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Abstract. We show how certain microlocal analysis methods, already
well-developed for the study of conventional Schrödinger eigenvalue
problems, can be extended to apply to the (mini-superspace) Wheeler-
DeWitt equation for the quantized Bianchi type IX (or ‘Mixmaster’)
cosmological model. We use the methods to construct smooth, globally
defined expansions, for both ‘ground’ and ‘excited state’ wave functions,
on the Mixmaster mini-superspace. We then review an expansive, ongo-
ing program to further broaden the scope of such microlocal methods
to encompass a class of interacting, bosonic quantum field theories and
conclude with a discussion of the feasibility of applying this ‘Euclidean-
signature semi-classical’ quantization program to the Einstein equations
themselves — in the general, non-symmetric case — by exploiting cer-
tain established geometric results such as the positive action theorem.

1. Introduction

Einstein would almost surely never have approved of efforts to quantize
his wondrous, geometric field equations. But the universal character of the
gravitational interaction together with the undeniable necessity to quan-
tize all other forms of matter and energy leads almost inexorably to the
conclusion that the gravitational field itself should indeed be quantized. In
addition to the natural demand for logical coherence in the formulation of
fundamental physical laws as motivation for this pursuit there is the alluring
potential benefit that quantum gravitational effects could ultimately furnish
the agency needed to regularize not only the more troublesome, singular
features of classical general relativity but perhaps also those of quantized
matter systems as well. The fundamental nature of these challenging issues,
together with the inconclusiveness of existing attempts at their resolution,
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encourages one to search for new points of view towards the quantization
problem.

Our aim herein is to explore the applicability of what we shall call
‘Euclidean-signature semi-classical’ analysis to the problem of solving, at
least asymptotically, the Wheeler-DeWitt equation of canonical quantum
gravity. Since this (functional differential) equation has, at present however,
only a formal significance we shall begin by analyzing instead the mathemat-
ically well-defined model problem of constructing asymptotic solutions to the
idealized Wheeler-DeWitt equation for spatially homogeneous, Bianchi type
IX (or ‘Mixmaster’) universes. Though the (partial differential) Wheeler-
DeWitt equation for this model problem was first formulated nearly a half
century ago, techniques for solving it that bring to light the discrete, quan-
tized character naturally to be expected for its solutions have, only recently,
been developed. We shall show, in particular, how certain microlocal an-
alytical methods, long since well-established for the study of conventional
Schrödinger eigenvalue problems, can be modified in such a way as to apply
to the (Mixmaster) Wheeler-DeWitt equation.

That some essential modification of the microlocal methods will be
needed is evident from the fact that the Wheeler-DeWitt equation does not
define an eigenvalue problem, in the conventional sense, at all. For closed
universe models, such as those of Mixmaster type, all of the would-be eigen-
values of the Wheeler-DeWitt operator, whether for ‘ground’ or ‘excited’
quantum states, are required to vanish identically. But a crucial feature
of standard microlocal methods, when applied to conventional Schrödinger
eigenvalue problems, exploits the flexibility to adjust the eigenvalues being
generated, order-by-order in an expansion in Planck’s constant, to ensure
the smoothness of the eigenfunctions, being constructed in parallel, at the
corresponding order. But if, as in the Wheeler-DeWitt problem, there are
no eigenvalues to adjust, wherein lies the flexibility needed to ensure the
required smoothness of the hypothetical eigenfunctions? And, by the same
token, where are the ‘quantum numbers’ that one would normally expect to
have at hand to label the distinct quantum states? The core of this paper
is devoted to showing how the scope of microlocal methods can, in spite
of this apparent impasse, be broadened to provide creditable, aesthetically
appealing answers to such questions.

But the Mixmaster Wheeler-DeWitt equation is a quantum mechanical
one whereas full Einstein gravity is a field theory. For reasons that we shall
clarify later the microlocal methods alluded to above have, heretofore, been
limited in applicability to Schrödinger operators defined on finite dimen-
sional configuration spaces. The author, however, together with A. Marini
and R. Maitra, has recently been engaged in further extending the scope
of such methods to encompass certain (bosonic) relativistic field theories
in a far-reaching program we refer to as ‘Euclidean-signature semi-classical’
analysis [1, 2, 3]. We shall review, in section 6 below, the current status of
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this expansive, ongoing program, discussing in particular its applicability to
self-interacting scalar and Yang-Mills fields on Minkowski spacetime.

With the backdrop of the aforementioned developments in mind it
is natural to ask the question — could such (Euclidean-signature semi-
classical) methods be applicable to the Wheeler-DeWitt equation of full
canonical quantum gravity? Since research in this direction has only just
begun we do not, by any means, have a conclusive answer to this overriding
question. In the concluding section however we shall draw attention to
several remarkably attractive features of such an approach and show, in
particular, how it avoids some of the serious complications that obstructed
progress on the, somewhat similar-in-spirit, Euclidean path integral approach
to quantum gravity.

While Einstein most likely would not have approved of the ultimate aim
of this research program he nevertheless himself initiated an elegant exten-
sion of the old Bohr quantization rules to classically integrable systems that
has since, after subsequent refinements, come to be known as the Einstein-
Brillouin-Keller (or EBK) approximation [4]. So perhaps he would have ap-
preciated yet a different application of semi-classical methods to quantum
systems — especially one that does not require classical integrability or even
finite dimensionality for its implementation.

2. Mixmaster Spacetimes

The Bianchi IX, or ‘Mixmaster’ cosmological models are spatially ho-
mogeneous spacetimes defined on the manifold S

3 × R. Their metrics can
be conveniently expressed in terms of a basis, {σi}, for the left-invariant
one-forms of the Lie group SU(2) which of course is diffeomorphic to the
‘spatial’ manifold under study. In a standard, Euler angle coordinate system
for S

3 these basis one-forms can be written as:

σ1 = cos ψdθ + sin ψ sin θdϕ,

σ2 = sin ψdθ − cos ψ sin θdϕ,

σ3 = dψ + cos θdϕ

(2.1)

and satisfy

(2.2) dσi =
1
2

εijk σj ∧ σk

where εijk is completely anti-symmetric with ε123 = 1.
In the absence of matter sources for the Einstein equations (i.e., in the so-

called ‘vacuum’ case) it is well-known that the Mixmaster spacetime metric
can always be put, after a suitable frame ‘rotation’, into diagonal form.
Thus, without essential loss of generality, one can write the line element for
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vacuum, Bianchi IX models in the form

ds2 = (4)gμνdxμdxν

= −N2dt2 +
L2

6π
e2α(e2β)ijσ

iσj
(2.3)

where {xμ} = {t, θ, ϕ, ψ} with t ∈ R, e2β is a diagonal, positive definite
matrix of unit determinant and L is a positive constant with the dimensions
of ‘length’.

In the notation introduced by Misner [5, 6] one writes

(2.4) (e2β) = diag
(
e2β++2

√
3β− , e2β+−2

√
3β− , e−4β+

)
and thereby expresses e2β in terms of his (arbitrary, real-valued) anisotropy
parameters {β+, β−}. These measure the departure from ‘roundness’ of the
homogenous, Riemannian metric on S

3 given by

(2.5) γijdxi ⊗ dxj :=
L2

6π
e2α (e2β)ij σi ⊗ σj

whereas the remaining (arbitrary, real-valued) parameter α determines the
sphere’s overall ‘size’ (in units of L).

To ensure spatial homogeneity the metric functions {N, α, β+, β−} can
only depend upon the time coordinate t which, for convenience, we take to
be dimensionless. To ensure the uniform Lorentzian signature of the met-
ric (4)g the ‘lapse’ function N must be non-vanishing (and, with our con-
ventions, have the dimensions of length). Taken together the parameters
{α, β+, β−} coordinatize the associated ‘mini-superspace’ of spatially homo-
geneous, diagonal Riemannian metrics on S

3. This minisuperspace is the
natural configuration manifold for the Mixmaster dynamics.

In terms of Newton’s constant, G, and the speed of light, c, the Hilbert
action functional is given by

(2.6) IHilbert :=
c3

16πG

∫
Ω

√
− det (4)g (4)R((4)g)d4x

where (4)R((4)g) is the scalar curvature of the metric (4)g and
√

− det (4)g
its canonical 4-volume measure. When evaluated for metrics of the afore-
mentioned, Bianchi IX, type on domains of the form Ω ≡ S

3 × I, with
I := [to, t1] ⊂ R, the above integral specializes to

IHilbert =
c3L3π

G(6π)3/2

∫
I
dt

{
6e3α

N
(−α̇2 + β̇2

+ + β̇2
−) − 6πNeα

2L2

[
e−8β+

(2.7)

−4e−2β+ cosh (2
√

3β−) + 2e4β+
(
cosh (4

√
3β−) − 1

)]
+

d

dt

(
6e3αα̇

N

)}
after the integration over the angular coordinates {xi} = {θ, ϕ, ψ} for S

3 has
been carried out. Here α̇ = dα

dt , etc., and the full set of Einstein equations
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for these models results from independent variation of the metric functions
{N, α, β+, β−} subject to the requirement that their variations, together
with that of α̇, vanish at the boundary points of the interval I (i.e., at
t = t0 and t = t1). Under these constraints the final term in the integrand,
d
dt

(
6e3αα̇

N

)
, makes no contribution to the resulting equations of motion.

Accordingly one is led to define the ADM (Arnowitt, Deser and Misner
[7, 8]) action for Bianchi IX models by deleting it and setting

IADM :=
c3L3π

G(6π)3/2

∫
I
dt

{
6e3α

N
(−α̇2 + β̇2

+ + β̇2
−)

(2.8)

−(6π)Neα

2L2

[
e−8β+ − 4e−2β+ cosh (2

√
3β−) + 2e4β+(cosh (4

√
3β−) − 1)

]}

:=
∫

I
LADMdt.

The corresponding Hamiltonian formulation is arrived at via the Legendre
transformation

pα :=
∂LADM

∂α̇
=

−c3L3π

G(6π)3/2

12e3αα̇

N

p+ :=
∂LADM

∂β̇+
=

c3L3π

G(6π)3/2

12e3αβ̇+

N

p− :=
∂LADM

∂β̇−
=

c3L3π

G(6π)3/2

12e3αβ̇−
N

.

(2.9)

In terms of the canonical variables {α, β+, β−, pα, p+, p−} the ADM
action takes the form

(2.10) IADM =
∫

I
dt {pαα̇ + p+β̇+ + p−β̇− − NH⊥}

where

H⊥ :=
(6π)1/2G

4c3L3e3α

{
(−p2

α + p2
+ + p2

−) +
(

c3

G

)2

L4e4α

[
e−8β+

3

−4e−2β+

3
cosh (2

√
3β−) +

2
3
e4β+

(
cosh (4

√
3β−) − 1

)]}
.

(2.11)

Variation of the lapse function N, which only appears now in ‘Lagrange
multiplier’ form, leads to that Einstein equation known as the ‘Hamiltonian
constraint’,

(2.12) H⊥(α, β+, β−, pα, p+, p−) = 0,
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whereas variation of the canonical variables leads to the Hamiltonian evolu-
tion equations

α̇ =
∂HADM

∂pα
, β̇+ =

∂HADM

∂p+
, β̇− =

∂HADM

∂p−
(2.13)

ṗα = −∂HADM

∂α
, ṗ+ = −∂HADM

∂β+
, ṗ− = −∂HADM

∂β−
(2.14)

with so-called super-Hamiltonian given by

(2.15) HADM := NH⊥.

The choice of lapse function N is essentially arbitrary but determines the
coordinate ‘gauge’ by assigning a geometrical meaning to the time function
t. For example the choice N = L corresponds to taking t = c

Lτ where
τ is ‘proper time’ normal to the hypersurfaces of spatial homogeniety.
The Hamiltonian constraint, (2.12), is conserved in time by the evolution
equations, (2.13, 2.14), independently of the choice of lapse.

Though the general solution to the Mixmaster equations of motion is not
known, much is known about the dynamical behavior and asymptotics of the
resulting spacetimes. One can show for example that each such cosmological
model expands from a ‘big bang’ singularity of vanishing spatial volume,
α → −∞, a finite proper time in the past, achieves a momentary maximal
volume at some finite proper time from the big bang and then ‘recollapses’
to another vanishing-volume, ‘big crunch’ singularity a finite proper time in
the future [9, 10, 11, 12]. For the generic solution spacetime curvature
can be proven to blow up at these singular boundaries [13] but some
exceptional cases, so-called Taub universes [14, 15], develop (compact, null
hypersurface) Cauchy horizons ≈ S

3 instead of curvature singular boundaries
and are analytically extendable through these horizons to certain acausal
NUT (Newman, Unti, Tamburino) spacetimes that admit closed timelike
curves [16, 17]. The inextendability of the generic, vacuum Mixmaster
spacetime is consistent with Penrose’s (strong) cosmic censorship conjecture
according to which the maximal Cauchy developments of generic, globally
hyperbolic solutions to the (vacuum) Einstein field equations should not
allow such acausal extensions.

The dynamical behavior of the generic solution to equations (2.12–
2.14), between its big bang and big crunch singular boundaries, entails an
infinite sequence of intricate ‘bounces’ of the evolving system point in mini-
superspace, (α(t), β+(t), β−(t)), off of the ‘walls’ provided by the potential
energy function

U(α, β+, β−) :=
c3(6π)1/2Leα

4G

[
e−8β+

3
− 4

3
e−2β+ cosh (2

√
3β−)

+
2
3
e4β+

(
cosh (4

√
3β−) − 1

)](2.16)
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appearing in the gravitational super-Hamiltonian HADM = NH⊥. This se-
quence of bounces has been extensively analyzed with various analytical and
numerical approximation methods beginning with the fundamental investi-
gations of Belinskǐı, Khalanikov and Lifshitz (BKL) [18, 19] and Misner
[20]. The insights gained therefrom led Belinskǐı, et al to the bold conjec-
ture that the Mixmaster dynamics provides a paradigm for the behavior of
a generic, non-symmetric cosmological model at a spacelike singular bound-
ary [21, 22]. The study of such BKL oscillations within models of increasing
generality and complexity is a continuing, significant research area within
mathematical cosmology [23, 24, 25]. Though Newtonian definitions of
‘chaos’ do not strictly apply to the Mixmaster dynamical system certain
natural extensions of this concept have led to the conclusion that Mixmas-
ter dynamics is indeed ‘chaotic’ in a measurably meaningful sense [26, 27].

At the same time it has long been suspected that quantum effects should
dramatically modify the nature of the Mixmaster evolutions especially when
the evolving universe models reach a size comparable to the so-called Planck
length, i.e., when Leα becomes comparable to LPlanck � 1.616 × 10−33 cm.
This suspicion led Misner to initiate the study of Mixmaster quantum
cosmology [6], the subject to which we now turn.

3. The Wheeler-DeWitt Equation for Mixmaster Universes

One can formally quantize the Mixmaster dynamical system described
above by working in the Schrödinger representation wherein quantum states
are expressed as ‘wave’ functions of the canonical coordinates, Ψ(α, β+, β−),
and the conjugate momenta to these variables are replaced by differential
operators:

pα −→ p̂α :=
�

i

∂

∂α
,

p+ −→ p̂+ :=
�

i

∂

∂β+
,

p− −→ p̂− :=
�

i

∂

∂β−
.

(3.1)

Here � = h
2π where h is Planck’s constant given by h � 6.62606957 ×

10−27 erg · sec.
In this picture one converts, after making a suitable choice of operator

ordering, the classical Hamiltonian constraint function H⊥ into a quantum
operator Ĥ⊥ and imposes it, à la Dirac, as a fundamental constraint on the
allowed quantum states by setting

(3.2) Ĥ⊥Ψ = 0.

Since this equation is an idealized, finite dimensional model for the formal
equation proposed by Wheeler and DeWitt for full, non-symmetric, canoni-
cal quantum gravity (formulated on the infinite dimensional ‘superspace’ of
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Riemannian geometries [28, 29]) we shall refer to it as the Wheeler-DeWitt
(WDW) equation for Mixmaster spacetimes.

For simplicity we shall limit our attention here to a particular one-
parameter family of operator orderings for Ĥ⊥, first introduced by Hartle
and Hawking [30], and characterized by the specific substitutions

−e−3α p2
α −→ �

2

e(3−B)α

∂

∂α

(
e−Bα ∂

∂α

)
,(3.3)

e−3α p2
+ −→ −�

2

e3α

∂2

∂β2
+

,(3.4)

e−3α p2
− −→ −�

2

e3α

∂2

∂β2−
,(3.5)

for the ‘kinetic energy’ terms appearing in Ĥ⊥. Here B is an arbitrary real
parameter whose specification determines a particular ordering of the family.
For any such ordering the WDW equation can be written as(

LPlanck

L

)3 {
e−(3−B)α ∂

∂α

(
e−Bα ∂Ψ

∂α

)
− e−3α

(
∂2Ψ
∂β2

+
+

∂2Ψ
∂β2−

)}
(3.6)

+
(

L

LPlanck

)
eα

[
e−8β+

3
− 4

3
e−2β+ cosh (2

√
3β−)

+
2
3
e4β+

(
cosh (4

√
3β−) − 1

)]
Ψ

= 0

where LPlanck is the Planck length defined by

(3.7) LPlanck =
(

G�

c3

)1/2

� 1.616199 × 10−33 cm.

Notice that the arbitrary ‘length’ constant L always occurs in the combina-
tion Leα so that a change of its value merely corresponds to a shift of α by
an additive constant.

Notice in addition that when the WDW equation, Ĥ⊥Ψ = 0, is imposed
to constrain the allowed, so-called ‘physical’, quantum states, then the
conventional Schrödinger equation, which would be expected to have the
form

(3.8) i�
∂Ψ
∂t

= ĤADMΨ = NĤ⊥Ψ,

reduces to the seemingly mysterious implication that physical states do not
evolve in ‘time’, i.e., to the conclusion that ∂Ψ

∂t = 0.
This result is a reflection of the conceptual ‘problem of time’ in canonical

quantum cosmology for the case of (spatially) closed universes. It leads
one inexorably to the conclusion that actual temporal evolution must be
measured not with respect to some external, ‘absolute’ time, as in Newtonian
or even special relativistic physics, but rather with respect to some internal
‘clock’ contained within the system itself. The most obvious such clock
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variable for the Mixmaster models is the logarithmic scale parameter α
whose value, classically, determines the instantaneous spatial ‘size’ of the
model universe and which, again classically, evolves in an almost monotonic
fashion. More precisely α increases monotonically during the epoch of
cosmological expansion, stops for an instant at the moment of maximal
volume and then decreases monotonically during the followup epoch of
cosmological collapse until the final ‘big crunch’.

But, as Misner was the first to realize, the Wheeler-DeWitt equation
for Mixmaster models does not have Schrödinger form and so many of the
usual constructions, familiar from ordinary quantum mechanics, such as
the eigenfunctions and eigenvalues of a self-adjoint Hamiltonian operator
acting on a naturally associated Hilbert space of quantum states and the
conservation, in ‘time’, of the Hilbert space norm of such evolving states,
no longer seem to apply. The Wheeler-DeWitt equation is indeed a wave
equation (though not one of Schrödinger type), but where is the discreteness,
expected of a normal quantum system, to be found among its solutions?

In the sections to follow we shall bring certain microlocal analysis
techniques, already well-developed for the study of conventional Schrödinger
eigenvalue problems [31, 32, 33, 1], to bear on such questions and show
how these techniques can indeed be extended to apply to the Mixmaster
Wheeler-DeWitt equation.

At first sight though it is not apparent that such microlocal methods can
be applied at all. In particular, for a conventional Schrödinger eigenvalue
problem, they make crucial use of the freedom to adjust the eigenvalues
under construction, order-by-order in an expansion in Planck’s constant, to
ensure the global smoothness of the eigenfunctions being generated at the
corresponding order. But for the Wheeler-DeWitt problem all eigenvalues
of Ĥ⊥, whether for ‘ground’ or ‘excited’ states (whatever those terms might
ultimately be taken to mean) are required to vanish to all orders with
no flexibility whatsoever. And if no meaningful eigenvalues can be defined
wherein are the ‘quanta’ naturally demanded of a quantized system?

As we shall see however the special structure of the Wheeler-DeWitt
operator, Ĥ⊥, and the fact that it is not of Schrödinger type, comes to the
rescue and allows one to generate smooth, globally defined expansions (to
all orders in Planck’s constant) for both ground and excited states. These
states are labeled by a pair of non-negative integers that can be naturally
interpreted as graviton excitation numbers for the ultra-long-wavelength
gravitational waves modes represented by the quantum dynamics of the
anisotropy degrees of freedom, β+ and β−.

4. Microlocal Techniques for the Mixmaster
Wheeler-DeWitt Equation

In view of the resemblance of Ĥ⊥ to a conventional Schrödinger operator
one is motivated to propose a ‘ground state’ wave function of real, nodeless
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type and thus to introduce an ansatz of the form

(4.1)
(0)
Ψ� = e−S�/�,

where S� = S�(α, β+, β−) is a real-valued function on the Mixmaster mini-
superspace having the dimensions of ‘action’. It will be convenient to define
a dimensionless stand-in for S� by setting

(4.2) S� :=
G

c3L2 S�

and to assume that S� admits a formal expansion in powers of the dimen-
sionless ratio

(4.3) X :=
L2

Planck
L2 =

G�

c3L2

given by

(4.4) S� = S(0) + XS(1) +
X2

2!
S(2) + · · · +

Xk

k!
S(k) + · · ·

so that
(0)
Ψ� now becomes

(4.5)
(0)
Ψ� = e− 1

X
S(0)−S(1)− X

2! S(2)−···.

Substituting this ansatz into the Wheeler-DeWitt equation, Ĥ⊥
(0)
Ψ� = 0,

and requiring satisfaction, order-by-order in powers of X leads immediately
to the sequence of equations:

(
∂S(0)

∂α

)2

−
(

∂S(0)

∂β+

)2

−
(

∂S(0)

∂β−

)2

+ e4α

[
e−8β+

3
− 4

3
e−2β+ cosh (2

√
3β−) +

2
3
e4β+

(
cosh (4

√
3β−) − 1

)]
= 0,

(4.6)

2
[
∂S(0)

∂α

∂S(1)

∂α
− ∂S(0)

∂β+

∂S(1)

∂β+
− ∂S(0)

∂β−

∂S(1)

∂β−

]

+ B
∂S(0)

∂α
− ∂2S(0)

∂α2 +
∂2S(0)

∂β2
+

+
∂2S(0)

∂β2−
= 0,

(4.7)
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and, for k ≥ 2,

2
[
∂S(0)

∂α

∂S(k)

∂α
− ∂S(0)

∂β+

∂S(k)

∂β+
− ∂S(0)

∂β−

∂S(k)

∂β−

]

+ k

[
B

∂S(k−1)

∂α
− ∂2S(k−1)

∂α2 +
∂2S(k−1)

∂β2
+

+
∂2S(k−1)

∂β2−

]

+
k−1∑
�=1

k!

!(k − 
)!

(
∂S(�)

∂α

∂S(k−�)

∂α
− ∂S(�)

∂β+

∂S(k−�)

∂β+
− ∂S(�)

∂β−

∂S(k−�)

∂β−

)
= 0.

(4.8)

One recognizes Eq. (4.6) as the Euclidean signature analogue of the
Hamilton-Jacobi equation for Mixmaster spacetimes that results from mak-
ing the canonical substitutions

pα −→ ∂S

∂α
=

c3L2

G

∂S
∂α

,

p+ −→ ∂S

∂β+
=

c3L2

G

∂S
∂β+

,

p− −→ ∂S

∂β−
=

c3L2

G

∂S
∂β−

(4.9)

for the momenta in the Euclidean signature Hamiltonian constant, H⊥ Eucl =
0, where

H⊥ Eucl :=
(6π)1/2G

4c3L3e3α

{
(p2

α − p2
+ − p2

−)

+
(

c3

G

)2

L4e4α

[
e−8β+

3
− 4

3
e−2β+ cosh (2

√
3β−)

+
2
3
e4β+

(
cosh (4

√
3β−) − 1

)]}
.

(4.10)

This expression results from repeating the derivation of IADM given in
Sect. 2, but now for a Euclidean signature Bianchi IX metric,

(4.11) (4)gμν |Eucl dxμ ⊗ dxν = N |2Eucl dt ⊗ dt +
L2

6π
e2α(e2β)ijσ

i ⊗ σj ,

and differs from Eq. (2.11) only in the sign of the kinetic energy term.
The remaining equations (4.7, 4.8) are linear ‘transport’ equations to

be integrated along the flow generated by a solution for S(0) to sequen-
tially determine the quantum corrections

{S(k), k = 1, 2, . . .
}

in the formal
expansion (4.4) for S�.

There are two known, globally defined, smooth solutions to Eq. (4.6)
that share the rotational symmetry of the Wheeler-DeWitt operator under
rotations by ±2π

3 in the β-plane. By virtue of the geometrical characters
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of the Euclidean signature ‘spacetimes’ they respectively generate they are
sometimes referred to as the ‘wormhole’ solution,

(4.12) Swh
(0) :=

1
6
e2α
(
e−4β+ + 2e2β+ cosh (2

√
3β−)

)
,

and the ‘no boundary’ solution

Snb
(0) :=

1
6
e2α
[(

e−4β+ + 2e2β+ cosh (2
√

3β−)
)

(4.13)

−2
(
e2β+ + 2e−β+ cosh (

√
3β−)

)]
.

The first of these was discovered in the present context by Ryan and the au-
thor in [34] and independently, in a somewhat related, but supersymmetric
setting by Graham in [35] who then, together with Bene, proceeded to con-
struct the second solution [36, 37]. An additional, non-symmetric solution,
together with its (geometrically equivalent) images under ±2π

3 rotations in
the β-plane, was later uncovered by Barbero and Ryan in a systematic,
further search [38].

On the other hand the Euclidean signature Mixmaster ‘spacetimes’
generated by these various solutions, together with a characterization of
their global geometric properties, were actually known much earlier, having
been discovered through extensive searches for self-dual-curvature solutions
to the field equations by Gibbons and Pope in [39] and by Belinskǐı et al.
in [40]. With respect to a certain time function η, which corresponds to our
choice

(4.14) N |Eucl =
Le3α

(6π)1/2

for the Euclidean signature lapse, these authors found that the metric
functions

ω1 := e2α−β+−√
3β−

ω2 := e2α−β++
√

3β−

ω3 := e2α+2β+

(4.15)

satisfied the evolution equations

dω1

dη
= ω2ω3,

dω2

dη
= ω1ω3,

dω3

dη
= ω1ω2

(4.16)
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for the ‘wormhole’ family and

dω1

dη
= ω2ω3 − ω1(ω2 + ω3),

dω2

dη
= ω1ω3 − ω2(ω1 + ω3),

dω3

dη
= ω1ω2 − ω3(ω1 + ω2)

(4.17)

for the ‘no boundary’ family. One can easily recover these flow equations
from our Hamilton-Jacobi formalism by making the substitutions (4.9) and
(4.14) for {pα, p+, p−} and N |Eucl in the Euclidean signature Hamilton
equations

α̇ =
(6π)1/2G

2c3L3e3α
N |Eucl pα(4.18)

β̇+ =
−(6π)1/2G

2c3L3e3α
N |Eucl p+(4.19)

β̇− =
−(6π)1/2G

2c3L3e3α
N |Eucl p−(4.20)

and choosing S = Swh
(0) or S = Snb

(0) accordingly.
Because of its remarkable correspondence to the Euler equations for an

asymmetric top [41] the ‘Euler’ system (4.16) was integrated long ago by
Abel and Jacobi in terms of elliptic functions [39, 42, 43]. But system (4.17)
also long predated general relativity having been discovered by Darboux in
connection with a pure geometry problem [44]. This ‘Darboux’ system was
subsequently integrated by Halphen [45] and later Bureau [46] in terms of
Hermite modular elliptic functions. Both systems also occur as reductions
of the self-dual Yang-Mills equations [42, 43].

Since the asymptotically Euclidean behavior of the wormhole ‘space-
times’, as elucidated by Belinskǐı, et al. in [40] and by Gibbons and Pope in
[39], fits most naturally with our current perspective on appropriate bound-

ary conditions for a ground state wave function
(0)
Ψ� we shall focus exclusively

on the ‘wormhole’ solution, Swh
(0) , and its associated ‘flow’, in the analysis to

follow. It is worth remarking however that the same (microlocal) methods
could also be brought to bear on the ‘no boundary’ solution, Snb

(0), and its
‘flow’.

Though the classical solution to the Euler system (4.16) entails elliptic
functions [39, 40], J. Bae was recently able, using a choice for the Euclidean
signature lapse proposed by the author, to reintegrate this system purely in
terms of elementary functions and thus to simplify some of the subsequent
analysis [47]. With the lapse function taken to be

(4.21) N |Eucl =
−Leα−2β+

(2π)1/2
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the wormhole flow equations become
dβ−
dt

= sinh (2
√

3β−),(4.22)

dβ+

dt
= − 1√

3

(
e−6β+ − cosh (2

√
3β−)

)
(4.23)

dα

dt
= − 1

2
√

3

(
e−6β+ + 2 cosh (2

√
3β−)

)
(4.24)

and can be readily integrated in the order given.1

In terms of initial values {α0, β+0, β−0} prescribed at t = 0 Bae’s solution
is expressible as

e12α(t) = e12α0−6β+0H+(h+h−)2,(4.25)

e6β+(t) =
H+

h+h−
,(4.26)

e2
√

3β−(t) =
h+

h−
(4.27)

where

H+ = e6β+0 − cosh (2
√

3β−0) +
1
2
(h2

+ + h2
−)(4.28)

= e6β+0 + (h±)2 − (h±0)2,

h+ = e−√
3t cosh (

√
3β−0) + e

√
3t sinh (

√
3β−0),(4.29)

h− = e−√
3t cosh (

√
3β−0) − e

√
3t sinh (

√
3β−0).(4.30)

Several useful identities that follow from these formulas are given by

cosh (2
√

3β−(t)) =
h2

+ + h2−
2h+h−

,(4.31)

e2α(t)+2β+(t) = e2α0−β+0
√

H+,(4.32)

e4α(t)−2β+(t) = e4α0−2β+0h+h−.(4.33)

It is not difficult to verify that every solution is globally, smoothly
defined on a maximal interval of the form (−∞, t∗) where t∗ > 0 so that, in
particular, every solution curve is well-defined on the sub-interval (−∞, 0].
Furthermore β+(t) and β−(t) each decay exponentially rapidly to zero as
t → −∞ with

(4.34) β±(t) ∼ const±e2
√

3t

while α diverges, asymptotically linearly,

(4.35) α(t) ∼ −
√

3
2

t + const

1Since the chosen lapse (4.21) does not share the triangular symmetry of Swh
(0) in the

β-plane, geometrically equivalent solutions to the flow equations (4.22–4.24) will often be
parametrized differently.
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in this limit. This behavior of the solution curves will play a crucial role in
the integration of the transport equations (4.7, 4.8).

It is worth noting that one can linearize the β-plane flow equations
(4.22–4.23) through an explicit transformation to ‘Sternberg coordinates’
{y+, y−} in terms of which these equations reduce to

(4.36)
dy+

dt
= 2

√
3y+,

dy−
dt

= 2
√

3y−.

These Sternberg coordinates are defined by

y+ =
1
6

(
e6β+ − cosh (2

√
3β−)

cosh2 (
√

3β−)

)
,(4.37)

y− =
1√
3

sinh (
√

3β−)
cosh (

√
3β−)

(4.38)

which has the explicit inverse

e6β+ = 3y+ + (3y+ + 1)
(

1 + 3y2−
1 − 3y2−

)
,(4.39)

e2
√

3β− =
1 +

√
3y−

1 − √
3y−

(4.40)

and maps the β-plane diffeomorphically onto the ‘strip’ given by

− 1√
3

< y− <
1√
3
,(4.41)

y+ > −1
6
(1 + y2

−).(4.42)

Taking S(0) = Swh
(0) Bae found a particular solution to the first transport

equation (4.7) given by

(4.43) S(1) = −1
2
(B + 6)α.

Though one would be free to add an arbitrary solution to the corresponding
homogeneous equation we shall reserve such flexibility for the subsequent
construction of excited states, retaining Bae’s particular solution as the
natural choice to make for a ground state.

The ensuing transport equations (4.8) can now be solved inductively by
making the ansatz

(4.44) Swh
(k) = 6e−2(k−1)αΣwh

(k)(β+, β−)

for k = 2, 3, . . . and, for convenience, defining

(4.45) Σwh
(0) = e−4β+ + 2e2β+ cosh (2

√
3β−)

so that

(4.46) Swh
(0) =

e2α

6
Σwh

(0)(β+, β−).
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The resulting transport equations for the
∑wh

(k)’s now take the form

∂Σwh
(0)

∂β+

∂Σwh
(2)

∂β+
+

∂Σwh
(0)

∂β−

∂Σwh
(2)

∂β−
+ 4Σwh

(0)Σ
wh
(2) =

(
9 − B2

4

)
,

(4.47)

∂Σwh
(0)

∂β+

∂Σwh
(3)

∂β+
+

∂Σwh
(0)

∂β−

∂Σwh
(3)

∂β−
+ 8Σwh

(0)Σ
wh
(3) = 9

[
∂2Σwh

(2)

∂β2
+

+
∂2Σwh

(2)

∂β2−
+ 8Σwh

(2)

]
,

(4.48)

and, for all k ≥ 4:

∂Σwh
(0)

∂β+

∂Σwh
(k)

∂β+
+

∂Σwh
(0)

∂β−

∂Σwh
(k)

∂β−
+ 4(k − 1)Σwh

(0)Σ
wh
(k)

= 3k

[
∂2Σwh

(k−1)

∂β2
+

+
∂2Σwh

(k−1)

∂β2−
− (k − 2) (4(k − 2) − 12) Σwh

(k−1)

]

+
k−2∑
�=2

18k!

!(k − 
)!

[
4(
 − 1)(k − 
 − 1)Σwh

(�)Σ
wh
(k−�)

−
(

∂Σwh
(�)

∂β+

∂Σwh
(k−�)

∂β+
+

∂Σwh
(�)

∂β−

∂Σwh
(k−�)

∂β−

)]
.

(4.49)

Noting that

(4.50)
∂Σwh

(0)

∂β+
= −4e−4β+ + 4e2β+ cosh (2

√
3β−)

and

(4.51)
∂Σwh

(0)

∂β−
= 4

√
3e2β+ sinh (2

√
3β−)

both vanish at the origin whereas

(4.52) Σwh
(0)(0, 0) = 3

it follows from equations (4.47–4.49) that any set of smooth solutions would
have to satisfy

Σwh
(2)(0, 0) =

1
12

(
9 − B2

4

)
,(4.53)

Σwh
(3)(0, 0) =

3
8

[
∂2Σwh

(2)

∂β2
+

+
∂2Σwh

(2)

∂β2−
+ 8Σwh

(2)

]
(0, 0),(4.54)
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and

Σwh
(k)(0, 0) =

{
k

4(k − 1)

[
∂2Σwh

(k−1)

∂β2
+

+
∂2Σwh

(k−1)

∂β2−
− (k − 2) (4(k − 2) − 12) Σwh

(k−1)

]

+
3

2(k − 1)

k−2∑
�=2

k!

!(k − 
)!

[
4(
 − 1)(k − 
 − 1)Σwh

(�)Σ
wh
(k−�)

−
(

∂Σwh
(�)

∂β+

∂Σwh
(k−�)

∂β+
+

∂Σwh
(�)

∂β−

∂Σwh
(k−�)

∂β−

)]}
(0, 0)

(4.55)

∀ k ≥ 4.
From equations (4.22–4.23,4.50–4.51) one easily verifies that

(4.56)
1

4
√

3
e−2β+

(
∂Σwh

(0)

∂β+

∂Σwh
(k)

∂β+
+

∂Σwh
(0)

∂β−

∂Σwh
(k)

∂β−

)
=

dΣwh
(k)

dt

along the flow generated by Swh
(0) . Thus multiplying each of equations (4.47,

4.48, 4.49) by 1
4
√

3
e−2β+ and exploiting equation (4.24) to reexpress a term

on the left hand side converts it to the first order, linear ‘transport’ form

dΣwh
(k)

dt
+ 4(k − 1)Σwh

(k)
1

4
√

3

(
e−6β+ + 2 cosh (2

√
3β−)

)

=
d

dt
Σwh

(k) − 2(k − 1)
dα

dt
Σwh

(k)

= Λ(k)

(4.57)

where Λ(k) denotes the right hand side of the original equation multiplied
by 1

4
√

3
e−2β+ . This ‘source’ term for Σwh

(k) will be smooth provided that{
Σwh

(2), . . . ,Σ
wh
(k−1)

}
are each globally smooth.

An integrating factor for equation (4.57) is now easily seen to be

(4.58)
μ(k)(t)
μ(k)(0)

=
e−2(k−1)α(t)

e−2(k−1)α(0)

and has the important property of vanishing exponentially rapidly in t as
t ↘ −∞ along an arbitrary solution curve of the flow equations (4.22–4.24).

The strategy for computing Σwh
(k) at an arbitrary point (β+0, β−0) in

the β-plane is now as follows: integrate equation (4.57) along the solu-
tion curve ‘beginning’ at (β+0, β−0) at t = 0 and adjust the ‘initial value’,
Σwh

(k)(β+0, β−0), of this function in such a way as to ensure that its asymptot-
ically attained limit has the pre-determined value given for it in equations
(4.53–4.55) above, i.e., that

(4.59) Σwh
(k)(0, 0) = lim

t↘−∞
Σwh

(k) (β+(t), β−(t)) .
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Finally, verify the smoothness of the function so constructed and proceed,
inductively, to the subsequent order.

Applying the technique first to Σwh
(2) one finds that

(4.60)

Σwh
(2) (β+(t), β−(t)) =

{
Σwh

(2)(β+0, β−0) −
(
9− B2

4

)

4
√

3

∫ 0

t
ds e−2(α(s)−α(0))−2β+(s)

}

e−2(α(t)−α(0))

∀ t ≤ 0. In view of the asymptotic vanishing of the denominator as t ↘ −∞
there is only one choice for Σwh

(2)(β+0, β−0) that can yield a finite value for
Σwh

(2)(0, 0) in this limit, namely:

(4.61) Σwh
(2)(β+0, β−0) =

(
9 − B2

4

)
4
√

3

∫ 0

−∞
ds e−2(α(s)−α(0))−2β+(s).

This integral converges for any (β+0, β−0) by virtue of the exponential
decay of the integrating factor along the corresponding solution curve. With
the choice (4.61) for ‘initial condition’ the formula for Σwh

(2)(β+(t), β−(t))
simplifies to

(4.62) Σwh
(2)(β+(t), β−(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
9− B2

4

)

4
√

3

∫ t

−∞
ds e−2(α(s)−α(0))−2β+(s)

e−2(α(t)−α(0))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and a straightforward application of L’Hôpital’s rule shows that this solution
has the desired limit (4.53) as t ↘ −∞.

Substituting the explicit expressions (4.25–4.30) for the solution curves
into (4.61) one arrives at the formula

Σwh
(2)(β+0, β−0) =

(
9 − B2

4

)
4
√

3
×
∫ 0

−∞
ds⎧⎪⎨

⎪⎩
eβ+0e

√
3s[

e2
√

3s
(
e6β+0 − cosh (2

√
3β−0)

)
+ cosh2 (

√
3β−0) + e4

√
3s sinh2 (

√
3β−0)

]1/2

⎫⎪⎬
⎪⎭

(4.63)

from which it is easily seen that one can differentiate arbitrarily many times
with respect to β+0 and β−0 without disturbing the convergence of the
resulting integral. Thus Σwh

(2) is globally smooth on the β-plane and one
can proceed to the calculation of Σwh

(3).
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Assuming that
{

Σwh
(2), . . . ,Σ

wh
(k−1)

}
, for k ≥ 2, have all been shown to be

globally smooth one integrates equation (4.57) to find that
(4.64)

Σwh
(k)(β+(t), β−(t)) =

{
Σwh

(k)(β+0, β−0) −
∫ 0

t
ds e−2(k−1)(α(s)−α(0))Λ(k)(s)

}
e−2(k−1)(α(t)−α(0)) .

∀ t ≤ 0. Again there is only one choice possible for Σwh
(k)(β+0, β−0) that can

yield a finite value for Σwh
(k)(0, 0) in the limit as t ↘ −∞, namely

(4.65) Σwh
(k)(β+0, β−0) =

∫ 0

−∞
ds e−2(k−1)(α(s)−α(0))Λ(k)(s).

The integral converges for any smooth function Λ(k)(β+, β−) and for any
choice of (β+0, β−0) by virtue of the exponential decay of the integrating
factor along the solution curve that interpolates between (β+0, β−0) and the
origin. Making this choice for Σwh

(k)(β+0, β−0) one can simplify equation (4.64)
to

(4.66) Σwh
(k)(β+(t), β−(t)) =

∫ t

−∞
ds e−2(k−1)(α(s)−α(0))Λ(k)(s)

e−2(k−1)(α(t)−α(0))

and verify, again via L’Hôpital’s rule, that the function so constructed has
the desired limit (4.55) as t ↘ −∞.

By differentiating the explicit formulas (4.25–4.30) for {α(t) − α(0),
β+(t), β−(t)} with respect to the ‘initial’ data (β+0, β−0) it is now straight-
forward to verify that, for any smooth function Λ(k)(β+, β−), the defining
expression (4.65) for Σwh

(k)(β+0, β−0) is globally smooth on the (β+0, β−0)-
plane. A key element in this argument is the resulting exponential decay,
as t −→ −∞, of the derivatives of (β+(t), β−(t)) with respect to (β+0, β−0)
to arbitrarily high order. This completes the proof by induction that the
quantum corrections {Swh

(k)(α, β+, β−)} to the logarithm of the ground state
wave function are globally defined smooth functions on the Mixmaster mini-
superspace for all k ≥ 1.

One can now begin to resolve the ‘paradox’ alluded to at the end of
Section 3 concerning how microlocal methods could possibly be used to
generate smooth quantum corrections to candidate ‘eigenfunctions’ when
there are no corresponding ‘eigenvalues’ available to adjust. In a conven-
tional Schrödinger eigenvalue problem [1] the values, {S(k)(0, . . . , 0)}, of the
functions under construction {S(k)(x1, . . . , xn)} are, at the minimum of the
potential energy (taken here to be the origin), arbitrary constants of inte-
gration that can be lumped into an overall normalization constant for the
ground state wave function. Thus these adjustable constants play no role in
guaranteeing the smoothness of the {S(k)}. On the other hand the freedom
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to adjust the coefficients {
(0)
E (k)} in an expansion for the ground state en-

ergy eigenvalue,
(0)
E�, precisely allows one to ensure the needed smoothness

while, at the same time, uniquely determining the {
(0)
E (k)} to all orders. Here

however the functions being computed by the analogous ‘transport’ analysis
are the {Σwh

(k)(β+, β−)}. But, because they multiply correspondingly differ-
ent powers of eα in the ansatz (4.44) for Swh

(k) , their values at the classical
equilibrium (i.e., at the origin in (β+, β−)-space) are not arbitrary (c.f.,
Eqs. (4.53)–(4.55)) but instead provide precisely the flexibility needed, in
the absence of eigenvalue coefficients, to ensure the smoothness of the func-
tions {Σwh

(k)(β+, β−)} and hence also that of the {Swh
(k)(α, β+, β−)}. In the

section below we shall encounter an analogous phenomenon occurring in the
construction of excited states.

5. Conserved Quantities and Excited States

To generate ‘excited state’ solutions to the Wheeler-DeWitt equation we
begin by making the ansatz

(5.1)
(∗)
Ψ� =

(∗)
φ�e

−S�/�

where S� = c3L2

G S� = c3L2

G

(
S(0) + XS(1) + X2

2! S(2) + · · ·
)

is the same formal
expansion derived in the preceding section for the ground state solution and

where the new factor
(∗)
φ� is assumed to admit an expansion of similar type,

(5.2)
(∗)
φ� =

(∗)
φ(0) + X

(∗)
φ(1) +

X2

2!

(∗)
φ(2) + · · · +

Xk

k!

(∗)
φ(k) + · · · ,

with X = L2
Planck
L2 = G�

c3L2 as before. Substituting this ansatz into the
Mixmaster Wheeler-DeWitt equation and demanding satisfaction, order-by-
order in X, one arrives at the sequence of equations

− ∂
(∗)
φ(0)

∂α

∂S(0)

∂α
+

∂
(∗)
φ(0)

∂β+

∂S(0)

∂β+
+

∂
(∗)
φ(0)

∂β−

∂S(0)

∂β−
= 0,(5.3)

− ∂
(∗)
φ(1)

∂α

∂S(0)

∂α
+

∂
(∗)
φ(1)

∂β+

∂S(0)

∂β+
+

∂
(∗)
φ(1)

∂β−

∂S(0)

∂β−

+

⎛
⎜⎝−∂

(∗)
φ(0)

∂α

∂S(1)

∂α
+

∂
(∗)
φ(0)

∂β+

∂S(1)

∂β+
+

∂
(∗)
φ(0)

∂β−

∂S(1)

∂β−

⎞
⎟⎠

+
1
2

⎛
⎜⎝−B

∂
(∗)
φ(0)

∂α
+

∂2
(∗)
φ(0)

∂α2 − ∂2
(∗)
φ(0)

∂β2
+

− ∂2
(∗)
φ(0)

∂β2−

⎞
⎟⎠ = 0,

(5.4)
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and, for k ≥ 2

− ∂
(∗)
φ(k)

∂α

∂S(0)

∂α
+

∂
(∗)
φ(k)

∂β+

S(0)

∂β+
+

∂
(∗)
φ(k)

∂β−

∂S(0)

∂β−

+ k

⎛
⎜⎝−∂

(∗)
φ(k−1)

∂α

∂S(1)

∂α
+

(∗)
φ(k−1)

∂β+

∂S(1)

∂β+
+

∂
(∗)
φ(k−1)

∂β−

∂S(1)

∂β−

⎞
⎟⎠

+
k

2

⎛
⎜⎝−B

∂
(∗)
φ(k−1)

∂α
+

∂2
(∗)
φ(k−1)

∂α2 − ∂2
(∗)
φ(k−1)

∂β2
+

− ∂2
(∗)
φ(k−1)

∂β2−

⎞
⎟⎠

+
k∑

�=2

k!

!(k − 
)!

⎛
⎜⎝−∂

(∗)
φ(k−�)

∂α

∂S(�)

∂α
+

∂
(∗)
φ(k−�)

∂β+

∂S(�)

∂β+
+

∂
(∗)
φ(k−�)

∂β−

∂S(�)

∂β−

⎞
⎟⎠ = 0.

(5.5)

The first of these is easily seen to be the requirement that
(∗)
φ(0) be constant

along the flow in mini-superspace generated by S(0), the chosen solution to
the Euclidean-signature Hamilton-Jacobi equation (4.6). For the case of most
interest here, S(0) −→ Swh

(0) , Bae discovered two such conserved quantities
through direct inspection of his solution (4.25–4.30) of the corresponding
flow equations, namely

(5.6) C(0) :=
1
6
e4α−2β+

(
e6β+ − cosh (2

√
3β−)

)
and

(5.7) S(0) :=
1

2
√

3
e4α−2β+ sinh (2

√
3β−)

[47]. By reexpressing these in terms of the functions {ω1, ω2, ω3} defined
previously, one arrives at the alternative forms

C(0) =
1
12

(2ω2
3 − ω2

1 − ω2
2)(5.8)

S(0) =
1

4
√

3
(ω2

2 − ω2
1)(5.9)

and can recognize them in terms of the well-known, conserved kinetic energy
and squared angular momentum of the asymmetric top [41, 43].

Of course any differentiable function of C(0) and S(0) would be equally
conserved but the Taylor expansions of these in particular,

C(0) � e4α
(
β+ + β2

+ − β2
− + O(β3)

)
,(5.10)

S(0) � e4α
(
β− − 2β+β− + O(β3)

)
,(5.11)
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reveal their preferred features of behaving linearly in β+ and β− (respec-
tively) near the origin in β-space. It therefore seems natural to seek to
construct a ‘basis’ of excited states by taking

(∗)
φ(0) −→

(m)
φ (0) := Cm1

(0) Sm2
(0)

� e4(m1+m2)α(βm1
+ βm2− + · · · )

(5.12)

as seeds for the computation of higher order quantum corrections. Here
m = (m1, m2) is a pair of non-negative integers that can be plausibly
interpreted as graviton excitation numbers for the ultralong wavelength
gravitational wave modes embodied in the β+ and β− degrees of freedom.

To see this more concretely note that, to leading order in X and near
the origin in β-space, one then gets

(5.13)
(m)
Ψ � � e4(m1+m2)αβm1

+ βm2− e− e2α

X ( 1
2+2(β2

++β2
−)+··· )

which, for any fixed α, has the form of the top order term in the product of
Hermite polynomials multiplied by a gaussian that one would expect to see
for an actual, harmonic oscillator wave function.

One wishes, however, to construct wave functions that share the in-
variance of the Wheeler-DeWitt operator under rotations by ±2π

3 in the
β-plane since these correspond to residual gauge transformations. The func-
tions {S(k)} constructed in the preceding section have this property auto-
matically by virtue of the rotational invariance of the flow generated by the
chosen S(0) = Swh

(0) and the corresponding invariance of the technique em-
ployed for generating initial conditions for the {S(k), k = 1, 2, · · · }. On the

other hand the functions
(m)
φ (0) := Cm1

(0) Sm2
(0) are not, in general, invariant but

can be modified to become so by the straightforward technique of averaging
over the group of rotations in question: {I,±2π

3 }. Some elegant graphical de-
pictions of the lowest few such invariant states (to leading order in X ) have
been given by Bae in [47]. The linearity of equations (5.3, 5.4, 5.5) in the

{
(m)
φ (k)} and the rotational invariance of the operators therein acting upon

these functions will allow one to construct rotationally invariant quantum
corrections to all orders, either by starting with an invariant ‘seed’ of the
type described above or, alternatively, carrying out the group averaging at
the end of the sequence of calculations. We shall follow the latter approach
here.

We begin by setting

(5.14)
(m)
φ (0) −→ Cm1

(0) Sm2
(0) := e4|m|α(m)

χ (0)(β+, β−)

where |m| := m1 + m2 and proceed by making the ansatz

(5.15)
(m)
φ (k) = e(4|m|−2k)α(m)

χ (k)(β+, β−)
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∀ k ≥ 1. Recalling the definitions of the functions {Σwh
(k)(β+, β−)} given by

(4.44–4.46) we now find that equations (5.4–5.5) can be reexpressed as flow

equations in the β-plane for the unknowns {(m)
χ (k)(β+, β−); k = 1, 2 · · · }:

∂
(m)
χ (1)

∂β+

∂Σwh
(0)

∂β+
+

∂
(m)
χ (1)

∂β−

∂Σwh
(0)

∂β−
− 2

(m)
χ (1) (4|m| − 2) Σwh

(0)

+ 3

⎡
⎣(16|m|2 + 24|m|)(m)

χ (0) − ∂2(m)
χ (0)

∂β2
+

− ∂2(m)
χ (0)

∂β2−

⎤
⎦ = 0,

(5.16)

and, for k ≥ 2,

∂
(m)
χ (k)

∂β+

∂Σwh
(0)

∂β+
+

∂
(m)
χ (k)

∂β−

∂Σwh
(0)

∂β−
− 2

(m)
χ (k)(4|m| − 2k)Σwh

(0)

+ 3k

⎧⎨
⎩
[
(4|m| − 2(k − 1))2 + 6 (4|m| − 2(k − 1))

] (m)
χ (k−1) − ∂2(m)

χ (k−1)

∂β2
+

−∂2(m)
χ (k−1)

∂β2−

⎫⎬
⎭

+ 36
k∑

�=2

k!

!(k − 
)!

⎧⎨
⎩2(
 − 1) (4|m| − 2(k − 
))

(m)
χ (k−�)Σ

wh
(�)

+
∂

(m)
χ (k−�)

∂β+

∂Σwh
(�)

∂β+
+

∂
(m)
χ (k−�)

∂β−

∂Σwh
(�)

∂β−

⎫⎬
⎭ = 0.

(5.17)

As for the ground state problem our aim is to solve these transport
equations sequentially and thereby to establish, for any given m = (m1, m2),

the existence of smooth, globally defined functions {(m)
χ (k)(β+, β−); k =

1, 2, . . . } on the β-plane. When k > 2|m| the relevant transport operator
is of the same type dealt with in the previous section and the corresponding
equation can be solved, for an arbitrary smooth ‘source’ inhomogeneity, by
the same methods exploited therein. When k ≤ 2|m| however the associated
integrating factor,

(5.18)
μ(k)(t)
μ(k)(0)

=
e(4|m|−2k)α(t)

e(4|m|−2k)α(0)

is either constant or blows up at t ↘ −∞ and a different approach is needed.
Fortunately there is a well-developed microlocal technique for handling such
problems that can be sketched as follows [1, 31, 32, 33]:
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(i) Assuming, inductively, that smooth solutions up to
order k − 1, for k ≥ 1, have already been constructed,
derive a formal power series for the subsequent unknown
(m)
χ (k)(β+, β−),

(ii) apply a standard method to generate a globally

smooth function,
(m)
ν (k)(β+, β−), that has the same Taylor

expansion about the origin in the β-plane as that deter-
mined in step (i) [48],
(iii) solve an associated transport equation for the ‘cor-
rection’,

(m)
η (k) =

(m)
χ (k) − (m)

ν (k),

and show that
(m)
η (k) is smooth, globally defined and van-

ishes to infinite order at the origin (i.e., has identically
vanishing Taylor expansion).

Setting
(m)
χ (k) =

(m)
η (k) +

(m)
ν (k) provides a (not necessarily unique, as we shall

see) solution to the relevant transport equation and allows one to proceed

to the construction of
(m)
χ (k+1).

In the last step one exploits the fact that the integrating factor, (5.18),

for the
(m)
η (k) transport equation, though it remains constant or blows up as

t ↘ −∞, is now being integrated against a ‘source’ that vanishes to infinite
order [1, 31, 32, 33]. Since steps (ii) and (iii) are routine (c.f., [48] and
[1, 31, 32, 33] respectively) we shall focus here on step (i) which entails a
certain subtlety for the present problem.

The technique for carrying out step (i) developed in [31, 32, 33] involves
first splitting the transport operator

(5.19)
(m)
L (k) :=

∂Σwh
(0)

∂β+

∂

∂β+
+

∂Σwh
(0)

∂β−
∂

∂β−
− 2(4|m| − 2k)Σwh

(0)

into linear and higher order terms

(5.20)
(m)
L (k) =

(m)
L (k)0 +

(m)
L (k)R

with

(5.21)
(m)
L (k)0 := 24

(
β+

∂

∂β+
+ β−

∂

∂β−

)
− 6(4|m| − 2k).

One would like to apply the arguments given in the foregoing references

to generate the formal Taylor expansion for
(m)
χ (k) needed for step (i) and,

when 1 ≤ k ≤ 2|m| and k is odd, this is straightforward to carry out.

The basic reason for this is that, when k is odd,
(m)
L (k)0 is a bijection on

the space, P�
hom, of polynomials in β+ and β− which are homogeneous of
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degree 
 ∈ N and the monomials β�1
+ β�2− , with |
| = 
1 + 
2, constitute a

basis of eigenvectors of the restriction of
(m)
L (k)0 to P�

hom with eigenvalues

24
(|
| − |m| + k

2

) �= 0. Though the choice of
(m)
ν (k) for step (ii) is not unique

it is nevertheless straightforward to show, in these odd k cases, that the

resulting solution for
(m)
χ (k) is unique. The reason is that the difference of

any two such solutions would necessarily be a ‘flat’ function (i.e., one with
identically vanishing Taylor expansion) that satisfies the homogeneous form

of the original transport equation for
(m)
χ (k). But using the integrating factor

(5.18) for this equation it is easy to show that any flat, globally smooth
solution must in fact vanish identically.

When k is even, on the other hand,
(m)
L (k)0 has a nontrivial kernel,

P |m|− k
2

hom , spanned by the monomials β�1
+ β�2− with |
| = 
1 + 
2 = |m| − k

2 .
(m)
L (k)0 is still a bijection on P�

hom for all 
 �= |m| − k
2 but since P |m|− k

2
hom does

not lie in this operator’s range we must arrange to cancel any elements of

P |m|− k
2

hom that occur in the ‘source’ inhomogeneity for this operator. For k = 2
the flexibility to accomplish this cancellation arises through the freedom to

replace the ‘seed’
(m)
χ (0) by an arbitrary linear combination

(5.22)
(m)
χ (0) →

∑
m1,m2

cm1,m2

(m)
χ (0)

and adjust the choice of the |m| + 1 independent coefficients {cm1,m2} until
the |m| coefficients of the monomials β�1

+ β�2− , with |
| := 
1 + 
2 = |m| − 1,
all vanish.

For higher, even values of k it is straightforward to verify that the
functions

(5.23)
(m)
χ

homog

(k) :=
∑
�1,�2

c
(k)
�1,�2

(�)
χ(0),

with (
) := (
1, 
2) and |
| := 
1+
2 = |m|−k
2 , satisfy the exact, homogeneous

transport equation

(5.24)
(m)
L (k)

(m)
χ

homog

(k) = 0

for arbitrarily chosen values of the |
| + 1 coefficients {c
(k)
�1,�2

}. These coeffi-
cients are thus available to ensure the integrability of the transport equation

for
(m)
χ (k+2). Some additional work would be needed to precisely enumerate

the independent solutions obtainable by this analysis — in particular those
remaining after the averaging over the ±2π/3 rotations in the β-plane has
been carried out.
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6. Euclidean-Signature Semi-Classical Methods
for Bosonic Field Theories

One would like to think that the foregoing results could serve as a
prototype for the application of microlocal methods to the quantization of
Einstein’s equations more generally. But general relativity is a field theory
and, so far as the author knows, such microlocal methods have heretofore
been confined to quantum mechanical applications. There is a good reason
for this.

When ansätze of the form (4.1) and (5.1) are applied to a conventional
Schrödinger eigenvalue problem they lead, at lowest order, to the necessity
to solve the Hamilton-Jacobi equation for an inverted-potential-energy me-
chanics problem. This is the analogue of the ‘Euclidean-signature’ Hamilton-
Jacobi equation (4.6) that arose for the Mixmaster system considered above.
For the Schrödinger problem microlocal analysts solve this HJ equation, lo-
cally near an equilibrium, by assembling several dynamical systems results
such as the stable manifold theorem for hyperbolic fixed points and the exis-
tence, uniqueness and smoothness properties for the associated Hamiltonian
flow [1, 31, 32, 33].

But even when such theorems can be generalized to apply to suitable
classes of infinite dimensional dynamical systems they are nevertheless
totally inadequate for solving the Hamilton-Jacobi equation that arises
when one is attempting to quantize a relativistic field theory. The reason
for this is that the Hamilton-Jacobi equation for such problems is that for
the Euclidean signature analogue of the original, Lorentzian-signature field
equations that one is intending to quantize. But such Euclidean-signature
field equations are not a dynamical system at all. They correspond instead
to an elliptic problem that admits no well-posed, Cauchy evolutionary
formulation.

For this reason the author, together with A. Marini and R. Maitra, has
recently been developing an alternative program for solving these funda-
mental Hamilton-Jacobi problems by exploiting the direct method of the
calculus of variations [1, 2, 3]. This strategy has the decisive advantage of
being naturally applicable to the elliptic problems that arise for relativistic
field theories with this approach and, even for finite-dimensional quantum
mechanical problems, succeeds to unify and globalize the essential microlo-
cal results, for a large and interesting class of potential energy functions, in
an aesthetically appealing way.

To see these methods in action, first in the technically simpler setting
of ordinary quantum mechanics, consider Schrödinger operators of the
(‘nonlinear oscillatory’) type

(6.1) Ĥ =
−�

2

2m
Δ +

1
2
m

n∑
i=1

ω2
i (x

i)2 + A(x)
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where x = (x1, . . . , xn), Δ =
∑n

i=1
∂2

∂xi2 is the ordinary Laplacian on R
n and

A : R
n −→ R is a smooth function whose Taylor expansion about the origin

begins at third order so that

(6.2) A(0, . . . , 0) =
∂A(0, . . . , 0)

∂xi
=

∂2A(0, . . . , 0)
∂xi∂xj

= 0.

If the A term is dropped then Ĥ reduces to the Schrödinger operator for
an ordinary harmonic oscillator in n dimensions having mass m > 0 and
oscillation frequencies {ωi}, each assumed > 0, along the corresponding
Cartesian coordinate axes. When A is reinstated the oscillator becomes
nonlinear or ‘anharmonic’. Such oscillators are rudimentary models for the
field theoretic systems that we shall turn to later.

To simplify the analysis assume the total potential energy function
V : R

n −→ R, given by

(6.3) V (x) =
1
2
m

n∑
i=1

ω2
i (x

i)2 + A(x),

to be convex and to have its (unique, isolated) global minimum at the origin
so that

(6.4) V (x1, . . . , xn) > V (0, . . . , 0) = 0 ∀(x1, . . . , xn) ∈ R
n\(0, . . . , 0).

In the event that A has indefinite sign we shall also impose a certain
coercivity condition to bound its behavior from below [49]. Finally we
shall require that the frequencies {ωi}, characterizing the (non-dengenerate)
quadratic term in the potential energy satisfy a convenient (but not strictly
essential [50]) ‘non-resonance’ condition that is designed to simplify the
analysis of quantum excited states.

We begin by attempting to construct a ground state wave function of
the form

(6.5)
(0)
ψ�(x) = N�e

−S�(x)/�

wherein S� is real-valued and assumed to admit a formal series expansion
in � that we write as

(6.6) S�(x) � S(0)(x) + �S(1)(x) +
�

2

2!
S(2)(x) + · · · +

�
n

n!
S(n)(x) + · · ·

and where N� is a normalization constant. We expand the corresponding

ground state energy eigenvalue
(0)
E� in the analogous way, writing

(6.7)
(0)
E� := �

(0)
E � � �

(
(0)
E (0) + �

(0)
E (1) +

�
2

2!

(0)
E (2) + · · · +

�
n

n!

(0)
E (n) + · · ·

)

and substitute these ansätze into the time-independent Schrödinger equa-
tion,

(6.8) Ĥ
(0)
ψ� =

(0)
E�

(0)
ψ�,
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requiring the latter to hold, order by order, in powers of Planck’s constant.
At leading order this procedure immediately generates the ‘inverted

potential-vanishing-energy’ Hamilton-Jacobi equation,

(6.9)
1

2m
∇S(0) · ∇S(0) − V = 0,

that is intended to determine the function S(0). Under the convexity and
coercivity hypotheses alluded to above we proved the existence and smooth-
ness of a globally defined ‘fundamental solution’ to Eq. (6.9) using meth-
ods drawn from the calculus of variations [1]. The higher order ‘quantum
corrections’ to S(0) (i.e., the functions S(k) for k = 1, 2, . . .) can then be
computed through the systematic integration of a sequence of (first order,
linear) ‘transport equations’, derived from Schrödinger’s equation, along the
integral curves of the gradient (semi-) flow generated by S(0) [1]. The nat-
ural demand for global smoothness of these quantum corrections forces the

(heretofore, undetermined) energy coefficients {
(0)
E (0),

(0)
E (1),

(0)
E (2), . . .} all to

take on specific, computable values.
Excited states were then studied by substituting the ansatz

(6.10)
(∗)
ψ�(x) =

(∗)
φ�(x)e−S�(x)/�

into the Schrödinger equation

(6.11) Ĥ
(∗)
ψ� =

(∗)
E�

(∗)
ψ�

and formally expanding the unknown wave functions,
(∗)
φ�, and energy eigen-

values
(∗)
E�, in powers of � as before,

(∗)
φ� �

(∗)
φ(0) + �

(∗)
φ(1) +

�
2

2!

(∗)
φ(2) + . . .(6.12)

(∗)
E� := �

(∗)
E � � �

(
(∗)
E (0) + �

(∗)
E (1) +

�
2

2!

(∗)
E (2) + . . .

)
,(6.13)

while retaining the ‘universal’ factor, e−S�(x)/�, determined by the ground
state calculations.

From the leading order analysis one finds that these excited state
expansions naturally allow themselves to be labelled by an n-tuple m =
(m1, m2, . . . , mn) of non-negative integer ‘quantum numbers’, mi, so that
the foregoing notation can be refined to

(6.14)
(m)
ψ �(x) =

(m)
φ �(x)e−S�(x)/�

and

(6.15)
(m)
E � = �

(m)
E �
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with
(m)
φ � and

(m)
E � expanded as before. Since all the coefficients {

(m)
φ (k),

(m)
E (k);

for k = 0, 1, 2, . . .} are, however, computable through the solution of linear,
first order transport equations, integrated along the semi-flow generated
by S(0), using methods that are already well-known from the microlocal
literature [1, 31, 32, 33] we shall focus here on the fundamental way in
which our approach differs from the microlocal one — namely in the solution
of the basic Hamilton-Jacobi equation (6.9) by means of the direct method
of the calculus of variations.

A natural approach for generating solutions to the inverted potential
(ip) dynamics problem formulated above is to establish the existence of
minimizers for the ip action functional

Iip[γ] =
∫ 0

−∞
Lip

(
x1(t), . . . , xn(t), ẋ1(t), . . . , ẋn(t)

)
dt

:=
∫ 0

−∞

{
1
2
m

n∑
i=1

[(
ẋi(t)

)2 + ω2
i

(
xi(t)

)2]+ A
(
x1(t), . . . , xn(t)

)}
dt

(6.16)

within the affine space of curves

Dx :=
{
γ ∈ H1(I, Rn)|I = (−∞, 0],

γ(t) =
(
x1(t), . . . xn(t)

)
, lim
t↗0

γ(t) = x

= (x1, . . . , xn) ∈ R
n
}

.

(6.17)

Here H1(I, Rn) is the Sobolov space of (distributional) curves on R
n

equipped with the norm

(6.18) ||γ(·)||H1(I,Rn) :=

{∫ 0

−∞

n∑
i=1

[(
ẋi(t)

)2 + ω2
i

(
xi(t)

)2]
dt

}1/2

and x = (x1, . . . , xn) is an arbitrary, but fixed, right endpoint lying in R
n.

From the Sobolov embedding theorem for Hs-maps [51, 52] one has that
H1(I, Rn) is continuously embedded in

C0
b (I, Rn) :=

{
γ ∈ C0(I, Rn)

∣∣∣∣(6.19)

||γ(·)||L∞(I,Rn) := sup
t∈I

√√√√ n∑
i=1

(xi(t))2 < ∞
⎫⎬
⎭ ,(6.20)

where C0(I, Rn) is the space of continuous curves in I, and furthermore
that these curves automatically (as a consequence of having finite H1-norm)
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‘vanish at infinity’ in the sense that

(6.21) lim
t↘−∞

|γ(t)| = lim
t↘−∞

√√√√ n∑
i=1

(xi(t))2 = 0.

Thus the curves in Dx have their (asymptotically attained) left endpoints at
the origin in R

n which, in our formulation, coincides with the unique, global
maximum of the inverted potential energy function

(6.22) Vip(x1, . . . , xn) := −V (x1, . . . , xn).

Strictly speaking, though the ‘curves’ in H1(I, Rn) are distributional, the
Sobolev embedding theorem referenced above allows one to represent each
such distribution by a continuous curve which (by a slight abuse of notation)
we also write as γ : I −→ R

n. For this reason one can meaningfully speak
of the values of γ (as points in R

n) for any t ∈ I = (−∞, 0] and thus, in
particular, impose the right endpoint boundary condition,

(6.23) lim
t↗0

γ(t) = x = (x1, . . . , xn) ∈ R
n

that was included in the definition of Dx.
When the convexity and coercivity hypotheses for V alluded to above are

taken into account one can show that the functional Iip[γ] is globally defined
on Dx for any x ∈ R

n. For each such x one can proceed to prove that Iip[γ]
has a unique minimizer γx ∈ Dx, that this minimizer is actually smooth
(i.e., that γx ∈ C∞(I, Rn)), satisfies the ip Euler-Lagrange equations,

(6.24) m
d2xi(t)

dt2
= −∂Vip (x(t))

∂xi
=

∂V (x(t))
∂xi

, i = 1, . . . , n

for all t ∈ I and has vanishing ip energy,

Eip (x(t), ẋ(t)) :=
m

2

n∑
i=1

(
ẋi(t)

)2 + Vip (x(t))

=
m

2

n∑
i=1

(ẋ(t))2 − V (x(t))

= 0

(6.25)

on this interval [53].
Setting, for each such minimizer,

(6.26) S(0)(x) = Iip[γx]

one can further prove, using the Banach space version of the implicit function
theorem, that the function S(0) : R

n −→ R, so defined, is globally smooth,
satisfies the ‘inverted-potential-vanishing-energy’ Hamilton-Jacobi equation,

(6.27)
1

2m
∇S(0) · ∇S(0) − V = 0
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on R
n and regenerates the minimizers as the integral solution curves of its

gradient semi-flow [54] defined via

(6.28)
dγi(t)

dt
=

1
m

∂S(0) (γ(t))
∂xi

, i = 1, . . . , n.

These are the essential features required of S(0) in order to be able to com-
pute, via linear transport analysis, its quantum corrections and correspond-
ing excited states to all orders in Planck’s constant [1].

For a first glimpse at how these techniques can be applied to relativistic
quantum field theories consider the formal Schrödinger operator for the
massive, quartically self-interacting scalar field on (3 + 1 dimensional)
Minkowski spacetime given by

(6.29) Ĥ =
∫

R3

{
−�

2

2
δ2

δφ2(x)
+

1
2
∇φ · ∇φ(x) +

m2

2
φ2(x) + λφ4(x)

}
d3x

where m and λ are constants > 0. Though the functional Laplacian term
requires regularization to be well-defined, the influence of this regularization
will only be felt at the level of quantum corrections and not for the (so-
called ‘tree level’) determination of a fundamental solution, S(0) [φ(·)], to the
‘vanishing-energy-Euclidean-signature’ functional Hamilton-Jacobi equation
given by
(6.30)∫

R3

{
1
2

δS(0)

δφ(x)
δS(0)

δφ(x)
− 1

2
∇φ · ∇φ(x) − m2

2
φ2(x) − λφ4(x)

}
d3x = 0.

As in the quantum mechanical examples discussed above this equation arises,
at leading order, from substituting the (Euclidean-signature) ground state
wave functional ansatz

(6.31)
(0)
ψ� [φ(·)] = N�e

−S�[φ(·)]/�

into the time-independent Schrödinger equation,

(6.32) Ĥ
(0)
ψ� =

(0)
E�

(0)
ψ�,

and demanding satisfaction, order-by-order in powers of �, relative to the
formal expansions

(6.33) S� [φ(·)] � S(0) [φ(·)] + �S(1) [φ(·)] +
�

2

2!
S(2) [φ(·)] + . . .

and

(6.34)
(0)
E� � �

{
(0)
E (0) + �

(0)
E (1) +

�
2

2!

(0)
E (2) + . . .

}
.

In the foregoing formulas φ(·) symbolizes a real-valued distribution on R
3

belonging to a certain Sobolov ‘trace’ space that we shall characterize more
precisely below. In accordance with our strategy for solving the functional
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Hamilton-Jacobi equation (6.30) each such φ(·) will be taken to represent
boundary data, induced on the t = 0 hypersurface of (Euclidean)

(6.35) R
4 =
{
(t,x)|t ∈ R,x ∈ R

3} ,

for a real (distributional) scalar field Φ defined on the half-space

(6.36) R
4− := (−∞, 0] × R

3.

Here Φ plays the role of the curve γ : (−∞, 0] −→ R
n in the quantum

mechanics problem and φ(·) the role of its right endpoint (x1, . . . , xn).
By generalizing the technique sketched above for the quantum mechanics

problem the author, together with Marini and Maitra, has proven the
existence of a ‘fundamental solution’, S(0) [φ(·)], to Eq. (6.30) by first
establishing the existence of unique minimizers, Φφ, for the Euclidean-
signature action functional

(6.37) Ies[Φ] :=
∫

R3

∫ 0

−∞

{
1
2
Φ̇2 +

1
2
∇Φ · ∇Φ +

1
2
m2Φ2 + λΦ4

}
dt d3x

for ‘arbitrary’ boundary data φ(·), prescribed at t = 0 and then setting

(6.38) S(0) [φ(·)] = Ies[Φφ].

This was accomplished by defining the action functional Ies[Φ] on the
Sobolov space H1(R4−, R), with boundary data naturally induced on the cor-
responding trace space, and proving that this functional is coercive, weakly
(sequentially) lower semi-continuous and convex. Through an application
of the (Banach space) implicit function theorem one then proved that the
functional S(0) [φ(·)] so-defined is Fréchet smooth throughout its (Sobolev
trace space) domain of definition and that it indeed satisfies the (Euclidean-
signature-vanishing-energy) functional Hamilton-Jacobi equation,
(6.39)
1
2

∫
R3

∣∣∣∣δS(0) [φ(·)]
δφ(x)

∣∣∣∣
2

d3x =
∫

R3

{
1
2
∇φ · ∇φ(x) +

1
2
m2φ2(x) + λφ4(x)

}
d3x,

and thus provides the fundamental solution that one needs for the compu-
tation of all higher order quantum corrections [2]. These analytical methods
were shown to work equally well in lower spatial dimensions for certain
higher-order nonlinearities, allowing, for example, Φ6 in (Euclidean) R

3−
and Φp for any even p > 2 in R

2−, and also for more general convex poly-
nomial interaction potentials P(Φ), allowing terms of intermediate degrees,
replacing the 1

2m2Φ2+λΦ4 of the example above. These correspond precisely
to the usual ‘renormalizable’ cases when treated by more conventional quan-
tization methods.

To proceed with the calculation of higher-order quantum corrections
one will need to regularize the formal functional Laplacians that arise in the
associated linear transport equations and allow the various ‘constants’ that
appear in the Hamiltonian (e.g., m and λ in the above example) to ‘run’ with
the cutoff introduced thereby, as part of the procedure of renormalization.
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The details of this renormalization program, well-known within the standard
perturbation formalism, are currently under development within the frame-
work of the present setup. A main motivation for pursuing it though is the
expectation that the Euclidean-signature semi-classical approach will ulti-
mately lead to much more accurate approximations for wave functionals and
their associated, non-gaussian integration measures than those generated by
conventional (Rayleigh/Schrödinger) perturbation theory.

In continuing research the authors of Refs. [1] and [2] are currently ap-
plying these (Euclidean-signature, semi-classical) ideas to the quantization
of Yang-Mills fields [3]. While the methods in question apply equally well to
both 3 and 4 dimensional gauge theories, we shall focus here on the phys-
ically most interesting case of Yang-Mills fields in 4 spacetime dimensions.
The formal Schrödinger operator for this problem is expressible as

(6.40) ĤY M :=
∫

R3

∑
I

⎧⎨
⎩−�

2

2

3∑
i=1

δ

δAI
i (x)

δ

δAI
i (x)

+
1
4

3∑
j,k=1

F I
jkF

I
jk

⎫⎬
⎭ d3x

where the index I labels a basis for the Lie algebra of the gauge structure
group, AI

k is the spatial connection field with curvature

(6.41) F I
jk = ∂jA

I
k − ∂kA

I
j + g[Aj , Ak]I

and g is the gauge coupling constant.
As in the case of scalar field theory the functional Laplacian requires

regularization to be well-defined even when acting on smooth functionals
but, since the influence of this regularization will not be felt until higher
order quantum ‘loop’ corrections are computed, we can temporarily ignore
this refinement here and attempt first to construct a (gauge invariant) fun-
damental solution, S(0)[A(·)], to the Euclidean-signature-vanishing-energy
Hamilton-Jacobi equation

(6.42)
∫

R3

∑
I

⎧⎨
⎩1

2

3∑
i=1

δS(0)

δAI
i (x)

δS(0)

δAI
i (x)

− 1
4

3∑
j,k=1

F I
jkF

I
jk

⎫⎬
⎭ d3x = 0

by seeking minimizers of the corresponding Euclidean-signature action func-
tional in the form of connections defined in R

4− = (−∞, 0]×R
3 with bound-

ary data prescribed at t = 0.
Using the techniques developed in [55, 56, 57, 58, 59] and [60] one can

indeed establish the existence of such minimizers for ‘arbitrary’ boundary
data lying in an appropriate trace Sobolev space but, since a full verification
of the properties expected for the functional S(0)[A(·)] has not yet been
completed we shall postpone giving a more precise characterization of our
(anticipated) analytical results until a later time.

The self-interactions of ‘gluons’ (the quanta of the Yang-Mills field)
are closely connected to the non-abelian character of the associated gauge
group. Thus a conventional perturbative approach to quantization, which
disregards these interactions at lowest order, necessarily ‘approximates’ the
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gauge group as well, replacing it with the abelian structure group of the
associated free field theory (i.e., several copies of the Maxwell field labelled
by the index I ), and then attempts to reinstate both the interactions and
the non-commutative character of the actual gauge group gradually, through
the development of series expansions in the Yang-Mills coupling constant.
By contrast the Euclidean-signature-semi-classical program that we are
advocating for the Yang-Mills problem has the advantage of maintaining
full, non-abelian gauge invariance at every order of the calculation and of
generating globally defined (approximate) wave functionals on the naturally
associated Yang-Mills configuration manifold.

Though much remains to be done to complete the program sketched
above the initial results are sufficiently promising that one is highly moti-
vated to look ahead and ask — could the same ideas be applied to Einstein
gravity?

7. Euclidean-Signature Asymptotic Methods and the
Wheeler-DeWitt Equation

Globally hyperbolic spacetimes, {(4)V, (4)g}, are definable over manifolds
with the product structure, (4)V ≈ M × R. We shall focus here on the
‘cosmological’ case for which the spatial factor M is a compact, connected,
orientable 3-manifold without boundary. The Lorentzian metric, (4)g, of such
a spacetime is expressible, relative to a time function x0 = t, in the 3+1-
dimensional form

(4)g = (4)gμν dxμ ⊗ dxν

= −N2dt ⊗ dt + γij(dxi + Y idt) ⊗ (dxj + Y jdt)
(7.1)

wherein, for each fixed t, the Riemannian metric

(7.2) γ = γijdxi ⊗ dxj

is the first fundamental form induced by (4)g on the corresponding t =
constant, spacelike hypersurface. The unit, future pointing, timelike normal
field to the chosen slicing (defined by the level surfaces of t) is expressible
in terms of the (strictly positive) ‘lapse’ function N and ‘shift vector’ field
Y i ∂

∂xi as

(7.3) (4)n = (4)nα ∂

∂xα
=

1
N

∂

∂t
− Y i

N

∂

∂xi

or, in covariant form, as

(7.4) (4)n = (4)nαdxα = −N dt.

The canonical spacetime volume element of (4)g, μ(4)g :=
√

− det (4)g, takes
the 3+1-dimensional form

(7.5) μ(4)g = Nμγ

where μγ :=
√

det γ is the volume element of γ.
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In view of the compactness of M the Hilbert and ADM action func-
tionals, evaluated on domains of the product form, Ω = M × I, with
I = [t0, t1] ⊂ R, simplify somewhat to

IHilbert :=
c3

16πG

∫
Ω

√
− det (4)g (4)R((4)g) d4x

=
c3

16πG

∫
Ω

{
Nμγ

(
KijKij − (trγK)2

)
+ Nμγ

(3)R(γ)
}

d4x

+
c3

16πG

∫
M

(−2μγtrγK) d3x
∣∣∣t1
t0

:= IADM +
c3

16πG

∫
M

(−2μγtrγK) d3x
∣∣∣t1
t0

(7.6)

wherein (4)R((4)g) and (3)R(γ) are the scalar curvatures of (4)g and γ and
where

(7.7) Kij :=
1

2N

(−γij,t + Yi|j + Yj|i
)

and

(7.8) trγK := γijKij

designate the second fundamental form and mean curvature induced by
(4)g on the constant t slices. In these formulas spatial coordinate indices,
i, j, k, . . . , are raised and lowered with γ and the vertical bar, ‘|’, signifies
covariant differentiation with respect to this metric so that, for example,
Yi|j = ∇j(γ)γi�Y

�. When the variations of (4)g are appropriately restricted,
the boundary term distinguishing IHilbert from IADM makes no contribution
to the field equations and so can be discarded.

Writing

(7.9) IADM :=
∫

Ω
LADMd4x,

with Lagrangian density

(7.10) LADM :=
c3

16πG

{
Nμγ

(
KijKij − (trγK)2

)
+ Nμγ

(3)R(γ)
}

,

one defines the momentum conjugate to γ via the Legendre transformation

(7.11) pij :=
∂LADM

∂γij,t
=

c3

16πG
μγ

(−Kij + γijtrγK
)

so that p = pij ∂
∂xi ⊗ ∂

∂xj is a symmetric tensor density induced on each
t = constant slice.

In terms of the variables {γij , p
ij , N, Y i} the ADM action takes the

Hamiltonian form

(7.12) IADM =
∫

Ω

{
pijγij,t − NH⊥(γ, p) − Y iJi(γ, p)

}
d4x
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where

(7.13) H⊥(γ, p) :=
(

16πG

c3

) (
pijpij − 1

2(pm
m)2
)

μγ
−
(

c3

16πG

)
μγ

(3)R(γ)

and

(7.14) Ji(γ, p) := −2 p j
i |j .

Variation of IADM with respect to N and Y i leads to the Einstein (‘Hamil-
tonian’ and ‘momentum’) constraint equations

(7.15) H⊥(γ, p) = 0, Ji(γ, p) = 0,

whereas variation with respect to the canonical variables, {γij , p
ij}, gives rise

to the complementary Einstein evolution equations in Hamiltonian form,

(7.16) γij,t =
δHADM

δpij
, pij

,t = −δHADM

δγij

where HADM is the ‘super’ Hamiltonian defined by

(7.17) HADM :=
∫

M

(
NH⊥(γ, p) + Y iJi(γ, p)

)
d3x.

The first of equations (7.16) regenerates (7.7) when the latter is reexpressed
in terms of p via (7.11). Note that, as a linear form in the constraints,
the super Hamiltonian vanishes when evaluated on any solution to the field
equations. There are neither constraints nor evolution equations for the lapse
and shift fields which are only determined upon making, either explicitly or
implicitly, a choice of spacetime coordinate gauge. Bianchi identities function
to ensure that the constraints are preserved by the evolution equations and
thus need only be imposed ‘initially’ on an arbitrary Cauchy hypersurface.
Well-posedness theorems for the corresponding Cauchy problem exist for a
variety of spacetime gauge conditions [61, 62].

A formal ‘canonical’ quantization of this system begins with the substi-
tutions

(7.18) pij −→ �

i

δ

δγij
,

together with a choice of operator ordering, to define quantum analogues
Ĥ⊥(γ, �

i
δ
δγ ) and Ĵi(γ, �

i
δ
δγ ) of the Hamiltonian and momentum constraints.

These are then to be imposed, à la Dirac, as restrictions upon the allowed
quantum states, regarded as functionals, Ψ[γ], of the spatial metric, by
setting

(7.19) Ĥ⊥
(

γ,
�

i

δ

δγ

)
Ψ[γ] = 0,

and

(7.20) Ĵi

(
γ,

�

i

δ

δγ

)
Ψ[γ] = 0.
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The choice of ordering in the definition of the quantum constraints {Ĥ⊥, Ĵi}
is highly restricted by the demand that the commutators of these operators
should ‘close’ in a natural way without generating ‘anomalous’ new con-
straints upon the quantum states.

While a complete solution to this ordering problem does not currently
seem to be known it has long been realized that the operator, Ĵi(γ, �

i
δ
δγ ), can

be consistently defined so that the quantum constraint equation (7.20), has
the natural geometric interpretation of demanding that the wave functional,
Ψ[γ], be invariant with respect to the action (by pullback of metrics on M ) of
Diff 0(M), the connected component of the identity of the group, Diff +(M),
of orientation preserving diffeomorphisms of M, on the space, M(M),
of Riemannian metrics on M. In other words the quantized momentum
constraint (7.20) implies, precisely, that

(7.21) Ψ[ϕ∗γ] = Ψ[γ]

∀ ϕ ∈ Diff 0(M) and ∀ γ ∈ M(M). In terminology due to Wheeler
wave functionals can thus be regarded as passing naturally to the quotient
‘superspace’ of Riemannian 3-geometries [28, 29, 63] on M,

(7.22) S(M) :=
M(M)

Diff 0(M)
.

Insofar as a consistent factor ordering for the Hamiltonian constraint
operator, Ĥ⊥(γ, �

i
δ
δγ ), also exists, one will be motivated to propose the

(Euclidean-signature, semi-classical) ansatz

(7.23)
(0)
Ψ�[γ] = e−S�[γ]/�

for a ‘ground state’ wave functional
(0)
Ψ�[γ]. In parallel with our earlier

examples, the functional S�[γ] is assumed to admit a formal expansion in
powers of � so that one has

(7.24) S�[γ] = S(0)[γ] + �S1[γ] +
�

2

2!
S(2)[γ] + · · · +

�
k

k!
S(k)[γ] + · · · .

Imposing the momentum constraint (7.20) to all orders in � leads to the
conclusion that each of the functionals, {S(k)[γ]; k = 0, 1, 2, . . .}, should be
invariant with respect to the aforementioned action of Diff 0(M) on M(M),
ie, that

(7.25) S(k)[ϕ
∗γ] = S(k)[γ], k = 0, 1, 2, . . .

∀ ϕ ∈ Diff 0(M) and ∀ γ ∈ M(M).
Independently of the precise form finally chosen for Ĥ⊥(γ, �

i
δ
δγ ), the

leading order approximation to the Wheeler-DeWitt equation,

(7.26) Ĥ⊥
(

γ,
�

i

δ

δγ

)
e−S(0)[γ]/�−S(1)[γ]−··· = 0,
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for the ground state wave functional will, inevitably, reduce to the Euclidean-
signature Hamilton-Jacobi equation

(7.27)
(

16πG

c3

)2 (γikγj� − 1
2γijγk�

)
μγ

δS(0)

δγij

δS(0)

δγk�
+ μγ

(3)R(γ) = 0.

This equation coincides with that obtained from making the canonical
substitution,

(7.28) pij −→ δS(0)[γ]
δγij

,

in the Euclidean-signature version of the Hamiltonian constraint,
(7.29)

H⊥Eucl := −
(

16πG

c3

) (
pijpij − 1

2(pm
m)2
)

μγ
−
(

c3

16πG

)
μγ

(3)R(γ) = 0,

that, in turn, results from repeating the derivation sketched above for IADM
but now for the Riemannian metric form
(7.30)
(4)g
∣∣∣
Eucl

= (4)gμν

∣∣∣
Eucl

dxμ⊗dxν = N
∣∣∣2
Eucl

dt⊗dt+γij(dxi+Y idt)⊗(dxj+Y jdt)

in place of (7.1). The resulting functional IADM Eucl differs from IADM only
in the replacements H⊥(γ, p) −→ H⊥Eucl(γ, p) and N −→ N

∣∣∣
Eucl

.
The essential question that now comes to light is thus the following:

Is there a well-defined mathematical method for establish-
ing the existence of a Diff 0(M)-invariant, fundamental
solution to the Euclidean-signature functional differential
Hamilton-Jacobi equation (7.27)?

In view of the field theoretic examples discussed in Section 6 one’s first
thought might be to seek to minimize an appropriate Euclidean-signature
action functional subject to suitable boundary and asymptotic conditions.
But, as is well-known from the Euclidean-signature path integral program
[64], the natural functional to use for this purpose is unbounded from
below within any given conformal class — one can make the functional
arbitrarily large and negative by deforming any metric (4)g

∣∣∣
Eucl

with a

suitable conformal factor [39, 64].
But the real point of the constructions of Section 6 was not to mini-

mize action functionals but rather to generate certain ‘fundamental sets’ of
solutions to the associated Euler-Lagrange equations upon which the rel-
evant action functionals could then be evaluated. But the Einstein equa-
tions, in vacuum or even allowing for the coupling to conformally invari-
ant matter sources, encompass, as a special case, the vanishing of the 4-
dimensional scalar curvature, (4)R((4)g

∣∣∣
Eucl

). Thus there is no essential loss
in generality, and indeed a partial simplification of the task at hand to be
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gained, by first restricting the relevant, Euclidean-signature action func-
tional to the ‘manifold’ of Riemannian metrics satisfying (in the vacuum
case) (4)R((4)g

∣∣∣
Eucl

) = 0 and then seeking to carry out a constrained mini-

mization of this functional.
Setting (4)R((4)g

∣∣∣
Eucl

) = 0 freezes out the conformal degree of freedom
that caused such consternation for the Euclidean path integral program
[39, 64], wherein one felt obligated to integrate over all possible Riemannian
metrics having the prescribed boundary behavior, but is perfectly natural
in the present context and opens the door to appealing to the positive
action theorem which asserts that the relevant functional is indeed positive
when evaluated on arbitrary, asymptotically Euclidean metrics that satisfy
(4)R((4)g

∣∣∣
Eucl

) ≥ 0 [65, 66, 67, 68].
Another complication of the Euclidean path integral program was the

apparent necessity to invert, by some still obscure means, something in the
nature of a ‘Wick rotation’ that had presumably been exploited to justify
integrating over Riemannian, as opposed to Lorentzian-signature, metrics.
Without this last step the formal ‘propagator’ being constructed would
presumably be that for the Euclidean-signature variant of the Wheeler-
DeWitt equation and not the actual Lorentzian-signature version that one
wishes to solve. In ordinary quantum mechanics the corresponding, well-
understood step is needed to convert the Feynman-Kac propagator, derivable
by rigorous path-integral methods, back to one for the actual Schrödinger
equation.

But in the present setting no such hypothetical ‘Wick rotation’ would
ever have been performed in the first place so there is none to invert.
Our focus throughout is on constructing asymptotic solutions to the origi-
nal, Lorentz-signature Wheeler-DeWitt equation and not to its Euclidean-
signature counterpart. That a Euclidean-signature Einstein-Hamilton-
Jacobi equation emerges in this approach has the very distinct advantage of
leading one to specific problems in Riemannian geometry that may well be
resolvable by established mathematical methods. By contrast, path integral
methods, even for the significantly more accessible gauge theories discussed
in Section 6, would seem to require innovative new advances in measure the-
ory for their rigorous implementation. Even the simpler scalar field theories,
when formulated in the most interesting case of four spacetime dimensions,
seem still to defy realization by path integral means. It is conceivable, as was
suggested in the concluding section of [1], that focusing predominantly on
path integral methods to provide a ‘royal road’ to quantization may, inad-
vertently, render some problems more difficult to solve rather than actually
facilitating their resolution.

The well-known ‘instanton’ solutions to the Euclidean-signature Yang-
Mills equations present a certain complication for the semi-classical
program that we are advocating in that they allow one to establish the
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existence of non-unique minimizers for the Yang-Mills action functional for
certain special choices of boundary data [3]. This in turn can obstruct the
global smoothness of the corresponding solution to the Euclidean-signature
Hamilton-Jacobi equation. While it is conceivable that the resulting, appar-
ent need to repair the associated ‘scars’ in the semi-classical wave functionals
may have non-perturbative implications for the Yang-Mills energy spectrum
— of potential relevance to the ‘mass-gap’ problem — no such corrections
to the spectrum are expected or desired for the gravitational case. Thus it is
reassuring to note that analogous ‘gravitational instanton’ solutions to the
Euclidean-signature Einstein equations have been proven not to exist [39].

We conclude by noting that other interesting, generally covariant sys-
tems of field equations exist to which our (‘Euclidean-signature semi-
classical’) quantization methods could also be applied. Classical relativistic
‘membranes’, for example, can be viewed as the evolutions of certain em-
bedded submanifolds in an ambient spacetime — their field equations de-
termined by variation of the volume functional of the timelike ‘worldsheets’
being thereby swept out. The corresponding Hamiltonian configuration
space for such a system is comprised of the set of spacelike embeddings of
a fixed n − 1 dimensional manifold M into the ambient n + k dimensional
spacetime, each embedding representing a possible spacelike slice through
some n-dimensional membrane worldsheet. Upon canonical quantization
wave functionals are constrained (by the associated, quantized momentum
constraint equation) to be invariant with respect to the induced action of
Diff 0(M) on this configuration space of embeddings. The corresponding
quantized Hamiltonian constraint, imposed à la Dirac, provides the natural
analogue of the Wheeler-DeWitt equation for this problem.

A solution to the operator ordering problem for these quantized con-
straints, when the ambient spacetime is Minkowskian, was proposed by the
author in [69]. For the compact, codimension one case (i.e., when M is
compact and k = 1) it is not difficult to show that the relevant Euclidean-
signature Hamilton-Jacobi equation has a fundamental solution given by
the volume functional of the maximal, spacelike hypersurface that uniquely
spans, à la Plateau, the arbitrarily chosen embedding [70]. It would be es-
pecially interesting to see whether higher-order quantum corrections and
excited state wave functionals can be computed for this system in a way
that realizes a quantum analogue of general covariance.
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[31] M. Dimassi and J. Sjöstrand. Spectral Asymptotics in the Semi-Classical Limit.
Cambridge University Press, 1999. see especially Chapters 1–3 and related references
cited therein.

[32] B. Helfer. Semi-Classical Analysis for the Schrödinger Operator and Applications.
Springer-Verlag, Berlin Heidelberg, 1988. For more advanced topics, see [33].
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