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On equivariant Chern-Weil forms and determinant
lines

Daniel S. Freed

Abstract. A strong form of invariance under a group G is manifested
in a family over the classifying space BG. We advocate a differential-
geometric avatar of BG when G is a Lie group. Applied to G-equivariant
connections on smooth principal or vector bundles, the equivariance Ñ

families principle converts the G-equivariant extensions of curvature and
Chern-Weil forms to the standard nonequivariant versions. An applica-
tion of this technique yields the moment map of the determinant line
of a G-equivariant Dirac operator, which in turn sheds light on some
anomaly formulas in quantum field theory.

Let X be a smooth manifold, H a Lie group, and P Ñ X a smooth
principal H-bundle with connection Θ. Suppose that a Lie group G acts on
P Ñ X preserving Θ. If G acts freely, so that there is a quotient principal
H-bundle P {G Ñ X{G, then there is an obstruction to descending Θ to
the quotient bundle: the moment map. This obstruction—defined for not-
necessarily-freeG-actions—is the key ingredient in aG-equivariant extension
of the curvature of Θ, so too in the G-equivariant extension of the Chern-
Weil forms [BV], which live in G-equivariant de Rham theory.

Especially in topology and algebraic geometry a strong form of G-invari-
ance is expressed by fibering over a classifying space BG. The particular form
of the classifying space varies with context. Here we advocate in differential
geometry for B∇G, the classifying “generalized manifold” of G-connections
introduced and studied in [FH]. As we review below, B∇G is a simplicial
sheaf on the site of smooth manifolds, a generalized manifold in the same
sense that a distribution is a generalized function. A G-manifold X has a
differential Borel quotient, which is a fiber bundle pXGq∇ Ñ B∇G with
fiber X, and we proved [FH, Theorem 7.28(ii)] that the de Rham complex
of pXGq∇ is the Weil model for G-equivariant de Rham theory. Here, given a
G-equivariant connection Θ on P Ñ X, the strong form of G-invariance is a
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connection ΘG on the differential Borel quotient pPGq∇ Ñ pXGq∇. Our main

theorem identifies the curvature of ΘG with the G-equivariant curvature

of Θ, and similarly the Chern-Weil forms of ΘG with the G-equivariant
Chern-Weil forms of Θ. (A less rigid version of this construction was used
in [BT] to prove that equivariant Chern-Weil forms represent equivariant
characteristic classes.)

The differential Borel quotient converts equivariance into a fiber bundle.
As an application of this technique we prove a theorem about G-equivariant
families of Dirac operators. In [BF] we constructed a canonical connection
on the determinant line bundle of a family and computed a formula for its
curvature. Attached to a G-equivariant family of Dirac operators we obtain
a G-equivariant determinant line bundle, and here we compute the corre-
sponding moment map. The proof uses the equivariance Ñ families con-
struction to reduce the moment map computation to the known curvature
formula. Applied to quantum field theory we find a direct geometric inter-
pretation of standard “covariant” anomaly formulas in the physics literature
(e.g., [BZ, ASZ, AgG, AgW]).

Equivariant connections and B∇G. The main construction and com-
putation lie squarely in differential geometry: no simplicial sheaves required.
Let π : P Ñ X be a fiber bundle andW a horizontal distribution:W Ă TP is
a subbundle and the inclusion maps induce an isomorphism W ‘T pP {Xq –

TP , where T pP {Xq “ kerπ˚ is the subbundle of vertical vectors. If π is a
principal H-bundle for a Lie group H and W is H-invariant, then W is a
connection, but our construction is more general (and we need the general
version in the next section). Let G be a Lie group which acts on π : P Ñ X
and preserves the distribution W . Suppose Q Ñ M is a principal G-bundle
with connection V Ă TQ a G-invariant horizontal distribution. Then the
distribution V ‘ W Ă T pQ ˆ P q is G-invariant, so descends to a horizontal
distribution WQ on the quotient fiber bundle πQ in the iterated fibration

(1)
Q ˆG P

πQ
Q ˆG X

ρ
M

PQ XQ

The restriction of WQ over a fiber of ρ may be identified with W . The hori-
zontal distribution WQ is functorial for maps of G-bundles with connection.

In case π : P Ñ X is a principal H-bundle and W a connection, we
compute the curvature of WQ. Let Θ P Ω1

P phq be the connection form with
kernel W . Assume for simplicity that G is finite dimensional, and fix a basis
teau Ă g. Define the structure constants f c

ab P R by rea, ebs “ f c
abec. Each

basis element ea induces a vector field on P , via the infinitesimal G-action,
and so a contraction operator ιa : Ω

‚
P Ñ Ω‚´1

P of degree ´1 on differential
forms (with coefficients). Let φ “ φaea P Ω1

Qpgq be the connection form with

kernel V . Let Ω “ dΘ`
1
2 rΘ^Θs P Ω2

P phq and ω “ dφ`
1
2 rφ^φs P Ω2

Qpgq be
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the curvatures of Θ and φ, respectively. Write ω “ ωaea. Finally, let ΘQ, ΩQ

denote the connection and curvature of the connection WQ on the principal

H-bundle πQ in (1).

Proposition 2.

(i) ΘQ “ Θ ´ φa ¨ ιaΘ.

(ii) ΩQ “ Ω ´ φa ^ ιaΩ `
1
2φ

a ^ φb ¨ ιbιaΩ ´ ωa ¨ ιaΘ.

Proof. The form on the right hand side of (i) vanishes on V ‘ W and
is the identity on vertical vectors, since Θ is. For (ii) we compute using
pdιa ` ιadqΘ “ 0 by G-invariance:

(3)
ΩQ “ dΘQ `

1

2
rΘQ,ΘQs

“ Ω ´ dpφa
¨ ιaΘq ´ rφa

¨ ιaΘ ^ Θs `
1

2
rφa

¨ ιaΘ ^ φb
¨ ιbΘs

and

(4) ´dpφa
¨ιaΘq “ ´ωa

^ιaΘ `
1

2
f c
ab φ

a
^φb

¨ιcΘ ´ φa
^ιaΩ ` φa

^rιaΘ,Θs.

The G-invariance of Θ also implies

(5) ιbιaΩ “ f c
ab ιcΘ ` rιaΘ, ιbΘs.

Combine (3), (4), and the product of (5) with 1
2φ

a ^ φb to conclude. �

LetMan denote the category of smooth finite dimensional manifolds and
smooth maps. A simplicial presheaf is a contravariant functor F from Man
to the category of simplicial sets. It is a simplicial sheaf if it satisfies a
covering condition; see [FH] and the references therein. An objectM P Man
is a “test manifold”, and FpMq is the value of the sheaf F on that test
manifold. The sheaves we consider have values in the category of groupoids:
an object in B∇GpMq is a principal G-bundle Q Ñ M with connection φ
and a morphism is an isomorphism of principal G-bundles which preserves
the connections. There is a universal G-bundle E∇G Ñ B∇G. An object
in E∇GpMq is a principalG-bundleQ Ñ M with connection and a section. A
smooth finite dimensional manifold X is a sheaf via the Yoneda embedding.
Yoneda also implies that FpMq is the set of maps M Ñ F in the category
of sheaves. If X carries a left G-action, then we form the differential Borel
construction

(6) pXGq∇ :“ E∇G ˆG X
ρ

ÝÝÑ B∇G,

a fiber bundle with fiber X. Therefore, given π : P Ñ X which is G-
equivariant, then (1) is the pullback of the iterated fiber bundle

(7) pPGq∇
πG

ÝÝÝÑ pXGq∇
ρ

ÝÝÑ B∇G

via the map M Ñ B∇G represented by the principal G-bundle Q Ñ M
with connection φ. If W is a G-invariant horizontal distribution on π, then
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the construction at the beginning of this section gives a horizontal distribu-
tion WG on πG. It encodes the “strong G-invariance” of W .

The de Rham complex of E∇G is the Weil algebra Sym‚ g˚ b
Ź‚

g˚,

which is the free differential graded algebra on g˚ “
Ź1

g˚; this is proved

in [FH, Theorem 7.19]. Let tθau Ă
Ź1

g˚ be the dual basis to teau Ă g; then
tχa “ dθau Ă Sym1 g˚ is also a basis. Set νa “ dθa `

1
2f

a
bcθ

bθc. If X is a
smooth G-manifold, then the Weil model of equivariant de Rham theory is
the basic subcomplex of Sym‚ g˚ b

Ź‚
g˚ bΩ‚

X ; see [MQ, §5], [GS]. Follow-
ing H. Cartan [C1, C2], these references also construct a quasi-isomorphism
with the Cartan model, the G-invariant subcomplex of Sym‚ g˚ b Ω‚

X with
differential dX ´ ιξ “ dX ´ χaιa, where ξ is the G-invariant g˚-valued
vector field on X which expresses the infinitesimal G-action. The quasi-
isomorphism is the augmentation map of the exterior algebra: it sends
θa Ñ 0, νa Ñ χa for all a. As quoted earlier from [FH], the de Rham
complex of pXGq∇ is the Weil model of equivariant de Rham theory on X.

Theorem 8. Let π : P Ñ X be a principal H-bundle with connection Θ,
and suppose G acts on P Ñ X preserving Θ. Then the curvature of the
induced connection on πG : pPGq∇ Ñ pXGq∇ is

(9) ΩG “ Ω ´ χa
¨ ιaΘ

in the Cartan model.

Let gP Ñ X be the adjoint bundle of Lie algebras; then pea ÞÑ ιaΘq P

Hom
`

g,Ω0
XpgP q

˘

is the moment map. ΩG is the G-equivariant extension of
the curvature defined in [BV, §2].

Proof. The right hand side of (9) corresponds to

(10) Ω ´ θa ^ ιaΩ `
1

2
θa ^ θb ¨ ιbιaΩ ´ νa ¨ ιaΘ.

in the Weil model. The map M Ñ B∇G given by Q Ñ M with connec-
tion φ induces a pullback on de Rham complexes known as the Chern-Weil
homomorphism [MQ]. It sends (10) to the curvature ΩQ of the induced
connection on πG, by Proposition 2(ii), which proves (9) since forms are
determined by their pullbacks to test manifolds. �

Equivariant families of Dirac operators. We translate the main
construction (1) from principal bundles to vector bundles. Let q : Y Ñ T
be a principal G-bundle with connection U Ă TY , and suppose E Ñ Y
is a vector bundle with a G-action and G-invariant covariant derivative ∇.
Define q˚∇ on E{G Ñ T by

(11) pq˚∇qξs “ ∇ξ̃pq˚sq,
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where ξ̃ is the horizontal lift of the tangent vector ξ and s is a section of
E{G Ñ T . Given π : E Ñ X with G-action and G-invariant ∇, and a G-
bundle Q Ñ M with connection V , apply (11) to Y “ QˆX, U “ V ‘ TX

to construct ∇Q on EQ Ñ XQ (i.e., Q ˆG E Ñ Q ˆG X).
Recall that if E Ñ Y is a vector bundle with covariant derivative ∇

and E1
i

E
p

is a complemented subbundle, then there is a compressed

covariant derivative Π
E

E1∇ “ p ˝ ∇ ˝ i on E1 Ñ Y . The compression is

transitive for iterated complemented subbundles E2 E1 E .
Let π : X Ñ S be a smooth fiber bundle. A relative Riemannian struc-

ture is a metric gX{S on T pX{Sq Ñ X together with a horizontal distribu-

tionW Ă TX. It determines a relative Levi-Civita covariant derivative∇X{S

on the relative tangent bundle T pX{Sq Ñ X as follows. A Riemannian met-
ric gS on S induces a Riemannian metric gX on X which makes π a Rie-
mannian submersion. Let ∇X be the Levi-Civita covariant derivative on X.
Then ∇X{S “ Π

TX

T pX{Sq
∇X is independent of gS . If the fibers of π are closed

manifolds, and if there is a relative spin structure, then there is an associated
family of Dirac operators. Quillen [Q] constructed a metric on the determi-
nant line bundle Det Ñ S; it carries a compatible covariant derivative whose
curvature is the 2-form component of the pushforward of the Â polynomial
applied to the relative curvature [BF]:

(12) ω “ 2πi

«

ż

X{S
ÂpΩX{S

q

ff

p2q

There is an extension for families of generalized Dirac operators.
Now suppose a Lie group G acts on X Ñ S preserving all the data. (The

“preservation” of the relative spin structure is additional data.) Then there
is an induced G-action on Det Ñ S which preserves the covariant derivative,
and so an equivariant curvature

(13) ωG “ ω ´ μ

in the Cartan model, where μ P Hompg,Ω0
Sq is the moment map.

Theorem 14.

(15) ωG “ 2πi

«

ż

X{S
ÂpΩ

X{S
G q

ff

p2q

The equivariant curvature Ω
X{S
G is (9), and the integrand is theG-equivariant

Chern-Weil form associated to the Â polynomial. The ‘(2)’ denotes the terms
of total degree two in the Cartan model. Also, we have extended the Car-
tan model from polynomials on g to power series on g. We remark that to
compute the moment map it suffices to take S “ pt.

Lemma 16. Fix a Lie group G and a principal G-bundle Q Ñ M with
connection.
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(i) Let X be a Riemannian manifold with Levi-Civita covariant deriva-
tive ∇. Suppose G acts on X by isometries. Then ∇Q is the relative
Levi-Civita covariant derivative on XQ Ñ M .

(ii) Let π : X Ñ S be a fiber bundle with relative Riemannian struc-

ture
`

gX{S ,W Ă TX
˘

; there is an induced relative Levi-Civita co-

variant derivative ∇X{S. If G acts preserving all data, then ∇X{S
Q

is the relative Levi-Civita covariant derivative on XQ Ñ SQ.

Proof. Fix a metric gM and so an induced gQ such that Q Ñ M is a
Riemannian submersion. Then q : QˆX Ñ XQ is a Riemannian submersion
with horizontal distribution V ‘ TX. It is also a principal G-bundle, and
that distribution is a connection. Then the Levi-Civita covariant derivatives

satisfy ∇XQ “ q˚ Π
TQ‘TX

V ‘TX
∇QˆX , as follows by checking that the right hand

side preserves the metric and is torsionfree. Hence the relative Levi-Civita
covariant derivative on XQ Ñ M is

(17)

∇XQ{M
“ Π

TXQ

T pXQ{Mq
q˚ Π

TQ‘TX

V ‘TX
∇QˆX

“ q˚ Π
V ‘TX

TX
Π

TQ‘TX

V ‘TX
∇QˆX

“ q˚ Π
TQ‘TX

TX
∇QˆX

“ q˚ ∇ “ ∇Q.

For (ii) consider the iterated fiber bundle Q ˆ X
q

ÝÑ XQ Ñ SQ Ñ M .
Then using (11), (17), and the transitivity of compression, we have

∇X{S
Q “ q˚∇X{S

“ q˚ Π
TX

T pX{Sq
∇ “ Π

T pXQ{Mq

T pXQ{SQq
q˚∇(18)

“ Π
T pXQ{Mq

T pXQ{SQq
∇XQ{M

“ ∇XQ{SQ . �

Proof of Theorem 14. The differential Borel quotient pXGq∇ Ñ

pSGq∇ inherits the relative Riemannian metric and, by our basic construc-
tion, a horizontal distribution. The relative Levi-Civita covariant derivative,

determined by its pullbacks ∇X{S
Q induced by maps M Ñ B∇G, is ∇X{S

G ;

this is Lemma 16(ii). Therefore, its curvature is Ω
X{S
G . Now (15) follows by

testing against maps M Ñ B∇G and applying (12) to the pullback fiber
bundles of smooth manifolds. �

Remark 19. The “covariant anomaly formula” (e.g. [BZ, (3.60)], [AgG,
(3.57)]) in quantum field theory is the moment map μ. In the cited formulas
the base S is the space of covariant derivatives on a fixed vector bundle
E Ñ Y , and X “ S ˆ Y . The group G is the infinite dimensional group
of gauge transformations and the anomaly is the obstruction to descending
Det Ñ S to the quotient by G, i.e., the moment map precisely μ. Theorem 14
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applies by restricting to finite dimensional subgroups of G. Fix a connection
in S with curvature F , and fix an infinitesimal gauge transformation v. The
equivariant curvature (9) evaluated on v is F ´v, and in the formula (15) we

use the Chern character in place of the Â polynomial. Assuming dimX “ 2n
we find μ “ ´2πi

`

i
2π

˘n 1
n!

ş

X tr vFn, which agrees with [AgG, (3.57)] (up
to 2πi). There is a similar formula for the “gravitational” case, in which S is
the space of Riemannian metrics on a fixed manifold Y and G is the group
of diffeomorphisms ([BZ, (5.19)], [AgG, (5.32)]). Mathematical treatments
of anomalies often first descend to the quotient S{G, essentially using the
construction (11), in which case the anomaly is the determinant line bundle
with covariant derivative associated to the family of Dirac operators over
that quotient. The precise relationship between the moment map for the
G-action on the determinant bundle over S and the determinant bundle
over S{G ties together different approaches to anomalies.
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