. We say Ep(x) depends smoothly on x if:

(1) Ep(x) is independent of ux|neck.
(2) Ep(x) depends smoothly on x with respect to (p,Wp) for any

choice of Wp.
(3) Let r = ((Σr, �zr,�zr), ur) ∈ Xk+1,�(X,L, J ;β) be as in Remark 8.6.

Then for any (r,Wr), the same conclusion as (2) holds.

We will elaborate (3) at the end of this subsection.

16Note u′|∂Σy(�ε) has diameter < ε′ (in the sense of Definition 4.11) with ε′ < ε0, and
ε0 is smaller than the injectivity radius of X. We can use these facts to show the existence
of u′′.
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Remark 8.8. In our previous writing such as [FOn, FOOO4, FOOO7]
we defined the obstruction spaces Ep(x) in the way we will describe in
Sect. 11. We will prove in Sect. 11 that it satisfies Definition 8.7.

On the other hand, the gluing analysis such as those in [FOOO7] works
not only for this particular choice but also for more general Ep(x) which
satisfies Definition 8.7. In fact, in some situation such as in [FOOO3, Fu1]
(where we studied an action of a compact Lie group on the target space), we
used somewhat different choice of Ep(x) where Definition 8.7 is also satisfied.
(See [Fu1, Sect. 7.4] and [FOOO3, Appendix], for example.) Other methods
of defining Ep(x) may be useful also in the future in some other situations.

Therefore, formulating the condition for Ep(x) to satisfy, such as Defi-
nition 8.7, rather than using some specific choice of Ep(x) is more flexible
and widens the scope of its applications.

We now explain Definition 8.7 (3). We can construct a Kuranishi struc-
ture of Cn class for any but fixed n without using this condition. This
condition is used to obtain a Kuranishi structure of C∞ class. See Sect. 12.

Let r be as in Remark 8.6. We can define the notion of stabilization
and trivialization data Wr. We also define V(r ∪ �wr;�ε) in the same way as
(8.6). Then, for each y ∈ V(r ∪ �wr;�ε), we can associate (Σy, �zy,�zy) in the

same way and obtain a diffeomorphism Φ̂y,�ε : Σr∪�wr
(�ε) → Σy(�ε). Let Lm

be a small neighborhood of ur∪�wr
|Σr∪�wr

(�ε) in L2
m((Σr∪�wr

, ∂Σr∪�wr
(�ε));X,L).

Now for each u′ ∈ Lm and y ∈ V(r ∪ �wr;�ε) we use Ep(x)
17 for x =

forget�+�′,�(Φr∪�wr
(y)) in the same way as above to define Ep;Wr(y, u

′) ⊂
L2
m(Σr∪�wr

(�ε);u∗rTX⊗Λ01). Definition 8.7 (3) requires that this is a Cn fam-
ily parameterized by (y, u′) for any Wr if m is large and �ε is small.

9. Kuranishi charts are of Cn class

In this section we review how the gluing analysis (especially those de-
tailed in [FOOO7]) implies that the construction of Sect. 7 provides Kuran-
ishi charts of Cn class. In other words we prove the Cn version of Lemma 7.3.

9.1. Another smooth structure on the moduli space of source
curves. As was explained in [FOOO2, Remark A1.63] the standard smooth
structure of Md

k+1,� is not appropriate to define smooth Kuranishi charts

of Md
k+1,�(X,L;β). Following the discussion of [FOOO2, Subsection A1.4],

we will define another smooth structure on Md
k+1,� in this subsection. (The

notion of profile due to Hofer, Wysocki and Zehnder [HWZ, Sect. 2.1] is
related to this point.) We consider the map (3.5).

Let rj ∈ [0, c) (j = 1, . . . ,md) be the standard coordinates of [0, c)md

and σi ∈ D2
◦(c) (i = 1, . . . ,ms) the standard coordinates of (D2

◦(c))
ms . We

17This is Ep(x) and is not Er(x). The later is not defined.
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put

(9.1)
T d
j = − log rj ∈ R+ ∪ {∞},

T s
i = − log |σi| ∈ R+ ∪ {∞}, θi = −Im(log σi) ∈ R/2πZ.

We then define

(9.2) sj = 1/T d
j ∈ [0,−1/ log c), ρi = exp(θi

√
−1)/T s

j ∈ D2(−1/ log c).

Composing these coordinate changes with the map Φ in Lemma 3.4, we
define

(9.3) Φs,ρ :
∏

a∈As
p∪Ad

p

Va × [0,−1/ log c)md × (D2
◦(−1/ log c))ms → Md

k+1,�.

Lemma 9.1. There exists a unique structure of smooth manifold with
corners on Md

k+1,� such that Φs,ρ is a diffeomorphism onto its image for

each p ∈ Md
k+1,�.

Note in this subsection p,q are elements ofMd
k+1,� and not ofMd

k+1,�(X,

L, J ;β).

Proof. During this proof we write Φp etc. to clarify that it is associated
to p ∈ Md

k+1,�. We denote by v
p
a an element of the first factor of the domain

of (9.3) for p.
Suppose q ∈ Im(Φp). Then mq

d ≤ mp
d , m

q
s ≤ mp

s . We may enumerate
the marked points so that the j-th boundary node (resp. the i-th interior
node) of Σp corresponds to the j-th boundary node (resp. the i-th interior
node) of Σq for j = 1, . . . ,mq

d (resp. i = 1, . . . ,mq
s ). Then we can easily

prove the next inequalities:

(9.4)

∥∥∥∥∥∇n−1 ∂

∂T d,q
j

(T d,p
j0

− T d,q
j0

)

∥∥∥∥∥ ≤ Cne
−cnT

d,q
j

∥∥∥∥∇n−1 ∂

∂T s,q
i

(T d,p
j0

− T d,q
j0

)

∥∥∥∥ ≤ Cne
−cnT

s,q
i

∥∥∥∥∇n−1 ∂

∂θqi
(T d,p

j0
− T d,q

j0
)

∥∥∥∥ ≤ Cne
−cnT

s,q
i

for j0 = 1, . . . ,mq
d . Here ∇n−1 is the (n− 1)-th derivatives on the variables

v
q
a , T

d,q
j T s,q

i , θqi and ‖ · ‖ is the C0 norm.

In fact, to prove the 2nd and 3rd inequalities of (9.4), we use the fact
that σp

i , σ
q
i are holomorphic functions defining the same divisor to show

that σp
i /σ

q
i is a nowhere vanishing holomorphic function. Then in the same

way as [FOOO7, Sublemma 8.29] we obtain the 2nd and 3rd inequalities of
(9.4). The 1st inequality is proved in the same way by taking the double as
in Sect. 2.
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We can prove the same inequality with T d,p
j0

−T d,q
j0

replaced by T s,p
i0

−T s,q
i0

,

θpi0 − θqi0 , (i0 = 1, . . . ,mp
s ), sj0 (j0 > mq

d), σi0 (i0 > mq
s ) or coordinates of

v
p
a .

In fact, the estimates for sj0 (j0 > mq
d), σi0 (i0 > mq

s ) or coordinates of
v
p
a are proved using the fact that they are smooth functions of rqj , v

q
a and

σq
i .

These facts combined with strata-wise smoothness of (Φp
s,ρ)−1 ◦Φq

s,ρ im-
ply that the coordinate change (Φp

s,ρ)−1 ◦ Φq
s,ρ is smooth. The lemma is a

consequence of this fact. �

Hereafter we write Md. log
k+1,� when we use the smooth structure given in

Lemma 9.1.

9.2. Gluing analysis: review. We review the conclusion of the gluing
analysis of [FOOO7, Theorem 6.4] in this subsection.

We take m sufficiently larger than n. Especially it is larger than m0

appearing in Definition 8.5. Let {Ep(x)} be obstruction bundle data at

p ∈ Md
k+1,�(X,L, J ;β). We fix the stabilization and trivialization data Wp

and put p+ = p ∪ �wp. We decompose Σp+ into irreducible components

Σp+ =
⋃

a∈As
p

Σp+(a) ∪
⋃

a∈Ad
p

Σp+(a).

Let p+
a be as in (3.3)(3.4)18 and V+

a a neighborhood of the source curve of

p+
a in Ms,reg

�(a) or Md,reg
k(a)+1,�(a). We put

V+ =
∏

V+
a .

For v ∈ V+ we obtain (Σ(v), �z(v),�z(v)) = Φ(v) with the same number of
irreducible components as Σp+ . (Namely we put all the gluing parameters
to be 0.) Using the given trivialization data we obtain a diffeomorphism

Φ̂v : Σp+ → Σ(v) which preserves the marked and the nodal points.

Definition 9.2. By V (p;Ep(·); ε0), we denote the set of pairs (v, u′)
such that:

(1) v ∈ V+.
(2) u′ : (Σ(v), ∂Σ(v)) → (X,L) is an L2

m map such that the L2
m-

difference between u′ ◦ Φ̂v and u is smaller than ε0.
(3)

(9.5) ∂u′ ∈ Ep(v, u
′).

Here Ep(v, u
′) = Ep(forget�+�′,�(Φ(v), u

′)) ⊂ L2
m(Σ(v); (u′)∗TX ⊗

Λ01) is the case of Ep(x) when x = forget�+�′,�(y), y = ((Σ(v),
�z(v),�z(v)), u′).

18Note we consider p+ here in place of p in (3.3)(3.4).
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We define maps

(9.6) Prsource : V (p;Ep(·); ε0) →
∏

a∈As
p

Ms,reg
�(a) ×

∏
a∈Ad

p

Md,reg
k(a)+1,�(a),

(9.7)

Prmap :V (p;Ep(·); ε0)

→
∏

a∈As
p

L2
m(Σp+(a);X)×

∏
a∈Ad

p

L2
m(Σp+(a), ∂Σp+(a);X,L)

by

Prsource(v, u′) = v and Prmap(v, u′) =
(
u′ ◦ Φ̂v|Σp+ (a) : a ∈ As

p ∪ Ad
p

)
.

Lemma 9.3. There exists a unique Cn structure on V (p;Ep(·); ε0) such
that (Prsource,Prmap) is a Cn embedding.

Moreover the action of Aut+(p) is of Cn class and (Prsource,Prmap) is
Aut+(p)-equivariant.

Proof. This is a consequence of Definition 5.1 (2)(3), Lemma 5.8 and
the implicit function theorem. In fact Definition 5.1 (3) implies that hypoth-
esis of the implicit function theorem is satisfied. �

V (p;Ep(·); ε0) is a part of the ‘thickened’ moduli space consisting of
elements that have the same number of nodal points as p. We next include
the gluing parameter. Recall from Definition 7.2 that Up+ for p+ = p ∪ �wp

is the set of all x ∈ Up+ such that

(9.8) ∂ux ∈ Ep(x).

Here Up+ is Bε0(Xk+1,�(X,L, J ;β),p ∪ �wp,Wp∪�wp
) for some small ε0.

We define a map

(9.9) Prmap : Up+ → L2
m(Σp∪�wp

(�ε), ∂Σp∪�wp
(�ε);X,L)

below. We first observe that p ∪ �wp has no nontrivial automorphism. (It
may have a nontrivial extended automorphism.) Therefore if x ∈ Up+ and

ε0 is sufficiently small there exist unique v ∈ V+ and (sj)
md
j=1, (ρi)

md
i=1 such

that
(Σx, �zx,�zx) = Φs,ρ(v, (sj), (ρi)),

where Φs,ρ is as in (9.3). We put y = (v, (sj), (ρi)). Then by Lemma 3.9 we

obtain a smooth embedding: Φ̂y;�ε : Σp+(�ε) → Σy = Σx. We define

(9.10) Prmap(x) = ux ◦ Φ̂y;�ε : Σp+(�ε) → X.

We also define Prsource : Up+ → Md,log
k+1,�+�′ by Prsource(x) = [Σx, �zx,�zx].

They together define :

(9.11) (Prsource,Prmap) : Up+ → Md,log
k+1,�+�′ × L2

m(Σp+(�ε), ∂Σp+(�ε);X,L).

The target of the map (9.11) has a structure of Hilbert manifold since it is
a direct product of a Hilbert space and a smooth manifold.
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Proposition 9.4. If m is large enough compared to n and ε0, �ε are
small, then the image of the map (9.11) is a finite dimensional submanifold
of Cn class.

Moreover the map (9.11) is injective.

Proof. Below we explain how we use [FOOO7, Theorem 6.4] to prove
Proposition 9.4. [FOOO7] discusses the case when Σp has two irreducible
components. However the argument there can be easily generalized to the
case when it has arbitrarily many irreducible components. (See also
[FOOO4, Sect. 19] where the same gluing analysis is discussed in the general
case.) We consider

(9.12) V = V (p;Ep(·); ε0)×
md∏
j=1

[0, εdj )×
ms∏
i=1

D2
◦(ε

s
i).

We change the variables from rj ∈ [0, εdj ), σi ∈ D2
◦(ε

s
i) to sj ∈ [0,−1/ log(εdj )),

ρi ∈ D2
◦(−1/ log(εsi)) by (9.2). We write V log when we use the smooth struc-

ture so that sj , ρi are the coordinates.

Remark 9.5. The identity map V log → V is smooth but V → V log is
not smooth.

In [FOOO7, Theorems 3.13,8.16] the map Glue : V log → Up+ is con-
structed as follows.

Let ((v, u′), (rj), (σi)) ∈ V log. We put (Σx, �zx,�zx) = Φ(v, (rj), (σi)).
(Namely we glue the source curve Σv = Φ(v) by using the gluing parameter
(rj), (σi).)

Using u′ : Σv → X and a partition of unity we obtain a map u(0) :
Σx → X (In other words, this is the map [FOOO7, (5.4)] and is the map
obtained by ‘pre-gluing’.) The map u(0) mostly satisfies the equation (9.8).

However at the neck region ∂u(0) has certain error term. We can solve the
linearized equation of (9.8) using the assumption Definition 5.1 (3) and the
‘alternating method’. Then by Newton’s iteration scheme we inductively
obtain u(a) (a = 1, 2, 3, . . . ). By using Definition 5.1 (2) we can carry out
the estimate we need to work out this iteration process ([FOOO7, Sect. 5]).
Then lima→∞ u(a) converges to a solution of (9.8), which is by definition ux.
We define

Glue((v, u′), (rj), (σi)) = ((Σx, �zx,�zx), ux).

Replacing V log by its open subset, the map Glue defines a bijection between
V log and Up+ . (This is a consequence of [FOOO7, Sect. 7].)

To prove Proposition 9.4 it suffices to show that (Prsource,Prmap) ◦Glue
is a Cn embedding. Note the smooth coordinates we use here are sj and ρi
given in (9.2). By definition and Lemma 9.1, the map Prsource ◦ Glue is a
smooth submersion with respect to this smooth structure.
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We use the coordinates T d
j , T

s
i and θi in place of sj and ρi for the gluing

parameter and denote

(Prmap(Glue((v, u′), (T d
j ), (T

s
i , θi))))(z) = u(((v, u′), (T d

j ), (T
s
i , θi)); z).

Here z ∈ Σp∪�wp
(�ε) is the domain variable of Prmap(Glue(v, (T d

j ), (T
s
i , θi))).

Then the conclusion of [FOOO7, Theorem 6.4] is the next inequalities:

(9.13)

∥∥∥∥∥∇n′−1 ∂

∂T d
j

(u(((v, u′), (T d
j ), (T

s
i , θi)); ·))

∥∥∥∥∥
L2
m−n′

≤ Cne
−cnTd

j

∥∥∥∥∇n′−1 ∂

∂T s
i

(u(((v, u′), (T d
j ), (T

s
i , θi)); ·))

∥∥∥∥
L2
m−n′

≤ Cne
−cnT s

i

∥∥∥∥∇n′−1 ∂

∂θi
(u(((v, u′), (T d

j ), (T
s
i , θi)); ·))

∥∥∥∥
L2
m−n′

≤ Cne
−cnT s

i

for j = 1, . . . ,mq
d and n′ ≤ n. Here ∇n′−1 is the (n′ − 1)-th derivatives on

the variables vqa , T
d,q
j T s,q

i , θqi .
From these inequalities it is easy to see that Prmap ◦Glue is of Cn class.
We now fix (v, (T d

j ), (T
s
i , θi)) and consider the map

(9.14) u′ 
→ u((v, u′), (T d
j ), (T

s
i , θi)); ·)

This is a map

L → L2
m(Σp+(�ε), ∂Σp+(�ε);X,L)

where L is the set of u′ satisfying Definition 9.2 (2)(3).
To complete the proof of Proposition 9.4 it suffices to show that (9.14) is

a Cn embedding. Using (9.13) again it suffices to prove it in case Φ(v, (T d
j ),

(T s
i , θi)) = (Σp+ , �zp+ ,�zp+) (by taking a smaller neighborhood of p if neces-

sary). In that case (9.14) is nothing but the restriction map. Therefore by
the unique continuation (9.14) is a Cn embedding. �

Lemma 9.6. The group Aut+(p) of extended automorphisms of p has
Cn action on Up+. The map (9.11) is Aut+(p) equivariant.

Proof. This is immediate from Lemma 5.8. �

Thus we obtain a Cn orbifold Up+/Aut(p) with p+ = p ∪ �wp.

9.3. Local transversal and stabilization data. The Cn orbifold
Up+/Aut(p) obtained in the last subsection is not the Kuranishi neighbor-
hood appearing in the Kuranishi chart we look for. In fact it still contains
the extra parameters to move (� + 1)-th, . . . , (� + �′)-th interior marked
points. To kill these parameters we proceed in the same way as [FOn, ap-
pendix] to use local transversals. We use the same trick in Sect. 11 to prove
the existence of obstruction bundle data.
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Definition 9.7. Let p = ((Σp, �zp,�zp), up) ∈ Mk+1,�(X,L, J ;β). Stabi-
lization data at p are by definition weak stabilization data �wp = (wp,1, . . . ,

wp,�′) as in Definition 4.6 together with �Np = {Np,i | i = 1, . . . , �′} which
have the following properties.

(1) Np,i is a codimension 2 submanifold of X.
(2) There exists a neighborhood Ui of wp,i in Σp such that up(Ui) in-

tersects transversally with Np,i at unique point up(wp,i). Moreover,
the restriction of up to Ui is a smooth embedding.

(3) Suppose v : Σp → Σp is an extended automorphism of p and
v(wp,i) = wp,i′ . Then Np,i = Np,i′ and v(Ui) = Ui′ .

We call Np,i a local transversal and �Np local transversals.

Local transversals are used to choose �′ additional marked points in a
canonical way for each x ∈ Xk+1,�(X,L, J ;β). Lemma 9.9 below formulates
it precisely.

Situation 9.8. Let p = ((Σp, �zp,�zp), up) ∈ Mk+1,�(X,L, J ;β). We

take its stabilization data (�wp, �Np). We also take {ϕs
a,i}, {ϕd

a,j}, {φa} so that

Wp = (�wp, {ϕs
a,i}, {ϕd

a,j}, {φa}) become stabilization and trivialization data

in the sense of Definition 4.9. We call (Wp, �Np) strong stabilization data. �

Lemma 9.9. Suppose we are in Situation 9.8. There exists ε0 > 0 and
o(ε) with limε→0 o(ε) = 0 that have the following properties.

If x ∈ Bε(Xk+1,�(X,L, J ;β);p;Wp), ε ∈ (0, ε0), then there exists �wx

such that:

(1) x∪�wx ∈ Bo(ε)(Xk+1,�+�′(X,L, J ;β);p∪�wp;Wp∪�wp
). Note the right

hand side is defined in Definition 4.12.
(2) ux(wx,i) ∈ Np,i for i = 1, . . . , �′.

Moreover �wx satisfying (1)(2) is unique up to the action of Aut(p).
Elements of Aut+(p) preserve �wx as a set.

Proof. According to Definition 4.12, x ∈ Bε(Xk+1,�(X,L, J ;β);p;Wp),
implies that there exists �w0

x such that

x ∪ �w0
x ∈ Bo(ε)(Xk+1,�+�′(X,L, J ;β);p ∪ �wp;Wp∪�wp

).

We use the implicit function theorem and the fact that ux is C2 close to up
to prove that there exists �wx in a small neighborhood of �w0

x such that (2)
is satisfied. It is then easy to see that (1) is also satisfied.

In case x = p, the uniqueness of �wx up to Aut(p) action is obvious. We
can use the C2 small isotopy between ux and up (defined outside of the neck
region) to reduce the proof for the general case to the case x = p. �

9.4. Cn structure of the Kuranishi chart. We now prove the Cn-
version of Lemma 7.3 using the construction of the last two subsections.
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Suppose we are in the situation of Proposition 9.4. In addition to the stabi-
lization and trivialization data Wp we have already chosen local transversals
�Np so that (Wp, �Np) are strong stabilization data.

Definition 9.10. We define Vp to be the subset of Up+ (with p+ =

p ∪ �wp) consisting of x = ((Σx, �zx,�zx), ux) such that

(9.15) ux(zx,�+i) ∈ Np,i, for i = 1, . . . , �′.

We remark that the points zx,�+i, i = 1, . . . , �′, correspond to the addi-
tional marked points �wp.

Lemma 9.11. Vp is a Cn submanifold of Up+ if ε0 and �ε are sufficiently
small.

Proof. By definition

(9.16) ux(zx,�+i) = Prmap(x)(wp,i).

Therefore x 
→ ux(zx,�+i) is a Cn map by Proposition 9.4. It suffices to show
that this map is transversal to Np,i.

By taking ε0 and �ε small, it suffices to show the transversality for p+ =
p ∪ �wp. Note that if �w′

p is sufficiently close to �wp then p ∪ �w′
p ∈ Up+ .

In fact since ∂up is not only an element of Ep(p ∪ �wp) but also zero, the

element p∪ �w′
p still satisfies the condition ∂up ∈ Ep(p∪ �w′

p) after we move
�w′
p. Therefore Definition 9.7 (2) implies that the map x 
→ ux(zx,�+i) is

transversal to Np,i. �

Lemma 9.12. Vp is invariant under the action of the group Aut+(p).

Proof. This is a consequence of Lemma 9.6 and Definition 9.7 (3). �

The set Up as in Definition 7.2 is an open neighborhood of p in Vp/Aut(p)
by Lemma 9.9. Therefore it has a structure of Cn orbifold. We remark that
the tangent space of Vp at p contains (Dup∂)

−1(Ep(p))/aut(Σp, �zp,�zp).
Therefore the second half of Condition 5.6 implies that Vp/Aut(p) is an
effective orbifold. We thus have proved the Cn version of the first statement
of Lemma 7.3.

We next study the bundles. On L2
m(Σp(�ε), ∂Σp(�ε);X,L) there exists a

bundle of Cn class whose fiber at h is L2
m(Σp(�ε);h

∗TX ⊗ Λ01). We pull
it back to Vp by Prmap. Then the bundle whose fiber at x ∈ Vp ⊂ Up+

is Ep(forget�′+�,�(x)) is its Cn subbundle by Definition 8.5. Let Ẽp be this

subbundle. We can show that the Aut+(p) action on Vp lifts to a Cn action

on Ẽp by Lemma 5.8. We thus obtain a required Cn (orbi)bundle Ep =

Ẽp/Aut(p).
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It is easy to check that x 
→ s(x) = ∂ux ∈ Ep(x) is a Cn section. We
have thus proved the Cn version of Lemma 7.3. �

10. Coordinate change is of Cn class

10.1. The main technical result.

Situation 10.1. Let p ∈ Mk+1,�(X,L;β). We take its strong stabiliza-

tion data (Wp, �Np), whereWp = (�wp, {ϕs,p
a,i }, {ϕ

d,p
a,j }, {φ

p
a}) are stabilization

and trivialization data. �wp consist of �′ additional marked points and so p∪
�wp ∈ Mk+1,�+�′(X,L;β). Suppose q ∈ Mk+1,�(X,L;β) is ε-close to p and

take its stabilization and trivialization dataWq = (�wq, {ϕs,q
a,i}, {ϕ

d,q
a,j }, {φ

q
a}).

�wq consist of �′′ additional marked points and so q ∪ �wq ∈ Mk+1,�+�′′(X,
L;β). �

By the definition of ε-closeness there exist �′ additional marked points

p�wq on Σq and q ∈
∏

a∈As
p∪Ad

p+
Vp+

a × [0, c)md × (D2
◦(c))

ms such that

(Σq, �zq,�zq ∪ p�wq) = Φp+(q).

Here Φp+ is the map Φ in (3.5). (Here we apply Lemma 3.4 to p+ = p∪ �wp

in place of p there to obtain the map Φp+ .) By Lemma 9.9 we may assume

uq(pwq,i) ∈ Np,i

in addition. By Lemma 3.9 we obtain a smooth embedding

Φ̂p+;q,�ε : Σp+(�ε) → Σq

whose image is by definition Σq(�ε). Here and hereafter we include p+ in

the notation Φ̂p+;q,�ε. We do so in order to distinguish (10.1) from (10.2) for
example.

We take ε′, �ε′ sufficiently small compared to ε and �ε. Let x ∈ Xk+1,�(X,
L;β). Suppose x∪q�wx ∈ Xk+1,�+�′′(X,L;β) is ε′-close to q+ = q∪ �wq. Then
there exists xq such that (Σx, �zx,�zx ∪ q�wx) = Φq+(xq). Again by Lemma 3.9
we obtain a smooth embedding

(10.1) Φ̂
q+;xq,�ε′

: Σq+(�ε′) → Σx

whose image is Σx(�ε′) by definition.
By Lemma 9.9 there exists a unique �′-tuple of additional marked points

p�wx on Σx such that:

Condition 10.2. (1) x ∪ p�wx is (o(ε) + o(ε′))-close to p ∪ �wp.
(2) ux(pwx,i) ∈ Np,i.

(3) Φ̂
q+;xq�ε′

(pwq,i) is o(ε
′)-close to pwx,i.

In fact the existence of p�wx satisfying Condition 10.2 (1)(2) directly
follows from Lemma 9.9. Such x ∪ p�wx is unique up to the Aut(p) action.
With Condition 10.2 (3) in addition it becomes unique.
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Figure 2. p, q and x.

Now by Lemmas 3.4 and 3.9 we obtain xp ∈
∏

a∈As
p∪Ad

p
Vp+

a × [0, c)md ×
(D2

◦(c))
ms with x ∪ p�wx = Φp+(xp) and a smooth embedding

(10.2) Φ̂p+,xp,�ε : Σp+(�ε) → Σx

whose image is by definition Σx(�ε).

Since �ε′ is sufficiently small compared to �ε we have

(10.3) Σx(�ε) ⊂ Σx(�ε′).

(The right hand side is the image of Σq+(�ε′) by (10.1) and the left hand side
is the image of Σp+(�ε) by (10.2).) Now we define a map

(10.4) Ψp,q;x∪q�wx
= Φ̂−1

q+,xq,�ε′
◦ Φ̂p+,xp,�ε : Σp+(�ε) → Σq+(�ε′).

This is a family of smooth open embeddings parametrized by x∪ q�wx, with
the domain and target independent of x∪q�wx. Proposition 10.4 below claims
that it is a Cn family if m is sufficiently larger than n. To precisely state it
we need to choose a coordinate of the set of the objects x ∪ q�wx. The way
to do so is similar to Definition 8.5 and the paragraph thereafter. The detail
follows.

We take the direct product (Compare with (8.6).)

(10.5) V(q+; �ε′) =
∏

a∈As
q∪Ad

q

Vq+

a ×
md∏
j=1

[0, ε′dj )×
ms∏
i=1

D2
◦(ε

′s
i ).

and consider the map Φq+ : V(q+; �ε′) → Md
k+1,�+�′′ , where Vq+

a is the de-

formation space of an irreducible component of q+ = q ∪ �wq. (This is the

map (8.5) by taking q+ in place of p in (8.5). V+
a is Vq+

a here.) We denote
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its image by

(10.6) V(q+; �ε′) = Φq+(V(q+; �ε′)) ⊂ Md
k+1,�+�′′ .

This is a neighborhood of the source curve of q+ in Md
k+1,�+�′′ .

Let a = (Σa, �za,�za) ∈ V(q+; �ε′). We put (Σa, �za,�za) = Φq+(y) and ob-

tain a diffeomorphism Φ̂q+,a,�ε = Φ̂q+,y,�ε : Σq+(�ε′) → Σa(�ε′), by Lemma 3.9.

Let L q
m be a small neighborhood of uq+ |

Σq+ (�ε′) in the space L2
m((Σq+(�ε′),

∂Σq+(�ε′));X,L).

For (a, u′) ∈ V(q+; �ε′)× L q
m as above, we consider

(10.7) u′′ = u′ ◦ Φ̂−1

q+,a,�ε′
: Σa(�ε′) → X.

We can extend u′′ to Σa (by modifying it near the small neighborhood of the

boundary of Σa(�ε′)) so that u′′|
Σa\Σa(�ε′)

has diameter < ε0. See footnote 16.

Put x ∪ �wx = (a, u′′) and consider Ψp,q;x∪q�wx
, as in (10.4). We remark

that during the construction of (10.4) the map ux is used only to determine

p�wx by requiring Condition 10.2 (2). Therefore the way to extend u′′ to the
neck region does not affect Ψp,q;x∪q�wx

.

Definition 10.3. We define Ψp,q : V(q+; �ε′)×L q
m ×Σp+(�ε) → Σq+(�ε′)

by
Ψp,q(a, u

′, z) = Ψp,q;x∪q�wx
(z).

Proposition 10.4. If m is sufficiently larger than n then Ψp,q is a Cn

map.

We will prove this proposition in Sect. 10.2. Proposition 10.4 is used in
Sect. 10.3 to show the Cn version of Lemma 7.7. We also use it in Sect. 11
to prove the existence of obstruction bundle data. We also use Lemma 10.6.

Definition 10.5. We define Ξp,q : V(q+; �ε′)× L q
m → Md

k+1,�+�′ by

Ξp,q(a, u
′) = (Σx, �zx,�zx ∪ p�wx).

Here x ∪ q�wx = (a, u′′), u′′ is the extension of (10.7) as above, and p�wx is
determined by Condition 10.2 from x ∪ q�wx.

Lemma 10.6. If m is sufficiently larger than n then Ξp,q is a Cn map.

Lemma 10.6 is proved in Sect. 10.2.

Remark 10.7. Note we use the smooth structure on V(q+; �ε′)∼=V(q+; �ε′)
whose coordinates of gluing parameters are rj ∈ [0, ε′dj ) and σi ∈ D2

◦(ε
′s
i ).

We use sj and ρi as in (9.2) to define an alternative smooth structure on

V(q+; �ε′), and write it as V(q+; �ε′)log. We remark that Proposition 10.4

and Lemma 10.6 imply the same conclusion with V(q+; �ε′) replaced by

V(q+; �ε′)log and Md
k+1,�+�′ by Md,log

k+1,�+�′ . As for Proposition 10.4 this follows

from the fact that the identity map V(q+; �ε′)log → V(q+; �ε′) is smooth. As
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for Lemma 10.6 the proof that the ‘log’ version follows from the original
version is similar to the proof of Lemma 9.1 using a formula similar to (9.4).

10.2. Proof of Proposition 10.4. In this subsection we prove Propo-
sition 10.4 and Lemma 10.6. We use the notation of Sect. 10.1. In this sub-
section we use V(q+; �ε′) but not V(q+; �ε′)log.

We first define a map Ξi : V(q+; �ε′)× L q
m → Σq for i = 1, . . . , �′ by the

equality:

(10.8) Ξi(a, u
′) = Φ̂−1

q+,a,�ε′
(pwx,i).

Here p�wx is determined by Condition 10.2 from x ∪ q�wx = (a, u′′).

Lemma 10.8. Ξi is a Cn map.

Proof. Let Ui be a neighborhood of Np,i in X and h = (h1, h2) : Ui →
R
2 a smooth map such that h−1(0) = Np,i and dh1 is linearly independent

to dh2 on Ui.
Let Ui be a neighborhood of pwq;i in Σq. We define a map Ξ̂i : V(q+; �ε′)×

L q
m × Ui → R

2 by Ξ̂i(a, u
′, z) = h(u′′(z)) where u′′ is as in (10.7). For each

fixed (a, u′) the element 0 ∈ R
2 is a regular value of the restriction of Ξ̂i to

{(a, u′)} × Ui. Moreover Ξ̂i is a Cn map if m is sufficiently larger than n.
Lemma 10.8 then is a consequence of the implicit function theorem. �

We pull back the universal family π : Cd
k+1,�+�′′ → Md

k+1,�+�′′ , by the

inclusion map V(q+; �ε′) → Md
k+1,�+�′′ and take a direct product with L q

m.
We thus obtain

(10.9) C(q+) → V(q+; �ε′)× L q
m.

It comes with k+1 sections sd0 , . . . , s
d
k corresponding to the k+1 boundary

marked points and � + �′′ sections ss1, . . . , s
s
�+�′′ corresponding to the � + �′′

interior marked points.
We consider sections ξ1, . . . , ξ�′ defined by Ξi (i = 1, . . . , �′). Then (10.9)

together with k+1 sections sd0 , . . . , s
d
k and �+�′ sections ss1, . . . , s

s
�, ξ1, . . . , ξ�′

becomes a family of nodal disks with k+1 boundary marked points and �+�′

interior marked points. Therefore by the universality of π : Cd
k+1,�+�′ →

Md
k+1,�+�′ we obtain the next commutative diagram.

(10.10)

C(q+)
F̂−−−−→ Cd

k+1,�+�′⏐⏐	(10.9)
⏐⏐	π

V(q+; �ε′)× L q
m

F−−−−→ Md
k+1,�+�′

Here the horizontal arrows F̂ , F are Cn maps satisfying: F̂ ◦ sdj = sdj ◦F for

j = 0, . . . , k: F̂ ◦ ssi = ssi ◦F for i = 1, . . . , �: F̂ ◦ ξi = ss�+i ◦F for i = 1, . . . , �′:

(10.10) is a Cartesian square: F̂ is fiber-wise holomorphic.
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We can prove the existence of such F̂ and F by taking the double and us-
ing the corresponding universality statement of the Deligne-Mumford moduli
space of marked spheres.

Remark 10.9. In our genus 0 case, we can use cross ratio to give an
elementary proof of the fact that F̂ , F are Cn maps. A similar facts can be
proved for the case of arbitrary genus.

Proof of Lemma 10.6. Ξp,q is nothing but the map F in Diagram
(10.10). �

Proof of Proposition 10.4. We consider the next diagram.

V(q+; �ε′)× L q
m × Σq+(�ε ′)

Φ1−−−−→ C(q+)
F̂−−−−→ Cd

k+1,�+�′
Φ2←−−−− V × Σp+(�ε)

Here Φ1 is the map which is Φ̂
q+,a,�ε′ (see (10.1)) on the fiber of (a, u′) ∈

V(q+; �ε′)×L q
m. V is a small neighborhood of p+ = p∪ �wp in Md

k+1,�+�′ . Φ2

is the map which is Φ̂p+,xp,�ε ′′ (see (10.2)) on the fiber of Φp+(xp).

By (10.3)

(F̂ ◦ Φ1)({(a, u′)} × Σq+(�ε ′)) ⊃ Φ2({(a, u′)} × Σp+(�ε)).

Therefore we take fiber-wise inverse to F̂◦Φ1 on the image of Φ2 and compose
it with Φ2 to obtain a Cn map, that is,

Σp+(�ε)× L p
m × Σp+(�ε) → Σq+(�ε′).

This is nothing but the map Ψp,q in Definition 10.3. �

10.3. Proof of the fact that coordinate change is of Cn class.
In this subsection we will prove the Cn version of Lemma 7.7 using Propo-
sition 10.4.

For given n, let m1,m2 both be sufficiently large and �ε,ε so small that
we obtain Kuranishi charts of Cn class by the argument of Sects. 9.2, 9.4.

Lemma 10.10. The Cn structures on a neighborhood of p in Vp obtained
in Sects. 9.2, 9.4 using L2

m space with m = m1 coincides with one using L2
m

space with m = m2.

Proof. We first observe that the solution of (9.5) is automatically of
C∞ class. This is a consequence of standard bootstrapping argument. (u′ ∈
L2
m implies Ep(a, u

′) consists of L2
m sections and so by (9.5) u′ ∈ L2

m+1.)

Let m1 > m2. Then a finite dimensional Cn submanifold of Md,log
k+1,�+�′ ×

L2
m1

(Σp+(�ε), ∂Σp+(�ε);X,L) becomes a Cn submanifold of Md,log
k+1,�+�′ ×

L2
m2

(Σp+(�ε), ∂Σp+(�ε);X,L) by the obvious embedding. Therefore the two
Cn structures of Up+ coincide. Vp is a Cn submanifold of Up+ and so its two
Cn structures coincide. �
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Lemma 10.11. Let M1,M2, X be finite dimensional Cn manifolds and
K1 ⊂ M1,K2 ⊂ M2 relatively compact open subsets and let A be a Hilbert
manifold. Let ψ : A × M1 → M2 be a Cn map. Suppose m1,m2 − m1 are
sufficiently large compared to n. We assume:

(1) For each a ∈ A, x 
→ ψ(a, x) is an open embedding M1 → M2.
(2) ψ(A×K1) ⊂ K2.

Then the map ψ∗ : A× L2
m2

(K2, X) → L2
m1

(K1, X) defined by

(ψ∗(a, h))(z) = h(ψ(a, z))

is a Cn map between Hilbert manifolds.

Proof. This is easy and standard. We omit the proof. �

Suppose we are in Situation 10.1. We use notations in Sect. 10.1. We
consider the next diagram.

(10.11)

Uq+

(Prsourceq ,Prmap
q )

−−−−−−−−−−→ V(q+; �ε′)log × L2
m2

(Σq+(�ε′), ∂Σq+(�ε′);X,L)⏐⏐	ϕ

⏐⏐	(Ξp,q,ψ)

Up+

(Prsourcep ,Prmap
p )

−−−−−−−−−−→ Md,log
k+1,�+�′ × L2

m1
(Σp+(�ε), ∂Σp+(�ε);X,L)

See Sect. 9.2 for the definition of the horizontal arrows. (Note V(q+; �ε′)log is

an open neighborhood of q+ in Md,log
k+1,�+�′′ .)

The map ψ in the right vertical arrow is defined by

(10.12) ψ(a, u′)(z) = u′(Ψp,q(a, u
′, z)),

where Ψp,q is defined by Definition 10.3. The map Ξp,q in the right vertical
arrow is as in Definition 10.5.

The left vertical arrow ϕ is defined by

(10.13) x ∪ q�wx 
→ x ∪ p�wx,

where p�wx is determined by Condition 10.2. The commutativity of the dia-
gram is immediate from the definitions.

The horizontal arrows are Cn embeddings by Proposition 9.4. (We use

the smooth structure V(q+; �ε′)log here.) The right vertical arrow is a Cn map
by Proposition 10.4 and Lemmas 10.6,10.10. Therefore ϕ is a Cn map.

Now we take local transversals �Nq such that (Wq, �Nq) is a strong sta-
bilization data. We define Vq ⊂ Uq+ by using it. (See Definition 9.10.) Us-

ing Condition 10.2 (2), which we required for p�wx, the image of ϕ is in
Vp ⊂ Up+ and the restriction of ϕ to Vq induces the map ϕpq : Vq/Aut(q) →
Vp/Aut(p). Therefore ϕpq is a Cn map. Note Uq = Vq/Aut(q), Up =
Vp/Aut(p).

Proposition 10.12. The Cn map ϕpq : Uq → Up becomes a Cn embed-
ding if we take a smaller neighborhood U ′

q of [q] in Uq.
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Proof. The proof is divided into 5 steps. In the first 3 steps we assume

p = q. We take two different choices of strong stabilization data (Wo
p, �N o

p)

(o = 1, 2), and obstruction bundle data Eo
p(x) (o = 1, 2) at p with E1

p(x) ⊆
E2

p(x). We then obtain Uo
p, V

o
p and ϕ21 : U

1
p → U2

p. We proved already that
ϕ21 is a Cn map. We will prove that it is a Cn embedding.

(Step 1): The case p = q, (W1
p, �N 1

p) = (W2
p, �N 2

p). It is easy to see that ϕ21

is an embedding in this case.

(Step 2): The case p = q, E1
p(x) = E2

p(x), but (W1
p, �N 1

p) �= (W2
p, �N 2

p). In

this case we can exchange the role of (W1
p, �N 1

p) and (W2
p, �N 2

p) and obtain ϕ12.
Then in the same way as the proof of Lemma 7.8 we can show that ϕ21 ◦ϕ12

and ϕ12 ◦ ϕ21 are identity maps. Therefore they are Cn diffeomorphisms.

(Step 3): The case p = q in general. Note if we have three choices o = 1, 2, 3
then we can show ϕ32 ◦ϕ21 = ϕ31 in the same way as Lemma 7.8. Therefore
combining Step 1 and Step 2 we can prove this case.

(Step 4): Suppose we are given a strong stabilization data (Wp, �Np) at
p. Let q be sufficiently close to p. We also assume that we are given ob-
struction bundle data Ep(x) and Eq(x) at p and q respectively, such that
Eq(x) = Ep(x) when both sides are defined. We will prove that there exist

strong stabilization data (Wq, �Nq) at q such that the map ϕpq is an open
embedding.

The proof is based on the next lemma. We take weak stabilization data
�wq = (wq,i) at q such that Condition 10.2 (1)(2) with x replaced by q is
satisfied. Note �′ = #�wp = #�wq = �′′ in our case.

Lemma 10.13. We can choose {ϕs
q,a,i}, {ϕd

q,a,j}, {φq,a} so that the next
diagram commutes.

(10.14)

U ′
q+

(Prsource,Prmap
q )−−−−−−−−−−→ Md,log

k+1,�+�′

×L2
m′ (Σq∪�wq

(�ε′),∂Σq∪�wq
(�ε′);X,L)⏐⏐	 ⏐⏐	

Up+

(Prsource,Prmap
p )−−−−−−−−−−→ Md,log

k+1,�+�′
× L2

m(Σp∪�wp
(�ε),∂Σp∪�wp

(�ε);X,L)

The left vertical arrow is the inclusion map.

There exists a smooth embedding φ : Σp∪�wp
(�ε) → Σq∪�wq

(�ε′) such that

(a, u′) 
→ (a, u′ ◦ φ)

is the map in the right vertical arrow. (a ∈ Md,log
k+1,�+�′ .)

The number m′ can be arbitrary large. Here U ′
q+ is a neighborhood in

Up+ of q+ which depends on m′. �ε′ depends on m′ also.19

19The last part of lemma is not used here but will be used in Sect. 12 .
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Postponing the proof of the lemma until Sect. 10.4 we continue the proof.
We take Nq,i = Np,i. Since �wq satisfies Condition 10.2 (1)(2), this choice of
Nq,i satisfies the conditions of Definition 9.7.

The commutativity of Diagram (10.14) implies the next:

Corollary 10.14. Consider Diagram (10.11) and Vq ⊂ Uq+. If (a, u′) ∈
(Prsource,Prmap

q )(Vq) then Ξp,q(a, u
′) = a and ψ(a, u′) = u′ ◦ φ. Here ψ

is the map in the right vertical arrow of Diagram (10.11) and φ is as in
Lemma 10.13.

Proof. Let x ∪ q�wx ∈ Vq ⊂ Uq+ . Note by shrinking Uq+ we may

assume Uq+ ⊂ Up+ . Then Nq,i = Np,i implies x∪ q�wx ∈ Vp. In other words

q�wx = p�wx. Therefore ϕ(x∪ q�wx) = x∪ q�wx. Here ϕ is the map in the left
vertical arrow of Diagram (10.11). (See (10.13).)

Put (a, u′) = (PrsourcePrmap
q )(x ∪ q�wx). The commutativity of Diagram

(10.11) implies (Prsourcep ,Prmap
p )(x ∪ q�wx) = (Ξp,q(a, u

′), ψ(a, u′)). On the
other hand the commutativity of Diagram (10.14) implies (Prsourcep ,

Prmap
p )(x ∪ q�wx) = (a, u′ ◦ φ). The corollary follows. �
The injectivity of the differential of (Ξp,q, ψ) on the tangent space of Vq

is now a consequence of Corollary 10.14 and unique continuation.

(Step 5): The general case follows from Step 3 and Step 4 using
Lemma 7.8. �

The proof of the fact that ϕ̂pq is a Cn embedding of (orbi)bundles is
similar. Definition 6.2 (3)(4)(5) are clear from construction.

10.4. Proof of Lemma 10.13. To complete the proof of Proposi-
tion 10.12 and of Cn analogue of Lemma 7.7 it remains to prove
Lemma 10.13.

Proof of Lemma 10.13. Commutativity of the first factor (Prsource)
is obvious. The commutativity of the second factor (Prmap) is an issue. Put

(10.15)

V(p+;�ε) =
∏

a∈As
p∪Ad

p

Vp+

a ×
mp

d∏
j=1

[0, εdj )×
mp

s∏
i=1

D2
◦(ε

s
i),

V(q+; �ε′) =
∏

b∈As
q∪Ad

q

Vq+

b ×
mq

d∏
j=1

[0, ε′dj )×
mq

s∏
i=1

D2
◦(ε

′s
i ).

An element x ∪ �wx in a neighborhood of its source curve (an element of
Md

k+1,�+�′) is written as

x ∪ �wx = Φq+(xq) = Φp+(xp),

where xq ∈ V(q+; �ε′) and xp ∈ V(p+;�ε). Also there exists qp ∈ V(p+;�ε) such
that q+ = Φp+(qp). Φp+ , Φq+ are defined by Lemma 3.4 using Wp,Wq,
respectively.
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Sublemma 10.15. We can choose {ϕs
q,b,i}, {ϕd

q,b,j}, {φq,b} so that the
next diagram commutes.

(10.16)

Σq+(�ε′)
Φ̂

q+,xq,�ε′−−−−−−→ Σx∪w̃x
(�ε′)

Φ̂p+,qp,�ε

�⏐⏐ �⏐⏐
Σp+(�ε)

Φ̂p+,xp,�ε−−−−−→ Σx∪w̃x
(�ε)

The right vertical arrow is an inclusion and other arrows are as in
Lemma 3.9.

It is easy to see from definition that Sublemma 10.15 implies

Lemma 10.13. In fact the smooth open embedding φ : Σp∪�wp
(�ε) → Σq∪�wq

(�ε′)

mentioned in the statement of Lemma 10.13 is the map Φ̂p+,qp,�ε appearing

in Diagram (10.16). �

Proof of Sublemma 10.15. The proof is similar to the discussion of
[FOOO4, Sect. 23]. We first define ϕs

q,b,i and ϕt
q,b,i, analytic families of

coordinates at the nodal points of Σq. An irreducible component Σq+(b)
of Σq+ is obtained by gluing several irreducible components {Σp+(a) | a ∈
A(b)} of Σp+ . Here A(b) ⊂ As

p ∪ Ad
p. We may identify

(10.17) Vq+

b ⊂
∏

a∈A(b)

Vp+

a × Some of the gluing parameters.

Here the second factor of the right hand side consists of the gluing pa-
rameters of the nodes n of Σp+ such that {n} = Σp+(a) ∩ Σp+(a′) with
a, a′ ∈ A(b). We will define an analytic family of coordinates at a node n′

in Σq+(b). It is a family parametrized by Vq+

b . There exists a ∈ A(b) such

that n′ corresponds to a nodal point n̂′ of Σp+ in Σp+(a). Then using ϕs
p,a,i

or ϕt
p,a,i we can find a Vp+

a parametrized family of coordinates at this nodal

point n̂′. We regard it as a Vq+

b parametrized family using the identification
(10.17). We thus obtain ϕs

q,b,i and ϕt
q,b,i.

We next define φq,b. This is a trivialization of the universal family of
deformations of Σq+(b) (equipped with marked or nodal points on it). The

parameter space of this deformation is Vq+

b . In other words if Σv(b) together

with marked points is an object corresponding to v ∈ Vq+

b , the datum φq,b

must be a diffeomorphism

(10.18) Σq+(b) ∼= Σv(b).

Note the data {φp,a | a ∈ A(b)} and {ϕs
p,a,i}, {ϕt

p,a,i} determine a

smooth embedding Σq+(b) ∩ Σq+(�ε) → Σv(b) uniquely such that Diagram
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Figure 3. p+ and q+.

(10.16) commutes there. (This family of embeddings is parametrized by∏
a∈A(b) V

p+

a .) We extend the family to the required family of diffeomor-

phisms (10.18) as follows.
We remark that Σq+(b) \Σq+(�ε) is a union of the following two kinds of

connected components. (See Fig. 3.)

(I) A neighborhood of a nodal point of Σq+ contained in Σq+(b).
(II) A neck region in Σq+(b). It corresponds to a nodal point of Σp+

which is resolved when we obtain Σq+ from Σp+ .

To the part (I) we extend the embedding Σq+(b)∩Σq+(�ε) → Σv(b) using

the analytic families of coordinates ϕs
q,b,i or ϕt

q,b,i we produced above. In
fact requiring Definition 3.7 to be satisfied makes such an extension unique.

We extend it to the part (II) in an arbitrary way. We can prove the ex-

istence of such an extension by choosing Vq+

b small. (The extension depends
not only on the first factor but also on the second factor of (10.17).) See
[FOOO4, Remark 23.5] for example for detail.

The commutativity of Diagram (10.16) is then immediate from construc-

tion. In fact if vq =
(
(vb)b∈As

q∪Ad
q
; (0, . . . , 0), (0, . . . , 0)

)
(namely if all the

gluing parameters are 0) then this is the way how φq,b is chosen. Then by
the way how ϕs

q,b,i and ϕt
q,b,i are chosen Diagram (10.16) commutes when

gluing parameters are nonzero as well. We thus proved Sublemma 10.15 and
the Cn analogue of Lemma 7.7. �

Remark 10.16. In the proof of Lemma 10.13 and Sublemma 10.15 we
never used the pseudo holomorphicity of uq. Therefore Lemma 10.13 and
Sublemma 10.15 still hold if we replace q by r = ((Σr, �zr,�zr), ur) such that
ur is smooth and r is ε-close to p.

11. Existence of obstruction bundle data

In this section we prove:
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Theorem 11.1. There exists an obstruction bundle data {Ep(x)} of the
moduli space Mk+1,�(X,L, J ;β). We may choose it so that Condition 7.11
is satisfied.

11.1. Local construction of obstruction bundle data. Let p ∈
Mk+1,�(X,L, J ;β). We will construct an obstruction bundle data Eq;p(x)
at q when q is in a small neighborhood of p.

Lemma 11.2. There exists a finite dimensional subspace E0
p(p) of

C∞(Σp, u
∗
pTX ⊗ Λ01) (the set of smooth sections) such that:

(1) The supports of elements of E0
p(p) are away from nodal points.

(2) E0
p(p) satisfies the transversality condition in Definition 5.5.

(3) E0
p(p) is invariant under the Aut+(p) action in the sense of Con-

dition 5.6.

We may choose E0
p(p) so that it also satisfies Condition 7.11 and the second

half of Condition 5.6 holds.

This is a standard consequence of the Fredholm property of the operator
(5.5) and unique continuation. We omit the proof.

We next take a strong stabilization data (Wp, �Np) as in Situation 9.8.
Let x ∈ Xk+1,�(X,L, J ;β) be ε-close to p. Using Lemma 9.9 and the

definition of ε-closeness, we can find p�wx such that x ∪ p�wx is o(ε)-close to
p∪ �wp and ux(p�wx,i) ∈ Np,i. Moreover the choice of such p�wx is unique up
to Aut(x) action. (We also remark that Aut(x) is canonically embedded to
Aut(p).)

Now we proceed in the same way as Sect. 8.1. We put y = x∪ p�wx and
obtain y with Φp+(y) = y. We then obtain the map (8.1).

(11.1) Py : C2(Σy(�ε);u
∗
yTX ⊗ Λ01) → C2(Σp;u

∗
pTX ⊗ Λ01).

Note the image of Py is C2(Σp(�ε);u
∗
pTX ⊗ Λ01). We may take �ε so that

E0
p(p) is contained in the image of (11.1).

Definition 11.3. We define

(11.2) E0
p(x) = P−1

y (E0
p(p)).

Since the choice of p�wx is unique up to Aut(x) ⊆ Aut(p) action, Lemma 11.2
(3) implies that the right hand side of (11.2) is independent of the choice of

p�wx.
We also define

(11.3) Eq;p(x) = E0
p(x)

if q ∈ Mk+1,�(X,L, J ;β) is sufficiently close to p and x is ε-close to q.

Proposition 11.4. If q is sufficiently close to p then {Eq;p(x)} is an
obstruction bundle data at q.
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Proof. By Lemma 4.14, Eq;p(x) is defined if x is δ-close to q for some
small δ. We will check Definition 5.1 (1)(2)(3)(5). (1) is obvious from defi-
nition. (5) follows from Lemma 11.2 (3). (3) holds if q = p by Lemma 11.2
(2). Then using Mrowka’s Mayer-Vietoris principle it holds if q is sufficiently
close to p. See [FOOO2, Proposition 7.1.27]. We will prove (2) (smoothness
of Eq;p(x)) in the next subsection.

11.2. Smoothness of obstruction bundle data. In this subsection
we prove that Eq;p(x) (which is defined in Definition 11.3) is smooth in the
sense of Definition 8.7. The proof is based on Proposition 10.4.

Let q ∈ Mk+1,�(X,L, J ;β) and take stabilization and trivialization data
Wq. In other words (together with the strong stabilization data at p which
we have taken in the last subsection), we are in Situation 10.1. We use the
notations of Sect. 10.1.

We remark that the role of p in Definition 8.7 is taken by q here.

We take V(q+; �ε′) as in (10.5) and V(q+; �ε′) = Φq+(V(q+; �ε′)). For y ∈
V(q+; �ε′) and u′ ∈ L q

m we obtain u′′ = u′ ◦ Φ̂−1

q+,y,�ε′
: Σy(�ε′) → X as in (10.7).

We want to prove that the family of linear subspaces Py(Eq;p(x)) (see (8.7)
and (8.1)) is a Cn family when we move y, u′. Here x ∈ Xk+1,�(X,L, J ;β)
and y = x ∪ q�wx = ((Σy, �zy,�zy), u

′′). We take p�wx so that Condition 10.2 is
satisfied. In view of Definition 11.3, we will study the composition:

(11.4)
Px∪q�wx

◦ P−1
x∪p�wx

: C∞(Σp+(�ε);u∗pTX ⊗ Λ01)

→ L2
m(Σy(�ε′);u

∗
xTX ⊗ Λ01) → L2

m(Σq+(�ε′);u∗qTX ⊗ Λ01)

and study Cn dependence of the image of E0
p(p) by this map.

Remark 11.5. Note when we define Px∪q�wx
we take q and x ∪ q�wx in

place of p and y in (8.1). When we define Px∪p�wx
we take p and x ∪ p�wx

in place of p and y in (8.1).

We remark that Definition 8.5 (1)(2) and Definition 8.7 (1) is obvious
from construction. To prove Definition 8.5 (3) (and so Definition 8.7 (2)) it
suffices to prove the next lemma.20

Lemma 11.6. If e ∈ C∞(Σp;u
∗
pTX ⊗ Λ01) is a smooth section which

has a small compact support in Σp+(�ε), then the map (y, u′) 
→ (Px∪q�wx
◦

P−1
x∪p�wx

)(e) is a Cn−1 map21 to L2
m(Σq(�ε′);u∗qTX ⊗ Λ01).

Proof. Let Up be a support of e and zp its coordinate. Let Ψp,q be as

in Definition 10.3. We may assume Ψp,q(V(q+; �ε′)×L q
m ×Up) is contained

in a single chart Uq and let zq be its coordinate.

20In fact we can use partition of unity to reduce the case of general e supported away
from node to the case of one with small support.

21Recall that in Proposition 10.4 we obtain a Cn map Ψp,q.



180 K. FUKAYA, Y.-G. OH, H. OHTA, AND K. ONO

We may also assume that u′(Uq) for any u′ ∈ L q
m and up(U

p) are
contained in a single chart UX of X and denote by e1, . . . , ed, sections of the
complex vector bundle TX on UX which give a basis at all points.

We put a = Φq+(y) ∈ V(q+; �ε′). During the calculation below we write

Ψp,q(z) = Ψp,q(a, u
′, z) for simplicity. By definition the map Px∪q�wx

◦P−1
x∪p�wx

is induced by a bundle map which is the tensor product of two bundle maps.
One of them (See (8.2)) is a composition of the parallel transports

(11.5) Tup(Ψ
−1
p,q(zq))

X −→ Tu′(zq)X −→ Tuq(zq)X.

The other is (See (8.3).)

(11.6) Λ01
Ψ−1

p,q(zq)
Σp −→ Λ01

Φ̂
q+,y,�ε′(z

q)
Σx −→ Λ01

zqΣq.

The arrows in (11.6) are the complex linear parts of the derivatives of

Φ̂
q+,y,�ε′ ◦Ψp,q and of Φ̂−1

q+,y,�ε′
. In fact, by Definition 10.3 and (10.4), Φ̂

q+,y,�ε′ ◦
Ψp,q = Φ̂p+,xp,�ε, where xp is defined by x ∪ p�wx = Φp+(xp).

If h =
∑

i hiei is a section of u∗pTX on Up then (11.5) sends h to the
section

zq 
→
∑
i,j

hi(Ψp,q(a, u
′, zq))Gij(uq(z

q), u′(zq), up(Ψp,q(a, u
′, zq)))ej

Here Gij is a smooth function on UX × UX × UX .
We take a y parametrized (smooth) family of complex structures jy on

Uq, which is a pull back of the complex structure on Σx = Σy by Φ̂
q+,y,�ε′ .

Then (11.6) is a composition of

(DΨp,q)
01 : Λ01

Ψ−1
p,q(zq)

Up → Λ01
zq(U

q, jy) and

(id)01 : Λ01
zq(U

q, jy) → Λ01
zq(U

q, j0).

(Here j0 is the complex structure of Uq ⊂ Σq.) Therefore using Proposi-
tion 10.4 there exists a Cn−1 function f(y, u′, zq) such that (11.6) is written
as

dzp 
→ f(y, u′, zq)dzq.

We put e =
∑

i ei(z
p)ei ⊗ dzp. Here ei are smooth functions. Then

(Px∪q�wx
◦ P−1

x∪p�wx
)(e)

= f(y, u′, zq)

×
∑
i,j

ei(Ψp,q(a, u
′, zq))Gij(uq(z

q), u′(zq), up(Ψp,q(a, u
′, zq)))ej ⊗ dzq.

Since ei, up, uq, Gij are smooth, f is of Cn−1 class, Ψp,q is of Cn class,
and a = Φq+(y) with Φq+ smooth, this is a Cn−1 map of (y, u′, zq), as
required. �
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Definition 8.7 (2) is now proved. We remark that we never used the
fact that uq is pseudo holomorphic in the above proof. Therefore the proof
of Definition 8.7 (3) is the same.22 The proof of Proposition 11.4 is com-
plete. �

11.3. Global construction of obstruction bundle data. In this
and the next subsections we prove Theorem 11.1. The proof is based on
the argument of [FOn, page 1003-1004]. For each p ∈ Mk+1,�(X,L;β) we
use Proposition 11.4 to find its neighborhood U(p) in Mk+1,�(X,L;β) such
that if q ∈ U(p) then Eq;p(x) is an obstruction bundle data at q. We take
a compact subset K(p) of U(p) such that K(p) is the closure of an open
neighborhood Ko(p) of p.

We note that during the construction of Eq;p(x) we have chosen a linear
subspace E0

p(p) (See Lemma 11.2.) as well as strong stabilization data at p.
Since Mk+1,�(X,L;β) is compact, we can find a finite subset {p1, . . . ,

pP} of Mk+1,�(X,L;β) such that

(11.7)

P⋃
i=1

Ko(pi) = Mk+1,�(X,L;β).

For q ∈ Mk+1,�(X,L;β) we put I(q) = {i ∈ {1, . . . ,P} | q ∈ K(pi)}.
Lemma 11.7. We may perturb E0

pi
(pi) by an arbitrary small amount in

C2 norm so that the following holds. For each q ∈ Mk+1,�(X,L;β) the sum∑
i∈I(q)Eq,pi(q) of vector subspaces in C∞(Σq(�ε′);u∗qTX ⊗Λ01) is a direct

sum

(11.8)
⊕

i∈I(q)
Eq,pi(q).

Postponing the proof of Lemma 11.7 to the next subsection we continue
the proof of Theorem 11.1.

Note we may choose E′,0
pi , the perturbation of E0

pi
, sufficiently close to

E0
pi
, so that for q ∈ K(pi) the conclusion of Proposition 11.4 still holds after

this perturbation.
For each x sufficiently close to q we define Eq(x) =

⊕
i∈I(q)Eq,pi(x).

(Since x is sufficiently close to q the right hand side is still a direct sum by
Lemma 11.7.)

Now we prove that {Eq(x)} satisfies Definition 5.1 (1)-(5). (1)(2)(5) are
immediate consequences of the fact that Eq,pi(x) satisfies the same property.
(3) is a consequence of I(q) �= ∅ (which follows from (11.7)) and the fact
that Eq,pi(x) satisfies (3).

We check (4). Let q ∈ Mk+1,�(X,L;β). Since K(pi) are all closed sets,
there exists a neighborhood U(q) in Mk+1,�(X,L;β) such that q′ ∈ U(q)

22The proof of Lemma 9.9 we gave in this article uses the fact that up there is pseudo
holomorphic. We however never take local transversals to q in this subsection and so the
pseudo-holomorphicity is not needed here.
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implies I(q′) ⊆ I(q). Therefore Eq′(x) ⊆ Eq(x) when both sides are defined.
This implies (4).

11.4. Proof of Lemma 11.7. To complete the proof of Theorem 11.1
it remains to prove Lemma 11.7. The proof here is a copy of [FOOO4,
Sect. 27]. We begin with two simple lemmas. (All the vector spaces in this
subsection are complex vector spaces.)

Situation 11.8. Let V be a D dimensional manifold, Vi (i = 1, . . . , l)
open subsets of V and Ki ⊂ Vi compact subsets. πi : Ei → Vi is a di
dimensional vector bundle on Vi and E is a d dimensional vector space.
Suppose Fi : Ei → E is a C1 map which is linear on each fiber of Ei.
Let Gra(E) be the Grassmannian manifold consisting of all a dimensional
subspaces of E.

Lemma 11.9. In Situation 11.8 we assume

(11.9) a+D
∑

di < d.

Then the set of E0 ∈ Gra(E) satisfying the next condition is dense.

(*) For any v ∈ V we consider the sum of the linear subspaces
Fi(π

−1
i (v)) ⊂ E for i with v ∈ Ki and denote it by F (v). Then

F (v) ∩ E0 = {0}.

Proof. The proof is by induction on a. Suppose E′
0 ∈ Gra−1(E) satisfies

(*). It suffices to prove that the set of e ∈ E \ {0} such that Ce ∩ E′
0 = {0}

and E′
0 + Ce satisfies (*) is dense.

Let L ⊂ {1, . . . , l} and UL =
⋂

i∈L Ui. Let EL be the total space of the

Whitney sum bundle
⊕

i∈L Ei on UL. We define F̂L : C × E′
0 × EL → E as

follows. Let wi ∈ π−1
i (v) ⊂ Ei, then

F̂L(r, x, (wi)i∈L) = r(x+
∑
i∈L

Fi(wi)).

This map is C1 and the dimension of the domain is strictly smaller than
d. Therefore the image of F̂L is nowhere dense. On the other hand if e is
not contained in the union of the images of F̂L for various L, then E′

0 + Ce

satisfies (*). In fact suppose
∑

Fi(wi) + v+ ce = 0 with wi ∈ π−1
i (v), v ∈ E

and c ∈ C. If c = 0 the induction hypothesis implies
∑

i Fi(wi) = 0, v = 0.

If c �= 0, then e = F̂L(−1/c, v, (wi)), a contradiction. �

We use the equivariant version of Lemma 11.9.

Situation 11.10. Let Γ be a finite group of order g and d′ > 0. In
Situation 11.8 we assume in addition that E is a Γ vector space such that
any irreducible representation Wσ of Γ has its multiplicity in E larger than
d′. Let Rep(Γ) be the set of all irreducible representations of Γ over C.
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Let Gr(aσ :σ∈Rep(Γ))(E) be the set of all Γ invariant linear subspaces E0

of E such that E0 is isomorphic to
⊕

σ∈Rep(Γ)W
aσ
σ as Γ vector spaces. Let

a = sup{aσ}.

Lemma 11.11. Suppose we are in Situation 11.10. We assume

(11.10) a+ gD
∑

di < d′.

Then the set of all E0 ∈ Gr(aσ :σ∈Rep(Γ))(E) satisfying the Condition (*) in
Lemma 11.9 is dense in Gr(aσ :σ∈Rep(Γ))(E).

Note we do not assume Γ equivariance of V , Ei or Fi in Lemma 11.11.

Proof. Let mσ ≥ d′ be the multiplicity of Wσ in E. Then there exists
an obvious diffeomorphism

(11.11) Gr(aσ :σ∈Rep(Γ))(E) ∼=
∏
σ

Graσ ,mσ .

Here Graσ ,mσ is the Grassmanian manifold of all aσ dimensional subspace
of Cmσ . Let C[Γ] be the group ring of the finite group Γ. We put:

(11.12) E+
i = Ei ⊗C C[Γ] ∼=

⊕
σ∈Rep(Γ)

Ei ⊗C W dσ
σ .

Here dσ is the multiplicity of Wσ in C[Γ]. Note dσ ≤ g. (11.12) is an iso-
morphism of Γ equivariant vector bundles. Fi induces a Γ equivariant map
E+
i → E0. It then induces Γ equivariant fiberwise linear maps Fi,σ : Ei ⊗C

W dσ
σ → Wmσ

σ by decomposing into irreducible representations. The map
Fi,σ can be identified with a fiberwise C-linear map F i,σ : Ei ⊗C C

dσ → C
mσ

by Schur’s lemma. (11.10) implies aσ + Ddσ
∑

di < mσ. Therefore using
(11.11) we apply Lemma 11.9 for each σ and prove Lemma 11.11. �

Proof of Lemma 11.7. We take {p1, . . . ,pP}, U(pi), K(pi) as in
Sect. 11.3. We also have taken E0

pi
(pi) so that the conclusion of Lemma 11.2

is satisfied. Let d be the supremum of the dimension of E0
pi
(pi) and g

the supremum of the order of Aut+(pi). For each i we take E+(pi) in
C∞(Σpi , u

∗
pi
TX ⊗ Λ01) such that:

(1) Lemma 11.2 (1)(3) are satisfied.
(2) E0

pi
(pi) ⊂ E+(pi).

(3) For any irreducible representation Wσ of Aut+(pi) the multiplicity
of Wσ in E+(pi) is larger than d+. Here d+ is determined later.

We will prove, by induction on I = 1, . . . ,P, that we can perturb E0
pi
(pi)

in E+(pi) in an arbitrary small amount to obtain E1
pi
(pi) so that statement

(I) holds.

(I) For any J ⊆ {1, . . . , I} and q ∈
⋂

i∈J K(pi), the sum
∑

i∈J E
′
q;pi

(q)

is a direct sum. Here we define E′
q;pi

(q) in the same way as Eq;pi(q),

using E1
pi
(pi) instead of E0

pi
(pi).
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Suppose (I − 1) holds. We choose a weak stabilization data �wpI and a
neighborhood N (p+

I ) ⊂ Xk+1,�+�′(X,L;β) of p+
I = pI ∪ �wpI . We define

obstruction bundle data {EpI (x)} at pI by using E0
pI
(pI). Proposition 11.4

and Lemma 9.11 then imply that

U(p+
I ) := {x ∈ N (p+

I ) | ∂ux ∈ EpI (x)}

has a structure of a finite dimensional orbifold V (p+
I )/Aut(p+

I ).
23 Let D be

the supremum of the dimension of V (p+
I ) for I = 1, . . . ,P.

We apply Lemma 11.11 as follows. Put V = V (p+
I ), E = E+(pI), Γ =

Aut(p+
I ). For i ≤ I−1, we defineKi as the inverse image ofKpi∩KpI∩U(p+

I )

in V (p+
I ) and take a sufficiently small neighborhood Vi of Ki. For ỹ ∈ Vi

we take its image y ∈ U(p+
I ). Put Ei(ỹ) = E1

pi
(forget�+�′,�(y)) and define a

vector bundle Ei =
⋃

ỹ∈Vi
Ei(ỹ)× {ỹ} on Vi. We consider an isomorphism

Py : L2
m(Σy(�ε);u

∗
yTX ⊗ Λ01) → L2

m(ΣpI (�ε);u
∗
pI
TX ⊗ Λ01)

for ỹ ∈ Vi with y = [ỹ] ∈ U(p+
I ) and compose Py with the orthogonal

projection Π : L2
m(ΣpI (�ε);u

∗
pI
TX ⊗ Λ01) → E+(pI) = E. The restrictions

to Ei(ỹ) of the composition Π ◦ Py for various ỹ ∈ Vi defines a C1 map
Fi : Ei → E.

We may take d+ depending only on P, g, d,D so that (11.10) is satisfied.
By Lemma 11.11, we obtain (I) as an immediate consequence of (I−1) and
Lemma 11.9 (∗).

The claim (I), in the case I = P, implies Lemma 11.7. �

12. From Cn to C∞

In Sects. 9 and 10 we have constructed a Kuranishi structure of Cn class
for arbitrary but fixed n. In this section we provide the way to construct one
of C∞ class. The argument of this section is a copy of [FOOO4, Sect. 26].
We use Condition (3) in Definition 8.7 in this section.

12.1. C∞ structure of Kuranishi chart. We study the map (Prsource,
Prmap) and also Vp ⊂ Up+ . (Up+ is defined in Definition 7.2. Vp is defined
in Definition 9.10.) In Sect. 9 we proved that the image of Up+ by the map
(Prsource,Prmap) is a Cn submanifold if m is sufficiently larger than n and
also the image of Vp is a Cn submanifold. We first remark the following:

Lemma 12.1. The images of Up+ and Vp by the map (Prsource,Prmap)

are C∞ submanifolds at p+.

Proof. It suffices to show that they are of Cn′
class for any n′. It is

obvious from the construction of Sect. 10.3 that for any n′ we can find m′

23We use E0
pI

(x) here only to cut down N (p+
I ) to a finite dimensional orbifold. So we

do not need to use any particular relation of this space E0
pI

(x) to the obstruction bundle

data Ep(x) we finally obtain.
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such that for an open neighborhood U ′
p+ of p+ in Up+ and �ε′ the next

diagram commutes.

(12.1)

U ′
p+

(Prsource,Prmap)−−−−−−−−−−→ Md,log

k+1,�+�′

×L2
m′ (Σp∪�wp

(�ε′),∂Σp∪�wp
(�ε′);X,L)⏐⏐	 ⏐⏐	

Up+
(Prsource,Prmap)−−−−−−−−−−→ Md,log

k+1,�+�′
×L2

m(Σp∪�wp
(�ε),∂Σp∪�wp

(�ε);X,L)

where vertical arrows are inclusions. Moreover the first horizontal arrow is
of Cn′

class and the image of Vp by the first horizontal arrow is also of Cn′

class. (See Lemma 10.10.)24 Therefore the image of the second horizontal

arrow is of Cn′
class at the image of p+ and that the image of Vp by the

second horizontal arrow is also of Cn′
class at the image of p+. The lemma

follows. �

Note the size of the neighborhood U ′
p+ may become smaller and converge

to 0 as m′ goes to infinity.25 So the above proof of Lemma 12.1 can be used
to show the smoothness of Up+ and Vp only at p+. We fix m, U+

p and Vp

and will prove:

Proposition 12.2. The image of Vp by the map (Prsource,Prmap) is a
submanifold of C∞ class.

Corollary 12.3. The Kuranishi chart (Up, Ep, sp, ψp) we produced in
Sect. 9 is of C∞ class.

It is easy to see that Proposition 12.2 implies Corollary 12.3.

Proof of Proposition 12.2. Let r+ ∈ Vp ⊂ Up+ . We put r+ = r∪�wr

where r = ((Σr, �zr,�zr), ur). We apply Lemma 10.13 with q replaced by r
(See Remark 10.16.) and obtain Wr = (�wr, {ϕs

r,a,i}, {ϕd
r,a,j}, {ψr,a}). (See

Remark 8.6.)
We write Prmap

p etc. in place of Prmap hereafter. We recall that the
map Prmap

p (resp. Prmap
r ) depends not only on the weak stabilization data

�wp (resp. �wr) but also on the stabilization and trivialization data, Wp =

(�wp, {ϕs
p,a,i}, {ϕd

p,a,j}, {φp,a}) (resp. Wr = (�wr, {ϕs
r,a,i}, {ϕd

r,a,j}, {ψr,a})).
We consider Diagram (10.14) with q replaced by r. For each n′ we can

choose m′ such that the image of the first horizontal arrow is of Cn′
class.

(Here we use Definition 8.7 (3) for r and apply the Cn′
version of Lemma 7.3

(which is proved in Sect. 9.4) at r.) The right vertical arrow is smooth. In

24Note the map Prmap depends only on the embedding Σp∪�wp
(�ε′) → Σx. (Here x ∈

Up+ .) Therefore it depends only on the stabilization and trivialization data Wp we use

and is independent of the Sobolev exponent m in L2
m.

25This is because the size of the domain of the convergence of the Newton’s iteration
scheme we explained in Sect. 9.2 may go to 0 as m goes to ∞.



186 K. FUKAYA, Y.-G. OH, H. OHTA, AND K. ONO

fact this map is f 
→ f ◦ φ for an open smooth embedding φ mentioned in
Lemma 10.13.

Therefore the commutativity of Diagram (10.14) implies that the image

of (Prsource,Prmap
p ) in Diagram (10.14) is of Cn′

class at r+. We can also

prove that the image of Vp under the map (Prsource,Prmap
p ) is of Cn′

class

at r+. Since n′ and r+ are arbitrary, Proposition 12.2 follows. The proof of
Proposition 12.2 and Lemma 7.3 (the C∞ version) are now complete. �

12.2. Smoothness of coordinate change. In this subsection we
prove that the coordinate change we produced in Sect. 10 is of C∞ class
with respect to the C∞ structure we defined in the last subsection.

We first consider the case q = p. We take two strong stabilization data

(Wj
p, �N j

p) (j = 1, 2) at p. Moreover we take two obstruction bundle data

{Ej
p(x)} (j = 1, 2) at p. We obtain two Kuranishi charts (U j

p, Ej
p, s

j
p, ψ

j
p) for

j = 1, 2 using them. We assume E1
p(x) ⊆ E2

p(x).
Then by the construction of Sect. 7.3 we obtain a coordinate change

(ϕ21, ϕ̂21), where ϕ21 : U21
p → U2

p is an embedding of orbifolds from open

subset U21
p of U1

p. The map ϕ̂21 is an embedding of orbibundles E1
p|U21

p
→ E2

p.

Lemma 12.4. ϕ21, ϕ̂21 are of C∞ class at p.

Proof. The proof is similar to the proof of Lemma 12.1. For any n′ we
can use L2

m′ space to show that ϕ21, ϕ̂21 are of Cn′
class on U21

p ∩U ′
p, where

U ′
p is a neighborhood of p in U1

p and depends on m′,n′. This is a consequence
of Sect. 10.3. Since n′ is arbitrary ϕ21 is of C∞ class at p. The proof for ϕ̂21

is the same. �
Suppose we are given obstruction bundle data {Ep(x) | p,x} and are in

Situation 10.1. We also take local transversals �Np, �Nq such that (Wp, �Np),

(Wq, �Nq) are strong obstruction bundle data.
We then obtain Kuranishi charts (Up, Ep, sp, ψp) (resp. (Uq, Eq, sq, ψq))

at p (resp. q). We assume q is close to p. Then by the construction of
Sect. 7.3 we obtain a coordinate change (ϕpq, ϕ̂pq) of C

n class.

Proposition 12.5. (ϕpq, ϕ̂pq) is of C∞ class.

Proof. Let r ∈ Upq. We will prove ϕpq is of C∞ class at r.

We define strong stabilization data (pWr, p �Nr) at r as follows. We first
take p�wr so that Condition 10.2 (with x replaced by r) is satisfied. We then
apply Sublemma 10.15 to obtain analytic families of coordinates and smooth
local trivializations. We thus obtain pWr. We put pNr,i = Np,i. We define

(qWr, q �Nr) in the same way replacing p by q. We also put pEr(x) = Ep(x)
and qEr(x) = Eq(x).

Lemma 12.6. Using (pWr, p �Nr) and pEr(x) = Ep(x) (resp. (qWr, q �Nr)
and qEr(x) = Eq(x)) we can construct (pUr, pEr, psr, pψr) (resp. (qUr, qEr,
qsr, qψr)), which is a Kuranishi chart at r.
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Proof. We have completed the construction of smooth Kuranishi charts
in the last subsection. The only difference here is the fact that r may not
be a point of the moduli space Mk+1,�(X,L;β). In other words, ur may not
be pseudo holomorphic. On the other hand, it is smooth. The construction
of a Kuranishi chart goes through26 in this case except the following point.
During the proof of Lemma 9.11 we use the fact that ∂up = 0.

However we can prove the conclusion of Lemma 9.11 in our situation as
follows.

We used ∂up = 0 to prove that the map x 
→ ux(zx,�+i) (See (9.16)),
which is a map from Up+ to X, is transversal to Np,i at p

+. We prove that

the same map pUr+ → X is transversal to pNr,i at r
+ as follows.

By our choice of pWr and pEr(x), the set pUr+ is a neighborhood of
r+ = r∪ p�wr in Up+ . Moreover pNr,i = Np,i. Therefore we use the fact that

x 
→ ux(zx,�+i) is transversal to Np,i at p
+ and r+ can be chosen to be close

to p+ to show the required transversality at r+. The case when we replace
p by q is the same. �

We now consider the following commutative diagram.

(12.2)

qU
′
r −−−−→ Upq⏐⏐	 ⏐⏐	

pUr −−−−→ Up

Here qU
′
r is a small neighborhood of r in qUr. All the arrows are coordinate

changes. The commutativity of the diagram follows from Lemma 7.8.
We first observe that two horizontal arrows are smooth at r. This is

the consequence of our choice of (pWr, pWr) and (qWr, qWr) (and of pEr

and qEr). In other words it is nothing but Proposition 12.2 and its proof.
Moreover they are open embeddings.

We next observe that the left vertical arrow is smooth at r+. This is
a variant of Lemma 12.4 where ur (which corresponds to up) may not be
pseudo holomorphic. The proof of this variant is the same as the proof of
Lemma 12.4.

Therefore the right vertical arrow, which is nothing but the map ϕpq,
is smooth at r. The proof of smoothness of ϕ̂pq is the same. The proof of
Proposition 12.5 is complete. �

13. Proof of Lemma 4.14

Proof. The proof is divided into 4 steps. In the first two steps we

consider the case p = q. We write Wo
p = (�wo, {ϕo,s

a,i}, {ϕ
o,d
a,j}, {φo

a}) (o = 1, 2).
We will prove

(13.1) Bδ(Xk+1,�(X,L, J ;β);p,W1) ⊂ Bε(Xk+1,�(X,L, J ;β);p,W2),

for sufficiently small δ.

26We use Definition 8.7 (3) in place of Definition 8.7 (2).
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(Step 1) We assume �w1 ⊆ �w2 or �w2 ⊆ �w1: Suppose �w1 ⊆ �w2 and #�w1 = �′,
#�w2 = �′ + �′′. We consider the next diagram:

Vp∪�w2 × Σp∪�w2(�ε)
Φ̂2
�ε−−−−→ Cd

k+1,�+�′+�′′
π−−−−→ Md

k+1,�+�′+�′′⏐⏐	 ⏐⏐	 ⏐⏐	forget�+�′+�′′,�+�′

Vp∪�w1 × Σp∪�w1(�ε′)
Φ̂1

�ε′−−−−→ Cd
k+1,�+�′

π−−−−→ Md
k+1,�+�′

Here the right half of the diagram is one induced by the forgetful map in
the obvious way. We put

(13.2) Vp∪�wo =
∏

a∈As
p∪Ad

p

Vo
a × [0, c)md × (D2

◦(c))
ms .

See (3.5). The second and the third factors of the right hand side of (13.2)
are the gluing parameters of the nodes. Vo

a is the deformation parameter of
the a-th irreducible component of the source curve of p ∪ �wo.

The map Φ̂1
�ε (resp. Φ̂2

�ε′
) is the map (3.11) defined using W1 (resp. W2).

The left vertical arrow is defined as follows. Σp∪�w2(�ε) → Σp∪�w1(�ε′) is

the inclusion. (The inclusion exists if �ε′ is sufficiently small compared to �ε.)
The forgetful map of the marked points induces a map V2

a → V1
a . This map

together with the identity map of the second and the third factors of (13.2)
defines the map in the left vertical arrow.

The maps appearing in the diagram are all smooth. The right half of
the diagram commutes. Note the left half of the diagram does not commute

since we use different stabilization and trivialization data to define Φ̂1
�ε and

Φ̂2
�ε .
Note however that the left half of the diagram commutes if we restrict

it to the fiber of p ∪ �w1. Therefore choosing Vp∪�w2 small the left half of

the diagram commutes modulo a term whose C2 norm is sufficiently smaller
than ε. (13.1) is an easy consequence of this fact. The proof of the case
�w2 ⊆ �w1 is the same.

(Step 2) We consider the case p = q in general, where �w1, �w2 have no
inclusion relations. Let Wo

p (o = 1, 2) be as above. We take a weak stabiliza-

tion data �w3 such that �w1 ∩ �w3 = �w2 ∩ �w3 = ∅. We take stabilization and
trivialization data W3

p, W
13
p , W23

p , so that their weak stabilization data are

given by �w3
p, �w

1
p ∪ �w3

p, �w
2
p ∪ �w3

p, respectively. Now we can apply Step 1 to

the following 4 situations. (W1
p,W

13
p ), (W13

p ,W3
p), (W

3
p,W

23
p ), (W23

p ,W2
p).

Combining them we obtain the conclusion (13.1) of our case (W1
p,W

2
p).

(Step 3) The case p �= q. In this step we prove that given Wp we can
find Wq such that (4.1) holds: We first use the fact that q is sufficiently
close to p to find �wq such that q ∪ �wq is sufficiently close to p ∪ �wp.

We then apply Sublemma 10.15 to obtain {ϕs
q,a,i}, {ϕd

q,a,j}, {φq,a}. We put
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Wq = (�wq, {ϕs
q,a,i}, {ϕd

q,a,j}, {φq,a}). Diagram (10.16) commutes. (4.1) is its
immediate consequence.

(Step 4) Now the general case follows by combining Step 2 and Step 3. �
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