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Topology of the space of cycles and
existence of minimal varieties

Fernando C. Marques and André Neves

Abstract. In this article we survey what is known about the existence
of minimal varieties of dimension l ≥ 2 in compact Riemannian man-
ifolds. We describe how min-max methods can be used in conjunction
with the nontrivial topology of the space of cycles. In the final section,
we propose some open questions in the subject.
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1. Introduction

Let (Mn+1, g) be a closed Riemannian manifold of dimension (n + 1).
We are interested in studying the existence of minimal varieties in M , of a
given dimension 1 ≤ l ≤ n, in connection with nontrivial topology of the
space of l-dimensional cycles.

The case l = 1 goes back to the work of Birkhoff [6], who used min-max
methods and the notion of sweepouts to construct a smooth closed geodesic
in every Riemannian two-sphere. This answered affirmatively a question
posed by Poincaré [28]. Later Lusternik and Schnirelmann [21] proved the
existence of at least three simple closed geodesics in Riemannian two-spheres,
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166 FERNANDO C. MARQUES AND ANDRÉ NEVES

and the existence of infinitely many immersed ones follows from the works
of Franks [14] and Bangert [5]. We refer the reader to the article of Hingston
[18] for more on the l = 1 case.

We define the space of cycles by means of Geometric Measure Theory.
We can take coefficients in Z (oriented cycles) or in Z2 (unoriented cycles).
The choice of integer coefficients leads to the notion of integral current, while
the choice of Z2 coefficients leads to the notion of modulo 2 flat chains. For
reasons that will become clear later we focus in the Z2 case.

We suppose M is isometrically embedded in some Euclidean space RN

and consider the space Il(M ; Z2) of l-dimensional modulo 2 flat chains in
RN with support contained in M (see [12, 4.2.26] for more details). A
typical element of this space is a formal finite sum c =

∑m
i=1 Si of compact

(unoriented) C1 submanifolds Si contained in M . There is a boundary
operator ∂, taking values in the space of mod 2 (l − 1)-chains, that in
the above case gives ∂c =

∑m
i=1 ∂Si. Of course ∂ ◦ ∂ = 0. Each element

T ∈ Il(M ; Z2) has a mass M(T ), that measures the l-dimensional area, and
the natural topology is induced by the flat distance:

F(T1, T2) = inf{M(S) + M(U) : T1 − T2 = S + ∂U, S ∈ Il, U ∈ Il+1}.
Our space of l-cycles is then defined to be

Zl(M ; Z2) = {T ∈ Il(M ; Z2) : ∂T = 0},
endowed with the flat topology.

A fundamental result ([2]) is the following isoperimetric inequality: there
exist positive constants ν ≤ 1 and c, depending only on M , such that for
any cycle T ∈ Zl(M ; Z2) with mass M(T ) < ν, we can find U ∈ Il+1(M,Z2)
such that ∂U = T and

M(U) ≤ cM(T )
l+1

l .

In particular, it follows from the definition of the flat distance that if T1 and
T2 are cycles with F(T1, T2) < ν then there exists an (l + 1)-chain U such
that ∂U = T1 − T2 and M(U) ≤ ρF(T1, T2) for some ρ ≥ 1 depending only
on M . Intuitively speaking, two l-cycles are very close in the flat topology
if together they are the boundary of a chain with very small (l + 1)-area.

The first step in the direction of a Morse theory was done by Almgren
in 1960 [2]. He computed all homotopy groups of the space of cycles. He
considered coefficients in Z but the arguments extend immediately to the
case of coefficients modulo 2. Notice first that any cycle T ∈ Zl(M ; Z2)
induces a well-defined element Λ0(T ) = [T ] ∈ Hl(M,Z2). By representing
elements of Hl(M,Z2) by polyhedral chains it follows that we have an
isomorphism Λ0 : π0(Zl(M ; Z2)) → Hl(M,Z2). Almgren proved:

Theorem 1.1 (Almgren’s Isomorphism Theorem, [2]). For any k ≥ 1,
there exists a canonical isomorphism

Λk : πk(Zl(M ; Z2), 0) → Hk+l(M,Z2).
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Almgren’s Isomorphism Theorem implies the space of l-dimensional mod
2 cycles has nontrivial topology:

Corollary 1.2. πn+1−l(Zl(M,Z2)) = Z2.

This follows immediately from Hn+1(Mn+1,Z2) = Z2, and suggests that
critical points for the area functional can be found by Morse theory.

In Section 2, we describe the isomorphism of Almgren. In Section 3, we
discuss the Almgren-Pitts min-max theory for the area functional and the
basic existence results. In Section 4, we consider the case of hypercycles
and define the notion of k-sweepout. We discuss work of Gromov and Guth
on the sublinear growth of the corresponding sequence of min-max values
{ωk}. In Section 5, we describe our proof of Yau’s conjecture (about existence
of infinitely many minimal surfaces in dimension three) for manifolds with
positive Ricci curvature. In Section 6, we propose a number of open questions
related to min-max theory.

2. Almgren’s Isomorphism Theorem

Let us describe the isomorphism first when k = 1. Let φ : [0, 1] →
Zl(M ; Z2) be continuous in the flat topology with φ(0) = φ(1) = 0. For each
j ∈ N, I(1, j) denotes the cube complex on I1 = [0, 1] whose 1-cells and
0-cells (those are also called vertices) are, respectively,

[0, 3−j ], [3−j , 2 · 3−j ], . . . , [1− 3−j , 1] and [0], [3−j ], . . . , [1− 3−j ], [1].

Given 0 < ε < ν/(4ρ) very small, if j is sufficiently large we have that

F(φ(x), φ(y)) < ε

for every x, y ∈ [i · 3−j , (i + 1) · 3−j ], i = 0, . . . , 3j − 1. In particular there
exist Ui ∈ Il+1(M ; Z2) such that

∂Ui = φ((i + 1) · 3−j)− φ(i · 3−j)

and M(Ui) ≤ ρε. Note that ∂(
∑

i Ui) = 0, hence we can define

Λ1([φ]) = Λ0(
∑

i

Ui) ∈ Hl+1(M,Z2).

We need to check that this is well-defined. Notice that if U ′
i are different

choices in Il+1(M ; Z2) with ∂U ′
i = φ((i+1)·3−j)−φ(i·3−j) and M(U ′

i) ≤ ρε,
we have that ∂(Ui−U ′

i) = 0 and M(Ui−U ′
i) ≤ 2ρε < ν. Hence Ui−U ′

i = ∂Ai

for some (l + 2)-chain Ai. This implies
[∑

i Ui

]
=

[∑
i U

′
i

]
∈ Hl+1(M,Z2).

Hence the construction does not depend on the choices of the Ui. In order to
check that it does not depend on the subdivision, we subdivide the interval
[i · 3−j , (i + 1) · 3−j ] into three equal parts and choose Ui,1, Ui,2, Ui,3 ∈
Il+1(M ; Z2) with ∂Ui,q = φ(i · 3−j + q · 3−j−1)− φ(i · 3−j + (q − 1) · 3−j−1)
and M(Ui,q) ≤ ρε. We have that ∂(Ui − (Ui,1 + Ui,2 + Ui,3)) = 0 and
M(Ui − (Ui,1 + Ui,2 + Ui,3)) ≤ 4ρε < ν. Hence there exists some (l + 2)-
chain Bi such that ∂Bi = Ui − (Ui,1 + Ui,2 + Ui,3). This implies, as before,
that

[∑
i Ui

]
=

[∑
i(Ui,1 + Ui,2 + Ui,3)

]
∈ Hl+1(M,Z2).



168 FERNANDO C. MARQUES AND ANDRÉ NEVES

The construction of Λk is analogous. We denote by I(k, j) the cell
complex on the unit cube Ik:

I(k, j) = I(1, j)⊗ . . .⊗ I(1, j) (k times).

Then α = α1⊗· · ·⊗αk is a q-cell of I(k, j) if and only if αi is a cell of I(1, j)
for each i, and

∑k
i=1 dim(αi) = q. We often abuse notation by identifying a

q-cell α with its support: α1 × · · · × αk ⊂ Ik.
Given φ : Ik → Zl(M ; Z2) continuous in the flat topology with φ(∂Ik) =

0, we can consider subdivisions I(k, j) for large j so that F(φ(x), φ(y)) is
sufficiently small whenever x, y belong to the same k-cell of I(k, j). This
allows us to construct a chain map

φ̂ : I(k, j) → I∗(M ; Z2)

with the properties:
• φ̂(x) = φ(x) if x ∈ I(k, j)0,
• φ̂(∂σ) = ∂φ̂(σ) for every cell σ ∈ I(k, j),
• M(φ̂(σ)) is small for every cell σ ∈ I(k, j) with dim(σ) ≥ 1.

Then
Λk([φ]) = Λ0

( ∑
σ∈I(k,j)k

φ̂(σ)
)
∈ Hk+l(M,Z2).

The idea to prove surjectivity of Λk is to perform a slicing argument.
If A denotes a small tubular neighborhood of M in RN , the nearest-
point projection π : A → M is a strong deformation retraction. We can
assume, without loss of generality, that A ⊂ [0, λ]N ⊂ RN for some λ > 0,
and represent a given element of Hk+l(M,Z2) by a polyhedral chain T in
A ⊂ [0, λ]N . The desired map φ in πk(Zl(M ; Z2), 0) can be constructed
inductively by first setting

ψ(t1, 0, . . . , 0) = ∂
(
T ∩ {x1 < λt1}

)
,

ψ(t1, t2, 0, . . . , 0) = ∂
(
ψ(t1, 0, . . . , 0) ∩ {x2 < λt2}

)
,

· · · ,
ψ(t1, . . . , tk) = ∂

(
ψ(t1, t2, . . . , tk−1, 0) ∩ {xk < λtk}

)
,

after perturbing slightly T so that no face is parallel to a coordinate vector
of RN , and defining φ = π# ◦ ψ.

The proof of injectivity is more intricate. It uses the interpolation
technique of Almgren ([2]). The basic result is:

Theorem 2.1. Let φ̂ : I(k, 0) → I∗(M ; Z2) be a chain map of degree l,

i.e., φ̂(x) ∈ Il(M,Z2) for every x ∈ I(k, 0)0. There exists a map φ : Ik →
I∗(M ; Z2), continuous in the flat topology, such that

(i) φ(x) = φ̂(x) for all x ∈ I(k, 0)0;
(ii) for every α ∈ I(k, 0)p, φ|α depends only on the values assumed by

φ̂ on the subfaces of α;
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(iii) there exists a constant C = C(M,k) > 0 such that

sup{M(φ(x)) : x ∈ Ik} ≤ C sup
α∈I(k,0)

{M(φ̂(α))},

sup{F(φ(x), φ(y)) : x, y ∈ Ik} ≤ C sup
α∈I(k,0),dim(α)>0

{M(φ̂(α))}.

We call φ the Almgren extension Alm(φ̂) of φ̂. Given any ψ : Ik →
Zl(M,Z2), continuous in the flat topology, it follows from the isoperimetric
inequality mentioned earlier that if j is sufficiently large, the restriction
ψ : I(k, j)0 → Zl(M,Z2) can be extended to a chain map ψ̂. The previous
theorem implies there is an Almgren extension Alm(ψ̂) : Ik → Zl(M,Z2).
The idea to prove injectivity of Λk is to show first that if ψ : Ik → Zl(M,Z2)
is such that ψ(∂Ik) = {0}, then ψ is homotopic to Alm(ψ̂) relative to ∂Ik

(assuming j sufficiently large). The second step is to prove that if Λk([ψ]) =
0, then Alm(ψ̂) is homotopically trivial. This uses again the Interpolation
Theorem 2.1. Notice that the interpolation technique (improved to the mass
topology) was an important technical ingredient in the authors proof of the
Willmore conjecture [23].

3. Min-max theory

In 1965, Almgren devised a min-max theory for the area functional. For
a given nontrivial homotopy class Π of the space Zl(M,Z2), he defined the
min-max number

L(Π) = inf
φ∈Π

sup
x∈Ik

M(φ(x)).

We say L(Π) is the width of Π.
Almgren [3] proved the following theorem:

Theorem 3.1. If Π is nontrivial, then L(Π) > 0. Moreover, there exists
an l-dimensional minimal variety (stationary integral varifold of dimension
l) V such that

M(V ) = L(Π).

Note that the mass functional is only lower semicontinuous in the flat
topology. This is not a problem in minimization schemes, like in the Plateau
problem, but causes serious difficulties if one wants to produce unstable
critical points. Almgren introduced the notion of varifolds to deal with
this problem. The point is that even though the families are taken to be
continuous in the flat topology, the final convergence of a min-max sequence
to the minimal variety is in the sense of varifolds so there is no cancellation
of mass. The flat cycle/varifold duality is one of the reasons the theory is
highly nontrivial.

The following example is quite degenerate but still instructive. Let M
be the product manifold Sn(1) × S1(r), where r is very large, and let us
consider one-parameter families of hypercycles. This means we will apply



170 FERNANDO C. MARQUES AND ANDRÉ NEVES

the min-max theory to the nontrivial element Π of π1(Z(M,Z2), {0}) = Z2.
A connected closed minimal hypersurface in M must be either one of the
leaves Sn(1) × {θ} or it crosses every leaf, but in this last case it will have
very large area by the monotonicity formula. One can argue that an optimal
sweepout (a family whose supremum of the areas equals L(Π)) must be of
the form φ(t) = Σ(0) + Σ(t), where Σ(s) = Sn(1) × {2πrs}, s ∈ [0, 1]. If
ti → 0, the sequence φ(ti) is a min-max sequence that converges to 0 in the
flat topology and to 2|Σ(0)| as varifolds. To make this rigorous one has to
exclude the possibility of getting a leaf with multiplicity one as the min-max
surface. This can be done by noticing that a leaf is not homologous to zero
and using results of Zhou [34].

By putting together Corollary 1.2 and Theorem 3.1, we get

Corollary 3.2. There exists at least one l-dimensional minimal variety
in Mn+1 for every 1 ≤ l ≤ n.

Such minimal varieties are smooth almost everywhere, by Allard’s regu-
larity theory [1]. When the codimension is one Pitts improved the regularity
significantly. He used the curvature estimates of Schoen-Simon-Yau [30] and
of Schoen-Simon [29] in high dimensions to prove the following result:

Theorem 3.3 (Pitts, [27]). Suppose (n + 1) ≥ 3. In codimension one
(l = n), the min-max minimal variety V can be chosen as

V = n1 · Σ1 + · · ·+ np · Σp

where ni ∈ Z+ and {Σi} is a disjoint collection of closed minimal hypersur-
faces that are smooth embedded outside a set of codimension 7. In particular,
they are smooth if (n + 1) ≤ 7.

Remarks: In the case of codimension one, this result can be proven by
performing min-max with sweepouts that enjoy better regularity properties.
We refer the reader to the papers of Smith [31], Colding-De Lellis [9] and
De Lellis-Tasnady [11] for more details. Pitts Theorem is not true when
(n + 1) = 2, as the min-max variety can be a geodesic network (stationary
graph). In Montezuma [26], a modified min-max theory is devised to produce
minimal hypersurfaces with intersecting properties.

4. The space of hypercycles

Let us go back to the topology of the space of cycles in the case of
hypersurfaces (codimension one). The Isomorphism Theorem implies:

• π1(Zn(Mn+1,Z2), {0}) = Z2,
• for k ≥ 2,

πk(Zn(Mn+1,Z2), {0}) = Hk+n(Mn+1,Z2) = 0.

These are precisely the homotopy groups of the infinite dimensional real
projective space RP∞. In fact, one can define a weak homotopy equivalence
between Zn(Mn+1,Z2) and RP∞ in the following way. Let f : M → R be a
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Morse function, with f(M) = [0, 1]. Then the sweepout t ∈ [0, 1] �→ Σ(t) =
∂({x ∈ M : f(x) < t}) generates π1 of the space of hypercycles. We can
extend this map to RP∞: let

Φ : RP∞ → Zn(Mn+1,Z2)

be defined by

Φ(a = [a0 : a1 : · · · : ak : 0 : · · · : 0 : · · · ]) = ∂({x ∈M : pa(f(x)) < 0}),
where pa(t) = a0 +a1t+ · · ·+akt

k. This map is well-defined and continuous
in the flat topology because we are considering coefficients in Z2.

In general, we consider the following class of maps:

Definition: Let X be a finite-dimensional simplicial complex. A con-
tinuous map Ψ : X → Zn(Mn+1,Z2) is called a k-sweepout if the induced
homomorphism in homology

Ψ∗ : Hk(X,Z2) → Hk(Zn(Mn+1,Z2),Z2) = Z2

is surjective.

This has an equivalent characterization in terms of cohomology. Let
λ̄ ∈ H1(Zn(Mn+1,Z2),Z2) = Z2 be the nontrivial element. The map
Ψ : X → Zn(Mn+1,Z2) will be a k-sweepout when the pullback class

λ = Ψ∗(λ̄) ∈ H1(X,Z2)

satisfies
λk �= 0 ∈ Hk(X,Z2),

where λk = λ ∪ · · · ∪ λ denotes the k-th cup power of λ.
If Φ : RP∞ → Zn(Mn+1,Z2) is the map defined above, the restriction

Φ|RPk is a k-sweepout for every k. Since Φ(RP1) is a one-parameter sweepout
of M , i.e., generates π1 of the space of hypercycles, for any standard
RP1 ⊂ RPk, we conclude that λ = Φ∗(λ̄) is the generator σ of the first
cohomology H1(RPk,Z2) = Z2. Since the cohomology ring of RPk is the
truncated (in degree k) polynomial ring in σ with Z2 coefficients, we get
that λk = σk �= 0 ∈ Hk(RPk,Z2) = Z2.

By applying the Almgren-Pitts min-max theory to the class Pk of k-
sweepouts, one gets a sequence of numbers that have been investigated
earlier by Gromov and Guth:

ωk(M) = inf
ψ∈Pk

sup
x∈dmn(ψ)

M(ψ(x)),

where dmn(ψ) denotes the domain of ψ.
The following result was proven by Gromov in [15, Section 4.2.B], and

by Guth in [17] via an elegant bend–and–cancel argument. Guth proved this
result when the ambient space is a Euclidean ball, but his arguments carry
over to the setting of Riemannian manifolds (see [24]).
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Theorem 4.1. There exists a constant C = C(M) > 0 so that

ωk(M) ≤ Ck
1

n+1

for every k ∈ N.

Remark: The lower bound ωk(M) ≥ C ′k
1

n+1 also holds for some constant
C ′ = C ′(M) > 0 (Gromov [16], Guth [17]).

In order to have some intuition about the sublinear growth of ωk, one
can consider the following example. We take M to be the standard sphere
Sn+1 and Hd to be the space of harmonic polynomials in Rn+2 of degree
less than or equal to d. This space can be identified with a Euclidean space
of dimension D(d) + 1. Because we are taking coefficients modulo 2, so
orientation does not matter, the following map is well-defined

Φ([p]) = {x ∈ Sn+1 : p(x) = 0},
where [p] ∈ RPD(d) is the image of the polynomial p under the standard
projection π : RD(d)+1 → RPD(d). Because M(Φ([p])) ≤ C(n)d and D(d) ≈
dn+1 as d→∞, we conclude that the estimate of Theorem 4.1 is sharp.

5. Yau’s conjecture

In 1982, Yau [33] (first problem in the Minimal Surfaces section) pro-
posed the following conjecture:

Conjecture: Any compact three-manifold admits infinitely many
smooth closed immersed minimal surfaces.

In [24], we were able to settle this conjecture for manifolds of positive
Ricci curvature. We prove the existence of infinitely many smooth closed
embedded minimal hypersurfaces in manifolds with positive Ricci curvature
of dimension (n + 1) ≤ 7. For general manifolds we prove the existence
of at least (n + 1) minimal hypersurfaces. The statement can be extended
to higher dimensions if we allow singular sets of codimension 7, by using
Schoen-Simon regularity theory:

Theorem 5.1. Let (Mn+1, g) be a compact Riemannian manifold, (n+
1) ≥ 3. Then either

(i) there exists a disjoint collection {Σ1, . . . ,Σn+1} of (n+1) connected
closed embedded minimal hypersurfaces, smooth outside sets of
codimension 7,

(ii) or there exist infinitely many connected closed embedded minimal
hypersurfaces, smooth outside sets of codimension 7.

The proof combines Lusternik-Schnirelmann theory [21], that we carry
to the Almgren-Pitts setting, with counting arguments. The idea is to apply
min-max theory to the class of k-sweepouts, for every k, and investigate
whether the obtained minimal hypersurfaces are really distinct from each
other. If ωk = ωk+1 for some k, we can use a topological argument based
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on the cohomological definion of k-sweepouts and prove that there must be
infinitely many minimal surfaces. If the sequence {ωk}k is strictly increasing,
we get that for some fixed constant c > 0,

#{ωj : ωj ≤ c ·m} ≥ mn+1

for every m. The basic problem is that one could be getting the same hy-
persurface with higher and higher multiplicities. In fact, if there exists a
collection {Σ1, . . . ,Σn+1} like in alternative (i) above, the min-max hyper-
surfaces achieving {ωk}k could be all of the form m1,kΣ1+ · · ·+mn+1,kΣn+1,
mi,j ∈ Z+. This is compatible with Theorem 4.1.

If the Ricci curvature is positive, we need to rule out alternative (i)
above. Frankel’s theorem [13] implies that any two smooth closed minimal
hypersurfaces must intersect each other. To deal with the case when there
are singularities, we can use the next result. This is because the Almgren-
Pitts theory always produces a min-max minimal variety that is almost
minimizing in annuli (see definition in [27], [24]).

Theorem 5.2. Let (Mn+1, g) be a compact Riemannian manifold with
positive Ricci curvature. Then any stationary integral n-varifold V in M that
is almost minimizing in small annuli must be of the form V = k · Σ, where
k ∈ Z+ and Σ is a connected closed smooth embedded minimal hypersurface
outside a set of codimension 7.

Proof. It follows from the partial regularity theory of Schoen and
Simon that the support of V is a closed embedded minimal hypersurface
Σ, smooth outside a set of codimension 7 (Section 7 of [29]). Let Σ1,Σ2 be
connected components of Σ. We are going to prove that necessarily Σ1 = Σ2.

If not, we have Σ1 ∩ Σ2 = ∅. If T ⊂ M is a closed subset with n-
dimensional Hausdorff measureHn(T ) <∞, we denote by reg(T ) the regular
set of T (as a hypersurface), i.e., the set of points p ∈ T such that for
some neighborhood U of p the intersection T ∩ U is a smooth embedded
hypersurface. The singular set is then defined by sing(T ) = T \ reg(T ). We
can choose pi ∈ Σi so that d(p1, p2) = d(Σ1,Σ2) = d > 0. Let γ : [0, d] →M
be the minimizing geodesic with γ(0) = p1 and γ(d) = p2. If p1 ∈ reg(Σ1)
and p2 ∈ reg(Σ2), the proof proceeds as in the nonsingular case. By averaging
the second variation formula of the energy over parallel variations that are
orthogonal to γ′, one finds an energy decreasing variation γt with γt(0) ∈ Σ1
and γt(d) ∈ Σ2, t ∈ (−ε, ε). This contradicts the choice of pi.

On the other hand, if pi ∈ sing(Σi) for some i ∈ {1, 2} then the tangent
cone of Σi at pi must be a hyperplane with some positive integer multiplicity.
This is because Σ1 ∩Bε(γ1(ε)) = ∅ and Σ2 ∩Bε(γ2(d− ε)) = ∅, forcing the
tangent cones at p1 and p2 to be contained in halfspaces. But Schoen-Simon
theory (see also Theorem B in [19]) implies the multiplicity must be 1, and
by Allard pi is a regular point. Contradiction.
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Theorem A in [19] implies the regular set of Σ is connected. By the
Constancy Theorem we conclude the multiplicity of V must be constant
along reg(Σ). The result follows.

�
Hence alternative (i) of Theorem 5.1 cannot happen in positive Ricci

curvature, and thus:

Theorem 5.3. Let (Mn+1, g) be a compact Riemannian manifold, (n+
1) ≥ 3. If Ricg > 0, then there exist infinitely many connected closed
embedded minimal hypersurfaces, smooth outside sets of codimension 7.

Note that if (n + 1) ≤ 7, the min-max hypersurfaces are everywhere
smooth. Hence the next result follows from Theorem 5.3:

Corollary 5.4. Let (Mn+1, g) be a compact Riemannian manifold,
3 ≤ (n + 1) ≥ 7. If Ricg > 0, then there exist infinitely many connected
closed smooth embedded minimal hypersurfaces.

6. Future directions

A central open problem in the min-max theory for the area functional
is to relate the Morse index of the min-max minimal submanifold with the
number of parameters. In general, one should expect that index(Σ) ≤ k,
where k is the number of parameters. This is a subtle question, specially
because of the phenomenon of multiplicity.

In [34], Zhou proves this for k = 1 in the case of compact manifolds Mn

of positive Ricci curvature, with 3 ≤ n ≤ 7. He is also able to characterize
the area and the multiplicity of the min-max hypersurface. This extends
results for n = 3 of the authors [22]. Recently Zhou [35] extended his study
to arbitrary dimensions, in which case the minimal hypersurface might have
singularities. Mazet and Rosenberg [25] and Song [32] applied min-max
methods to study the geometry of the minimal hypersurface of least area.

The regularity of the min-max minimal submanifold in the case of
codimension one follows from the works of Pitts [27] and Schoen-Simon
[29]. We think the following partial regularity conjecture is natural in the
general high codimension case:

Conjecture 6.1. Suppose (n + 1) ≥ 3. The min-max minimal variety
V can be chosen to be smooth outside a set of codimension 2.

This is motivated by work of Almgren [4], that establishes the partial
regularity codimension two result for area-minimizing currents of general
codimension. Almgren’s proof has been improved and simplified recently by
De Lellis and Spadaro (see [10]). A proof of the above conjecture would
likely require new curvature estimates for stable submanifolds.

The proofs of Theorem 5.3 and Corollary 5.4 are by contradiction ([24]).
Therefore it should be very interesting to have a description of these minimal
hypersurfaces. We propose a conjecture:
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Conjecture 6.2. For a generic metric g on Sn+1, 3 ≤ (n + 1) ≤ 7,
there should be a list {Σk} of smooth closed embedded minimal hypersurfaces
such that:

• index(Σk) = k,
• mult(Σk) = 1,
• area(Σk) ≥ c · k

1
n+1 .

Some progress has been obtained recently by Li and Zhou in [20],
Chodosh-Ketover-Maximo [8] and Carlotto [7] where they prove the set
of Morse indices of these minimal hypersurfaces must be unbounded.

The previous conjecture should follow from:

Conjecture 6.3 (Multiplicity One Conjecture). For a generic metric
g on Sn+1, 3 ≤ (n+ 1) ≤ 7, any unstable component of a min-max minimal
hypersurface has multiplicity one.

We believe it should be very interesting to study the existence of minimal
varieties in higher codimension as well. It turns out the spaces of cycles
have rich topological structure. For instance, one can look at codimension
two cycles with integer coefficients in the unit sphere Sn+1. Almgren’s
Isomorphism Theorem gives that

• π1(Zn−1(Sn+1,Z), {0}) = 0,
• π2(Zn−1(Sn+1,Z), {0}) = Z,
• πk(Zn−1(Sn+1,Z), {0}) = 0 for k ≥ 3.

Hence the space Zn−1(Sn+1,Z) should be weakly homotopic to the infinite
dimensional complex projective space CP∞.

It makes sense to perform min-max for the area functional over families
that detect the (2k)-dimensional homology of Zn−1(Sn+1,Z). The methods
of Guth [17] to prove sublinear growth of the min-max values require
the coefficients to be in Z2. It should be interesting to study the case of
integer coefficients. For instance, in the case of Z1(S3,Z), one can consider
multiparameter families of zero sets of complex polynomials in C2 to justify
sublinear growth (Example 1 of Appendix 2 in [17]). We point out that, in
general, for G = Z or G = Z2, the space of l-dimensional cycles Zl(Sn+1, G)
should be weakly homotopic to the Eilenberg-MacLane space K(G,n+1−l).
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