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Abstract. This article is based on the author’s lecture at the Journal
of Differential Geometry Conference, Harvard 2017. We discuss closed
and torsion-free G2-structures on a 7-manifold with boundary, with pre-
scribed 3-form on the boundary. Much of the article is based on an
observation that there is an intrinsic notion of “mean-convexity” for
such boundary data. When the boundary data is mean-convex, classical
arguments from Riemannian geometry can be applied. Another theme
in the article is a connection with the maximal submanifold equation,
in spaces of indefinite signature.
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1. Introduction

In this paper we discuss special geometric structures on manifolds of
dimensions 6 and 7, and the connections between these arising in the case
of a 7-manifold with boundary. Our approach is largely based on a semi-
nal paper of Hitchin, published in the Journal of Differential Geometry [6]
which emphasises differential forms and volume functionals (see also [7]). In
dimension 6 the primary structure of interest is a Calabi-Yau structure, i.e. a
Riemannian 6-manifold with holonomy contained in SU(3) or, equivalently,
a complex 3-manifold with a Kähler metric and a holomorphic 3-form of
constant non-zero norm. In dimension 7, the primary structure of interest
is a torsion free G2-structure i.e. a Riemannian 7-manifold with holonomy
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contained in G2. But in each case there are useful variants of these where
we relax the holonomy condition and consider “closed” G2 and SL(3,C)
structures. In Section 2 we review the basic theory and then discuss the ele-
mentary differential geometry of a hypersurface in a G2 manifold. The main
observation is a connection between the mean curvature of the hypersurface
and the intrinsic geometry of the submanifold. In Section 3 we begin with
simple remarks about the question of deforming a closed G2-structure on
a manifold with boundary to a torsion-free structure. Then we apply some
classical Riemannian geometry to the case when the boundary is constrained
to have positive mean curvature. In Section 4 we consider G2-cobordisms
and discuss connections with deformations of SL(3,C)-structures “tamed”
by a symplectic form. We explain the possible relevance of G2-cobordisms
to questions of Torelli type for Calabi-Yau 3-folds. In Section 5 we consider
related questions for maximal submanifolds, which arise as dimensional re-
ductions and adiabatic limits of the special holonomy theory.

The author thanks the Simons Foundation for support of this work
through the Simons Collaboration Grant “Special holonomy in Geometry,
Analysis and Physics”. Thanks are also due to Richard Thomas and Jo-
hannes Nordström for helpful discussions.

2. Basics

2.1. Algebraic structures. We review the special features of 3-forms
in 6 and 7 dimensions. First let V be a 6-dimensional real vector space.

Definition 1. A 3-form ρ ∈ Λ3V ∗ is called definite if for each non-zero
v ∈ V the contraction iv(ρ) ∈ Λ2V ∗ has rank 4.

The first basic fact is that if V has an orientation a definite 3-form ρ
defines a complex structure Iρ on V (and reversing the orientation changes
Iρ to −Iρ). To see this, for v ∈ V let Nv be the null space of iv(ρ) i.e.

Nv = {v′ ∈ V : iv′ivρ = 0}.
Clearly v is in Nv and v′ is in Nv if and only if v is in Nv′ . The condition
that ρ is definite is that Nv has dimension 2, for all non-zero v. For each
non-zero v′ in Nv the form iv′(ρ) induces a non-degenerate symplectic form
Ωv′ on V/Nv. We fix the orientation on V/Nv so that Ω2

v′ > 0; then the map
v′ �→ Ω2

v′ defines a conformal structure on the two-dimensional vector space
Nv. If we are given an orientation of V we get an induced orientation on
Nv, so we get a complex structure on Nv in the usual way. Then we define
Iρ(v) ∈ Nv using this complex structure on Nv and it is clear that I2ρ = −1
since NIρv = Nv.

The second basic fact is that the definite 3-forms form a single open orbit
under the action of GL(V ). Any such form is equivalent to the standard
model

(1) ρ0 = Re(dz1dz2dz3)
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on C3, and the complex structure defined by ρ0 is the standard one (for
the standard orientation on C3). In other words, giving an oriented real
6-dimensional vector space V with a definite form ρ is equivalent to giving
a 3-dimensional complex space with a non-zero complex form of type (3, 0)
and the stabiliser in GL+(V ) of ρ is isomorphic to SL(3,C). To see this
choose any non-zero v in V , let v′ = Iρ(V ) and set Ω = Ωv,Ω

′ = Ωv′ . By
definition these form an orthonormal pair of 2 forms on the 4-dimensional
vector space V/Nv with respect to the wedge-product and it is well-known
that such a pair defines a complex structure on V/Nv such that Ω − iΩ′ is
a non-zero element of the complex exterior square. Thus there are complex
co-ordinates z2, z3 on V/Nv such that

Ω− iΩ′ = dz2dz3.

Let z1 = x1 + iy1 be a standard complex co-ordinate on Nv corresponding
to the basis element v. Choose a complementary sub-space Q to Nv in V
such that ρ|Q = 0—it is easy to check from the definitions that these exist.
Then z1, z2, z3 become co-ordinates on V and it follows from the definitions
that

ρ = dx1 ∧ Re(dz2dz3)− dy1 ∧ Im(dz2dz3) = Re(dz1dz2dz3).

Given the complex structure Iρ defined by a definite form ρ and orien-
tation we see that there is another definite form ρ̃ characterised by the fact
that ρ+ iρ̃ is of type (3, 0). The volume element defined by ρ is

(2) volρ =
1

4
ρ ∧ ρ̃,

and the first variation of the volume form, with respect to a variation δρ is

(3) δvolρ = 1
2(δρ) ∧ ρ̃.

We also have the variation in ρ̃. This is given by

(4) δρ̃ = −i(δρ)3,0 − i(δρ)2,1 + i(δρ)1,2 + i(δρ)0,3,

in terms of the decomposition of δρ into bi-type determined by the complex
structure Iρ.

Now let U be a 7-dimensional real vector space.

Definition 2. A 3-form φ ∈ Λ3U∗ is called definite if for each non-zero
u ∈ U the contraction iu(φ) ∈ Λ2U∗ has rank 6.

Recall that a real 2-form ω on a complex vector space is called a taming
form if ω(ξ, Iξ) > 0 for all non-zero vectors ξ. This is equivalent to saying
that the (1,1) component of ω is a positive (1, 1) form in the standard sense.
For U as above fix a non-zero vector ν ∈ U and complementary subspace
V ⊂ U , so we have a fixed isomorphism U = Rν ⊕ V . We can write any
φ ∈ Λ3U∗ as

(5) φ = ω ∧ dt+ ρ
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where ω ∈ Λ2V ∗, ρ ∈ Λ3V ∗ and dt ∈ U∗ is dual to ν. It is easy to check
from the definitions that φ is definite if and only if ρ is a definite 3-form on
V and ω is a taming form for the complex structure induced on V by ρ and
one of the orientations on V . Now suppose that U has a fixed orientation.
We say that a definite form φ is positive if, in the description above, ω is a
taming form for the complex structure defined by ρ and the induced complex
structure on V . By continuity this is the independent of the choice of vector
ν and complementary subspace V . It is also equivalent to saying that

(6) (iuφ)
2 ∧ φ > 0

for all non-zero u ∈ U . Then the expression on the left hand side of (6)
defines a conformal structure on U and a Euclidean structure gφ in this
conformal class can be fixed by requiring that |φ|2gφ = 7. The condition that

ν is orthogonal to V in terms of the representation (5) is that ω ∧ ρ = 0, or
equivalently that ω has type (1, 1) with respect to the complex structure on
V . The condition that ν has length 1 is that 1

6ω
3 = volρ. It follows that any

positive form is equivalent to the model on R⊕C3

φ0 = ω0dt+ ρ0,

where ω0 = dx1dy1 + dx2dy2 + dx3dy3 is the standard symplectic form on
C3 and ρ0 = Re(dz1, dz2dz3), as above. Thus the positive forms make up a
single orbit for the action of GL+(U) on Λ3U∗.

Given a positive 3-form φ as above we get a 4-form ∗φφ ∈ Λ4U∗, where
∗φ is the ∗-operator defined by the Euclidean structure gφ.

2.2. Hypersurface geometry. Now we turn to differential geometry
and we recall two basic facts.

1. If N is an oriented 6-manifold and ρ is a 3-form on N which is
definite at every point then the induced almost-complex structure
Iρ is integrable if and only if dρ = 0 and dρ̃ = 0.

2. If M is an oriented 7-manifold and φ is a 3-form on M which is
positive at each point then φ is covariant constant with respect to
the Levi-Civita connection of the Riemannian metric gφ induced
by φ if and only if dφ = 0 and d ∗φ φ = 0. In this case we say that
φ is a torsion-free G2-structure on M .

In this paper we want to consider relaxing these conditions so we say
that:

• a closed SL(3,C)-structure on an oriented 6-manifold is given by a
definite 3-form ρ with dρ = 0;

• a closed G2-structure on an oriented 7-manifold is given by a posi-
tive 3-form φ with dφ = 0.

Lemma 1. If ρ is a closed SL(3,C)-structure on an oriented 6-manifold
N then the 4-form dρ̃ has type (2, 2) with respect to the almost-complex
structure Iρ.
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This is clear from Hitchin’s variational point of view. Any definite form
ρ defines a volume form volρ as above. By (3) the variation of the volume
with respect to a compactly supported variation δρ of ρ is∫

N
δρ ∧ ρ̃.

Let v be a compactly-supported vector field on N and δρ be the variation
given by the Lie derivative Lvρ. Since ρ is closed this is d(ivρ). Diffeomor-
phism invariance of the volume implies that∫

N
d(ivρ)ρ̃ =

∫
N
ivρ ∧ dρ̃ = 0.

Since this is true for all v we must have ivρ∧dρ̃ = 0, pointwise for all tangent
vectors v, which is just the condition that dρ̃ has type (2, 2).

One of the main observations in this paper is that, as a form of type
(2, 2), there is a notion of positivity of the tensor dρ̃. In fact, using the
volume form, the 4-forms of type (2, 2) can be identified with the Hermitian
forms on T ∗N , for which we have the standard notion of positivity. Any
(2, 2)-form σ can be written in suitable co-ordinates at a point as

(7) −1
4(λ1dz2dz2dz3dz3 + λ2dz3dz3dz1dz1 + λ3dz1dz1dz2dz2).

The form is positive if each λi > 0. We also consider the weaker notion of
semipositivity, by which we mean that all λi are non-negative and at least one
is strictly positive. Equivalently, a (2, 2) form σ is semi-positive if ω ∧ σ > 0
for all positive (1, 1)-forms ω. We will say that a closed SL(3,C) structure ρ
is mean-convex if dρ̃ is semi-positive at each point, and strictly mean-convex
if it is positive at each point. Likewise for mean-concave. Changing the sign
of the almost-complex structure interchanges the two conditions.

There is a scalar invariant det(σ) of a (2, 2)-form σ on a manifold N with
SL(3,C) structure. To define this we use the volume form to identify σ with
an element σ of Λ2TN , then take σ3 ∈ Λ6TN and multiply by the 1

6 of the
volume form, to get a scalar (the factor being a convenient normalisation). In
terms of the explicit representation (7) in standard co-ordinates at a point
we have detσ = λ1λ2λ3. Thus for a strictly mean-convex structure ρ the
function det(dρ̃) is strictly positive.

Now consider an oriented 7-manifold M with torsion-free G2-structure
φ and a 6-dimensional submanifold N ⊂ M . By the discussion in 2.1 above
the restriction of φ to N is a closed definite 3-form ρ. One first observation
is that the induced Riemannian measure on N coincides with |volρ|, where
the choice of sign of the volume form volρ depends on an orientation of N ,
or equivalently a co-orientation of N ⊂ M .

Fix a choice of unit normal vector field ν. From standard Riemannian
theory we have at each point p ∈ N the second fundamental form B ∈
s2T ∗

pN . On the other hand we have an induced SL(3,C) structure ρ on N
and a 2-form ω on N given by the contraction iν(φ). The 2-form ω is a
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positive (1, 1)-form with respect to the almost-complex structure defined by
ρ. Using this almost-complex structure we write B as a sum B = B1,1+BC

where B1,1 is the real part of a Hermitian form and BC is the real part of a
complex quadratic form. The component B1,1 is somewhat analogous to the
Levi form of a real hypersurface in a complex Kähler manifold. Using the
standard identification we let β1,1 be the (1, 1) form on N corresponding to
the Hermitian form B1,1. The mean curvature μ of N in M is the trace of
B which can be written as

(8) μ = β1,1 ∧ ω2 (vol)−1.

Proposition 1. In this situation we have β1,1 ∧ ω = 1
2dρ̃, so

μ = 1
2(dρ̃ ∧ ω) (vol)−1.

In particular, if the induced SL(3,C)-structure ρ is mean convex then the
mean curvature μ is positive with respect to the normal direction ν.

Remarks.

• The point of the Proposition is that it relates dρ̃, which is an intrin-
sic invariant of the structure on N , to the mean curvature which is
an extrinsic invariant of the submanifold N ⊂ M .

• If ρ is strictly mean convex there is a stronger statement

(9) μ ≥ 3
2 det(dρ̃)

1/3.

In terms of a representation (7) in standard co-ordinates at a point
this is the arithmetic-geometric mean inequality for the λi.

The proof of Proposition 1 is a straightforward calculation which can
be done in various ways. For one approach we first observe that, since a
torsion-free structure agrees with the flat model to order two at a point, it
suffices to consider the case when M is the flat model R×C3 as in (2.1). We
take N to be the graph of a function f : C3 → R with f and df vanishing
at the origin. The induced 3-form (pulled back to C3) is given by

ρ = ρ0 + df ∧ ω0.

Then the formula (4) for the variation of ρ̃ shows that

ρ̃ = ρ̃0 − I(df ∧ ω0) +O(|z|2),
where I acts as +i on Λ2,1 and −i on Λ1,2. So, at the origin

dρ̃ = −d(Idf ∧ ω0) = (−2i∂∂f) ∧ ω0.

On the other hand, in the familiar way the second fundamental form B
at the origin is given by the Hessian of f and the (1, 1) component β1,1 is

−i∂∂f , hence the desired formula.
We give an another approach to the calculation for the mean curvature.

Let g be a function of compact support on N . This gives a variation vector
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field gν and the variation of the induced Riemannian volume of N is

δVol =

∫
N
g μ volN

As we observed at the beginning of this subsection, for any hypersurface in
M the Riemannian volume coincides with the volume computed from the
induced SL(3,C) structure. The variation in the induced 3-form ρ is the Lie
derivative −Lgν(φ) and since φ is closed this is

δρ = −d(giνφ) = −d(gω),

so by (3) the variation in the volume is

δVol = −1
2

∫
N
d(gω) ∧ ρ̃ = 1

2

∫
N
(gω) ∧ dρ̃,

and since this true for all g we must have μvolN = 1
2ω ∧ dρ̃. This derivation

has the advantage that it shows the formula for the mean curvature applies
for hypersurfaces in 7-manifolds with closed G2-structures (but the formula
for β1,1 in Proposition 1 then acquires an extra, trace-free, term).

For completeness we also give a formula for the component BC of the
second fundamental form. Contraction of vectors with ρ − iρ̃ defines an
isomorphism Λ0,2 = TN , hence Λ1,2 = TN∗ ⊗ TN . Using the Hermitian
metric we identify TN with T ∗N so Λ1,2 = T ∗N ⊗ T ∗N . In particular we
have an embedding of the symmetric tensors s2(T ∗N) ⊂ Λ1,2. (These are
the primitive (1,2)-forms.) The component BC of the second fundamental
form is the real part of an element of s2(T ∗N), so using these identifications
it corresponds to a form β1,2 ∈ Λ1,2. Then we have

(10) dω = 1
2μρ−

1
2β1,2 −

1
2β1,2.

We leave the verification to the reader.

2.3. Examples.

1. Take M to be R7 with the standard flat G2-structure and N to be
the 6-sphere with outward-pointing normal. The induced SL(3,C)
structure is strictly mean convex and the corresponding almost-
complex structure on S6 is the standard one. More generally, re-
call that a nearly Kähler structure on an oriented 6-manifold N
is given by a closed definite 3-form ρ and a 2-form ω which is a
positive (1, 1)-form with respect to the almost complex structure
and satisfying

1
6ω

3 = volρ dρ̃ = 2ω2 dω = 3ρ.

So the SL(3,C)-structure is mean-convex. A nearly Kähler-struc-
ture defines a conical torsion-free G2-structure on (0,∞)×N with

φ = r3ρ+ r2dr ∧ ω.

In particular, we recover the flat structure on R7 from the 6-sphere
in this way.
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2. We say that an SL(3,C) structure ρ on N is tamed by a symplectic
form Ω if Ω has positive (1, 1) component (as in 2.1 above). Then
on a compact manifold N ,∫

N
dρ̃ ∧ Ω =

∫
N
ρ̃ ∧ dΩ = 0.

It follows that a mean-convex SL(3,C) structure on N does not
admit a taming form.

3. We consider a dimensional-reduction related to a construction of
Baraglia [1]. Let T 4 = R4/Z4 be the 4-torus and identify H2(T 4)
withR3,3, the indefinite quadratic form defined by cup-product. We
also regard R3,3 as the space of constant 2-forms on T 4. Let Σ ⊂
R3,3 be a “space-like” surface (i.e. a 2-dimensional submanifold on
which the quadratic form restricts to a Riemannian metric). Then
we have a canonical 3-form ρΣ on Σ×T 4. If we write f : Σ → Rp,q

for the inclusion map then, in terms of local co-ordinates s1, s2 on
Σ,

(11) ρΣ = −(
∂f

∂s1
ds1 +

∂f

∂s2
ds2),

where the partial derivatives are interpreted as constant co-efficent
2-forms on T 4. In other words ρΣ = −df , where the right hand side
is interpreted as a 3-form on Σ × T 4. The submanifold Σ ⊂ R3,3

has a mean curvature vector μΣ which is normal to TΣ. Suppose
that, at a point, μΣ is a spacelike vector in R3,3. Then TΣ +Rμσ

is a maximal positive subspace in R3,3 and as such has a canonical
orientation. Thus if we are given an orientation of Σ it makes sense
to say that μΣ is “outward pointing”.

Lemma 2. In this situation

dρ̃Σ = volΣ ⊗ μΣ,

where volΣ is the induced area 2-form on Σ and μΣ is viewed as a
constant coefficient 2-form on T 4. The 3-form ρΣ is mean-convex
if and only if μΣ is space-like and outward pointing.

We leave the proof as an exercise for the reader. Note that in
this situation dρΣ has rank at most 1, so ρΣ is never strictly mean-
convex.

Let Ξ ⊂ R3,3 be a 3-dimensional space-like submanifold, with
inclusion map F : Ξ → R3,3. For the same reason as above it
inherits an orientation, so we have an induced volume form χ. We
define a 3-form on Ξ× T 4:

φΞ = −dF + χ,

using notation as above. Then Baraglia shows that this defines a
torsion-free G2-structure if and only if Ξ is a maximal submanifold



REMARKS ON G2-MANIFOLDS WITH BOUNDARY 111

(that is, a stationary point for the induced volume function, with
respect to compactly supported variations in Ξ). For a surface Σ ⊂
Ξ, Proposition 1 amounts to the elementary statement that if μΣ is
spacelike and outward pointing then the mean curvature of Σ ⊂ Ξ
is positive.

4. We consider a different dimension reduction, as in [4]. This time
we take a flat 3-torus R3/Z3 and an oriented 3-manifold Y . Let
σ1, σ2, σ3 be closed 2-forms on Y which are linearly independent
at each point and let θi be co-ordinates on R3. Then we have a
definite 3-form

ρ = dθ1dθ2dθ3 −
∑

σidθi

on the 6-manifold Y × T 3. By elementary linear algebra there is a
unique basis of 1-forms εi such that

σi = εj ∧ εk,

for cyclic permutations (ijk) of (123). One finds that

(12) ρ̃ = −ε1ε2ε3 +
∑
cyclic

εidθjdθk.

The condition that σi are closed means that

dεi =
∑

Sijσj ,

where (Sij) is a symmetric matrix and we have

dρ̃ =
∑

Saiσa ∧ dθjdθk

(where a ranges over 1, 2, 3 and (ijk) over cyclic permutations).
The condition that φ is mean-convex is that S is a nonnegative
matrix (and not 0).

3. Manifolds with boundary

3.1. Gluing closed forms. The main focus of this paper is a com-
pact oriented 7-manifold M with boundary N and a given closed SL(3,C)-
structure ρ on N . In addition we consider an “enhancement” of ρ which is
an equivalence class of closed 3-forms over M equal to ρ on N under the
equivalence relation ψ ∼ ψ + dα where α is a 2-form vanishing on N . Thus
the existence of an enhancement is the condition that the cohomology class
[ρ] extends to H3(M) and the difference of two enhancements is naturally
an element of H3(M,N). We write ρ̂ for an enhancement class. Then we
have two existence questions.

• Is there a closed G2-structure with boundary value ρ̂?
• Is there a torsion-free G2-structure with boundary value ρ̂?
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There are also corresponding uniqueness questions. In [5] we showed that
the second question, modulo diffeomorphisms fixing the boundary pointwise,
corresponds to an elliptic boundary value problem of index 0.

The next Proposition is a reflection of the fact that closed G2-structures
form a more flexible class than the torsion-free structures. Let M1,M2 be
oriented 7-manifolds with boundary (not necessarily compact) and suppose
that N1, N2 are compact components of the boundary. Write ιi : Ni → Mi

for the inclusion maps. Suppose that there is a diffeomorphism γ : N1 → N2

which is orientation reversing (for the orientations induced from Mi). Then
in the standard way we can form a manifoldM1�γM2 by gluing the boundary
components N1, N2 using γ.

Proposition 2. Suppose that φ1, φ2 are closed G2-structures on M1,M2

and that ι∗1(φ1) = γ∗ι∗2(φ2). Then there is closed G2 structure φ on M1�γM2.
Moreover φ can be chosen arbitrarily close to φi outside an arbitrarily small
neighbourhood of Ni.

We sketch a proof. Assume for simplicity that Mi are compact with just
one boundary component Ni, so M = M1�γM2 is a closed manifold. We have
an L∞ 3-form Φ0 on M , defined to be equal to φi on int Mi ⊂ M . It follows
from the hypothesis and Stokes’ formula that dΦ0 = 0 in the weak sense.
Let Kε be the operators defining the 1-parameter heat semigroup for the
Hodge Laplacian on 3-forms on M (with some choice of Riemannian metric)
and for ε > 0 set Φε = KεΨ0. Then Φε is a smooth, closed 3-form and the
only point to check is that Φε is positive. Near the boundary N1 ⊂ M1 we
choose a collar neighbourhood with normal co-ordinate t ∈ [0, δ) so that the
3-form is

(13) ρt + ωtdt,

where ρt, ωt are t-dependent forms on N1. The positivity condition is that ρt
is definite and that ωt has positive (1, 1)-component for the almost-complex
structure defined by ρt. Gluing the corresponding representation of φ2, we
can write Φ0 in the same form (13), but now with t in an interval (−δ, δ) and
piecewise-smooth forms ρt, ωt. The 3-forms ρt are continuous across t = 0
but ωt has a jump discontinuity. The key point now is that the set of 2-
forms with positive (1, 1) part (with respect to a fixed complex structure)
forms a convex cone. In this description, the action of Kε is given, to a very
good approximation, by a positively weighted average of the forms at nearby
points. It follows easily from this that KεΦ0 is a positive 3-form for small ε.

Alternatively, we can construct suitable smoothing operators like Kε by
explicit local formulae, thus avoiding use of any analytical theory of the
heat equation. Such a construction also applies when Mi are not compact,
or have additional boundary components. Moreover we can arrange that φ
is exactly equal to φi outside arbitrarily small neighbourhoods of Ni.

3.2. A fundamental difficulty. Going back to the general questions
at the beginning of Section 3.1: the most optimistic, naive, hope would be
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that any closed G2-structure can be deformed, through closed G2-structures
with fixed boundary data, to a torsion-free structure. There are various
reasons why this cannot be true and we will discuss one such difficulty in
this subsection.

For small λ > 0 let Ωλ be a bounded domain with smooth boundary in
R7 = C3 ×R which is diffeomorphic to a ball and which near the origin is
given by

(14) {(z, t) ∈ C3 ×R : 0 < t < |z|2 + λ}.
The boundary of Ωλ is an embedded sphere ιλ : S7 → R7 and the embed-
dings can clearly be taken to have a smooth limit ι0 which is an immersion.
Let φ be the standard flat G2-structure on R7 and ρ(λ) = ι∗λ(φ) for λ ≥ 0.

Then for λ > 0 the 3-form ρ(λ) is the boundary value of a torsion-free G2-
structure on B7 but these have no smooth limit as λ tends to 0. On the other
hand we will show that ρ(0) is the boundary value of a closed G2 structure
on the ball.

Let π : C3 ×R → C3 ×R be the map π(z, t) = (z, |z|2t) and let Φ be
the 3-form Φ = π∗φ on a region

Uκ = {(z, t) ∈ C3 ×R : |z| ≤ κ, 0 ≤ t ≤ 1}.
Thus

Φ = ρ0 + t(d|z|2)ω0) + |z|2ω0dt.

We can fix a small κ > 0 so that, for this range of t and |z|, the 3-form
ρ0 + t(d|z|2)ω0 is definite on C3 and ω0 has positive (1, 1) part with respect
to this form. Then Φ is a positive 3-form on Uκ except for the points where
z = 0. Let η be a 1-form on C3 with dη = ω0 and let χ be a standard cut-off
function on C3, vanishing for |z| ≥ κ/2 and equal to 1 for |z| ≤ κ/4. For
small ε > 0 let

Φε = Φ+ εd(χηdt).

So
Φε = ω0(|z|2 + εχ)dt+ εdχ ∧ ηdt+ (ρ0 + t(d|z|2).

A moments thought shows that Φε is a closed positive 3-form on Uκ for small
ε. By construction, Φε has the same boundary values as Φ on the boundaries
t = 0, 1 and agrees with Φ for |z| > κ/4. Now it is clear that we can choose a
smooth map I0 : B7 → R7 extending the immersion ι0 and choose a region
Ũ ⊂ B7 such that there is a diffeomorphism h : Ũ → Uκ with I0 = π ◦ h on
Ũ and such that I0 is an immersion outside Ũ . Then the 3-form φ which is
equal to h∗Φε on Ũ and to I∗(φ0) outside Ũ is a closed G2-structure on B7

with boundary value ρ(0).
This example does not completely rule out the possibility that ρ(0) is

the boundary value of a torsion-free G2-structure (because there could be
some other solution which is not the limit of the flat solutions for λ > 0),
but it seems unlikely that this happens. In any case this phenomenon—of
different parts of the boundary coming together—will be a serious problem
in any kind of existence theory.
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3.3. Some Riemannian geometry. In this subsection we consider a
compact Riemannian manifoldX of dimension (n+1) with smooth boundary
Y such that

• The Ricci curvature of X is non-negative;
• The mean curvature μ of the boundary (with respect to the outward
pointing normal) is bounded below by a positive constant μ0.

We recall four results, each of a standard nature, which hold in this situation.
Let P be the set of smooth maps γ : [0, 1] → X with γ(0), γ(1) ∈ Y but
with γ(t) in the interior of X for 0 < t < 1. For δ > 0 we write Pδ for the
subset of P given by paths of length at most δ.

Proposition 3. For any path γ in P there is a small variation in P
which decreases the length.

By considering the first variation it suffices to consider the case when
γ is a geodesic which is normal to the boundary at the end points. Take
an orthonormal frame of TYγ(0) and parallel transport these along γ to
get variation vector fields vi. The second variation of arc length under the
variation vi (adapted to lie in P in the obvious way) is

−
∫
γ
K(vi, γ

′)−Bγ(0)(vi(0))−Bγ(1)(vi(1)),

where B is the second fundamental form of the boundary and K( ) is the
sectional curvature. Summing over i, the sum of the second variations is

−
∫
γ
Ric(γ′)− μ(γ(0))− μ(γ(1)) < 0,

so at least one of the variations decreases length.

Proposition 4. Let δ be the minimum length of a geodesic segment in
P which is orthogonal to Y at γ(0). Then any path in Pδ can be contracted
to a point through paths in Pδ.

This follows from the previous result and an argument of Morse-theory
type.

Proposition 5. The distance of any point of X to the boundary Y is
at most nμ−1

0 .

Let x0 be a point in the interior of X and γ minimise length among paths
from x0 to the boundary. Let vi be a parallel orthonormal frame along γ as
before and consider the variation vector fields tvi (where we assume that γ
is parametrised by arc-length). The second variation formula shows that if
the sum of the second variations is positive then the length of γ is at most
nμ−1

0 . (Equality holds when X is a ball in Rn+1 with centre x0).

Proposition 6. Vol(X) ≤ n
(n+1)μ0

Vol(Y )
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This follows from a variant of the Bishop comparison inequality, see [8].

The relevance of these results for our purposes is that the hypotheses are
satisfied for (X,Y ) = (M,N) where M has a torsion-free G2-structure and
the boundary SL(3,C) structure on N is strictly mean-convex. We define

m(ρ) = minN (det dρ̃)1/3

so μ(ρ) > 0 and by (9) we can take μ0 =
3
2m(ρ)

• Proposition 3 shows, roughly speaking, that the phenomenon dis-
cussed in 3.1 cannot occur for mean-convex boundary data. So one
can be more optimistic about an existence theory for torsion-free
G2-structures with prescribed boundary data in the case when this
boundary data is mean-convex.

• Proposition 6 gives an upper bound

(15) Vol(M) ≤ 4

7m(ρ)
Vol(N).

The point here is that the right hand side is entirely determined
by the SL(3,C) structure on N . Note that equality holds when
M is a ball in R7. There are reasons to expect that a torsion-free
G2-structure maximises the volume among all closed G2 structures
with given boundary data (see the discussion in [5]). This raises the
question whether the inequality (15) is true for closed G2-structures
on M , with strictly mean-convex boundary.

There is a variant of this discussion for submanifolds, related to
Example 3 in 2.3. Let Σ ⊂ Rp,q be an oriented space-like (p − 1)-
dimensional submanifold with spacelike, outward-pointing, mean
curvature μΣ. Suppose that Σ is the oriented boundary of a space-
like submanifold Ξ. Let ν be the outward pointing unit normal to
Σ in Ξ. Then the mean curvature μ of Σ in Ξ is 〈μΣ, ν〉. Now we
have an elementary inequality

〈μΣ, ν〉 ≥ ‖μΣ‖ =
√
〈μΣ, μΣ〉.

If Ξ is a maximal submanifold the Ricci curvature of the induced
metric is non-negative and we deduce from Proposition 6 that

(16) Vol(Ξ) ≤ p− 1

p
Vol(Σ)

(
min
Σ

‖μΣ‖
)−1

.

(With equality for a standard ball in Rp ⊂ Rp,q.) The question
that arises is whether this holds for any spacelike Ξ with boundary
Σ.
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4. G2-cobordisms

In this section we consider a pair of compact, connected, 6-manifolds
with closed SL(3,C) structures (N0, ρ0), (N1, ρ1) and a cobordism M from
N0 to N1 with closed or torsion-free G2 structure φ restricting to ρi on the
boundary. Proposition 2 shows that the existence of a closed G2-cobordism
defines a transitive relation on SL(3,C) structures, but the orientations in
the set-up mean that this relation is not symmetric (or at least, not in an
obvious way).

Our main focus is on the case when N0, N1 are diffeomorphic (so we
just write N) and M is a product, as a smooth manifold. Choosing such a
product structure we can express a 3-form φ in the usual way as ρt + ωtdt.
The existence of a closed G2-cobordism is equivalent to the existence of a
path ρt from ρ0 to ρ1 through closed SL(3,C)-structures on N such that

(17)
dρt
dt

= dωt

where ωt has positive (1, 1) part with respect to ρt. Of course we need to
assume that ρ0, ρ1 define the same cohomology class in H3(N). If we ig-
nore the positivity condition it is known that we can find some path ρt of
SL(3,C)-structures. In [2], Crowley and Nordström show that “co-closed”
G2-structures on 7-manifolds obey an h-principle and the same arguments
apply to closed SL(3,C)-structures [9]. (The main point is that any hyper-
surface in R7 acquires a closed SL(3,C)-structure, just as any hypersurface
in R8 acquires a co-closed G2-structure.) Easy bundle theory considerations
show that ρ0, ρ1 are homotopic as definite 3-forms and the h-principle shows
that these forms can be taken to be closed, in a fixed cohomology class.

Example. Consider the standard closed definite form ρ on S6. Then −ρ
is also a closed definite form and there is an obvious homotopy

ρt = cos(πt)ρ+ sin(πt)ρ̃,

through definite forms, but these are not closed. The Crowley-Nordström
theory shows that there is some homotopy through closed definite forms.
Note that such a homotopy cannot be invariant under G2, acting on S6. It
is interesting to ask whether there is a closed G2-cobordism from ρ to −ρ
(or from −ρ to ρ).

4.1. Taming forms and cobordisms. There is a further connection
between homotopy of definite forms and G2-cobordism in the presence of a
taming form.

Lemma 3. Let Ω be a symplectic form on N . If ρ0, ρ1 can be joined by
a path ρt of closed definite 3-forms in a fixed cohomology class such that ρt
is tamed by Ω for each t then there is a closed G2-cobordism from ρ0 to ρ.

The proof is easy: the hypotheses mean that we can find closed, Ω-tamed,
SL(3,C) structures ρt and 2-forms ω̃t such that dω̃t is the t-derivative of ρt.
Then we set ωt = ω̃t +AΩ for large A.
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We say that a closed G2-cobordism is tamed by Ω if there is a product
structure M = N × [0, 1] with respect to which ρt is tamed by Ω for all t.

There is a more precise statement of this Lemma, involving the “en-
hancement” of the boundary data. For simplicity we consider the case when
H2(N) = R and fix a pair of 2-cycles S0, S1 representing a generator of
H2(N). Also fix a 3-chain W ⊂ M = N × [0, 1] with boundary −S0 in one
end and S1 in the other. So for any closed form φ with boundary values
ρ0, ρ1 we have a real number

IW (φ) =

∫
W

φ,

which depends only on the relative homology class of W . The more refined
question is to ask for which values of IW (if any) is there a closed G2-
cobordism from ρ0 to ρ1. In the presence of a symplectic form Ω as above,
fix the sign of S1 so that 〈Ω, S1〉 > 0. Then∫

W
Ωdt =

∫
W

d(tΩ) =

∫
S1

Ω > 0.

The more precise statement of Lemma 3 is that, under the hypotheses of the
Lemma, there is a κ0 such that for all κ ≥ κ0 there is a closed G2-cobordism
φ from ρ0 to ρ1 with IW (φ) = κ. Motivated by this we can define an invariant
DW (ρ0, ρ1) of a pair ρ0, ρ1 to be the infimum of the values of IW (φ) such
that there is a closed G2-cobordism φ from ρ0 to ρ1 (and +∞ if this set is
empty). Of course this depends on the choice of W , but the invariants given
by different choices are related by the addition of a constant determined by
homological considerations.

There is a potential connection between these ideas and the enumerative
geometry of holomorphic curves in N . The appropriate theory would proba-
bly be an extension of the “Donaldson-Thomas” invariants to the symplectic
case and, since such a theory has not so far been set up rigourously, we only
sketch the idea. Suppose, in the simplest situation, that there is a single
holomorphic curve for the almost complex structure defined by ρ0 in the
homology class [S0] so we take S0 to be this holomorphic curve. Similarly
suppose that there is single holomorphic curve in this homology class for
the almost complex structure defined by ρ1 and take S1 to be that curve.
Suppose further that throughout the 1-parameter family ρt there is just a
single holomorphic curve St, giving a smoothly varying family from S0 to
S1. This family defines a cycle W in N × [0, 1] and we have

(18) IW (φ) =

∫ 1

0

(∫
St

ωt

)
dt.

The derivation of this equation uses the fact that for any tangent vector v
to N at a point of St the contraction iv(ρt) vanishes on the tangent space
of St, which is a characterisation of holomorphic curves in this setting. The
point now is that IW (φ) > 0 since ωt has positive (1, 1) component and its
integral over a curve is positive.
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Of course the situation above cannot be expected to hold in general.
However we do have compactness results for holomorphic curves in the case
of tamed structures and the discussion can be extended. For example we
might have a finite number of holomorphic curves, with respect to ρi, in the
given homology class and we then take the cycles Si to be sum of these,
with suitable signs. But we will not try to go into further details here. The
general point is that we can hope that there are preferred chains W which
impose a constraint IW (φ) > 0, at least for tamed, closed, G2-cobordisms.

4.2. More Riemannian geometry and questions of Torelli type.
Now consider a compact Riemannian manifold with boundary which gives a
cobordism from Y0 to Y1. Then we have another result of a standard nature.

Proposition 7. If the Ricci curvature of X is non-negative and the
mean curvature of both boundary components (with respect to the outward
normals) is non-negative then X is isometric to a product Y × [0, L] and in
particular Y1, Y2 are isometric.

To prove this we consider the harmonic function h on X, equal to 0 on
Y0 and to 1 on Y1. Then we have

(19) Δ(|∇h|2) = |∇∇h|2 +Ric(∇h)

and integrating we obtain

(20)

∫
Y0

∇ν |∇h|2 +
∫
Y1

∇ν |∇h|2 +
∫
X
|∇∇h|2 +Ric(∇h) = 0,

where ∇ν denotes the normal derivative. The second fundamental form of
the boundary is the quadratic form defined by B(ξ) = 〈∇ξν, ξ〉 for vectors ξ
tangent to the boundary. So if ξi is an orthornomal frame the mean curvature
is

μ =
∑
i

〈∇ξiν, ξi〉.

On the boundary, write ∇h = fν. Then∑
i

∇ξi〈∇h, ξi〉 =
∑

〈∇ξifν, ξif〉 = f2μ.

On the other hand

Δh =
∑
i

〈∇ξi∇h, ξi〉+ 〈∇ν∇h, ν〉,

so fμ = −〈∇ν∇h, ν〉, since h is harmonic. Thus

∇ν(|∇h|2) = −f2μ = −μ|∇h|2

and (20) becomes∫
Y0

μ|∇h|2 +
∫
Y1

μ|∇h|2 +
∫
X
|∇∇h|2 +Ric(∇h) = 0.

Under our hypotheses all terms are non-negative so must vanish identically.
In particular ∇∇h = 0 and this leads easily the product decomposition.



REMARKS ON G2-MANIFOLDS WITH BOUNDARY 119

We apply this to the case of a torsion-free G2-cobordism.

Corollary 1. Let (N0, ρ0), (N1, ρ1) be a pair of compact 6-manifolds
with integrable SL(3,C) structures. If there is a torsion-free G2-cobordism
M from (N0, ρ0) to (N1, ρ1) then they are isomorphic.

This follows from Proposition 7 since the Ricci curvature of M and mean
curvature of the boundary vanish (the latter by Proposition 1).

This corollary potentially has some bearing on questions of Torelli type
for Calabi-Yau 3-folds. That is, the question whether a Calabi-Yau structure
is uniquely determined by the cohomology class [ρ] ∈ H3(N ;R). In fact the
usual algebraic geometry formulation is in terms of the larger data [ρ+ iρ̃] ∈
H3(N,C). There are examples showing that “global Torelli” fails, in the
standard algebraic geometry formulation [10]. But it is possible that there
could be alternative formulations with positive answers.

Question 1. Suppose (N, ρ0) and (N, ρ2) are integrable SL(3,C) struc-
tures.

• If there is a closed G2-cobordism between the structures are they
isomorphic?

• If ρ0, ρ1 are homotopic through tamed, closed, SL(3,C)-structures
in a fixed cohomology class are they isomorphic?

In other words, it is possible that examples where the Torelli property
fails come from Calabi-Yau structures in different connected components
under tamed deformations (although by the Crowley-Nordström theory dis-
cussed above they lie in the same connected component of closed SL(3,C)
structures). To explain the relevance of Corollary 1, suppose that ρs is a
path of tamed, closed, structures from ρ0 to ρ1. We showed in [5] that for
small s there is a torsion-free G2-cobordism from ρ0 to ρs. If this can be
continued all the way to s = 1 we would deduce from Corollary 1 that ρ0
and ρ1 are isomorphic.

Continuing in a speculative vein, similar ideas could possibly be relevant
to proving existence of Calabi-Yau structures. Suppose that ρ0 is a real-
analytic, closed SL(3,C) structure on N . Then it is straightforward to show
that there a torsion-free G2-cobordism from ρ0 to some ρ1 close to ρ0. Fix
these boundary values ρ0, ρ1 and attempt to vary the enhancement data,
i.e. seek torsion-free G2-cobordisms φL with IW (φ) = L and with L → ∞.
The simplest picture of what could happen is that, for a suitable family of
base points in M , the based Gromov-Hausdorff limit as L → ∞ is a product
N ×R, with a Calabi-Yau structure on N .

For another question, let ρ0 be mean-concave and ρ1 be mean-convex.
Then Proposition 7 shows that there is no torsion-free G2-cobordism for ρ0
to ρ1. (The signs are confusing here—the condition that ρ0 is mean concave
says that the boundary has positive mean curvature with respect to the
outward normal, due to the switch in orientation). This can also be seen
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using geodesics and the second variation formula, as in Proposition 3. The
question arises whether there can be a closed G2-cobordism from ρ0 to ρ1.

5. Variants for maximal submanifolds

We can develop the same ideas in the direction of existence and unique-
ness questions for maximal submanifolds. This is related to theG2-discussion
via the dimension reduction procedure described in Example 3 of 2.3, but
can also be pursued independently. Consider a space-like (p−1)-dimensional
submanifold Σ ⊂ Rp,q as in 3.2. Suppose that Ξ0,Ξ1 are two p-dimensional
maximal spacelike submanifolds with boundary Σ. For L > 0 we consider
[0, L]×Rp,q ⊂ Rp+1,q and the set

T = [0, L]× Σ ∪ {0} × Ξ0 ∪ {L} × Ξ1.

Proposition 8. If there is a compact (p+1)-dimensional maximal sub-
manifold Z in Rp+1,q with boundary T then Ξ0 = Ξ1.

(More precisely, Z should be a “manifold with corners”.) To see this we
follows the proof of Proposition 7. The linear projection to the first factor is
a harmonic function h on Z. The maximal condition implies that the Ricci
curvature of Z is nonnegative and the fact that Ξi are maximal implies
that the mean curvature of Ξi in Z vanishes. The new feature is that Z
has an extra boundary component [0, L] × Σ. Let e ∈ Rp+1,q be the co-
ordinate vector corresponding to the [0, L] factor. Then |∇h| at a point of
Z is the length of the orthogonal projection of e to the tangent space of Z
(with respect to the indefinite form). At points of the boundary component
[0, L] × Σ the first vector e lies inside this tangent space so |∇h| = 1. A
moments thought shows that the normal derivative of |∇h|2 vanishes, thus
we do not get any contribution to the boundary term and the same argument
applies to show that ∇∇h = 0. This means that |∇h| = 1 everywhere which
can only happen if e is tangent to Z at each point and we deduce that
Ξ0 = Ξ1 and Z = [0, L]× Ξ0.

Finally we consider a more complicated geometric set-up, following [3]
(to which we refer for more details). Let P be a p-dimensional manifold
and Q ⊂ P a co-oriented submanifold of co-dimension 2. We regard (P,L)
as an orbifold, so we have orbifold charts around points of Q modelled on
Rp−2 ×C, with the involution z �→ −z on the C factor. We consider a flat
affine orbifold bundle V → P with structure group the affine extension Γ
of O(p, q). Thus over P \ L we have a flat Γ-bundle in the usual sense and
the orbifold structure over a point x of Q is given by an element rx of order
2 in Γ. We suppose that the rx are reflections in “timelike” vectors. Given
this data, we have a notion of a branched section u of V . By definition this
is given over P \Q by a section of the flat bundle. Locally, over small open
sets Π ⊂ P \Q this is represented by a map uΠ : Π → Rp,q and we require
that this be an embedding with image a space-like submanifold. Around a
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point x of Q the behaviour of u can be described as follows. There is an
orthogonal decomposition

Rp,q = C×Rp−2 ×R×Rq−1

in which the reflection rx acts as −1 on the R factor and +1 on the other
factors. The factor C ×Rp−2 is a positive subspace for the indefinite form
and the factor R × Rq−1 is a negative subspace. We can choose local co-
ordinates (w, τ) ∈ C×Rp−2 on P such that Q is defined by w = 0 and the
section is give by a multi-valued function

(21) u(w, τ) = (w, τ, f(w1/2, τ), g(w, τ)),

where f is an odd function in the w1/2 variable. In other words, the orbifold
co-ordinate z is w1/2 and f is a genuine function f(z, τ) with f(−z, τ) =
−f(z, τ). We require that

(22) g = O(|w|2),∇g = O(|w|),∇2g = O(1),

(23) f = O(|w|3/2),∇f = O(|w|1/2),∇2f = 0(|w|−1/2).

Finally we can define maximal branched sections of V to be branched
sections which away from Q are locally given by parametrised maximal sub-
manifolds of Rp,q. Around points of Q they correspond to branched maximal
subvarities, with co-dimension 2 singularities.

Maximal branched sections are certainly not unique. We define an equiv-
alence relation on branched sections of V as follows. If f : (P,Q) → (P,Q)

is a diffeomorphism and if there is an isomorphism f̃ : f∗(V ) → V then

u ∼ f̃(f∗(u)). (In particular, if f is isotopic to the identity the flat structure

defines a lift f̃ .) Then if u0 is a maximal branched section and if u1 ∼ u0 then
so also is u1. Locally, this just corresponds to different choices of parametrisa-
tion of the same maximal submanifold. Another simple way in which unique-
ness can fail occurs when there is a covariant constant section s of the flat
orbifold vector bundle V associated to the affine bundle V . In that case we
can change a maximal branched section u to another u + s. Locally this
just corresponds to translation of the maximal subvariety. In most cases of
interest there will be no such covariant constant sections.

Now consider the product P × [0, L] with projection π : P × [0, L] → P .
The pull-back π∗(V ) is a flat affine orbifold bundle over (P×[0, L], Q×[0, L]).
We consider the bundle π∗(V ) × R over (P × [0, L], Q × [0, L]) with the
obvious structure of an affine orbifold bundle with fibre Rp+1,q. Let e be the
covariant constant section of the vector bundle π∗(V )×R corresponding to
the unit vector in the R factor. If we have two branched sections u0, u1 of V
we can consider branched sections U of π∗(V )⊕R with boundary conditions
that U = u0 over P × {0} and U = u1 + Le over P × {L}.
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Proposition 9. If u0 and u1 are two branched maximal section of V and
if there is a branched maximal section U of π∗(V )×R with these boundary
values then u1 ∼ u0 + s for a covariant constant section s of V0.

The section U induces a Riemannian metric Γ on P × [0, L] with a
singularity alongQ×[0, L]. In the local-co-ordinates given by (21) this metric
is uniformly equivalent to the Euclidean metric, with Lipschitz metric tensor.
As before the metric has non-negative Ricci curvature away from the singular
set. We write h for the function on P × [0, L] given by projection of U to the
R factor in πV ×R. Thus h = 0, L on the two boundary components. The
local geometry away from the singular set is just as before but we need to
check that the singularity does not affect the argument. Let Nε be a tubular
neighbourhood of Q of radius ε and consider∫

(P\Nε)×[0,L]
Δ|∇h|2

There is a new boundary term

(24)

∫
∂Nε×[0,L]

∇ν |∇h|2.

The integrand is locally 〈B(∇h, ν), e〉 where B( ) is the second fundamental
form of the image of U , regarded now as a bilinear form on the tangent
space. It follows from (21) that B is O(ε−1/2) and |∇h| is O(1). The local
bi-Lipschitz property implies that the volume of ∂Nε × [0, L] is O(ε) so the

integral in (24) is O(ε1/2) and taking ε → 0 we deduce that ∇∇h = 0, as
before. In particular the length |∇h| is a constant c and c ≥ 1 (since it is the
projection of a unit vector to a maximal positive subspace in Rp+1,q). The
local representation (21) shows that ∇h, regarded as the gradient vector
field, is Lipschitz on P × [0, L] and this implies that the integral curves run
from one boundary component to the other (as in the smooth case). The
same argument shows that the (singular) Riemannian manifold (P×[0, L],Γ)
is isometric to a Riemannian product, say (P, g)×[0, L/c], where the function

h on P × [0, L] goes over to the function h̃(x, t) = ct on (P, g)× [0, L/c].
Suppose first that c = 1. This implies that at each point the gradient

vector ∇h in the tangent space of P × [0, L] maps under the derivative
of U to the fixed vector e. Let F : (P, g) × [0, L] → P × [0, L] be the
diffeomorphism given by the Riemannian product structure, equal to the
identity on P × {0}. The pull back by F of ∇h is the unit vector field ∂t
in the [0, L] factor. Thus the derivative ∂t(F

∗(U)) is equal to e. The flat
structure, and the fact that F is the identity on P × {0}, gives a canonical

isomorphism F̃ : F ∗(π∗(V )×R) → π∗V ×R. So we can regard F ∗(U) as a
1-parameter family (F ∗(U))t of sections of the bundle V ×R → P and our
identification of the t-derivative shows that

(25) (F ∗(U))t = u0 + te.
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Now let F be given on the other boundary component by F (x, L) = (f(x), L)

for a diffeomorphism f : P → P and let f̃ be the restriction of F̃ . Then (25)

specialises to f̃(f∗(u1)) = u0, which shows that u1 ∼ u0. The argument
above is essentially the same as that in the proof of Proposition 8, once we
know that |∇h| = 1. The extra difficulty that arises now is to analyse the
case when c > 1. To handle this we need a lemma from local differential
geometry.

Lemma 4. Suppose X is a connected p-dimensional Riemannian mani-
fold (not necessarily complete) and suppose that fs : X → Rp,q is a smooth
family of spacelike embeddings for s ∈ (−δ, δ). Fix c > 1 and let Rp,q × R
have the standard indefinite form, positive on the R factor. Let

Φ : X × (−δ, δ) → Rp+1,q

be the map Φ(x, s) = (fs(x), cs). Suppose that

1. Φ is an isometric embedding, with space-like image, for the Rie-
mannian product metric on X × (−δ, δ);

2. the image of Φ is a maximal space-like submanifold in Rp,q ×R;

Then there is a vector ν ∈ Rp,q with |ν|2 = 1 − c2 < 0 such that fs(x) =
f0(x) + sν and the image f0(X) lies in a hyperplane normal to ν.

Write ∂fs
∂s = νs,x so ν takes values in Rp,q. The isometric embedding

condition in item (1) is equivalent to

• |νs,x|2 = 1− c2;
• νs,x is orthogonal to the tangent space of fs(X) at fs(x);
• each fs is an isometric embedding of X in Rp,q.

When the codimension, q, is large these conditions admit many solutions
so we have to bring in the second hypothesis, that the image of Φ is a
maximal submanifold. Let Γ be the Gauss map of the image of Φ. The
maximal submanifold condition implies that

|∂Γ
∂s

|2 = RicX×(−δ,δ)(∂s)

where on the left hand side we use the standard Riemannian metric on the
Grassmann manifold of maximal positive subspaces. Since, for the product
manifold, this component of the Ricci curvature is zero we deduce that Γ
is constant in s. By simple linear algebra and the orthogonality condition
this implies that νs,x is independent of s so we can write νxv and fs =
f0 + sνx. From this one deduces easily that νx is independent of x, and the
orthogonality shows that X0 lies in a hyperplane normal to ν.

Given this Lemma it is easy to extend the proof that we gave for the
case c = 1 to the general case.

There are two situations in which this result interacts with G2-geometry.

1. Take p = 2, q = 19 and P = S2. Consider a polarised Calabi-
Yau threefold N which admits a holomorphic Lefschetz fibration



124 S. DONALDSON

N → S2 with K3 fibres. The cohomology of the fibres orthogonal
to the Kähler class defines a flat orbifold vector bundle (with Q
the finite set of critical values) and a class in H3(N) yields a lift
to an affine bundle V . The period map of the complex structure
defines a branched maximal section. The uniqueness question is a
version of the Torelli problem for K3-fibred Calabi-Yau 3-folds. In
the argument, the maximal section U over S2×[0, L] corresponds to
the “adiabatic limit” of a G2-cobordism with a Kovalev-Lefschetz
fibration, as discussed in [3].

2. Take p = 3, q = 19. Then P is a 3-manifold and Q ⊂ P is a link. The
uniqueness question for maximal sections is the adiabatic limit of a
“Torelli problem” for closed G2-manifolds with Kovalev-Lefschetz
fibrations.
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