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The Onsager theorem

Camillo De Lellis

ABSTRACT. In his famous 1949 paper on hydrodinamic turbulence, Lars
Osanger advanced a remarkable conjecture on the energy conservation
of weak solutions to the Euler equations: all Hélder continuous solutions
with Holder exponent strictly larger than % preserves the kinetic energy,

while there are Hélder continuous solutions with any exponent strictly

smaller than % which do not preserve the kinetic energy.

While the first statement was proved by Constantin, E and Titi
in 1994, the second was proved only recently by P. Isett building upon
previous works of Laszlé Székelyhidi Jr. and the author. This paper is
a survey on the proof of the conjecture and on several other related
discoveries which have been made in the last few years.
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1. Introduction

The incompressible Euler equations describe the motion of a perfect
incompressible fluid. Written down by L. Euler over 250 years ago, they are
a system of partial differential equations in two unknowns: a vector function
v, which gives the velocity of the fluid particle passing through the point z
at the time ¢, and a scalar field p, the hydrodinamic pressure. The system
takes the following form

v+ (v-Vv+Vp=0

(1)
dive =0,

where the components of the advective term (v - V)v are given by
ov;
[(’U . V)v]l = zj:vja—x; = zj:vjajvi .

In particular, the divergence free condition on v implies that, for C! solutions
(v, p), the system can be quivalently written as

O +diviv®v) +Vp=0

(2)
dive =0.

The first, vectorial, equation expresses the conservation of momentum for ev-
ery fluid region and it assumes that there is no dissipation of energy through
friction. The second equation expresses instead the conservation of mass: the
fluid is therefore assumed to be incompressible and to have constant density,
which for convenience we can normalize to 1.

For the moment let us consider the 3-dimensional case with periodic
boundary conditions. In other words we take the spatial domain to be the
flat 3-dimensional torus T2 = R3/(27Z)3. Thus (v,p) : T3 x I — R3 x R,
where [ is a time interval, say I = [0, T]. In the rest of this note we will call
(v,p) a classical solution if (v,p) € C1(T3x [0, T]) and satisfies (2) pointwise.

The total kinetic energy of the fluid is given by
1
B(t) = —/ lo(a, )2 da
2 Jrs

and, as expected, it is a conserved quantity for classical solutions, namely
E(t) = E(0) for every t € I. The proof is an easy computation. After scalar
multiplying the first equation by v we derive

Z vj0v; + Z v} Z vpORv; + Z v;0;p =0,
J J k J

which we can rewrite as

o[

0, +(-V)ﬁ+ =0
t5 v B p)=VU.
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We then use the divergence free condition to infer

5 2 i (2 45)0) =0,

which integrated in the space variable gives

dE d

(4) QE == - [v|*(x,t)dz = 0.

The smoothness of the pair (especially that of v) has been crucially used to
derive (3) and a natural question is whether its validity can be extended to
less regular solutions (of course if we decrease the regularity of the solutions
in a substantial way, we need to specify in which sense we understand the
equations; this issue will be addressed thoroughly in a few paragraphs). Al-
though this might seem a rather academic question, it was actually posed
much before the modern trend of studying weak solutions of partial differ-
ential equations took place. In his famous 1949 paper [75] on hydrodinamic
turbulence, Lars Onsager, a celebrated theoretical physicist of the 20th cen-
tury, stated the following remarkable conjecture.

CONJECTURE 1.1. Consider periodic 3-dimensional weak solutions of
(2), where the velocity v satisfies the uniform Hélder condition

(5) |U($,t> —’U(Hfl,t)| < C|$—1’/’9,
for constants C' and 0 independent of x,2' and t.

(a) If 6 > %, then the total kinetic energy of v is constant;
(b) For any 0 < % there are solutions v for which the total kinetic
energy is not constant and, in particular, it is dissipated, namely

(6) E(t) < E(s) for allt < s and E(t) < E(0) for some 7 > 0.

As already mentioned, in order to get a clearly stated mathematical
problem one needs to specify what weak solution means in this context,
in particular because Holder functions are not pointwise differentiable. Re-
markably Onsager in [75] gives a concise, elegant and mathematically precise
definition of what he means by weak solution, which in fact adheres to what
a modern mathematician would call a distributional square summable solu-
tion. Below we will give an account of Onsager’s motivation for raising the
conjecture and we will discuss various definitions of weak solutions of the
Fuler equations.

Part (a) of Conjecture 1.1 has been settled in the nineties by an elegant
work of Constantin, E and Titi (see [29]) after a slighly weaker statement
was first proved by Eyink in [48]. The remaining part of the Conjecture
has been settled in the last couple of years and, therefore, we could now
call it the Onsager theorem. The aim of this note is to give an account of
the proof and to provide also a short survey of the literature that, although
not directly related to the conjecture, has stemmed from the attempts at
solving it in the last 12 years. In particular the methods used to prove the
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conjecture have been applied to a large range of other problems, raising
challenging open questions and uncovering surprising connections between
different fields in geometry and analysis.

2. Weak solutions

We will propose here several different definitions of weak solutions of
(2).

2.1. Fourier series. Consider a classical solution (v, p) on the periodic

torus. Let
v(m,t) =Y dp(t)e®”
kez3
be its Fourier expansion. Observe that the divergence-free condition is thus
equivalent to

(7) k-t =0 for all k € Z3.

As for the first equation in (2) we can rewrite it as

(8) D) +i > De(t) - j0;(t) + ikpr(t) =0
j+o=k

where p(z,t) = pp(t)e?** is the Fourier expansion of the pressure. After

scalar multiplying with k the above relation we find
kDR == 00 jbj - k.
J+e
In particular, if we introduce the symmetric bilinear map

By (,9) = AZ @g'k@j—# ‘Z by koj-k.
Jj+Hi=k jH=k

we can rewrite (8) as
9) o), = —iBg(0,0).
It is easy to check that, if (7) holds at some time 7 € [0,7] and the Fourier
coefficients satisfy the infinite system of ODEs (9), then in fact (7) holds
at all times t € [0,7]. Thus, considering that we want to solve (2) subject
to the initial condition v(-,0) = v" for some solenoidal initial data wvp, it
suffices to solve the infinite system (9) coupled with the initial conditions
0 (0) = 9Y.

Observe now that the bilinear operator By (v, 0) is well defined and con-
tinuous on (2(Z3,R3). Namely, if v(-,t) € L? for every ¢, the right hand
side of (9) is an absolutely converging series for every k and the system (9)
is well-defined. We can thus say that v € L*(]0,T], L?(T3,R3)) is a weak
solution of (2) if:

e cach t — 0y (t) is an absolutely continuous function and (9) holds
at almost every time t € [0,77;
e and (7) holds at the initial time.
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2.2. Distributional solutions. Since the only nonlinearity in (2) is
the quadratic term v ® v in the first equation, distributional solutions can
be defined as pairs v € L2(T3 x [0,7],R3) and P € D'(R*x]0, T|[) satisfying

(10) /v(x,t) -Vo(x,t)dedt =0
(1) / (@, ) - 00, 1) + v © v(, ) : Dib(a, 1)] ddt + P(div ) = 0

for every pair of tests p € C°(T®x]0,T[) and ¥ € C(T3x]0,T[,R3). As
it is the case for the Fourier approach, the pressure can be eliminated from
the equations by requiring that (11) holds for divergence-free tests.

2.3. Continuum mechanics. If 2 is a smooth open domain and v
denotes the exterior unit normal to €2, then

/ p(z, t)v(z) dz
oN

is the total force exerted at time ¢ by the fluid outside €2 upon the portion of
fluid inside €2. Note that p is then well-defined up to an arbitrary function

of time, since
/ v=20
o0

for every smooth bounded open set 2. This arbitrariness in the definition of
p can be seen directly from (1) and it is natural to mod it out by normalizing
p so that [ p(z,t)dx = 0.

As already mentioned the two equations in (1) express simply the con-
servation of mass and momentum. Indeed, if (v,p) is a pair of C! functions
satisfying (1) and Q an arbitrary domain, the divergence theorem implies

(12) /{9(21)-1/:0

(13) % Qv—/mv(v-u)+/mpy.

The identity (12) has a very intuitive interpretation: the total amount of fluid
particles “getting out” of €2 is balanced by the total amount “getting in” and
as a result the total amount of fluid occupying the region €2 remains constant.
The identity (13) is the counterpart of the conservation of momentum: the
rate of change of the momentum of the fluid contained in € is given by the
sum of the flux of momentum through 92 and the total force exerted on 2
by the portion of fluid lying outside.

In continuum mechanics it is often the case that balance laws as in
(12) and (13) (valid for any “fluid element” 2) are derived, under suitable
assumptions, from first principles, whereas the differential equations (as (1))
are deduced as consequences when the functions are sufficiently smooth. In
the case at hand (1) can be easily derived from (12)-(13) if the pair (v, p)



76 C. DE LELLIS

is C'!. However we can make sense of (12) and (13) even if (v,p) are much
less smooth: the continuity of the pair is, for instance, enough to make sense
of all the integrals in (12) and (13) whenever € has C! (or even Lipschitz)
boundary. This provides a third way of defining weak solutions.

Finally let us observe that the three definitions are all equivalent when
they all make sense. The careful reader will have noticed that we have given
them under slightly different assumptions and that in particular the “distri-
butional approach” requires the least amount of regularity on the pair (v, p):
the technicalities can actually be adjusted so to make sense of the other two
approaches under the same minimal smoothness.

3. Anomalous dissipation

Let us briefly describe the considerations leading Onsager to his con-
jecture. We start by introducing the Navier Stokes equations, namely the
system

O +div(v ® v) + Vp = vAv
(14)
dive =0,

where the viscosity v is a positive (and, for our purposes, small) constant.
For solutions of (14) the energy conservation law is given by

d

dt Jrs
For sufficiently smooth solutions it can be derived by scalar multiplying
the first equation by u and performing essentially the same computations
leading to (4).

If we were considering a family of solutions v, with v — 0 and if these
solutions were to converge to a classical solution of (1), then the right hand
side of (15) would behave as O(v). However, in the theory of hydrodynamic
turbulence it is expected that, in 3-dimensions and for “typical” turbulent
solutions of (14), the right hand side of (15) is independent of the viscosity.
Thus, one may advance the hypothesis that the dissipation of the energy is
not primarily driven by the viscous term vAwu and that the main responsible
for this dissipation is indeed the nonlinear term of the equations, which
appear as well in (1).

This hypothesis and a corresponding “energy spectrum” law have been
first put forward by Kolmogorov in [66] (nowadays often cited as K41 theory)
and, as pointed out by Onsager in [75], rediscovered independently at least
twice (in [74] and [94]; see also [52], which refers to [78]). We briefly explain
here the motivations given by [75] for the Kolmogorov’s law (and refer to
[49] for a nice and much more detailed analysis of Onsager’s discoveries).

Recall that we denote by E the total kinetic energy E(t) = 3 [ |ul*(x,
t)dzx. In addition let @ be its rate of dissipation ‘Z—? and let L be the

(15) [v|*(x,t) do = —2V/ |Dv|*(x,t) dz .
T3
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“macroscale” of the flow (in our case we can suppose this is the side length
of the torus, i.e. 27). If we assume that @ depends only on L and E a simple
dimensional analysis suggests the law

(16) = —cE3L

where ¢ is a dimensionless constant. Indeed, if o denotes the unit of space
and 7 the unit of time, then E is measured in 02/72, Q in 02?/7% and L in
o: it can be readily checked that the law (16) is the only possible one of the
form ¢E*LP for which ¢ is a dimensionless constant. The law (16) has been
verified extensively in experiments and it turns out to be valid as long as
the viscosity is very small compared to E(t).

In order to get into Onsager’s explanation of how this might be possible,
we proceed as in the derivation of (9) to conclude that the Fourier coefficients
U, of a solution of (14) satisfy the identities

(17) B, (t) = —iBg(0(t), 0(t)) — v|k[*0k(t) .

In particular, multiplying by the complex conjugate of 0y (which in fact
equals ©_j by the reality of the velocity v) we derive

d
(18) S |0 [* = =20k |0k |* — iBy(0,0) - ..
Using the expression for By we can compute

—iB(0,0) - b = Y _ (—20m ((Bpye - ) (D - D_g) + (Do - k) (ax - a—))) -
¢

=:Q(k,L)

Note that Q(k,¢) = —Q(¢, k): this term accounts for the “energy exchange”
between different Fourier modes. As long as —v|k|? is small (i.e. for suffi-
ciently small k), we can assume that the term Q(k,¢) is the dominating one
in (18).

The picture proposed by Onsager for a “typical” chaotic flow is the
following: in the infinite sum at the right hand side of (18) only the terms
where 0y, U, Ux4¢ have a comparable wavelength are relevant. So, the energy
gets redistributed from wave lengths of a certain size to wave lengths of, say,
double that size. As A grows the redistribution process happens faster and
faster, so that after a short time (i.e. before E becomes too smal for the
validity of (16)) the energy is redistributed at all scales. If this transfer
is a chaotic process, after few steps the information about the low wave
numbers (i.e. the macroscopic features of the flow) is lost. It is therefore
plausible that the energy flux of the energy distribution depends only on
the total dissipation rate (Q = —% and on the modulus of the wave number

If we set f(A) := 32 5<a |0x|? the energy distribution E()) is “formally”

%, so that E = [ E(A\)d\. Since the frequency is measured in o1, E())
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is measured in 0772, The same dimensional analysis leading to (16) gives
then
(19) E(\) = BQ3A75

where (§ is a dimensional constant. The last identity is the famous Kol-
mogorov’s law.

In the final paragraph of his note Onsager writes:

It is of some interest to note that in principle, turbulent dissipation as de-
scribed could take place just as readily in the absence of viscosity. In fact it is
possible to show that the velocity field in such “ideal turbulence” cannot obey
any Lipschitz condition of the form |v(z) — v(y)| < Clz|* for any o greater
than %; otherwise the energy is conserved. ... The detailed conservation of
energy (18) does not imply conservation of the total energy if the number of
steps in the cascade is infinite, as expected, and the double sum of Q({,k)
converges only conditionally.

Onsager considers thus the possibility of setting v = 0 rather than as-
suming it small. He further claims that a closer inspection of the identity
(18) shows that the total conservation of the energy can be inferred from
the weak formulation of the equation (1) only when the solution is Holder
continuous with exponent larger than %, whereas this might fail for smaller
exponents.

The exponent % has a direct sinificance in isotropic turbulence, since it
is related to another famous law of the Kolmogorov’s theory, namely the
fact that, in isotropic turbulent flows, the spatial variance of velocities is
comparable to the distance to the power % (see the discussion in the paper
[49]). The latter law is also derived in the literature using scaling arguments.
In fact to our knowledge this is the only type of “theoretical arguments”
present in the literature on fully developed turbulence. The recent proof of
the Onsager’s conjecture gives a first justification purely based on rigorous

mathematical considerations pertaining to the equations of motions.

4. Energy conservation: the proof of Constantin, E and Titi

Following Onsager’s suggestion, the claim about the energy conservation
has been shown by Eyink in [48] under the assumption that

S [k[5FE 0] < o0
k

(which does imply the (% + ¢)-Hélder regularity, in space, of the function
v, but it is obviously a stronger condition). Onsager’s exact claim has then,
namely Part (a) of Conjecture 1.1, been shown by Constantin, E and Titi
in [29] with an elegant and fairly short argument (we refer also to [20] for
more precise results), which we expose here.

Fix a weak solutions (v, p) satisfying the Holder condition (5) for some
positive # and consider a standard family of (radially symmetric) mollifiers



THE ONSAGER THEOREM 79

@e(x) = e73p(£) in space. As usual we will denote by f; the mollification of
any summable function f defined on R? x [0, T] with the kernel ., namely

x):/wf(x—yvt)% /fx—y, <g> dy .

In order to simplify some computations, it is useful to consider f as a pe-
riodic funcion defined on R?® x [0,7T], whereas ¢, which is supported in a
neighborhood of the origin in T2, identified in this case with [—7, 7]3 C R3,
will be considered also as a funcion on R? by setting it equal to 0 outside
its support, rather than extending it periodically. With this convention we
can then write
f)= [ fa ez () dz.
R
Clearly
diveo, =0.
On the other hand the momentum balance in the Euler equations has a
nonlinear term and for this reason v. is not a solution. We can however
regard it as an “approximate solution”:

(20) Oz + divoe ® ve + Vp: = div (v: ® v: — (V@ v).) .

=T

Note that v is, by assumption, bounded. Moreover, since p satisfies
Ap = —divdivo ® v

and we can normalize it to have mean 0, the classical Schauder estimates
imply that the analog of (5) holds for p as well. In particular both p. and v,
and (v ® v). have bounded spatial derivatives of every order. The equation
(20) implies in turn that dyv. is also bounded. v, is thus a Lipschitz function
of time and space and we can scalar multiply (20) by v. to derive the identity

2 2
(21) at% +div <(% +p5> Ua) =1 ve,

In particular, integrating in time we conclude
d
& [P =2 [ L0 v d
dt Jrs T3

Since v, converges to v uniformly, it suffices to show that

(22) lim [ T.(x,t) - ve(x,t)de =0 vt
el0 3

=:5:(t)

to conclude that the conservation of the total kinetic energy is valid for v.
We first integrate by parts and write

(23) Se(t) = /1r3[(v ®V)e — Ve @ Ve](x,t) : Dvs(x,t) dx
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Next observe

1
Duat) == [ oo —ep.0) @ Vely) dy
R‘

= 1/ [(v(z — ey, t) —v(z,t)] ® Vo(y) dy.
g JRr3

In particular, we conclude
(24) | Doe(,1)] < Clo(-,1)]ee” 1,
where C' is a constant depending only on the mollifier ¢ and

(et~ o(y.)
[U( 7t)]9 = 33755 ’1, _ yye

is the usual Holder seminorm.
Furthermore we can write

(v ®v)e = ve @ vel(w, ) = / (v ® ) (@ — ey, ) ply) dy
- //U(x —ey,t) @ v(z —ez,t)p(y)p(2) dy dz
- //U(”T —eyt) ® (e — ey, t) —vlx —ez,D]p(y)p(z) dy dz.

Symmetrizing the latter expression in y and z we infer

(v ®v): — ve @ ve](x, t)
// v(x —ey,t) —v(r —ez,t)| ® [v(zr — ey, t) —v(x —ez,1)]

p(y)p(z) dy dz.
Thus, using (5) we easily conclude
(25) [(v @ v)e — v @ ve] (2, 8)] < Clo(-,)]5e™ .

Inserting (24) and (25) in (23) we achieve
1S(t)] < Clo(- )]3 oL
The latter inequality shows (22) when § > 1.

5. Energy dissipation: L? and L>®

Concerning Part (b) of Conjecture 1.1, the first construction ever of an
L? solution that violates the energy conservation is due to Scheffer in [79].
The main theorem of [79] states the existence of a non-trivial weak solution
in L?(R? x R) with compact support in space and time. Later on Shnirelman
in [81] gave a different proof of the existence of a non-trivial weak solution in
LQ(’JI'2 x R) with compact support in time. In these constructions the energy
is clearly not conserved, because it is identically 0 at any sufficiently large
time and it is positive on a set of measure zero. Moreover, since the authors
have no control on the regularity of the total kinetic energy E(t) (which is not
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even known to be bounded for every t), there could in principle be no interval
in which the function F is monotone. The existence of a solution in three
space dimension which does not conserve the kinetic energy but respects
however the expected monotonicity on some time interval was achieved later
by Shnirelman in [82].

In the paper [39] we provided a relatively simple proof of the following
stronger statement.

THEOREM b5.1. There exist infinitely many compactly supported bounded
weak solutions of the incompressible Fuler equations in any space dimension.
There exist also infinitely many bounded weak solutions which do not pre-
serve the kinetic energy but for which the latter is monotone nonincreasing.

In fact our proof shows the existence of solutions of the Euler equa-
tions which violate the usual conservation energy and the uniqueness of the
Cauchy problem in several different ways (see also [40]). The key was to
regard solutions of the system (1) as divergence-free matrix fields satisfying
a suitable algebraic constraint: in particular we realized that this point of
view allowed to use well established techniques from the theory of differential
inclusions, cf. [19, 9, 35, 72, 65].

5.1. Differential inclusions. In order to explain some of the ideas in
[39], let us recall the concept of Reynolds stress. It is generally accepted
that the appearance of high-frequency oscillations in the velocity field is the
main reason responsible for turbulent phenomena in incompressible flows.
One related major problem is therefore to understand the dynamics of the
coarse-grained, in other words macroscopically averaged, velocity field. If v
denotes the macroscopically averaged velocity field, then it satisfies

v +divtev+R)+Vp=0
(26)

divo = 0,
where
R=1vQuv—-7T®T7T.

The latter quantity is called Reynolds stress and arises because the averaging
does not commute with the nonlinearity v ® v. The careful reader will have
noticed the analogy with the commutator —7; considered in the previous
section. On this formal level the precise definition of averaging plays no role,
be it long-time averages, ensemble-averages or local space-time or space
averages: the commutators 7. in (20) is thus the Reynolds stress for the
macroscopic average ve.

A slightly more general version of this type of averaging follows the
framework introduced by Tartar [92, 93] and DiPerna [46] in the context
of conservation laws. We start by separating the linear equations from the
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nonlinear constitutive relations. Accordingly, we write (26) as
v +diva+Vg=0
divo = 0,

where @ is the traceless part of T ® 7 + R. Since one can write

R=(v—-7)® (v—-1),

it is clear that R > 0, i.e. R is a symmetric positive semidefinite matrix. In
terms of the coarse-grained variables (U, %) this inequality can be written as

= — 2_
TRV —u< fel,

where I is the n x n identity matrix and

2

€= 3|v|

D=

is the macroscopic kinetic energy density. Motivated by these calculations,
we define subsolutions as follows (here and in the rest of the note we use
the notation S™*" for the vector space of symmetric n X n matrices and we
denote by S)*" the subspace of symmetric matrices with zero trace).

DEFINITION 5.2 (Subsolutions). Let e € L}, (R™ x (0,T)) withe > 0. A
subsolution to the incompressible Fuler equations with given kinetic energy
density € is a triple

(v,u,q) : R" x (0,T) - R" x §"" x R

with the following properties:

e vE Ll206’ u € Llloc, q s a distribution;

O +divu+Vg=0
(27) in the sense of distributions;
dive =0,

(28) vev—u<2el ae. .

Observe that subsolutions automatically satisfy %’1}’2 < € a.e. (the in-
equality follows from taking the trace in (28)). If in addition we have the
equality sign %\v|2 = ¢ a.e., then the v component of the subsolution is in
fact a weak solution of the Fuler equations. As mentioned above, in pass-
ing to weak limits (or when considering any other averaging process), the
high-frequency oscillations in the velocity are responsible for the appear-
ance of a non-trivial Reynolds stress. Equivalently stated, this phenomenon
is responsible for the inequality sign in (28).
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5.2. Iteration. The key point in our approach to prove Theorem 5.1 is
that, starting from a subsolution, an appropriate iteration process reintro-
duces the high-frequency oscillations. In the limit of this process one obtains
weak solutions. However, since the oscillations are reintroduced in a very
non-unique way, in fact this generates many solutions from the same sub-
solution. In the next theorem we give a precise formulation of the previous
discussion.

THEOREM 5.3 (Subsolution criterion). Lete € C(R"x(0,T")) and (v,u,q)
be a smooth, strict subsolution, i.e.

(29) (,7,q) € C°(R™ x (0,T)) satisfies (27)
and
(30) TRT-u< 2  onR"x(0,T).

Then there exist infinitely many weak solutions v € LS (R™ x (0,T)) of the
Euler equations such that
|2

%]v = €,

p = q-;¢
almost everywhere. Infinitely many among these belong to C((0,T), L?). If
in addition

(31) T(-,t) = vo() in L3 (R™) as t — 0,
then all the v’s so constructed take the initial data vy at time 0.

Following the references [39, 40], the point of view above has been taken
by several other authors in a variety of situations, see for instance [31, 83,
86, 44, 87, 88, 2, 21, 23, 62, 61, 47, 10, 22, 33, 69, 24, 34, 63, 70, 50|.

6. Differential inclusions and the Nash-Kuiper Theorem

As pointed out in the important paper [72] by Miiller and Sverak, the
results in the theory of differential inclusions which construct many “un-
usual solutions” (see, for instance, [19, 9, 35, 64, 65]) have a close relation
to Gromov’s h-principle in geometry. In particular the method of convex
integration, introduced by Gromov and extended by Miiller and Sverak to
Lipschitz mappings, provides a very powerful tool to construct such exam-
ples. Essentially in the paper [39] these tools were suitably modified and
used for the first time to explain Scheffer’s theorem and go way beyond it.

The origin of Gromov’s convex integration lies in the famous Nash-
Kuiper theorem on isometric embeddings of Riemannian manifold. Let X
be a smooth compact manifold of dimension n > 2, equipped with a Rie-
mannian metric g. A map u : ¥ — RV is isometric if it preserves the length
of curves, i.e. if

(32) ly(y) =Le(uory) for any C! curve v C X,
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where /,4(y) denotes the length of v with respect to the metric g:

(33) ly(7) = / Vel @®))(),3(#)] dt .

If w € CY(M™;RY) this means that the pull back of the Euclidean metric
ufe agrees with g. In local coordinates this amounts to the system

(34) alu . aju = Gij

consisting of s,, = §(n + 1) equations in m unknowns. If in addition u is
injective, it is an isometric embedding.

The existence of isometric immersions (resp. embeddings) of Riemann-
ian manifolds into some Euclidean space is a classical problem, explicitly
formulated for the first time by Schléfli, see [80]: in the latter Schléfli con-
jectured that the system is solvable locally if the dimension N of the target
is at least s,. In the first half of the twentieth century Janet [60], Cartan
[18] and Burstin [17] proved Schléfli’s conjecture for analytic metrics.

For the very particular case of 2-dimensional spheres endowed with met-
rics of positive Gauss curvature, Weyl in [95] raised the question of the
existence of (global!) isometric embeddings in R3. The Weyl’s problem was
solved by Lewy in [68] for analytic metrics and Nirenberg settled the case
of smooth metrics in his PhD thesis in 1949; a different proof was given
independently by Pogorelov [76] around the same time, building upon the
work of Alexandrov [1] (see also [77]).

An important aspect of the Weyl’s problem is the rigidity of the solutions
found by Lewy, Nirenberg and Pogorelov. Indeed, already before the work of
Lewy, Cohn-Vossen and Herglotz proved independently that C? isometric
immersions of positively curved spheres are uniquely determined up to rigid
motions, cf. [27, 53] and see also [84] for a thorough discussion.

6.1. Nash’s surprising discovery. Before the appearance of Nash’s
celebrated works, it was natural to expect that the assumption of C? regular-
ity in the works of Cohn—Vossen and Herglotz was just of technical nature.
But in his 1954 note [73] Nash astonished the geometry world and proved
that the only true obstructions to the existence of isometric immersions are
topological and that as soon as N > n + 1 and there are no such obstruc-
tions, then there are in fact plenty of such immersions. Nash’s Theorem was
therefore in stark contrast with the intuition that codimension 1 smooth
isometric immersions are rather rigid for n = 2 and that for n > 2, given
that the system (34) is heavily overdetermined, existence of solutions should
occur rarely.

In order to state Nash’s Theorem we need some terminology.

DEFINITION 6.1. Let (3,g) be a Riemannian manifold. An immersion
v: Y — RN is short if it “shrinks” the length of curves. For C' immersions
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and in local coordinates such condition is equivalent to the inequality
(35) (O - Ojv)w'w?! < gijw'w? for any tangent vector w.

THEOREM 6.2. Let (X, g) be a smooth closed n-dimensional Riemannian
manifold and v : ¥ — RN a C*® short immersion with N > n + 1. Then,
for any € > 0 there exists a C' isometric immersion u : ¥ — RY such that
|lu—v|lco <e. If v is, in addition, an embedding, then w can be assumed to
be an embedding as well.

Indeed Nash gave a proof of Theorem 6.2 for N > n+2 and just remarked
that it could be proved for N > n+1 with some additional work; the details
were then given in two subsequent notes by Kuiper, [67]. For this reason
Theorem 6.2 is called nowadays the Nash-Kuiper Theorem on C! isometric
embeddings.

6.2. C1* isometric embeddings. In the specific case of the Weyl
problem, where n = 2 and N = 3, the classical rigidity results of Herglotz
and Cohn-Vossen imply that the concluson of Theorem 6.2 is necessarily
false for C? isometries v. An interesting question, which shares a striking
formal analogy with the Onsager’s conjecture, is to understand if and where
there is a sharp border on the Holder scale C1¢, § € (0,1) between the
dramatically different behavior of solutions of the Weyl problem for low
versus high 6.

In a series of papers in the 1950s, cf. [3, 4, 5, 6], Yu. Borisov showed that
the rigidity of the Weyl problem can in fact be extended to C¥ immersions
provided 0 is sufficiently large.

THEOREM 6.3. Let (S?, g) be a surface with C? metric and positive Gauss
curvature, and let u € C19(S?;R3) be an isometric immersion with 6 > 2/3.
Then u(S?) is the boundary of an open conver set.

Borisov’s Theorem is more general, but the statement above avoids the
introduction of Pogorelov’s concept of bounded extrinsic curvature, cf. [30]:
Borisov proves such property without any assumption on the topology of the
surface and then exploits the work of Pogorelov, [77], to conclude the local
convexity of the image. A much shorter proof of Borisov’s Theorem has been
discovered in [30] expoliting the same key computation of Constantin-E-
Titi’s proof of part (a) of Onsager’s conjecture: another remarkable analogy
between these seemingly unrelated areas!

On the other hand for sufficiently small Holder exponents the Nash-
Kuiper construction remains valid:

THEOREM 6.4. Let (3,9) be a C? Riemannian manifold of dimension
n. Any short immersion u : ¥ — R can be uniformly approzimated with
CY0 isometric immersions with

(a) 0 < ——+— when % is a closed ball;

1+n(n+1)
(b) 6 < E when ¥ is a general compact n-manifold.

1
1+n(n+1
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The maps can be chosen to be embeddings if u is an embedding.

Case (a) of this theorem was announced in [7] by Yu. Borisov, based on
his habilitation thesis, under the additional assumption that g be analytic.
A proof with n = 2 appeared more than 40 years later, cf. [8]. The general
statement of Theorem 6.4 has been proved in [30].

Observe that in the first interesting case of 2-dimensional disks we have
: there is thus a significant gap between this and the “rigidity threshold”
in Theorem 6.3. It is of course very tempting to ask whether there is
single sharp interface distinguishing between the two behaviors. Gromov
51| mentions % (cf. Question 36 therein) as a possible threshold. In the case
of 2-dimensional disks the recent paper [38] gave the first improvement of
Borisov’s local exponent, namely we have the following

D olho~—

THEOREM 6.5. Let D C R? be a closed disk and g a C? metric on it.
Then any short immersion u : D — R3 can be uniformly approzimated
with CY? isometric immersions if § < L. The maps can be chosen to be

5
embeddings if u is an embedding.

7. OV dissipative solutions of Euler

There is a clear formal analogy between (34)-(35) and (1)-(26). First of
all, note that the Reynolds stress measures the defect to being a solution
of the Euler equations and it is in general a nonnegative symmetric tensor,
whereas ¢;; — d;u - 0;u measures the defect to being isometric and, for a
short map, is also a nonnegative symmetric tensor. More precisely (34) can
be formulated for the deformation gradient A := Du as the coupling of the
linear constraint

curlA=0

with the nonlinear relation
AtA = g.

In this sense short maps are “subsolutions” to the isometric embedding
problem in the spirit of Definition 5.2. Along this line of thought, Theorem
5.3 is then an analogue for the Euler equations of the Nash-Kuiper Theorem
6.2. However note that, strictly speaking, the “best analog” of the Nash-
Kuiper theorem would hold if we could replace the L°° regularity of the
solutions of Theorem 5.3 with the continuity of the solutions A = Du of
Theorem 6.2.

The intuition above drove Laszlé Székelyhidi and myself to propose a
suitable approach a la Nash as a line of attack for part (b) of Conjecture 1.1.
The feasibility of such strategy was confirmed at first by the following result,
which we proved in [41], using a suitable “convex integration scheme”.

THEOREM 7.1. Given any positive smooth function E on [0,T] there is
a pair (v,p) : T2 x [0,T] — R3 x R of continuous functions which solves (1)
in the distributional sense and satisfies 3 |15 |[v|?(2,t) dw = E(t).
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The construction of continuous solutions of (1) follows, loosely speaking,
the same philosophy of Nash’s proof and of the proof of Theorem 5.3, in the
sense that at each step of the iteration we add a highly oscillatory correction
to our subsolution and improve its defect to being a solution.

Indeed we construct a sequence of subsolutions (vg, py, Ry), i.e. solutions
of

Opvg + divyy @ vg + Vpg = —div R,
(36)
divog =0

and iteratively remove the error R,, which is a symmetric 3 x 3 matrix field.
As a first observation note that if one is only interested in measuring the
“distance” of a smooth pair (vq,pq) from being a solution of (1), then only
the traceless part of R, is relevant: we can write

R, = p,ld + R,

where Jo%q is a traceless 3 x 3 symmetric matrix, since div (pyId) = Vpj.
Hence if }Oiq = 0 then v, is a solution of the Euler equations (perhaps with
a different pressure).

Recall that we also aim in Theorem 7.1 at satisfying a certain energy
profile for the total kinetic energy. We choose therefore a sequence E, =
E,(t) with E,(t) — E(t) and set

nl0) = g (Fan(® 5 [ (o)

Ry(z,t) := py()Id + Ry(z,t) .

We now explain the key points of the iteration and also which kind of Holder
regularity one could expect for the final solution.

Our aim is to build a sequence of triples (vq, pg, }qu) solving (36) which
converge uniformly to a triple (v,p,0) (actually in what follows we will
mostly focus on the velocity v). The sequence will be achieved iteratively by
adding a suitable perturbation to v, and p,. We thus set

Wq = Vg — Vg—1-

The size of wy will be controlled with two parameters. The amplitude o,
bounds the C° norm:

(37) lwgllo < 6%

Up to negligible errors the Fourier transform of the perturbation w, will be
localized in a shell centered around a given frequency ;. Hence

(38) [Vwgllo S 6%
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Along the iteration we will have j; — 0 and A\; — oo at a rate that is at
least exponential. For the sake of definiteness we may think

(39) Ag:=A7  and &, := A2

for some A > 1 (although in the actual proofs a slightly super-exponential
growth is required). The positive number 6 is the threshold Holder regular-
ity which we are able to achieve through the iteration, since it can be easily
shown by interpolation that ||v; — v4—1lla = [[wglla S 5;/2)\2‘ < )\8‘_90 and
thus {v,}, is a Cauchy sequence in C* whenever a < 6.

The perturbation wg11 is added to “balance” the error R, and indeed
we will see that Ry ~ wgy1 ® wgq1. For this reason we will have

(40) HéqHO < ¢pdg+1
(41) IV Ryllo S Gg1)q

The main part of the perturbation wq; satisfies (ideally, as we will see
later) an Ansatz of the type

(42) wol(z,t) = W(vq(:c,t),Rq(a:,t), Ag 17, )\th) ,

where W is a function which we are going to specify next. The pressure
Pg+1 Will be defined similarly as pg11 = pg + P(vg, R, A\g+12, Ag41t), but
we will not enter into the details in our discussion, since its role is anyway
secondary.

First of all, the oscillatory nature of the perturbation requires us to
impose that W is periodic in the variable £ € T3. Next, observe that Vg1
must satisfy the divergence-free condition divvg,y; = 0 and v + w, is not
likely to fulfill this: we need to add a suitable correction w,. in order to
satisfy it. Consider therefore a vector potential for v,, namely write v, as
V X z4 for some smooth z,. Subsequently we would like to perturb z, to a
new

1
Zq+1($7t) = Zq(:E?t) + A—IZ(U(:‘Cat)?R(:Eat)? >\q+1xa )\q+1t) .
q+

Computing vg41 := V X 2441 we get

Vgr1(x,t) = vg(x, ) + (Ve x Z)(v(,t), R(x,t), Az, \t) +O (%) _
(P)

The term (P) would correspond to w, if we were able to find a vector poten-
tial Z for W which is periodic in &. This requires div¢W = 0 and (W) =0,
where we use the notation (,) to denote the average in the £ variable.

Similar considerations (see for instance [85]) lead to the following set of
conditions that we would like to impose on W:
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& W(v, R, &, T) is 2m-periodic with vanishing average, i.e.

(H1) (W) = # /T W(v, R,€,7)dé = 0;

The average stress is given by R, i.e.
(H2) (WeW)=R;
e The “cell problem” is satisfied:

W +v-VeW +dive(W @ W)+ VeP =0

(H3)
diveW =0,
where P = P(v, R,&,T) is a suitable pressure;
e IV is smooth in all its variables and satisfies the estimates
(H4) W[ S RV, [0,W] S |R[V?, |0rW] < |R|H2.

As a consequence of (H1)-(H2) we obtain

[ twenldo [ o dot [ WE) o= [ o ds+ 350
T3 T3 T3 T3
and thus the total kinetic energy of the vgy; is (up to small errors) eq41(t).

Having defined the couple (vg41,pq+1) we face the problem of finding a
suitable stress tensor R411. An important remark is that it is possible to

select a good “elliptic operator” which solves the equations div R = f- The
relevant technical lemma is the following one.

LEMMA 7.2 (The operator div™1). There exists a homogeneous Fourier-
multiplier operator of order —1, denoted

div =t : (T3 R?) — Coo(']I'?’;Sg’X?’)

such that, for any f € C°°(T3;R3) with average frs [ =0 we have

(a) div =1 f(x) is a symmetric trace-free matriz for each x € T3;
(b) divdiv~f = f.
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Assuming the existence of an ideal profile W, the next stress tensor .éq+]_
would then be defined through

o

Rgpn = — div! |Orvg 1+ div (Vg1 © vg41) + qu+1}

.1
= — div " |Oiwgs1 +vg - Vwgyr

R

— div ~!|div (wq+1 @ Wg41 — Rq) + V(pq+1 - pq)}

_.p®
_‘Rq+1
(43) — div ! wg - Vvq}
—.p®
- Rq+1

where div ™! is the operator of order —1 from Lemma 7.2. Since we are
assuming that the size of the corrector w, is negligible compared to w,, we
will discuss the corresponding terms where w, replaces wy.

The main issues are therefore

e to show that indeed it is possible to send d, to 0 as ¢ T oo (so that
the scheme converges)
e and to obtain a relation between ¢, and A, in the form of (39).
If we were able to find a “profile” W satisfying (H1)-(H2)-(H3)-(H4), then
the iteration proposed so far would lead to a proof of the Onsager’s conjec-
ture. In order to see this first expand W (v, R, &, 7) as a Fourier series in &.
We then could compute

(44) R(g) — le -1 |:w0 . V’Uq:| — le —1 Z Ck(l', t)eZ)\q+1k'LL‘ ,
k€Z3 k#0
where the coefficients ¢ (x,t) vary much slower than the rapidly oscillating

exponentials. When we apply the operator div ~! we can therefore treat the
¢y, as constants and gain a factor /\Lﬂ in the outcome: a typically “stationary
q

phase argument”. Note that it is crucial that ¢y vanishes: this is in fact the
content of condition (HI).
Using (H4) we can estimate the size of each term ¢, as

1/2
lexllo S 17 llol Vugllo < 11 Rqllg [V egllo.

Applying (38) and (40) we arrive at

1/2 1/2)\
5(3) q+1%a g
45 R < 4=

In fact in our computations so far we are ignoring a lot of technical issues:
the relevant estimates are much more complicated and affected by several
other terms which we are neglecting.
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Similar arguments for the two other error tensors RY and R®, would

q+1 q+1
lead to an estimate of type
1/2 (1/2
. 0.0 A
(46) | Rgallo S 5.
Agt1

Of course, this is just one of the estimates for (vg41,pg+1, Rg+1) and similar
ones should be obtained for all the other quantities (and for other norms).
However, (46) already implies a relation between d, and ;. Indeed, com-
paring it with (40), the inductive step requires

1/2 ¢1/2
sy 10
! Ag+1
Assuming \; ~ A? for some fixed A > 1, this would lead to
1/2 —a/: —1/;
(47) 6q/ N)\ q/dN)\q /3’

which gives 6y = 1/3 as the critical Holder regularity.

8. First Hoder regularity

It tuns out that almost all conditions on the function W = W (v, R, &, )
can be fulfilled, as shown in [41]. Let us first examine the simple case in
which we set v = 0: it is then possible to construct a function Wy(R,§) =
W (0, R, &, 7) satisfying the constraints (H1)-(H4). The basic building block
is given by Beltrami flows. For the details we refer the reader to [41], but
one important aspect of Beltrami flows is that one can construct several
different Wy with the property that any linear combinations of them still
satisfy (H1)-(H3)-(H4) (and a suitable version of (H2)). In fact W takes the

form
R.&) =Y ar(R)Bre™*
keA

where A is a subset of Z3 with the property that |k| is a fixed constant for
every k € A and By is related to k by a precise algebraic formula. Note in
particular that two distinct profiles W} and W2 whose linear combination
is still a profile can be obtained by choosing two disjoint faimilies A’s in the
same sphere intersected with the lattice Z3.

Another aspect which is important about Beltrami flows is that the
corresponding stationary profiles Wy are only defined for R in a suitably
small cone C of tensors R, whose axis is the half-line {\Id : A\ € R }.

Having obtained a profile W (0, R,&,7) = W,(R, ), it seems natural to
extend W by imposing that 0, W +v - VW = 0, leading to the formula
(48) W, R, &, 1) = We(R, & — vT) Zak Bke i(k—vr) €

keA

However the latter fails to satisfy (H4), because |9,W (v, R, &, 7)| ~ |R|"7?|7|.
This is a serious problem: observing that 7 is the “fast time” variable, in
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the construction (42) 7 = Ag41t, leading to an additional factor A\y1; in the

estimates for ]3%(121 and ]D%g%zl: this loss destroys any hope that the scheme

might converge.
In [41] a “phase function” ¢ (v,7) was introduced to deal with the
transport part of the cell problem. By considering W of the form

(49) > ar(R)$r(v,7)Bre'™*
|k[=Xo
the cell problem in (H3) leads to the equation
Ordp +i(v-k)pp = 0.
Since the exact solution ¢y (v, 7) = e~ Uv"k)T {5 incompatible with the require-
ment (H4), an approximation is used such that
Orr +i(v- kK)o = O (ng'), 10wl S hg

for some new parameter p,. To be precise, the approximation involves a
partition of unity over the space of velocities and the use of 8 distinct families

)
! This leads to the following corrections to (H3) and (H4): (H3) is only
satisfied approximately,
W +v-VeW +dive(W @ W) + VeP = O(u, ")
and in (H4) the second inequality is replaced by
0,W] S g RIV.

In [42] the approach above was subsequently used to show the first
example of Holder flows with prescribed energy profiles, more precisely:

THEOREM 8.1. Given any positive smooth function E on [0,T] and any
a < % there is a pair (v,p) : T3 x [0,T] — R? x R of C% functions which
solves (1) in the distributional sense and satisfies & [s [v|*(2,t) dz = E(t).
After the works [41] and [42] the same point of view has been taken in

several different situations, cf. [26, 36, 25, 59, 58, 43, 89, 90, 91, 28,
45, 15, 16, 56, 57, 71]

9. é-Hﬁlder regularity

A further improvement was obtained in [12], following an idea first in-
troduced by Isett in [54]. We change the Ansatz (49) on W and look for a
perturbation w, which has the form
(50)

wo(x,t) = We(Ry(2, 1), Ag118q(2, 1)) = Y ap(Ry(x,t)) Bpeat a1
keA)
where @, solves the transport equation

(51) BBy + (vg - Va)By = 0.
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With (50), we would have

(52) R = S Vap(R) @Ry + (v - V) Ry)eari®e
keA)

Assuming that D®,(x,t) is not too far from the identity, the stationary
phase argument leads to

(53) IR W o < 677100200,

In fact in the latter estimates we are also assuming that the advective de-
rivative 0; Ry + (vq - V)R, satisfies a better bound than the usual derivative
DR,. This is indeed correct, as first pointed out by Isett in [54], and in-
tuitively it can be justified by observing that even the advective derivative
(Opvg + vq - Vv, satisfies a better bound than Duy.

However, since ||Dvgllo — oo, we expect the deformation matrix D®,
to be controllable only for short times. More precisely, by a well-known
elementary estimate on ODEs, if ®,(z,t) = x, then

(54) 1D® (-, 1) —dllo < [[Vgllolt — to| < 6*Aqlt — ol

for [t —to| S ((5;/2)\q)_1. The latter is a typical “CFL condition”, cf. [32].

To handle this problem we proceed as in [12] and consider a partition
of unity (x;); on the time interval [0,7] such that the support of each x;
is an interval I; of size t for some gy > 1. In each time interval I; we set

®, ; to be the solution of the transport equation (51) which satisfies
¢Q7] (.’L‘, t]) = ./I/‘,

where t; is the center of the interval I;. Recalling that || Dvyllo < dq /2 Ags (54)
leads to

5
(55) [D®gllo =O(1) and [[D®g; —1Idfo S qu !
q
provided
(56) Ha > 0 Ag,

an estimate we will henceforth assume. Observe also that [0;x;| < pq-
The new fluctuation will take the form

(57) wo =Y X;j(t) D ax(Rg)BreParikPas
J keAGG)
where:

e i(j) equals 1 if j is odd and 2 if j is even;
o A and A@ are two disjoint families.

The new Ansatz leads then to the following estimate

(58) 1 Rgsllo S 6.2 gty + Sar18yAguy !
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Optimizing in ;4 we then reach
. 3 .
(59) 1Rgsillo < 0,505 N2

namely

Sqva ~ O G INA Y

The latter relation leads to a threshold 6y = % and hence to the following
theorem

THEOREM 9.1. Given any positive smooth function e on [0,T] and any
a < there is a pair (v,p) : T3 x [0,T] = R® x R of C* functions which
solves (1) in the distributional sense and satisfies & [rq [v]*(z,t) dz = e(t).

10. First Onsager-critical construction

In [11] Buckmaster observed that, by choosing the cut-off functions x;
appropriately in (57) it is possible to show that the solution produced in the
proof of Theorem 9.1 enjoys C/3~¢ regularity at almost every time-slice.
The idea is to make the cut-off flat on large portions of their supports while
paying very steep time derivatives on small portions. The price to pay is that
the “global” Holder control gets much weaker: the solutions is just slightly
better than continuous (i.e. it has a very small Holder exponent, depending
on ¢). In [13], jointly with Buckmaster and Székelyhidi we exploited a quan-
titative version of the latter idea to reach the first nonconservative solutions
up Onsager’s threshold 1/3, albeit in a weaker form than as stated in his
conjecture.

THEOREM 10.1. For every a < % there are a nontrivial continuous com-
pactly supported solution (v,p) : T3 xR — R3 xR of (1) and an L' function
C:R — R* such that

[v(z,t) —v(y,t)| < C(t)|z —y|* Vt € R,Vr,y € 3.

11. h-principle

The Beltrami flows together with the transport Ansatz explained in the
previous sections settle the issue of convergence (at least for Holder expo-
nents 6 < 1/5), but are not sufficient to conclude an h-principle statement
which is a satisfactory counterpart of Theorem 6.2. The reason is that the
stationary profiles Wy defined through Beltrami flows are only defined for
R’s belonging to a suitably small cone of tensors.

Nevertheless, there is a very simple set of stationary flows (which we will
call “Mikado flows”) based on pipe flow, which can generate all R. These
flows were introduced by Daneri and Székelyhidi in [37].

LEMMA 11.1. For any compact subset N consisting of positive definite
3 X 3 matrices there exists a smooth vector field

We: N XT3 5 R3 i=1,2
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such that, for every R € N'
dive(Ws(R, §) ® W(R,€)) =0,

(60)
div ¢ Wi (R, €) = 0,
and
(61) (Ws) = 0,
(62) Wy@W,) = R.

In particular, in [37] the authors could prove the following h-principle
result

THEOREM 11.2. Let (v,p, R) be a smooth solution of
00+ div(v®v) + Vp=—divR
(63)
divo =0

on T3 x [0,T] such that R(z,t) is positive definite for all x,t. Then for any
a < 1/5 there exists a sequence {(vk,pr)} C C% of weak solutions of (1)
such that

vp =10 and v QU =00+ R in L™

uniformly in time and furthermore for all t € [0, T
/ vk®vkdx:/ (v® v+ R)dx.
T3 T3

12. Isett’s proof of Onsager’s conjecture

The stationary profile W reached through the Mikado flows in [37]
have not only the feature of being defined on any compact subset of positive
definite R’s, but they also yield improved estimates in several error terms in
the iteration. On the other hand they are not compatible with the “patching
in time” used in (57) and indeed in [37] they are only used for finitely many
steps of the iteration, whereas the “tail” of the series Zq wy still consists of
oscillatory perturbations whose building blocks are Beltrami flows.

In [55] Isett has been able to overcome this last obstruction by introduc-
ing a different “patching strategy”. Isett’s key idea can be easily explained
as follows. Considered a given triple (vq,pq,lo%q) reached at a certain step
of the iteration, satisfying all the estimates outlined in the previous subsec-
tion. The obstruction to using Mikado flows could be overcome if ]?{q were
supported in a union of disjoint time-stripes of the form T? x [ay, by], where
by — ax ~ (5;/2)\(1)_1, compatibly with the CFL condition (54). In this case
there would be no need of “patching” the oscillatory perturbations, since
they would be supported on disjoint time-stripes where the CFL condition
holds and the flows ®, ; of the previous subsections are close to the identity.
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In order to reach this ideal situation, Isett in [55] partitions the whole

time interval in smaller intervals [cg, ¢ 1] with size ~ (6;/ 2)\q)_1. In intervals
of comparable size it is possible to find exact solutions (zx, 7)) of the incom-
pressible Euler equations with zj(-,cr) = v4(-, cx). Patching such solutions
with a partition of unity one can obtain new velocity and pressure fields
(Dg, Dq) together with “separate” time-stripes where they are exact solutions
of the Euler equations. The remaining regions consist of time-stripes where
we have to find a new stress tensor Rq. Isett shows that such tensor can
be found so that its size is not much larger than }O%q: in fact it essentially
satisfies the same estimates with worse constants.

Now there are no obstructions to apply the oscillatory perturbations of
[37] to the new triple (74, Py, ];?q) and therefore one can reach the following
statement

THEOREM 12.1. For every a < % there is a montrivial continuous com-
pactly supported solution (v,p) € C(T? x R) of (1).

13. h-principle and Onsager’s conjecture with dissipative
solutions

In the previous “patching” of exact solutions of the Euler equations a
canonical choice of the stress tensor R, would be

(64) Ry = div 10y + (D4 - V)ig + Vi) .

However [55] generates Rq with a different, more complicated, procedure,
since the author is not able to reach the desired estimate through the oper-
ator div . A suboptimal outcome is that Theorem 12.1 does not produce
“dissipative solutions”.

This has been instead accomplished in [14], where in a joint work with
Buckmaster, Székelyhidi and Vicol we derive appropriate estimates for the
“canonical” ]:Eq as defined in (64). We can therefore derive the existence
of dissipative solutions in the whole range of Holder exponents of the sec-
ond part of Onsager’s conjecture. Indeed such a statement is obtained as a
corollary of the exact counterpart of the h-principle result in [37]:

THEOREM 13.1. Let (0,p, R) be a smooth solution of (63) on T3 x [0, T]
such that R(x,t) is positive definite for all x,t. Then for any o < 1/3 there
exists a sequence {(vk,pr)} C C of weak solutions of (1) such that

vp =0 and v QU 200+ R in L™

uniformly in time and furthermore for all t € [0,T]

/vk®vkdx:/(v®v+R)dx.
T3 T3

COROLLARY 13.2. For every a < % and every positive smooth E :

[0,7] — R there exists a solution (v,p) € CY3(T3 x [0,T]) of (1) such
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(1
2l

B8l
(4]
[5]
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(7]
(8]
(9]

(10]

(11]
(12]

[13]

[14]
15]
[16]
(17]
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(19]

[20]

21]

1 vz, t)]?dx =
5 [ o de = B().
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