
Surveys in Differential Geometry XXI

Higgs bundles and diffeomorphism groups

Nigel Hitchin

Abstract. By studying the Higgs bundle equations with the gauge
group replaced by the group of symplectic diffeomorphisms of the 2-
sphere, we encounter the notion of a folded hyperkähler 4-manifold and
conjecture the existence of a family of such metrics parametrised by an
infinite-dimensional analogue of Teichmüller space.

1. Introduction

The prime motivation for this paper is an attempt to find geometric
structures on a compact surface Σ of genus g > 1 whose moduli space is
described by the higher Teichmüller spaces introduced in [21]. These are
distinguished components of the space of flat SL(n,R)-connections on Σ.
Each one is diffeomorphic to RN where N = 2(n2−1)(g−1) and for n = 2 it
is concretely identifiable as Teichmüller space, the moduli space of hyperbolic
structures on Σ. In some ways this goal has already been achieved by others
[17],[23] but in a language far removed from the differential geometry of
metrics of constant curvature. We shall here produce a conjectural solution
to this question, not for SL(n,R) for finite n, but for what can formally be
considered as SL(∞,R). The finite rank cases may then be thought of as
quantizations of a classical piece of geometry.

The original discovery of the higher Teichmüller spaces used the theory
of Higgs bundles, which requires the introduction of a complex structure on
Σ, and an SO(n)-bundle with connection A. The associated rank n vector
bundle E has a holomorphic orthogonal structure and we also require a
Higgs field Φ, a holomorphic section of the bundle EndE ⊗K, where K is
the canonical bundle, which is symmetric with respect to the orthogonal
structure. A solution to the equations FA + [Φ,Φ∗] = 0 defines a flat
connection ∇A + Φ + Φ∗ whose holonomy is in SL(n,R) and a special
choice of the holomorphic data (E,Φ) produces the higher Teichmüller space.
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Our approach is to use this theory replacing gauge groups by groups of
diffeomorphisms.

Within this context, we may not know what meaning to attach to
SL(∞,R), but the compact group SU(n) has a well-studied infinite-
dimensional version SU(∞) which is defined to be the symplectic diffeo-
morphisms of the 2-sphere. We can then introduce SO(∞) as the subgroup
which commutes with reflection in an equator and use Higgs bundle data
without worrying about what a flat SL(∞,R)-connection means.

Taking the action of SO(∞) on the sphere, we replace the principal
bundle by an S2-bundle over Σ and with this formalism a solution to
the Higgs bundle equations analogous to those used to define the higher
Teichmüller spaces defines an incomplete 4-dimensional hyperkähler metric
on a disc bundle inside the sphere bundle. It acquires a singularity, a fold, on
the boundary circle bundle, and extends as a negative-definite hyperkähler
metric on the complementary disc bundle, just like the folded Kähler metrics
in [2]. In fact in our case an involution interchanges the two disc bundles.
The three hyperkähler forms extend as smooth closed 2-forms to the whole
sphere bundle.

Each point of the traditional Teichmüller space, in its realization as an
SU(2)-Higgs bundle, defines such a hyperkähler metric via the symplectic
action of SU(2) on the sphere, and in particular the point corresponding
to the given complex structure on Σ. This is called the canonical Higgs
bundle and we call its associated hyperkähler metric the canonical model. It
has appeared in the mathematics and physics literature several times over
the past 30 years, though its global structure has been largely ignored. The
sphere bundle in this case is P(1⊕K) and the fold can be identified with the
unit circle bundle in the cotangent bundle. We conjecture that there exist
deformations of this model, where the boundary of the disc bundle embeds
nonquadratically in the cotangent bundle.

There are two existence theorems for the standard Higgs bundle equa-
tions: one starts with the holomorphic data of a stable Higgs bundle (E,Φ),
the other starts with an irreducible flat connection. For the higher Te-
ichmüller spaces the first point of view yields a description of the moduli
space as a vector space of holomorphic differentials of different degrees on
Σ. The second characterises the holonomy of the flat connection as positive
hyperbolic representations of π1(Σ) in SL(n,R) [22], [14]. We expect the
existence of infinite-dimensional versions of these for the case of SU(∞). For
the first approach, we may observe that given a folded hyperkähler metric on
the disc bundle, then if θ is the tautological (complex) 1-form on the cotan-
gent bundle, integrating θm against the symplectic form along the fibres
yields a holomorphic section of Km over Σ. These sections should deter-
mine the metric uniquely. For the second approach, we expect the boundary
data on the fold, embedded in the cotangent bundle, to play the role of the
holonomy of the flat connection.



HIGGS BUNDLES AND DIFFEOMORPHISM GROUPS 141

We produce three pieces of evidence for this conjecture. For a circle
bundle in the cotangent bundle, the real and imaginary parts of the holo-
morphic symplectic form dθ restrict to the data of a generic pair of closed
2-forms on a 3-manifold. The first result, an idea of O.Biquard, says that if
these forms are real analytic, then they determine a local folded hyperkähler
extension. The proof uses twistor theory techniques. The challenge then is
to find global boundary conditions which will produce an extension to the
whole disc bundle.

The second piece of evidence is to consider the examples given by the
Higgs bundle version of Teichmüller space itself. We show that the fold in
this case is the unit cotangent bundle of the hyperbolic metric defined by
the quadratic differential q, and not just for the canonical model q = 0. We
then describe the infinitesimal deformation of the corresponding hyperkähler
metric obtained by varying q and generalise the resulting formula to an
arbitrary differential of degree m. The problem, from the first point of view,
is then to extend the first order deformations for m > 2 to genuine ones.

The final evidence is a global one, and based on the observation that
for the higher Teichmüller spaces expressed as a sum of vector spaces of
differentials the origin is the unique fixed point under the action Φ �→ eiφΦ
and this is a standard embedding of the canonical rank 2 Higgs bundle.
We prove here analogously that the canonical model is unique among S1-
invariant hyperkähler metrics satisfying the folded boundary condition.The
proof uses a geometrical reformulation of what has long been known as
the SU(∞)-Toda equation, describing 4-dimensional hyperkähler manifolds
with this symmetry.
Remark: Since this article was originally posted, significant progress has
been made by O.Biquard [4]. In particular he has proved the conjecture that
the first order deformations in Section 9 are actually tangent to genuine
deformations of folded metrics of the type considered here.

The author wishes to thank Olivier Biquard and Robert Bryant for useful
exchanges of ideas; the Academia Sinica in Taipei and the Mathematical
Sciences Center, Tsinghua University, Beijing for their hospitality while part
of this paper was being written, and ICMAT Madrid and QGM Aarhus for
support.

2. SU(∞) and SO(∞)

We first explain how the group SDiff(S2) of symplectic diffeomorphisms
of the standard 2-form ω on the 2-sphere may be described as SU(∞).
Its Lie algebra consists of C∞(S2) modulo the constant functions – the
Hamiltonian functions for the symplectic vector fields. Equivalently we may
consider functions whose integral against ω is zero. The group SU(2) acts
via its quotient SO(3) and breaks up (the L2-completion of) the algebra
into an orthogonal sum of irreducible representations 3 + 5 + 7 + . . . . Each
irreducible representation of SO(3) occurs with multiplicity one.



142 NIGEL HITCHIN

Now consider the irreducible representation n of SU(2). This is a
homomorphism SU(2) → SU(n) and the Lie algebra of SU(n) under the
restricted adjoint action breaks up as 3 + 5 + · · · + (2n− 1). The analogy
with SDiff(S2) is clear and justifies the notation SU(∞), although su(n)
does not embed as a Lie subalgebra in su(∞): the Poisson bracket does not
restrict to the Lie bracket except on the 3-dimensional component su(2).
Remark: The image of this homomorphism is the distinguished principal
3-dimensional subgroup for SU(n). Higher Teichmüller spaces exist for all
split real forms Gr ⊂ Gc [21] and the principal 3-dimensional subgroup
for any simple Lie group plays a fundamental role in this construction.
Moreover it is the homomorphism of the split groups SL(2,R) → Gr and the
corresponding associated flat connections which maps ordinary Teichmüller
space into its higher version.

The group SU(∞) has several formal attributes in common with a
compact Lie group, in particular there are invariant polynomials on the
Lie algebra which generalize pm(A) = trAm, namely

pm(f) =
∫

S2
fmω

and for m = 2 this defines a bi-invariant positive definite metric.
The real form SL(n,R) is the fixed point set of an involution on

SL(n,C) and restricting to the maximal compact subgroup SU(n), it fixes
the subgroup O(n), with identity component SO(n). Writing the sphere
as x2

1 + x2
2 + x2

3 = 1, and the symplectic form ω = 2dx1 ∧ dx2/x3 (the
induced area form) we define SO(∞) to be the subgroup which commutes
with the involution τ(x1, x2, x3) = (x1, x2,−x3) and acts on the equatorial
circle x3 = 0 by an orientation-preserving diffeomorphism. The Lie algebra
of SO(∞) is then formally the functions f which are odd with respect to
the involution: since τ∗ω = −ω the Hamiltonian vector fields defined by
iXω = df are then even and commute with τ . Note that the induced action
on the equator gives a homomorphism SO(∞) → Diff(S1).

3. Higgs bundles

We recall here the main features of Higgs bundles for a finite-dimensional
Lie group and in particular the choice which yields the higher Teichmüller
spaces [19],[21],[25],[9]. Given a compact Riemann surface Σ and a compact
Lie group G with complexification Gc, we take a principal G-bundle with
connection A. To this we can associate a principal Gc-bundle and the (0, 1)
component of the connection defines on it a holomorphic structure. A Higgs
field is a holomorphic section Φ of g ⊗ K where g denotes the associated
Lie algebra bundle and K the canonical line bundle of Σ. The Higgs bundle
equations are FA + [Φ,Φ∗] = 0 where FA is the curvature of the connection
A and x �→ −x∗ is the involution on g⊗K induced by the reduction to the
compact real form G of Gc.
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Given a solution of these equations, the Gc-connection with covariant
derivative ∇A + Φ + Φ∗ is flat. Conversely, given a flat connection with
holonomy a reductive representation π1(Σ) → Gc there is a reduction of
the structure group of the flat principal Gc-bundle to G which is defined
by a π1(Σ)-equivariant harmonic map from the universal covering Σ̃ to the
symmetric space Gc/G. Using this reduction, the flat connection may be
written in the above form for a solution of the Higgs bundle equations.

If we want a flat connection which corresponds to a representation into
a real form Gr of Gc, we must take the G-connection to reduce to a maximal
compact subgroup H ⊂ Gr and the Higgs field to lie in m ⊗ K where
g = h ⊕ m. Thus, for Gr = SL(n,R) we need an SO(n) connection A,
or equivalently a rank n vector bundle E with a holomorphic orthogonal
structure and ΛnE trivial together with a Higgs field which is symmetric
with respect to this structure.

Uniformization of a Riemann surface gives a representation π1(Σ) →
PSL(2,R) and a choice of holomorphic square root K1/2 of the canonical
bundle defines a lift to SL(2,R). The corresponding Higgs bundle consists
of E = K−1/2 ⊕ K1/2 with the canonical pairing defining the orthogonal
structure: ((u, v), (u, v)) = 〈u, v〉, and the nilpotent Higgs field Φ(u, v) =
(v, 0) is then symmetric. The SO(2) = U(1)-connection A is a connection on
K1/2 which defines a Levi-Civita connection and the Higgs bundle equation
FA + [Φ,Φ∗] = 0 says that the Gaussian curvature is −4.

This canonical example can be modified by taking a holomorphic section
q of K2 and defining Φ(u, v) = (v, qu). The Higgs bundle equations are again
for a Hermitian metric h but can be interpreted as saying that the metric

(1) ĥ = q +
(
h +

qq̄

h

)
+ q̄

has curvature −4 [19]. Then the 3g − 3-dimensional space of quadratic
differentials defines Teichmüller space from the Higgs bundle point of view.

For the higher Teichmüller spaces of representations into SL(n,R) we
take for n = 2m + 1 the vector bundle

E = K−m ⊕K1−m ⊕ · · · ⊕Km

and for n = 2m

E = K−(2m−1)/2 ⊕K1−(2m−1)/2 ⊕ · · · ⊕K(2m−1)/2.

The pairing of K±� or K±�/2 defines an orthogonal structure on E and ΛnE
is trivial so it has structure group SO(n,C).

The Higgs field must be symmetric with respect to this orthogonal
structure. We set:
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(2) Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
a2 0 1 . . . 0
a3 a2 0 1 . . . 0
...

. . .
...

an−1
. . . 1

an an−1 . . . a3 a2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where ai ∈ H0(Σ,Ki).

Then the higher Teichmüller space is the space H0(Σ,K2)⊕H0(Σ,K3)⊕
· · · ⊕ H0(Σ,Kn) of differentials of degree 2 to n. The invariants tr Φm ∈
H0(Σ,Km) are universal polynomials in the entries ai so that given these
differentials we have a natural way of defining a Higgs bundle and corre-
spondingly a flat SL(n,R)-connection which fills out a connected compo-
nent in the moduli space. Setting ai = 0 for i > 2 gives the embedding of
Teichmüller space.

Labourie [22] identified this connected component, from the flat con-
nection point of view, with the moduli space of positive hyperbolic repre-
sentations of π1(Σ) in SL(n,R) and Fock and Goncharov [14] did so for all
split real forms: each homotopy class is mapped to a matrix with n positive
eigenvalues. Their methods are quite distinct from the Higgs bundles which
lay behind the original discovery.

4. Higgs bundles for SU(∞)

If we replace the compact group G in a Higgs bundle by SU(∞) then it
is equivalent to consider instead of a principal bundle with structure group
SDiff(S2), its associated 2-sphere bundle p : M4 → Σ. A connection is
defined by a horizontal distribution – a rank 2 subbundle H ⊂ TM which is
transverse to the tangent bundle along the fibres TF . Then a horizontal lift
of a vector field on Σ is a vector field X which integrates to a diffeomorphism
taking fibres to fibres. We want this to preserve a symplectic form along the
fibres which is a section ωF of Λ2T ∗

F and so we require LXωF = 0. If M is
a symplectic manifold and the fibres are symplectic submanifolds then the
symplectic orthogonal to TF is an example of a horizontal distribution which
defines such an SDiff(S2)-connection. Any SU(2)-Higgs bundle defines this
structure by virtue of its symplectic action on the sphere.

For a reduction to SO(∞) we need an involution τ on M which acts
trivially on the base Σ and on each fibre is equivalent by a symplectic
diffeomorphism to the standard reflection (x1, x2, x3) �→ (x1, x2,−x3). It
must preserve the horizontal distribution. The fixed point set is a circle
bundle p : N3 → Σ with a horizontal distribution which we can think of as
the connection associated to the homomorphism SO(∞) → Diff(S1).

Consider the Higgs field for SU(∞) first as a real object: the Lie algebra
bundle su(∞) consists of the bundle of smooth functions along the fibres
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of integral zero. So if z = x + iy is a local coordinate on Σ the Higgs
field is φ1dx + φ2dy where φ1, φ2 are local smooth functions on M . Then
Φ = (φ1dx + φ2dy)1,0 is to be interpreted as a global section of p∗K. If we
want an analogue of the Higgs field for a higher Teichmüller space then we
want φ1, φ2 to be invariant under the involution, or τ∗Φ = Φ.

We now need to interpret the Higgs bundle equations in terms of the
geometry of this data. A parallel situation was considered many years ago
[1] considering Nahm’s equations for volume-preserving diffeomorphisms of
a 3-manifold.

Consider first the connection – the horizontal lift of a vector field on Σ.
Locally ∂/∂x, ∂/∂y lift to vector fields

∂

∂x
+ A1,

∂

∂y
+ A2

where A1, A2 are Hamiltonian vector fields along the fibres, depending
smoothly on x, y. The notation is intended to suggest connection forms in
a local trivialization. Replacing the vector fields by Hamiltonian functions
a1, a2 and using the Poisson bracket the equation FA + [Φ,Φ∗] = 0 reads

(3) (a2)x − (a1)y + {a1, a2}+ {φ1, φ2} = 0.

The Cauchy-Riemann equation ∂̄AΦ = 0 is then

(4) 2(φ1 + iφ2)z̄ + {a1 + ia2, φ1 + iφ2} = 0.

The horizontal distribution splits the tangent bundle of M as TM ∼=
TF ⊕p∗TΣ and so the relative symplectic form ωF , a section of Λ2T ∗

F , defines
a genuine 2-form whose restriction to a fibre is ωF . Using the local formula
above for horizontal vector fields this may be written, with ω the standard
symplectic form on S2 and x1, x2 local coordinates

ω + {a1, a2}dx ∧ dy − dFa1 ∧ dx− dFa2 ∧ dy

where dFa = ax1dx1 + ax2dx2. Substituting from the Higgs bundle equation
(3) gives

ω − {φ1, φ2}dx ∧ dy − da1 ∧ dx− da2 ∧ dy.

Now {φ1, φ2}dx∧dy is a well-defined section of p∗Λ2T ∗Σ and so we may add
it to the above form and define on M the closed 2-form locally expressed as

(5) ω1 = ω − da1 ∧ dx− da2 ∧ dy.

Then

ω2
1 = −2ω ∧ ((a2)x − (a1)y)dx ∧ dy − 2dFa1 ∧ dFa2 ∧ dx ∧ dy

and from (3) this is equal to 2{φ1, φ2}ωF∧dx∧dy. Hence it is non-degenerate
so long as {φ1, φ2} is non-zero. Moreover, in that case, by construction the
symplectic orthogonal of TF is the horizontal distribution.

Now consider the complex 1-form, the Higgs field Φ = (φ1 + iφ2)dz and
its exterior derivative

(6) ωc = d(φ1 + iφ2) ∧ dz.
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Then d(φ1 + iφ2) and dz span the (1, 0)-forms for a complex structure so
long as ωc ∧ ω̄c �= 0. But

ωc ∧ ω̄c = dF (φ1 + iφ2) ∧ dF (φ1 − iφ2) ∧ dz̄ ∧ dz = 4{φ1, φ2}ωF ∧ dx ∧ dy

and so once more, if {φ1, φ2} is non-zero we obtain a complex structure and
a closed holomorphic 2-form ωc.

Finally consider

ω1 ∧ ωc = ω ∧ (φ1 + iφ2)z̄dz̄ ∧ dz − (da1 ∧ dx+ da2 ∧ dy) ∧ d(φ1 + iφ2) ∧ dz.

From (4) the first term is −ωF ∧{a1 + ia2, φ1 + iφ2}idx∧dy. The second
term is

(idFa1 ∧ dF (φ1 + iφ2)− dFa2 ∧ dF (φ1 + iφ2)) ∧ dx ∧ dy

which can be written as {ia1 − a2, φ1 + iφ2} ∧ ωF ∧ dx ∧ dy and both terms
together yield ω1 ∧ ωc = 0.

Writing ωc = ω2 + iω3 from (ωc)2 = 0 we have ω2
2 = ω2

3 and ω2 ∧ω3 = 0.
From ω1 ∧ ωc = 0 we have ω1 ∧ ω2 = 0 = ω1 ∧ ω3 and with the other
calculations we have

ω2
1 = ω2

2 = ω2
3 = 2{φ1, φ2}ωF ∧ dx∧ dy ω1 ∧ω2 = ω2 ∧ω3 = ω3 ∧ω1 = 0.

It is a standard fact that, given these equations for closed forms, raising
and lowering indices with the symplectic forms and their inverses one can
recapture the metric up to a sign and integrable complex structures I, J,K
which define a quaternionic structure on the tangent bundle. This means
that we have a hyperkähler metric on the open set {φ1, φ2} �= 0.
Example: Any Higgs bundle for the group SU(2) or SO(3) defines such a
hyperkähler metric. The Poisson bracket {φ1, φ2} is then the moment map
for a section of the Lie algebra bundle and since moment maps for SO(3)
are height functions on the 2-sphere the degeneracy locus of the hyperkähler
metric contains a metric circle bundle, though there may be other points
where [Φ,Φ∗] itself vanishes.
Remark: Locally, there is nothing exceptional about these metrics. Given
a 4-dimensional hyperkähler metric, ωc = ω2 + iω3 is a holomorphic 2-form
with respect to the complex structure I and one may find local holomorphic
coordinates such that ωc = dw ∧ dz. Then regard z as a projection to a
local Riemann surface. The Higgs field Φ is then wdz, and the Kähler form
ω1 for complex structure I defines the SU(∞)-connection by the symplectic
orthogonal to the tangent bundle of the fibres.

5. Folding

Within symplectic geometry there exists a notion of folded structure,
based on the geometric notion of folding a piece of paper along the y-
axis: the smooth map f : R2 → R2 defined by f(x, y) = (x2, y). The
standard symplectic form ω = dx ∧ dy then pulls back to the degenerate
form 2xdx∧ dy which is said to be folded along the line x = 0. In general, a



HIGGS BUNDLES AND DIFFEOMORPHISM GROUPS 147

folded symplectic manifold M2m is defined by a closed 2-form ω such that
ωm vanishes transversally on a hypersurface N and ω restricted as a form to
N is of maximal rank 2m− 2. There is a Darboux theorem [8] which states
that locally around the fold N there are coordinates such that

ω = xdx ∧ dy +
m−1∑

1

dxi ∧ dyi.

There is also a Kähler version of this and in [2] Baykur proves the remarkable
result that any compact smooth 4-manifold has a folded Kähler structure,
the two components of M \ N being Stein manifolds. However, the metric
changes signature from positive-definite to negative-definite on crossing the
fold.

For our 4-manifold above, a 2-sphere bundle over the surface Σ, we have
closed 2-forms ω1, ω2, ω3 such that ω2

1 = ω2
2 = ω2

3 and this vanishes when
the section of p∗Λ2T ∗Σ defined by {φ1, φ2}dx∧dy vanishes. In the case that
the Higgs field is invariant by an involution τ (the SO(∞)-connection case),
the Poisson bracket {φ1, φ2} is anti-invariant and so each term ω2

i vanishes
on the hypersurface which is the fixed-point set – a circle bundle over Σ. We
could proceed to define a folded hyperkähler 4-manifold by using the same
definition as in the symplectic case, but there is an issue.

When ω2
1 = 0 at a point x ∈ M we have the algebraic equations in

Λ2T ∗
xM

ω2
1 = ω2

2 = ω2
3 = 0 ω1 ∧ ω2 = ω2 ∧ ω3 = ω3 ∧ ω1 = 0.

If we assume that the ωi are linearly independent at x then they span a
3-dimensional subspace on which the quadratic form given by the exterior
product is zero. Now ω2 = 0 is the condition for ω to be decomposable – geo-
metrically it defines a point in the 4-dimensional Klein quadric parametrizing
lines in P(T ∗

x ) – and so we have a plane in the quadric. But there are two
types: an α-plane consists of the lines through a point (and so ωi = βi ∧ ϕ)
or a β-plane consists of lines in a plane (or iXωi = 0 for some tangent vector
X ∈ TxM).

If all three closed forms are folded in the usual sense then we would have
ωi = xdx∧αi + βi ∧ γi with βi ∧ γi non-vanishing when restricted as a form
to the fold x = 0. From the normal form, at x = 0 we have i∂/∂x(βi∧γi) = 0
and hence we have a β-plane.

This is not, however the case we are interested in – where the connection
is preserved by the involution and the Higgs field is anti-invariant. In this
case from (5) we have τ∗ω1 = −ω1 and from (6), τ∗ω2 = ω2, τ

∗ω3 = ω3. In
particular ω1 must vanish as a form when restricted to the fold and thus is
not a folded symplectic structure according to the above definition.

So take local coordinates such that x = {φ1, φ2} then because ω2, ω3 are
even we must have to order x

ω2 = xdx ∧ α2 + β2 ∧ γ2, ω3 = xdx ∧ α3 + β3 ∧ γ3



148 NIGEL HITCHIN

and
ω1 = dx ∧ α1 + xβ1 ∧ γ1

where i∂/∂x(αi, βi, γi) = 0. From ω1∧ω2 = 0 = ω1∧ω3 we have α1∧β2∧γ2 =
0 = α1 ∧ β3 ∧ γ3 and so we can take γ2 = γ3 = α1 = ϕ. Then at x = 0 the
ωi are all divisible by ϕ and we have explicitly an α-plane.

Also, dω1 = 0 and so ω1 = dx ∧ ϕ + xdϕ to order x. Furthermore, since
ω2

1 = 2xdx∧ϕ∧ dϕ and vanishes transversally on x = 0 we have ϕ∧ dϕ �= 0
and so ϕ defines a contact structure on the fold x = 0.

Relabelling β2, β3 as η1, η2, the restriction of ω2 and ω3 to the fold N gives
two closed forms η1∧ϕ, η2∧ϕ where ϕ is a contact form and η1∧η2∧ϕ �= 0.
This latter condition is equivalent to the linear independence of the 2-forms
on M at x = 0.
Remark: Hyperkähler metrics with α-type folds have been considered in
the physics literature. The simplest uses the Gibbons-Hawking Ansatz

g = V

3∑
i=1

dx2
i + V −1(dφ + α)2

where V (x1, x2, x3) and α = a1dx1 + a2dx2 + a3dx3 satisfy dV = ∗dα. If
we take V = 1/|x + a| + 1/|x − a| we get the complete Eguchi-Hanson
metric. With a minus sign V = 1/|x + a| − 1/|x − a| there is a fold when
V = 0, a 3-manifold given by a circle bundle over the plane through the
origin orthogonal to a. There is an involution here covering x �→ −x.

The more general case where V =
∑m

i=1±1/|x − ai| is folded but the
Kähler form which vanishes on the fold varies from point to point. This
is like the general SU(2)-Higgs bundle rather than those which yield flat
SL(2,R)-connections.

Metrics like these can be utilized to construct non-singular Lorentzian
signature 5-manifolds which are asymptotically flat and satisfy the equations
of 5-dimensional supergravity [16].

6. Teichmüller space

6.1. The canonical model. The example which we propose to gener-
alize is the canonical SU(2)-Higgs bundle described in Section 3 which gives
the hyperbolic metric of curvature −4 with the given conformal structure
on Σ:

E = K−1/2 ⊕K1/2 Φ =
(

0 1
0 0

)
.

From the inclusion SO(3) ⊂ SU(∞) this defines a folded hyperkähler
metric on the 2-sphere bundle M = P(K−1/2 ⊕K1/2). Moreover, since the
SU(2)-connection reduces to SO(2) and the Higgs field lies in m ⊗ K we
have the involution τ : M →M defined by τ([u, v]) = [v̄h−1/2, ūh1/2] where
h, a section of KK̄, is the hyperbolic metric. If we write M = P(1 ⊕ K)
and w = v/u then the fixed point set is h−1ww̄ = 1, the unit circle bundle
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in the cotangent bundle. We have [Φ,Φ∗] = diag(h,−h) and {φ1, φ2} is the
moment map for h(i,−i) which vanishes only on the circle bundle which
is the fixed point set of τ . The corresponding positive-definite hyperkähler
metric is thus defined on the unit disc bundle in the cotangent bundle, and
has an α-fold on the unit circle bundle boundary.

As we described in Section 4, the Higgs field Φ can, in the SU(∞)-
interpretation, be thought of as a section of p∗K or equivalently as a map
f : M → T ∗Σ to the total space of the cotangent bundle in which case we
can take Φ = f∗θ for θ = wdz the canonical holomorphic 1-form. In our case
f is a diffeomorphism restricted to the open disc bundle.

The canonical Higgs bundle has the property that the map Φ �→ eiθΦ,
which preserves the equations, takes the solution to a gauge-equivalent
one. It follows that the hyperkähler metric is invariant under the action
w �→ eiθw, scalar multiplication by a unit complex number on the fibres
of T ∗Σ. This metric then fits into the more general result of Feix and
Kaledin [13],[27] that a real analytic Kähler metric has a unique S1-
invariant hyperkähler extension to a neighbourhood of the zero section of the
cotangent bundle, where ω2 + iω3 is the canonical holomorphic symplectic
form on the cotangent bundle. This is a local result. The canonical model
is thus the unique hyperkähler extension of a metric on Σ, and because the
universal covering is invariant under PSL(2,R) this must be a hyperbolic
metric.

The corresponding SO(3)-invariant metric for the extension of the round
metric on S2 is the Eguchi-Hanson metric. This is complete and extends
to the whole cotangent bundle. The hyperbolic analogue, which we are
considering here, is less well-known but certainly appears in the physics
literature in [15],[24]. It was also used by Donaldson [11] to investigate the
hyperkähler extension of the Weil-Petersson metric on Teichmüller space.

We describe this metric first following [24], but with different coordi-
nates. It will reappear in several forms later on. We use the upper half-plane
model with coordinate z = x+ iy and the metric (dx2 + dy2)/y2 (for conve-
nience of formulae we take constant curvature −1 not −4) and w = u1 + iu2
the fibre coordinate on the cotangent bundle, with θ = wdz the canonical
1-form. Then

(7) ω1 = d(u3(dx− ydφ))

where φ = argw and y2(u2
1 + u2

2 + u2
3) = 1. This latter expression (put

xi = yui) is the equation for the S2-fibre, and if we put ϕ = dx − ydφ we
see that ω1 = du3 ∧ ϕ + u3dϕ making u3 = 0 the fold. We then have

ω2 + iω3 = dw ∧ dz = w(dx + idy) ∧
(

1
y(1− y2u2

3)
(dy + y3u3du3)− idφ

)
and to first order in u3 this is

−wy2u3du3 ∧ dz + w

(
dy

y
− idφ

)
∧ (dx− ydφ)
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and we observe that ϕ = dx−ydφ is a contact form on the unit circle bundle.
In fact d(dx/y) = dx∧dy/y2 so dφ−dx/y is a connection form for the circle
bundle as a principal S1-bundle.

Restricted as forms to u3 = 0 we have ω1 = 0 and

ω2 =
1
y2 (sinφdx + cosφdy) ∧ (dx− ydφ),

ω3 =
1
y2 (− cosφdx + sinφdy) ∧ (dx− ydφ).

The null foliation of ω2 (which is the real canonical 2-form on T ∗Σ) is
tangential to the geodesic flow: in fact explicitly the two equations sinφdx+
cosφdy = 0, dx − ydφ = 0 give the hyperbolic geodesics y = c1 cosφ, x =
c1 sinφ+ c2. We therefore encounter the hyperbolic metric from the data on
the fold through its geodesics.
Remark: Note that the forms ω2 and ω3 are folded in the usual sense, and
ω2 is the Kähler form for the complex structure J . With a circle action
as above the moment map for ω1 (which from the above calculation is
−u3y = −x3) is a Kähler potential for ω2, and it follows that the complex
structure J is Stein and fits in with Baykur’s results [2]. By contrast the
complex structure I admits the compact holomorphic curve given by the
zero section of K and is not Stein.

There is a more general picture which we address next.

6.2. Quadratic differentials. The description of Teichmüller space in
the theory of Higgs bundles uses the following pair:

E = K−1/2 ⊕K1/2 Φ =
(

0 1
q 0

)
where q is a holomorphic section of K2. The canonical model is the case
q = 0. The metric given by solving the Higgs bundle equations is again a
Hermitian metric h on Σ, respecting the holomorphic orthogonal structure
on E and the Higgs field is symmetric, thus from the inclusion SO(3) ⊂
SU(∞) this defines a folded hyperkähler metric on the same S2-bundle over
Σ. The actual Higgs bundle equation is

(8) F = 2(1− |q|2)ω
where ω is the volume form of the metric and F the curvature of K. We
shall investigate the geometry of the fold in this case.

Locally, we write q = a(z)dz2 and the metric as h = kdzdz̄. Then
(k−1/4dz−1/2, k1/4dz1/2) is a unitary basis and relative to this basis

Φ =
(

0 k1/2

ak−1/2 0

)
dz = k1/2

(
0 1
0 0

)
dz + ak−1/2

(
0 0
1 0

)
dz.

and then, as a 1-form with values in Hamiltonian functions we have

(9) Φ = (φ1 + iφ2)dz =
1
2

(
k1/2(x1 − ix2)dz + ak−1/2(x1 + ix2)dz

)
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where x1, x2 are standard height functions on the unit sphere with {x1, x2} =
2x3.

If we regard Φ as a map to T ∗Σ coordinatized by (w, z) �→ wdz then

x1 − ix2 = 2
k1/2w − ak−1/2w̄

k − |a|2k−1 .

The fold x3 = 0 is then where x2
1 +x2

2 = 1 which gives the ellipse in the fibre
of T ∗Σ

4
(k − |a|2k−1)2

(āw2 + aw̄2 + (k + k−1|a|2)ww̄) = −1.

Inverting the matrix of coefficients of w2, w̄2, ww̄ this is the unit circle bundle
in the cotangent bundle for the metric

ĥ = adz2 + (k + |a|2k−1)dzdz̄ + ādz̄2.

But, as in (1) the Higgs bundle equations imply that this is a metric of
constant curvature−4. Hence the data on the fold describes the geodesic flow
for the hyperbolic metric determined by the quadratic differential q = adz2.

7. Local existence

We have seen in Section 5 that an α-folded hyperkähler 4-manifold with
involution induces a contact structure on the fold N3 defined by a form ϕ
and two closed 2-forms η1∧ϕ, η2∧ϕ with η1∧η2∧ϕ �= 0. (Note that there is
an ambiguity ϕ �→ fϕ, η1 �→ f−1η1 +g1ϕ, η2 �→ f−1η2 +g2ϕ in the definition
of the 1-forms). In fact, for real analytic data this is sufficient to find a local
folded hyperkähler metric on N × (−ε, ε) for some interval (−ε, ε). I owe
the idea below to Olivier Biquard who dealt with a similar issue, with CR
boundary data, in [3].

To find a hyperkähler metric we shall use the twistor construction [18].
This means finding a complex 3-manifold p : Z → P1 fibring over the
projective line together with a holomorphic section � of Λ2T ∗

F (2), where
TF is the tangent bundle along the fibres and the factor 2 indicates the
tensor product with p∗O(2), the line bundle of degree 2 on P1. We also need
an antiholomorphic involution σ, which covers the antipodal map ζ �→ −1/ζ̄
on P1. This defines a real structure on Z and associated geometrical objects.
Then on a family of real sections with normal bundleO(1)⊕O(1) there exists
a hyperkähler metric.

Theorem 1. Let X be a real analytic 3-manifold with two analytic closed
forms η1 ∧ ϕ, η2 ∧ ϕ such that the annihilator of ϕ is a contact distribution
and η1, η2 satisfy η1∧η2∧ϕ �= 0. Then this data defines naturally an α-folded
hyperkähler metric with involution (x, t) �→ (x,−t) on X × (−ε, ε).

Proof: From the real analyticity we complexify locally to a complex
manifold Xc.
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1. Consider η = (η1 + iη2)− ζ2(η1 − iη2) where ζ ∈ C. On P1 ×Xc we can
extend this to a section of T ∗Xc(2) by defining η̃ = −(η1−iη2)+ ζ̃2(η1+iη2)
for ζ̃ = ζ−1. Then η̃ = ζ2η and the pair define a global section. This is
moreover real under the conjugation map (η, ζ) �→ (−η̄,−1/ζ̄). Since η is
even in ζ it is also invariant under the holomorphic involution τ on P1×Xc

defined by (ζ, x) �→ (−ζ, x).
Now η ∧ ϕ cannot be zero for taking the exterior product with η1 − iη2

we have

(η1 + iη2) ∧ (η1 − iη2) ∧ ϕ = −2iη1 ∧ η2 ∧ ϕ �= 0.

It is moreover real since ϕ is real. Its annihilator is a holomorphic 1-
dimensional subbundle of TXc over P1×Xc and hence describes a foliation
by curves.

Locally there is a well-defined quotient space of the foliation which is a
complex 3-manifold Z with a projection to P1 induced from the first factor
in P1×Xc. It has a real structure and a holomorphic involution induced by
τ whose fixed point set consists of the fibres over ζ = 0,∞.

Since the form η ∧ ϕ is closed on the three-dimensional manifold Xc,
this is the quotient by its degeneracy foliation and thus each fibre has an
induced symplectic structure. We therefore have a holomorphic section � of
Λ2T ∗

F (2) on Z. There are distinguished holomorphic sections of the fibration,
the images of P1×{x}. These form a 3-dimensional family but what we need
is a 4-dimensional family with normal bundle O(1)⊕O(1).

2. On P1 ×Xc the normal bundle of a section P1 × {x} is trivial and since
the subbundle defined by the foliation is isomorphic to O(−2) the normal
bundle N in Z fits in an exact sequence

0 → O(−2) α→ O3 → N → 0.

But ϕ defines a trivial bundle which annihilates the foliation and is thus a
trivial subbundle of N∗. The map α is defined by three sections (s1, s2, s3)
of O(2) but the trivial annihilator means that there is a linear relation.
With a change of basis the map is (t1, t2, 0) and N is O ⊕ L where L is the
quotient of O2 by O(−2) – in other words O(2). Thus N ∼= O(2) ⊕ O. In
fact each of these sections is preserved by the involution τ so we could take
t1 = 1, t2 = ζ2.

This is not the right normal bundle for a hyperkähler metric but in any
case we are expecting the metric to be singular for these sections. However,
Kodaira’s deformation theory tells us that, given one curve P1 ⊂ Z, as
long as H1(P1, N) = 0 there is a smooth family of deformations M c whose
tangent space at a curve is isomorphic to the space of holomorphic sections
of the normal bundle N . For N = O(2) ⊕ O, H1(P1, N) indeed vanishes
and dimH0(P1, N) = 1 + 3 = 4 so we have a 4-manifold M c. The real
members of this family which have normal bundle O(1) ⊕ O(1) will define
a hyperkähler manifold. Note that the 3-dimensional family Xc has tangent
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space (a0, a1ζ
2− a2) ∈ H0(P1,O(2)⊕O), the fixed point subspace under τ .

The involution induces one on M c and the fixed point set is Xc.
The condition for a rank 2 holomorphic vector bundle E over P1 with

c1(E) = 0 to be trivial is H0(P1, E(−1)) = 0. In our case, since the curves
are sections of Z → P1, the normal bundle is the tangent bundle along
the fibres TF and c1(TF ) ∼= p∗O(2) so the condition for the holomorphic
structure to be O(1)⊕O(1) is H0(P1, T ∗

F ) = 0. There is a determinant line
bundle over M c for the ∂̄-operators on T ∗

F with a determinant section which
vanishes when H0(P1, T ∗

F ) �= 0. Unless the determinant is identically zero
this is a divisor and the smooth 3-manifold Xc is already contained in it, so
to show that points in M c\Xc sufficiently close to Xc have normal bundle
O(1)⊕O(1) we have to show that O(2)⊕O is not the generic case. We need
the contact condition to do this.

3. So suppose for a contradiction that all deformations of the lines
parametrized by Xc have normal bundle O(2) ⊕ O. The O(2) factor is
canonically determined as the maximal destabilizing subbundle. Then the
sections of O(2) define a rank 3 distribution on the 4-manifold M c. Take one
line L of the family and a one-parameter family Lt passing through a point
z ∈ L ⊂ Z. Then because z is fixed, the section of the normal bundle N
associated to the infinitesimal variation vanishes at z (for all Lt) and so lies
in the O(2) component. Hence the whole curve in M c is tangential to the
distribution. Now consider all lines through z. This is a 2-dimensional family
whose tangent space at L consists of the sections of O(2) which vanish at z
– the quadratic polynomials with factor (x− z). This surface is everywhere
tangential to the distribution. It is locally defined by a 1-form γ, so take
two vector fields U, V in the surface so that iUγ = iV γ = 0, then i[U,V ]γ = 0
and dγ vanishes as a form on the surface.

Now the 2-dimensional subspaces of H0(P1,O(2)) consisting of sections
which vanish at points z ∈ P1 give elements which span Λ2(H0(P1,O(2)))∗.
Indeed under the PSL(2,C)-invariant isomorphism with H0(P1,O(2)) these
are polynomials of the form a(x−z)2 and any quadratic is a sum of squares.
It follows that dγ vanishes on the whole distribution so that γ ∧ dγ = 0 and
the distribution is integrable – a foliation.

The tangent space of Xc is, as remarked above, (a0, a1ζ
2 − a2) ∈

H0(P1,O ⊕ O(2)). So the leaves of this foliation intersect Xc tangential
to the distribution a0 = 0 defined by ϕ. But ϕ ∧ dϕ �= 0 so we have a
contradiction to integrability. Thus a twistor line given by a point in the
family near Xc must have normal bundle O(1)⊕O(1).

4. The three hyperkähler forms may be considered as the coefficients of a
quadratic polynomial ωζ = (ω2 + iω3) + 2ζω1 − ζ2(ω2 − iω3) and in the
twistor approach this is obtained as follows. Since the normal bundle TF to
a twistor line Lm is O(1)⊕O(1) then the natural map

(10) H0(Lm, TF (−1))⊗H0(Lm, p∗O(1))→ H0(Lm, TF ) = TmM c
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is an isomorphism. A tangent vector can then be considered as a linear
function in ζ with coefficients sections of TF (−1). The section � of Λ2T ∗

F (2)
is a skew form on the first factor and so evaluating on a pair of tangent
vectors gives a quadratic polynomial in ζ. This defines ωζ . When the normal
bundle jumps, the homomorphism above is no longer an isomorphism, but
we can still define ωζ as we shall see next.

5. The argument in paragraph 2 of this proof concerning normal bundles
only uses the condition ϕ∧dϕ �= 0 and not the full integrability of the leaves
of the foliation. It is just the 1-jet of ϕ which is relevant. This means that
the section of T ∗

F on a line Lx for x ∈ Xc does not extend to the first order
neighbourhood. Equivalently, the determinant section vanishes on Xc with
multiplicity one. On P1 a local model for the minimal jump in holomorphic
structure for a rank 2 bundle E of degree 0 is given by the one-parameter
family of extensions in H1(P1,O(−2)) ∼= C. If [e] is a generator then the
extension t[e] defines a vector bundle E:

0 → O(−1) → E → O(1) → 0

which is trivial if t �= 0 and O(−1)⊕O(1) if t = 0.
We can describe such an extension by a transition matrix defined on C∗

by

g10(t, z) =
(
ζ t
0 ζ−1

)
and a global section is given by holomorphic vector-valued functions
v0(ζ), v1(ζ̃) satisfying v1(ζ̃) = g10(t, z)v0(ζ) where ζ̃ = ζ−1. The 2-
dimensional space of such sections is defined by v0(ζ) = (−ta1, a0 + a1ζ).
Since det g10 = 1 it preserves the standard skew form ε on C2 and taking
a basis s1 = (t,−ζ), s2 = (0, 1) this gives ε(s1, s2) = t. In a similar fashion,
the 4-dimensional space of global sections of TF , with transition matrix
ζ−1g10(t, z) is given by v0(ζ) = (b− tc3ζ, c0 + c1ζ + c2ζ

2).
Applying this to the bundle TF (−1) together with the skew form defined

by �. we can implement the isomorphism (10) to obtain the ζ-dependent
skew form on Tm

ωζ = db ∧ dc0 + (db ∧ dc1 + tdc0 ∧ dc2)ζ + (db + tdc1) ∧ dc2ζ
2.

When t = 0 it is well defined and all coefficients are divisible by db – the
characteristic property of an α-fold. More importantly, identifying this with
(ω2 + iω3)+2ζω1− ζ2(ω2− iω3) we see that 2ω2

2 = (ω2 + iω3)∧ (ω2− iω3) =
tdb ∧ dc0 ∧ dc1 ∧ dc2 and so vanishes transversally on Xc.

6. Consider now the real structure, given by the antiholomorphic involution
σ, and the real lines parametrised by M ⊂ M c . Then ωζ is real and the
reality condition on the coefficients means that the ωi are real forms on M .
As we have seen, ω2

i vanishes transversally on X ⊂ M . Moreover, since ωζ

is preserved by the holomorphic involution τ which covers ζ �→ −ζ, we have
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τ∗ω1 = −ω1 and τ∗(ω2 + iω3) = (ω2 + iω3). We therefore have an α-fold X
on M , which is the fixed point set of an involution. �

Remarks:
1. Consider the real twistor lines given by M\X. The standard twistor
approach gives that the intersection with any fibre Zξ of Z → P1 is a local
diffeomorphism, and we obtain a description of the hyperkähler metric as
a C∞ product P1 ×M . The twisted holomorphic 2-form is then written as
(ω2 + iω3) + 2ζω1 − ζ2(ω2 − iω3).

Take ξ = 0. This fibre is fixed by τ so Lm and τ(Lm) = Lτ(m) meet it
at the same point. The restriction map M → Z0 therefore factors through
the involution τ . Pulling back � gives a closed complex 2-form ω2 + iω3
with τ∗(ω2 + iω3) = (ω2 + iω3) and by construction its restriction to X is
(η1 + iη2) ∧ ϕ which is rank 2. So this is folding in a quite concrete sense:
the map from M to Z0 is a folding map, and its image is a manifold with
boundary diffeomorphic to X.

2. It is natural to ask about the geometry on Z0 on the other side of the
hypersurface. In fact, composing the real structure on Z with τ gives a new
real structure covering ζ �→ 1/ζ̄ on P1, the reflection in an equator. With
this structure ω1 is imaginary and we have the relation ω2

2 = ω2
3 = −ω2

1 for
the three closed forms. The twistor lines which are real for this structure
define a 4-manifold with hypersymplectic structure (see e.g.[20],[10]). In
four dimensions this is a Ricci-flat anti-self-dual Einstein metric of signature
(2, 2). The analytic continuation of the canonical model to the exterior of the
disc bundle is an example. Inside M c we thus have two real submanifolds,
intersecting in X but mapping to opposite sides of the corresponding
hypersurface in the fibre Z0. This is analogous to the real and imaginary
axes in C and the map z �→ z2 to R.

3. To reverse the construction, if a twistor section has normal bundle
TF
∼= O(2)⊕O then the distinguished subbundle O(2) lifts it canonically to

the 4-manifold P(TF ) → Z. It has trivial normal bundle there and so locally
this space is a product P1 ×Xc.

4. The intrinsic differential geometry of a 3-manifold with the boundary data
of the theorem has been studied by R.Bryant [6] who proved elsewhere a
hyperkähler extension theorem analogous to the above but for β-folds [7].

8. Global invariants

8.1. Topological invariants. Our conjectural folded hyperkähler
metrics are deformations of the canonical model and so are defined on
the 4-manifold M which is the S2-bundle P(1⊕K) over the surface Σ. The
second homology is generated by the classes of a fibre and the zero section
in K ⊂ P(1 ⊕ K). We have three closed 2-forms ω1, ω2, ω3 which define
de Rham classes in H2(M,R). But we also have the involution τ and in
particular ω2, ω3 are invariant by τ . Since τ changes the orientation of each
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fibre it follows that the classes [ω2], [ω3] evaluated on a fibre are zero. But
also, ω2 + iω3 restricted to K is holomorphic and so vanishes on the zero
section. Thus [ω2] = 0 = [ω3].

From the SU(∞) point of view ω1 restricts to the standard symplectic
form on a fibre and evaluates to 4π. From the explicit formula (7) for
the canonical model ω1 = d(u3(dx − ydφ)) and so on the zero section
x3 = yu3 = 1, ω1 = dx ∧ dy/y2 and evaluating the integral gives the area of
the hyperbolic metric of curvature −1 which is 4π(g − 1).

8.2. Invariant polynomials. One of the fundamental features of the
moduli space of Higgs bundles is the associated integrable system, based on
evaluating an invariant polynomial of degree m on Φ to give a holomorphic
section of Km on Σ. As we remarked above, we can replace the polynomial
trAm on su(n) by

(11) pm(f) =
∫

S2
fmω

for SU(∞), and this we can do for the Lie algebra and its complexification.
Then for the Higgs field Φ, a section of p∗K on the sphere bundle M4,

integration over the fibres of Φm defines likewise a section αm of Km on Σ.
This is again holomorphic, since 2(φ1 + iφ2)z̄ +{a1 + ia2, φ1 + iφ2} = 0 from
[4]. Then writing ψ = φ1 + iφ2, a = a1 + ia2 we have

∂

∂z̄

(∫
M/Σ

ψmω

)
dzm = −1

2

(∫
M/Σ

m{a, ψ}ψm−1ω

)
dzm

= −1
2

(∫
M/Σ

LXa(ψmω)

)
dzm.

where Xa is the Hamiltonian vector field of a. But this integral is zero by
Stokes’s theorem as LXa(ψmω) = d(iXa(ψmω)). This holds for any SU(∞)-
Higgs bundle. For the ones we are considering where the connection lies in
SO(∞) and the Higgs field is symmetric under the involution, the differential
αm is twice the integral over the disc bundle. When Φ maps the closed disc
bundle diffeomorphically to a submanifold D of the cotangent bundle then,
using standard local coordinates (z, w) �→ wdz this integral is obtained from
the canonical holomorphic 1-form θ = wdz:

αm = 2

(∫
D/Σ

wmΦ∗ω

)
dzm = 2

(∫
D/Σ

wmω1

)
dzm

using the Kähler form ω1.
Example: In the example relating to Teichmüller space above we can
perform this calculation using (9) to get

αm = 2
∫

0≤θ≤2π

∫
0≤r≤1

1
2m

(k1/2re−iθ + ak−1/2reiθ)m rdrdθ

2
√

1− r2
dzm
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which is zero if m is odd and if m = 2� is(
π

22�

(
2�
�

))2

a�dz2�

and we recover a power of the quadratic differential q = adz2 used in the
definition of the Higgs bundle. For the canonical model q = 0 and all these
invariants therefore vanish.
Remark: One may ask what happened to α0 and α1. But α0 is just
the area of the 2-sphere which is the standard 4π. As for α1, in the
finite-dimensional case this is set to zero because we are considering the
group SU(n) and the trace of the Higgs field is zero. For our case, a
translation wdz �→ wdz + a(z)dz by a holomorphic section of K preserves
the holomorphic symplectic form and takes one solution to another. Setting
α1 = 0 removes this trivial deformation.

9. First order deformations

If a generalization of the higher Teichmüller spaces exists then the holo-
morphic differentials αm should uniquely determine a folded hyperkähler
metric. It makes sense then to look for deformations, and initially infinitesi-
mal deformations, of the canonical model to be determined by a holomorphic
differential. The Teichmüller example offers a test: we have a genuine defor-
mation in the direction of a quadratic differential.

Differentiating equation 8 for the quadratic differential tq with respect
to t and setting t = 0 we get Ḟ = 2ω̇. Now the conformal structure is
unchanged so ω̇ = fω for some function f . But then Ḟ = ddcf and so
ddcf = 2fω and this implies f = 0 since ddc is a negative operator. The
infinitesimal variation of the metric is therefore zero and so ω̇1 = 0 for the
hyperkähler metric. From (9)

Φ̇ = ẇdz = ay2w̄dz

using the hyperbolic metric k = y−2 and k̇ = 0. Then

(12) ω̇2 + iω̇3 = d(ẇdz) = d(ay2w̄dz).

Introduce the complex vector field (tangential to the fibres)

Xc = ay2w̄
∂

∂w

and let X be the real part, then we can write (12) as

ω̇2 + iω̇3 = dLXwdz = LX(ω2 + iω3).

We can generalise this infinitesimal deformation by taking a holomorphic
section αm of Km and writing it in local coordinates as αm = a(z)dzm. Then
define a complex vector field

Xc = ay2m−2w̄m−1 ∂

∂w
.
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This is globally well-defined because we have the hermitian form h =
dzdz̄/y2, the canonical 1-form θ = wdz and the canonical holomor-
phic Poisson tensor π = ∂/∂w ∧ ∂/∂z. The vector field is then Xc =
π(αh−(m−1)θ̄m−1).

Proposition 2. If X is the real part of Xc, then the three closed 2-forms
LXωi are anti-self-dual.

Proof: The Kähler forms ωi span the space of self-dual 2-forms at each
point and so we need to prove that LXωi ∧ ωj = 0 for all i, j.

First consider LX(ω2+iω3) = LXd(wdz). This is d(aw̄m−1y2m−2dz) and
since a(z) is holomorphic and y = (z − z̄)/2i we obtain

(13) (m− 1)ay2m−3w̄m−2(ydw̄ ∧ dz + iw̄dz̄ ∧ dz).

So clearly

LX(ω2 + iω3) ∧ dw ∧ dz = 0 = LX(ω2 + iω3) ∧ dw̄ ∧ dz̄

and we have LXω2 ∧ ω2 = 0 = LXω3 ∧ ω2 = LXω2 ∧ ω3 = LXω3 ∧ ω3. In
particular LX(ω2

2) = 0 but since ω2
2 = ω2

1 we also have LXω1 ∧ ω1 = 0.
It remains to prove that LX(ω2 + iω3) ∧ ω1 = 0 for then we shall have

LXω2 ∧ ωi = 0 for i = 1, 2, 3 and similarly for ω3. Taking the Lie derivative
of ω3 ∧ ω1 = 0 = ω2 ∧ ω1 we shall then have the same result for LXω1.

Recall then that

ω1 = d(u3(dx− ydφ)) = du3 ∧ (dx− ydφ)− u3dy ∧ dφ

and u3y =
√

1− y2|w|2, e2iφ = w/w̄. Since from (13) dz = d(x + iy) is a
factor of LX(dw ∧ dz) we calculate first
(14)
ω1∧(dx+idy) = idu3∧dx∧dy−u3dφ∧dx∧dy−ydu3∧dφ∧dx−iydu3∧dφ∧dy
and now, from the form of LX(dw ∧ dz) in (13), take the exterior product
with ydw̄ + iw̄dz̄.

Using

2idφ =
dw

w
− dw̄

w̄
, du3 = −(u2

3 + |w|2) dy

yu3
− 1

2u3
(w̄dw + wdw̄)

in the expression (14) we get zero.
�

Setting ω̇1 = 0, ω̇2 = LXω2 and ω̇3 = LXω3 from the proposition we
certainly have a first order deformation of the algebraic equations

ω2
1 = ω2

2 = ω2
3, ω1 ∧ ω2 = ω2 ∧ ω3 = ω3 ∧ ω1 = 0

by closed forms. We also have a deformation which is orthogonal to just
rotating the forms ωi.

Infinitesimal deformations of Ricci-flat metrics define elements in the null
space of the Lichnerowicz Laplacian acting on trace-free symmetric tensors.
On a hyperkähler 4-manifold these are constructed from tensor products of
the covariant constant self-dual 2-forms ωi and closed anti-self dual 2-forms,
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thus the proposition gives us potential deformations of hyperkähler metrics
(and in the compact case would give actual deformations).

We can calculate the infinitesimal variation in the global invariants using
the above. Since ω̇1 = 0 the cohomology class is unchanged. Since ω2

1 is fixed
to first order then so is the fold, so we only have to vary w which is the vector
field X applied to w. The variation in the moment of wk is therefore given
by ∫

y2|w|2<1
kwk−1aw̄m−1y2m−2y2 dwdw̄√

1− y2|w|2
.

The measure is S1-invariant and so the multiple integral vanishes unless
m = k. In this case put u = yw and we get

a

∫
|u|<1

|u|2k−2 dudū√
1− |u|2

= 2πa
∫ 1

0
r2k−2 rdr√

1− r2
= πa

4k(k!)2

(2k)!
.

This is consistent with our conjecture that the differentials determine the
metrics.

10. S1-invariance

The usual Teichmüller space is embedded in its higher analogue by
the homomorphism SL(2,C) → SL(n,C) given by the irreducible n-
dimensional representation. Restricted to the compact real form we take
the SU(n)-Higgs bundle induced from the SU(2)-Higgs bundled discussed
in Section 6.2 and restricted to the split form we take the positive hyperbolic
SL(n,R)-representation coming from the uniformizing representations. The
scalar S1-action Φ �→ eiφΦ preserves the higher Teichmüller spaces but acts
non-trivially on all differentials except zero and so the only solution fixed
by this action is the canonical solution. If our conjecture holds, then the
canonical model should be the only S1-invariant folded hyperkähler metric
on a disc bundle in the cotangent bundle. Here, where we regard the Higgs
field as the canonical 1-form, the action is just scalar multiplication by a
unit complex number in the fibre of T ∗Σ.

This circle action acts on ω2 + iω3 = d(wdz) by eiφ and preserves ω1 and
for this type of action in four dimensions there is a well-known differential
equation called either the Boyer-Finley equation [5] or the SU(∞)-Toda
equation [26].

Locally the Ansatz for the metric is

(15) ut(eu(dx2 + dy2) + dt2) + u−1
t (dτ + uydx− uxdy)2

and for the Kähler form

(16) ω1 = ute
udx ∧ dy + dt ∧ (dτ + uydx− uxdy).

Requiring this to be closed gives the Boyer-Finley equation

(17) uxx + uyy + (eu)tt = 0.
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The holomorphic symplectic form is ω2 + iω3 = d(wdz) where w =√
2eu/2+iτ .

Example: For the canonical model u = log(1− t2)− 2 log y, giving ux = 0
and uy = −2/y. Hence uyy = 2/y2 and (eu)tt = −2/y2. Then t = 0 is
the fold and at t = −1, ute

u = 2/y2 which gives the hyperbolic metric
2y−2(dx2 + dy2) on the zero section of the cotangent bundle.

Remark: One form of the 2-dimensional Toda lattice is the differential-
difference equation

vxx + vyy + evn+1 − 2evn + evn−1 = 0.

The limit where the difference operator becomes the second derivative is the
reason for the SU(∞) terminology and is consistent with our use in this
paper.

We need to give the local formulae above a more geometric interpreta-
tion. The Killing field is ∂/∂τ so from (16) the moment map with respect
to ω1 is −t. Setting t to be a constant and taking the quotient by the circle
action gives the Kähler quotient as the metric 4ute

u(dx2 +dy2) so z = x+ iy
is a local complex coordinate on the quotient. The function u itself is defined
by ww̄ = 2eu.

If we focus now on the t-dependent metric g = ww̄dzdz̄ = 2eu(dx2+dy2)
on a surface then its Gaussian curvature κ = −e−u(uxx + uyy)/4 and then
the Toda equation (17) may be written in the more geometrical form

(18) gtt = 4κg

for a t-dependent family of metrics on a compact surface.
In our setting wdz is the canonical 1-form on T ∗Σ restricted to a disc

bundle. The S1-invariance w �→ eiφw means our boundary value data for
the fold is the unit cotangent bundle for a hermitian metric .

In the Higgs bundle picture ω1 restricted to the fibre is the restriction
of the standard symplectic form on S2 to the disc x3 ≥ 0 and x3 itself is the
moment map for the circle action so t = −x3 and with this normalisation
the fold is t = 0 and the zero section t = −1 as in the canonical model. Note
from formula (16) that integrating ω1 over each disc is integrating dt ∧ dτ
for −1 ≤ t ≤ 0, 0 ≤ τ ≤ 2π which gives 2π, the correct normalisation.

For regularity we assume smoothness of the forms ωi on the S2-bundle
P(1⊕K) and on this space the Higgs field is described locally as φ1dx+φ2dy
where φ1, φ2 are even functions. The metric g = (φ2

1 + φ2
2)(dx

2 + dy2) and
since the φi are even ∂φi/∂x3 = 0 on the fold. Hence gt = 0 at the fold. We
now have boundary conditions gt(0) = 0 and g(−1) = 0 for the equation
(18). In fact, we are interested in a solution over the whole sphere bundle,
invariant under an involution, so we could take equivalently the boundary
conditions g(−1) = 0 = g(1).
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Theorem 3. The only S1-invariant hyperkähler metric on P(1⊕K) → Σ
which has an α-fold on a circle bundle is the canonical model for a hyperbolic
metric on Σ.

Proof:
1. Note that since g = ww̄dzdz̄ the conformal structure is independent of t,
so if g = fh for some fixed metric h, the area form vg = fvh. Now integrate
(18) against vh and use Gauss-Bonnet. If A(t) is the area of the metric g(t)
on Σ we get

Att = 16π(1− p)
where p is the genus, and hence A(t) = (a + bt + ct2) for constants a, b, c.
But the metric vanishes at t = ±1 so b = 0 = a + c and we have

A(t) = 8π(t2 − 1)(1− p).

and since −1 ≤ t ≤ 1 the genus must be greater than 1.

2. Consider the metric h = g/2(1 − t2), then the area is fixed and the
metric is regular at t = ±1. The right hand side of the equation (18) is the
Gauss-Bonnet integrand which is unchanged under constant rescaling so the
equation for h is

(1− t2)htt − 4tht − 2h = 4κh
and clearly h of constant curvature −1/2 satisfies this. These metrics are
all conformally related so we can write h = fgH where gH is the hyperbolic
metric and then we get (1 − t2)ftt − 4tft = 2ΔH log f where ΔH is the
Laplace-Beltrami operator for the hyperbolic metric.

Rewrite this as ((1− t2)2ft)t = 2(1− t2)(ΔH log f). Integrating by parts
and using the fact that f is finite at t = ±1, we have

2
∫ 1

−1
(1− t2)fΔH log fdt =

∫ 1

−1
((1− t2)2ft)tfdt = −

∫ 1

−1
(1− t2)2f2

t dt.

But fΔH log f = ΔHf + f−1(df, df) so integrating over [−1, 1]× Σ we get

−
∫ 1

−1
(1− t2)2

∫
Σ
f2

t dt vH = 2
∫ 1

−1
(1− t2)

∫
Σ
(ΔHf + f−1(df, df))dt vH

which, since the integral of ΔHf over Σ vanishes, is a contradiction unless
f is a constant on [−1, 1]× Σ. �

Remarks: 1. There do exist S1-invariant solutions to the Higgs bundle
equations other than the canonical one. The holomorphic Higgs bundle is of
the form

E = L⊕ L∗ Φ =
(

0 s
0 0

)
where s is a holomorphic section of L2K. But when L �= K−1/2, s has
zeros and then the Higgs field itself vanishes, which gives a rather different
singularity for the hyperkähler metric, apart from the circle bundle fold.

2. The uniqueness result above, coupled with the local existence theorem
of Section 7, shows that the unit cotangent bundle of a Riemannian metric
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which has a global folded hyperkähler extension is a hyperbolic metric. If
our conjecture holds, then the general situation must involve a geometry of
Finsler type.
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